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Abstract. We describe a multi-mode quantum memory for propagating
microwave photons that combines a solid-state spin ensemble resonantly coupled
to a frequency tunable single-mode microwave cavity. We first show that high
efficiency mapping of the quantum state transported by a free photon to the
spin ensemble is possible both for strong and weak coupling between the cavity
mode and the spin ensemble. We also show that even in the weak coupling
limit unit efficiency and faithful retrieval can be obtained through time reversal
inhomogeneous dephasing based on spin echo techniques. This is possible
provided that the cavity containing the spin ensemble and the transmission line
are impedance matched. We finally discuss the prospects for an experimental
implementation using a rare-earth doped crystal coupled to a superconducting
resonator.
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1. Introduction

Quantum communication has developed tremendously over the last decades, now achieving
secure quantum key distribution over 250 km [1, 2]. In a similar manner quantum computing
has developed, reaching coherent manipulation of up to 14 entangled quantum bits [3]. One key
challenge in quantum information science is to combine these two fields by demonstrating an
architecture of two or more small computational nodes, connected through an optical fiber. This
would be the embryo of a future quantum internet [4].

One way to realize such an architecture would be to use superconducting qubits [5-10]
for the computational nodes. This technology has shown tremendous progress during the
last 15 years. At present, coherent operation of three-qubit systems has been experimentally
demonstrated [11-13] by several groups and experimental measurements show reproducible
relaxation times approaching 60—70 s [14, 15], and dephasing times up to 92 us [15].

These qubits operate in the microwave regime, implying the need for a quantum coherent
interface between microwave photons and optical photons. Such an interface can be built on
ensembles of rare-earth atoms in crystals, where already the storage and retrieval of optical
photons in collective spin excitations has been demonstrated [16, 17]. In the optical domain,
high-efficiency storage [18], storage of entanglement [19, 20] and generation of entanglement
between two rare-earth crystals [21] has been achieved, showing the potential of these materials
for quantum networks.

A step on the path to the full optical-microwave interface would be to demonstrate the
coherent storage and retrieval of propagating microwave photons in a spin ensemble. Depending
on the coherence properties of the spin ensemble, such a device could also be used as a
multimode memory for microwave photons. Recently, a few groups have demonstrated the
basic coupling between microwave cavities and different types of spin ensembles, including
NV-centers , Cr’* spins in sapphire as well as with Erbium ions [22-26]. This is very promising,
since it verifies that the basic idea of coupling an on-chip microwave cavity to a spin ensemble
works. Even more recently, a proof-of-principle memory was demonstrated in an experiment
where a single qubit was coupled directly to a spin-ensemble [27].
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In this work, we assume a spin ensemble resonantly coupled to a single mode of a
microwave cavity, as in [27]. However, we consider the case of the microwave photon being
generated outside the cavity and discuss the efficiency of the full storage and retrieval process,
including the capture and reemission of the photon by the cavity. We believe this solution can
give additional design freedom, as the optimal design for superconducting quantum processors
is still being explored [28].

Specifically, our memory scheme uses a single-ended, frequency tunable resonator [29, 30],
containing a spin ensemble with an inhomogeneous spectral broadening and an external
transmission line. It is based on two major features. Firstly, impedance matching of the resonator
to the external transmission line assures that the photon is mapped into the resonator with
unit efficiency [31]. In the picture of impedance matching, the spin ensemble acts like a lossy
element. By matching the finesse of the cavity (or in other words the related quality factor, Q)
to the single-pass absorption probability of the spin ensemble, any input field entering the cavity
will be mapped onto the spin ensemble. Secondly, the inhomogeneous dephasing can be time-
reversed using a spin echo technique, by which the collective coherence of the spin ensemble
is recovered, leading to a recovery of the coupling to the external transmission line and high
re-emission probability of the stored photon.

The paper is organized as follows. The basic ideas of the proposal are given in section 2.
In section 3, we investigate the conditions under which the single ended cavity and the spin
ensemble system can be impedance matched with respect to the external transmission line.
Section 4 aims at establishing the efficiency of the storage and retrieval operations in the weak
coupling regime, while in section 5 we show that the noise is negligible even when it is compared
to the signal resulting from light storage at the single photon level. In section 6, we present a
short feasibility study in rare-earth-ion doped crystals coupled to superconducting resonators,
before concluding our findings in the last section.

