
Chalmers Publication Library

Ridge-Adjusted Slack Variable Optimization for Supervised Classification

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE International Workshop on Machine Learning for Signal Processing, Southampton,

United Kingdom, September 22-25, 2013

Citation for the published paper:
Yu, Y. ; Diamantaras, K. ; McKelvey, T. (2013) "Ridge-Adjusted Slack Variable
Optimization for Supervised Classification". IEEE International Workshop on Machine
Learning for Signal Processing, Southampton, United Kingdom, September 22-25, 2013

Downloaded from: http://publications.lib.chalmers.se/publication/180134

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/180134

2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 22−25, 2013, SOUTHAMPTON, UK

RIDGE-ADJUSTED SLACK VARIABLE OPTIMIZATION FOR SUPERVISED
CLASSIFICATION

Yinan Yua,c, Konstantinos I. Diamantarasb, Tomas McKelveya, S.Y. Kungc

Chalmers University of Technology a TEI of Thessaloniki b Princeton University c

Gothenburg, Sweden Thessaloniki, Greece Princeton, USA
{yinan,tomas.mckelvey}@chalmers.se kdiamant@it.teithe.gr kung@princeton.edu

ABSTRACT
This paper presents an iterative classification algorithm
called Ridge-adjusted Slack Variable Optimization (RiSVO).
RiSVO is an iterative procedure with two steps: (1) A work-
ing subset of the training data is selected so as to reject “ex-
treme” patterns. (2) the decision vector and threshold value
are obtained by minimizing the energy function associated
with the slack variables. From a computational perspective,
we have established a sufficient condition for the “inclusion
property” among successive working sets, which allows us to
save computation time. Most importantly, under the inclusion
property, the monotonic reduction of the energy function can
be assured in both substeps at each iteration, thus assuring
the convergence of the algorithm. Moreover, ridge regular-
ization is incorporated to improve the robustness and better
cope with over-fitting and ill-conditioned problems. To verify
the proposed algorithm, we conducted simulations on three
data sets from the UCI database: adult, shuttle and bank. Our
simulation shows stability and convergence of the RiSVO
method. The results also show improvement of performance
over the SVM classifier.

Index Terms— slack energy minimization, kernel method,
ridge-regression, classification, training data selection

1. INTRODUCTION

Support Vector Machine (SVM) [1, 2] is the optimal classi-
fier in terms of the maximum margin between two classes.
Classification techniques by Mean Squared Slack (MSS) min-
imization are closely related to SVM. The relation has been
described in detail [3, 4] . In the previous work, a classifica-
tion technique called Slackmin is presented. This approach
attempts to minimize the MSS, which yields a much simpler
computation compared to SVM for big data scenario. Instead
of quadratic programming, the computational complexity for
Slackmin is dominated by the inversion of the data covariance
matrix, which mainly depends on the dimensionality of the
feature vector. A kernel version Slackmin is also presented.
The classification accuracy turns to be slightly better com-
pared to SVM. In this paper, we are aiming to tackle the fol-
lowing issues:

(1) The slack variable associated with pattern i is defined
as ξ(i) = max{γ− t(i)(wTxi +b), 0}. Namely, all the
”bad” patterns are taken into consideration, including
also the outliers which could be detrimental to training.

(2) Slackmin evaluates all the patterns in the training set
after each iteration to identify the active training set for
the next step. In big data scenario, the computation can
be costly.

(3) Over-training is inevitable for kernel Slackmin since
there is no constraints on the regression coefficients.

(4) To make the algorithm more amenable to big data prob-
lem, parallelization of the algorithm will be explored.

The paper is organized as follows. First, it starts with a
brief review of the previous work. Then in Section 3, basic
concepts of the newly proposed techniques are established by
introducing theoretical foundations. Details of the algorithms
are then presented in Section 4 and experimental results are
compared in Section 5.

2. PREVIOUS WORK

Recently, the “Slackmin” classification algorithm has been
proposed [3, 4] based on the minimization of the slack vari-
able energy. We briefly review this work and introduce some
terminology in this section. More details can be found in the
previous papers.