2. Proposed memory scheme

We first describe the steps allowing storage and retrieval before we analyze in detail the
memory properties. A spin ensemble is placed in a single-ended cavity, where we assume
that the center of the inhomogeneous spin line of width I' is in resonance with a cavity
mode. Each spin is approximated by a two-level system with ground |g) and excited |s) state,
see figure 1(a), and all spins are assumed to be in |g) before storage. An input microwave
photon is absorbed by the cavity-spin ensemble system, resulting in a single collective spin
excitation. The inhomogeneous spin broadening results in a dephasing in phase space of the spin
coherence, illustrated in figure 1(c). The application of a microwave 7 pulse after a time 7, (71
in figure 1(b)) causes a rephasing of the collective spin state at time 27,. But, the 7, pulse also
inverts the spin population and associated to this inversion is a source of spontaneous emission
noise. It has been shown, in the optical regime, that the resulting echo at 27; would be a low-
fidelity copy of the input pulse [32, 33]. Two solutions to this problem have been considered
in the optical regime, both based on suppression of the first echo emission [34, 35]. Inspired
by these solutions, we propose to use the capability of fast frequency detuning of microwave
cavities to suppress the emission of this echo. Tunable microwave cavities with fast response
times of a few nanoseconds and of high quality factors have already been demonstrated [29, 30].
By detuning the cavity mode with respect to the spin transition, the coupling strength between
the microwave mode and the spins is reduced and the echo emission is strongly suppressed.
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Figure 1. Principle of the proposed light storage protocol. (a) Time evolution of
the atomic populations. (b) Temporal pulse sequence. (c) Phase dynamics of a
single spins. (d) Cavity detuning. Once the input is absorbed, the spins start to
dephase. The two m pulses delayed by 1, + 7,, time reverse the inhomogeneous
dephasing so that an echo is emitted at time 2t; +271,. To avoid the echo
formation at time 27y, the cavity is detuned between the time interval separating
the two control pulses.

The cavity is detuned during the duration where the spins are inverted (see figure 1(d)). The
application of a second rephasing pulse denoted m,, delayed by 7, + 7, with respect to my, ideally
reverts the population, while also rephasing the collective spin coherence after a total storage
time of 1), = 2(t; + 12). The strong interaction between the external transmission line and the
cavity-spin system results in a high readout efficiency, as we will show in section 4. Note that
the echo technique makes the protocol inherently multi-mode, i.e. several temporal modes can
be absorbed during the time interval 7; without the need to increase the absorption depth of the
ensemble nor the finesse of the cavity.

3. Impedance matching regimes

We now investigate the conditions under which the single-ended cavity and spin ensemble
system can be impedance matched with respect to the external transmission line, i.e. the light
absorption is 100% efficient. It should be noted that the conditions for achieving impedance
matching in the weak coupling regime was given in [31]. Here we expand on that calculation
and we obtain results also in the strong coupling regime.

Consider an ideal asymmetric cavity made with two mirrors, the first one partially reflecting
light (associated with the decay rate « per cavity round trip), the other one reflecting light with
unit efficiency. The full-width at half-maximum of the cavity resonance is then 2« and the
associated cavity finesse is given by (assuming « having units rad/s)

e

2L W
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L being the length of the cavity and c¢ the speed of light inside the cavity medium. In the
microwave regime it is also common to refer to the cavity quality factor, Q = wr/(2k), wr
being the cavity resonance frequency, which can be directly related to F. In the following we
will mostly refer to the cavity finesse F, since this is the relevant parameter for impedance
matching, which is independent of the absolute frequency regime wg at which the cavity
operates.

The input field &, and the reflected field &.¢ are connected through

gref =V2kE — gilh (2)

where £ is the intracavity field. Further consider that an inhomogeneously broadened spin
ensemble is placed in the cavity. £ then evolves according to (see [31])

E=V2kEn— (k —iw)E+igN f daon(@)o, (3)

where w is the frequency of the input field (the cavity resonance is assumed to be at zero
frequency). g is the single spin coupling to the microwave mode of the cavity. N is the total
number of spins and n(w) is the normalized spectral distribution of the spins f don(w)=1.0;
denotes the polarization of the spin packet between @ and @ + dw. The dynamics of the latter is
given by

Gp = —(h+1(w — w))oz +ig€, 4)

where y;, 1s the homogeneous linewidth.
To study the conditions necessary for impedance matching, we look for the solution of
these coupled equations in the steady state regime. From the last equation (setting 65 = 0) we

get
8

s=————F¢. 5
T -0 —in ©)
Plugging it into (3) where we set & = 0 gives
0= v2KE — (i — i)E +1g>NE / do "M@ (6)
(0—w) =1y

Under the assumption that the spin spectral line has a Lorentzian inhomogeneous distribution,
ie.

(@) 1 (7
n = ——
O I T a2
we obtain
V2
£=—" &, ®)
K —iw+ =
and using the first equation
2K
Eret = < B &N - 1) Ein. (9)
K —1w + Tor—ia
+Yh—iw
Therefore, the reflection spectrum | ¢/ Enl*is given by
T+y) —g°N+a?)?+0?(k — (T +w))?
R(w) = kT +m)—g o)+ (k — (I'+wm)) (10)

(T Hy) + 82N — )2 + @k + (D + )2
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Figure 2. Reflection spectrum (equation (10)) as a function of the input field
frequency and the cavity linewidth (x in MHz) for g«/N =7, I' = 10 MHz (left)
and for g+/N =30, I' = 2.5 MHz (right). The homogeneous linewidth y;, is set

to zero. These numbers are probably within range for many spin ensembles,
including rare-earth-ion doped crystals.

We note that the Lorentzian shape of the spin frequency distribution (7) has been chosen because
of the simplicity of the resulting expression for the reflection spectrum. Other distributions
can be encountered in practice as the exact spin resonance line shape depends on the process
giving rise to the broadening [36]. For other distributions, a Gaussian function for instance,
the reflection spectrum has a more complex expression but displays similar features. In
equation (10) only the sum of the homogeneous and inhomogeneous broadening is important,
indeed the mechanism of the broadening is not important for achieving complete absorption.
However, as we will see in the following, the nature of the broadening is important for
the memory read out efficiency. Here we are considering systems where the inhomogeneous
absorption spectrum is much wider the homogeneous line. In the following section, where we
calculate the overall memory efficiency, we will therefore first set 3, = 0. The homogeneous
broadening will then later be reintroduced when we evaluate the different error and noise
sources. We finally also note that all linewidths given above (k, I' and j;, are half-widths at
half maximum (HWHMs)).

Figure 2 show the reflection spectrum R(w) for two different cases, g«/N < T and
g+v/N > T, respectively, as a function of the cavity linewidth «. In the first case (upper figure), a
single resonance line is observed at w = 0 and the reflection drops to zero, R(0) =0, when
g>N/«kT =1, which corresponds to the impedance matching condition. The full resonance
width (A) at half maximum at the impedance matching point is given by A =4«k. In the
second case, two different regimes are possible depending on the value of «, the weak and
strong coupling regimes. In the first regime, we have a single resonance line at @ = 0 and the
impedance matching is again reached when g?N /kT" = 1, with a resonance width of A =4T".
In the strong coupling regime, however, we observe the usual normal mode splitting, resulting
in two resonances at @ = +g~/N. Also in this regime there are impedance matching points,
R(£g+/N) =0, when k =T, of width A = 2T".
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All parameter sets satisfying one of the above mentioned impedance matching condition
could be used, at least in principle, to efficiently store any input microwave field to the spin
ensemble. We are here interested, however, in investigating quantum memories that do not
require strong coupling. We thus focus on this regime in the following.

4. Quantum memory without strong coupling

This section aims at establishing the efficiency of the memory protocol described in section 2.
The analysis applies to the two possible impedance match points at w = 0, for any relation
between g+/N and T'. It does not treat the case of strong coupling. We also neglect y, and
re-introduce it later as a small correction of the overall efficiency.

Let us assume that the input is resonant with the intracavity field (w = 0). The formal
solution of equation (4) (setting y, = 0) is given by

o@(t):ig/ ds e U9IE(s). (11)

o0

Plugging this solution into equation (3) (with @ = . = 0) gives the following equation for the
intracavity field:

S:Jﬂem—xg—gzzv/ ds ii(t — 5)E(s), (12)

n(t) = [ do n(w)e " is the Fourier transform of n(®) (considered to be Lorentzian with width
I' as before). Since we are considering the regime where the input spectrum (and thus the
spectrum of &) is well contained into n(w), n acts as a delta function (around ¢ = 0 where
the input pulse is absorbed) n(t —s) ~ 38 (t — s) such that the equation (12) reduces to

g*N
=V2k&n— k& — —8 (13)

Furthermore we assume that the input field of duration 7" varies much more slowly than the
cavity lifetime k!, i.e. kT > 1, which allows us to set £ = 0. We then obtain

V2K

E() = —E,’m t 14
0= oy e (14)
Note at this point that using equation (2), one gets
[gzN /Tkl —C
re = Ein Sm t 15
&) = T g o 00 = 0} (15)

where C = Kr is the so-called cooperativity parameter. In accordance with (10), we get total
absorption (E.¢ = 0) if the previously presented impedance match condition
2
N
c=52"=1 (16)
kI

is satisfied. We also note that the absorption probability 1 — |Eef|?/|Em|? for imperfect
impedance matching is given by
4C

Nabs = m (17)

New Journal of Physics 15 (2013) 065008 (http://www.njp.org/)


http://www.njp.org/

8 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

We emphasize that we have made two important assumptions above, namely that 7! < « and
T-! « T. If we consider the two possible impedance match points at @ = 0 that both satisfy
g°’N/kT =1, we showed above that the impedance match point linewidth is always given by
the smaller of the two parameters « and I'. Hence, if the input field bandwidth is smaller than
the effective bandwidth of the impedance match point, we implicitly satisfy the assumptions
made above.

Let us now derive the expression for the efficiency of the complete protocol, including
the re-emission. After a time t; that is long compared to the input pulse duration, the 7, pulse
exchanges the populations of the ground and excited states. The 7, pulse, delayed by 7, + 7,
allows one to restore the population distribution as it was before the first 7 pulse. Under the
assumptions that the  pulses perfectly transfer the atomic population over the whole atomic
spectrum, the sequence of two -pulses effectively changes a given coherence ¢ €'®™ at time T,
into ¢ e7% at time 271, + 7, where c is an arbitrary complex number. Therefore, the dynamics
of the retrieval process is given by

Eou = V2KE, (18)
£=—«E+igN / dan(@)5,, (19)
Go =100, +igE (20)

with the initial condition 6 (27 + T2) = 05(12).
The relation between the input and output fields is obtained following the previous lines of
thought. The formal solution of the last equation
t
G(1) = 05 (1) + / ds |0 (g€ (s) + 03 ()| @1)

211+

is plugged into the equation for the field (19). This leads after straightforward simplifications

E=—kE—g’N / df'n(t’' +20+ 1o — )E(—1' +12) — g*N di'n(t' — HE(). (22)
0 211+

Using arguments analogous to the ones presented in the previous section, we obtain

= - 2¢°N N -

E(t) = k&) — gF E(—1+21,+21) — ng(t). (23)
Using equation (14) (and setting £= 0), we get

_ DNV

E()=——XL &, (—1+21,+21)). (24)

(1+47)?

Plugging this result into equation (18) gives the desired relation between the input and output
fields

i e
Eout(t) = —m&n(—t +27)+271). (25)
The overall efficiency |E,u (271 +212)|%/|Ein(0)|? is thus given by
16C?
n : (26)

Tyt b
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Unit efficiency is thus achieved under the impedance match condition C = 1. Equation (26) also
gives us the efficiency scaling out of the impedance matching condition. By comparing (17)
and (26) it is also evident that the absorption and read out efficiencies are symmetric,
which we expect from a perfectly time-reversed process in the case where we neglect any
irreversible decoherence processes. We can also compare the overall efficiency, equation (26),
with the optimal efficiency for a purely homogeneous ensemble placed in a cavity, which
was investigated in [37]. The optimal efficiency is then given by CZ/(1+Cp)?, where Cj, is
the homogeneous cooperativity parameter defined as C, = g2N/(ky,). This expression for the
efficiency asymptotically tends towards 1 for large Cj,, while for the inhomogeneous case it
peaks for a cooperativity parameter C = 1, where it is optimal. The impedance matching is thus
optimal for inhomogeneous ensembles, as already point out in [31].

We now comment on the impact of a finite, albeit small, homogeneous broadening, i.e.
vh < T'. The spin echo rephasing cannot be perfect in that case, resulting in a decrease of
the overall memory efficiency given by exp(—4(t; + 12)/72). To reach an efficiency of 90%,
one would need to store for a duration significantly shorter than the associated coherence time
T, = 1/y4, more precisely 27, +21, = 0.0575. To reach at least 80%, the storage time must
satisfy 27, + 21, < 0.1175. This is, however, the case for any quantum memory approach.

Let us briefly comment also on the multimode capacity of our scheme. If we suppose that
we are in the regime g+/N < I', the memory bandwidth is given by 4«. Then any input with
a spectrum, say, ten times thinner i.e. ;5 can be stored with high efficiency. As shown above
the total storage time 27 + 27, is limited by the homogeneous linewidth, in addition only the
first 7; period can be used to accumulate input modes. If we assume 7; = 1, we find that in
order to store multiple modes with roughly 80% efficiency, the mode capacity would be roughly
n~ m X 535 = m. Hence, if one has a system where k > )4, one can store multiple modes
with high efficiency. For the opposite regime g+/N > I' the memory bandwidth is given by 4T,
in which case I" should replace x above.

5. Noise evaluation

This section focuses on the noise and aims at demonstrating that the proposed storage scheme
is faithful even when operating at the single-photon level. Two sources of noise are being
investigated. The first one follows from the spontaneous emission of a photon during the
time slot of the suppressed echo (at time 2t;). The resulting collective spin excitation is
indistinguishable from the one stemming from the absorption of a single photon in the input
mode at + =0 and thus leads potentially to a non-negligible noise at the re-emission time
2(t; + 12). This noise we refer to as collective in the following. The other source of noise
follows from spins decaying at any time between the two m-pulses, due to the finite lifetime
of |s), that are subsequently repumped into the excited level by the second m-pulse and that
spontaneously emit a photon at time 2(t; + 7). This noise we refer to as spontaneous in the
following.

The calculations below will be restricted to the regime g+/N < I', where the impedance
match point bandwidth is given by 4«. This we do since the memory bandwidth enters the
equations in several instances. The calculations can easily be redone for the regime g+/N > I’
by simply replacing the bandwidth with 4T".
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5.1. Collective noise

Consider the case where there is no input. Further consider the case where the first = pulse
transfers all the atoms to the excited state. In [38, 39] it is shown that for such a totally inverted
two-level system, the mean number of photons emitted into a temporal mode correspond to 1/ T
is given by

el —1~aL, (27)

where oL =2 g?NL/(cT") is the absorption depth of the spin ensemble. The approximation
above is justified since oL < 1 for a spin ensemble without cavity. This expression is strictly
only valid when there is no cavity, but for a far-detuned cavity it provides an upper bound on
the number of emitted photons since the Purcell factor is neglected.

Any unwanted transition to |g) at time 27; will also give rise to a collective emission
at the second echo emission time 2(t; + 7). From the argument above, the average number of
excitations in |g) produced at time 21, is « L. The collective read out efficiency of any excitation
is given by (17). However, we also need to consider the different spectral bandwidths involved
here. In the bad cavity limit g+/N < I, the impedance matching point has bandwidth x < T,
which is the bandwidth over which the collective read out efficiency (17) applies. In addition,
since we have assumed « > T~!, it means that we need to consider roughly « T number of
modes when we calculate the total noise collectively emitted into the relevant output mode of
duration 7. We consequently get the noise probability

4C T 4C?
L——=kT = =———«T.
(1+C)? F(1+C)?
In the last step we express the noise probability in terms of the cavity finesse F by using the

relationship F = 7w C/(«L), which can easily be derived by using the definitions of F, C and
a L. The resulting signal-to-noise ratio (SNR) is

n F 4 1
Mnoise B T (1 + C)2 kT ’
which reduces to SNR, = m(iT under the impedance matching condition. Since the cavity finesse
can reach 10* or higher, and we can design « T < 10, it is possible to obtain a SNR, sufficiently
high to build a low-noise memory at the single-photon level.

Let us briefly also discuss the role of decoherence due to a finite 75. Since this particular
noise emission is a coherent collective emission, the emission probability will also decay due
to T, as for the stored signal. But since the noise is induced by an excitation created at time
(2711), the noise emission is less affected by decoherence since it stays only the time (21,) in the
memory. The decoherence will therefore lower the SNR. when the storage time is comparable
to or longer than 75.

(28)

Nnoise = &

SNR, = (29)

5.2. Spontaneous noise

We also need to consider the effect of population decay from |s) to |g) during the time delay
separating the two m-pulses. Indeed, these spins will be excited to |s) by the second m-pulse,
leading to a source of spontaneous emission noise in the output mode at time 2(7; + 7). In
contrast to the previous noise source, these excitations do not lead to collective emission since
the timing does not allow for rephasing of the inhomogeneous dephasing. On the other hand, all
population decay between the two -pulses will contribute to the noise.
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We here assume that the temperature is sufficiently low such that all population will finally
decay to |g) with a time constant 7). It is straightforward to show that the average number
of excitations Ny in |s) at the second echo time 2(7; + 1) is given by Ny = N(11+ 1)/ T}, in
the limit (7; + 72) < 7T;. The mean number of photons emitted through spontaneous emission
in a mode of duration 1/I" from a partly excited two-level system is simply o« LN;/N [39].
However, since the cavity is resonant at the second echo time, the emission rate is F times
faster [40] leading to a noise emission probability of approximately FaLN;/N =wCN,/N.
However, we again need to consider the different bandwidths. The resonant cavity enhances the
spontaneous emission rate only over the impedance match bandwidth, of width «. For an output
mode of duration 7 we then get a noise probability of k TmrCN;/N, kT being the number of
contributing temporal modes. The SNR due to spontaneous noise is thus

nT

nC(ti+ )k T’

At the impedance match point we ideally have C = 1 and n = 1, resulting in SNR, = T} /[7 (71 +
7,)k T']. To obtain a high SNR, one should store for a duration much shorter than the population
lifetime, and chose the input duration 7 such that «7T is reasonable low (<10). The first
condition is naturally met in a practical situation since the spin coherence time 7, will likely
be considerably shorter than the population decay time 77 and the memory can clearly only
function well on time scales < T, as discussed in the end of the previous section. As the
storage time approaches 7, the SNR; will decrease, since the read-out efficiency decreases while
the spontaneous noise is independent of the coherence. It is worth noting that this noise source
is important, although we here suppose that 7, + 7, < 7, < T;. This is because of the rate of
spontaneous emission scales as N/ T for an inverted system, resulting in an appreciable amount
of population decaying to |g) during the time t; + 7, that the system is inverted.

Experimentally population decay times of around 100 ms have been obtained for electronic
spin ensembles in rare-earth-ion doped crystals [41-43], for temperatures of 2—4 K. Recently a
population decay time of 4.3 s was measured in Er’**:Y,SiOs at a temperature of 20 mK [44].
This noise factor should thus be negligible for most storage experiments.

SNR, =

(30)

6. Implementation using rare-earth-ion-doped crystals

For concreteness, we now discuss the experimental feasibility of the proposed memory in rare-
earth-ion-doped crystals coupled to superconducting resonators. Rare-earth (RE) ions in the
state RE** with uneven number of electrons, such as erbium and neodymium, generally have
unquenched orbital momentum, due to the weak crystal field interaction. As a result these
ions have doubly-degenerate Zeeman states, so-called Kramers doublets, which split when an
external magnetic field is applied. The effective magnetic dipole moment is of the order of the
Bohr magneton uy. The coupling between an Erbium spin ensemble and a superconducting
microwave cavity has already been demonstrated using the crystal Er’*:Y,SiOs [25, 26].
More recently strong coupling was also demonstrated [44]. In [26] we obtained the collective
coupling rate g+/N = 27 x 4 MHz for a spin linewidth of I' = 27 x 75 MHz (HWHM). Using
the definition of the absorption coefficient (see equation (27)) we then calculate o = 8.9 x
103 m~!. By again using the expression F = 7C/(aL) we can evaluate the quality of the
cavity required in order to reach the impedance match point C = 1. If we assume a L = /2
cavity the quality factor would have to be Q =F =2n/(ar) & 12000 for a 5 GHz cavity
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resonance frequency. This is experimentally possible, since a quality factor of Q =~ 32000
was reached in [25] where a Er**:Y,SiOs crystal was coupled to a superconducting resonator.
More recently strong coupling was also achieved with a Er’*:Y,SiOs sample [44], thanks to
a higher collective coupling rate (g+/N =27 x 34 MHz) and a lower spin linewidth (' =
27 x 12MHz (HWHM)). Those values would result in a very high absorption coefficient
o« =4.0m™!, which in turn requires a much lower cavity Q of 26. In this low-Q regime
k > I' and the memory bandwidth would be limited by I'. This provides an opportunity to
increase the bandwidth of the quantum memory. Indeed, the absorption coefficient is so large
that one can work with sample orientations having larger inhomogeneous broadening, while
still reaching the impedance matching point with low-Q resonators. One could even imagine
using a magnetic field gradient to further increase the broadening and the memory bandwidth.
A large inhomogeneous broadening would also increase the multimode capacity of the memory
as discussed earlier. We also mention that preliminary experiments on a Neodymium-doped
Y,Si0s sample indicates similar coupling strengths, with even narrower spin linewidths.

The fact that Probst et al reached strong coupling also provides a motivation to extend the
calculations presented here to the impedance match points in the strong coupling regime (see
figure 2).

Our proposal also requires fast tunable cavities. One-dimensional superconducting cavities
are especially adapted for fast tuning, as the cavity frequency can be tuned by several hundred
MHz in a few nanoseconds. As the cavity switching time is much shorter than the expected
storage time (ns compared to at least us), the cavity switching is not setting a technical limit
to our storage protocol. The Q factor of these cavities have so far reached 10* [29, 30]. While
this is lower than the resonators of highest quality, e.g. [45], it is already close to the required
quality factors estimated above. It should also be emphasized that low-loss cavities are required.
Indeed, the losses due to the spins should dominate over the intrinsic losses of the cavity, to
ensure efficient mapping onto the spins. In other words, we require a relatively high internal Qjy,
value. While this is easily feasible for non-tunable cavities, it could be a challenge for tunable
cavities. In addition we require that the tunable cavity preserves its Q factor in a moderate
or high magnetic-field environment. For moderate magnetic fields several experiments have
been performed, using antidot arrays [46] or fractal designs [47]. These approaches should be
possible to extend to higher magnetic fields. We believe that these are engineering issues that
can be solved.

The memory protocol described here relies on the ability to drive the entire atomic
ensemble with a uniform Rabi frequency in order to implement the necessary m-pulse. Note
that this implied uniform coupling is not required for the absorption/remission of the single
photon. This suggest that it may not be feasible to use the same cavity mode to couple both the
single photon and the mr-pulse to the ensemble. In particular, the coupling mode for the 7 -pulse
will need to be highly uniform over the entire ensemble. However, it does not need to be coupled
to the ensemble with the same strength, allowing considerable design freedom, for instance, the
use of a separate open transmission line running alongside of the cavity. The memory scheme
we have presented here thus provide a motivation for investigating new circuit designs that could
provide such m-pulses. We do believe, however, that with sufficient engineering efforts such a
device could be realized.

Finally, the coherence properties of rare-earth-ion doped crystals are unknown in the
temperature range where superconducting circuit experiments are operated (a few 10s of
mK). But since coherence times close to 100 us have been achieved already at 2.5 K [48],

New Journal of Physics 15 (2013) 065008 (http://www.njp.org/)


http://www.njp.org/

13 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

we can expect significantly longer coherence times at 10 mK. Recent work by D L McAuslan
et al [49] has also shown that several hyperfine transitions having zero first-order Zeeman shift
(ZEFOZ) can be found in the 100 MHz to 1 GHz regime using the crystal Er**:Y,SiOs. Since
ZEFOZ transitions are known to have superior coherence properties, this makes Er**:Y,SiOs an
excellent candidate for a long-duration microwave quantum memory.

7. Conclusion

We have presented a memory for propagating photons in the microwave regime that combines
an inhomogeneously broadened spin ensemble, microwave 7 pulses and a superconducting low-
loss cavity. We have shown that even in the weak coupling regime, the memory efficiency
can reach unity if the transmission line impedance matches the spin ensemble embedded in
the cavity. The memory is also inherently multi-mode since it relies on spin echo techniques.
Furthermore, we have presented an analysis of the noise that confirms that the memory could
operate at the single photon level, i.e. in the quantum regime. We also argued through a short
feasibility study that erbium or neodymium ions doped into Y,SiOs are serious candidates for an
experimental implementation. There are also several aspects that deserve further investigations.
For instance the possibility to operate the memory in the strong coupling regime, where we
also have identified the conditions for achieving an efficient mapping onto the spin ensemble.
The protocol also requires efficient  pulses. Further studies should investigate how to design a
circuit that can efficiently produce a r pulse that acts uniformly on the whole spin ensemble.

We conclude by noting that the memory scheme could also provide a coherent interface
between microwave and optical photons. Indeed, the collective spin excitation resulting from
the absorption of a microwave photon can be converted to an optical photon assuming that there
exist a sufficiently coherent optically excited state |e) with which |s) and |g) forms a lambda-
system. However, a study of conditions required for an efficient conversion is not within the
scope of this article, but will be the subject for future studies.
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