First, we define the slack variable associated with pattern
xi as follows:

ξ(i) = max{γ − t(i)(wTxi + b)2, 0} (1)

where w is the weight vector and b the bias parameter. The
objective of Slackmin is to minimize the Mean Squared Slack
JMSS defined as:

JMSS =
1

2
E{ξ2| ξ > 0} (2)

For any given pair (w, b) define the active set

S = {xi : t(i)(wTxi + b) < γ, ∀i} (3)

as the set of patterns with positive slack variable ξ(i), and
denote the cardinality of S by |S|.

If we fix the active set S, the classical least squares solu-
tion for

β∗ =
[
w∗

b∗
]

= arg min
w,b

JMSS (4)

problem is typically solved by zeroing the derivatives ∂JMSS

∂w

and ∂JMSS

∂b , which leads to

β∗ = γ

[
Rx mx

mT
x 1

]+ [
mtx
mt

]
(5)

where t(i) = ±1,Rx = 1
|S|
∑

xi∈S xix
T
i ,mt = 1

|S|
∑

xi∈S t(i),
mx = 1

|S|
∑

xi∈S xi, andmtx = 1
|S|
∑

xi∈S t(i)xi.

978-1-4799-1180-6/13/$31.00 c© 2013 IEEE

Since S is not known, an iterative approach is employed
for its computation. At each step k, we alternate between

(a) finding (given the active set Sk) the optimal weights
w∗k and bias b∗k according to Eq. (5), and

(b) finding (given w∗k and b∗k) the next active set Sk+1 by
Eq. (3).

The initial condition
[
wT

1 , b1
]T

is randomly selected.
The algorithm can be naturally extended to the kernel

case. As usual, we consider a nonlinear mapping Φ(·) from
the original feature space to a higher dimensional space and
we assume that w =

∑
i aiΦ(xi). Instead of computing β

by Eq. (5) we can find α = [aT , b]T as follows:

α∗ =
[
a∗

b∗
]

= γ [K, e]
+
tS (6)

where K is the kernel matrix, whose entries are defined
by a user chosen kernel function k(x, y), such that Kij =
k(xi,xj) [6, 7, 8, 9]. Vector e is a column vector with
all ones and tS is the vector containing all targets t(i), for
xi ∈ S.

Let us call “the set which is not active” at step k the “com-
plementary set” and denote it as Sk

c = Sall \ Sk, where Sall

denotes the whole training data set. We also assign index k to
Jk
MSS , Rk

x, mk
t , mk

x and mk
tx to track the update when it is

necessary.

3. THEORETICAL FOUNDATION FOR RISVO
ALGORITHM

In this section, we first present the theoretical foundations (in-
cluding selection of the active set and the main convergence
theorem) for the proposed algorithm. Then, its ridge exten-
sion will be presented at the end of the section.

3.1. Active subset selection
Let

y(i) = wTxi + b (7)

for the linear kernel, and

y(i) =
∑
j∈G

K(xi,xj)a(j) + b (8)

for nonlinear kernels, where G ⊆ Sall. The new slack vari-
ables are defined as:

ξ(i) =
{

1− y(i)t(i) γ1 < y(i)t(i) < γ2
0 otherwise (9)

At step k, the patterns xi associated with the nonzero ξ(i)
construct the active set Sk.

Compared to the previous method Slackmin [3], the new
algorithm is different in the following way:

a. In Slackmin, the classifier is updated based on all the
“bad” patterns. The term “bad” patterns referred to
those cannot be correctly classified, i.e. those associ-
ated with ξ(i) ≥ 0. However, the performance may be
adversely affected by including the “extreme” patterns,
i.e. those patterns with ξ(i) � 0, as they may very

Fig. 1. An intuitive example of the active set selection. The
difference between Slackmin and our new algorithm is that
we exclude also the “extreme patterns” from training at each
step.

well possibly be outliers. One way of solving this is to
discard as well the patterns associated with very large
ξ. Namely, instead of one parameter γ, we could define
boundaries (γ1 and γ2) on both sides for ξ.

b. In the previous algorithm, the expression of ξ(i) =
γ − t

[
wTxi + b

]
depends on γ. When we update β

according to Equation (5) or (6), the effect of γ will be
canceled in the next update. Therefore, we replace γ by
1 in the definition of ξ(i).

A two-dimensional example is shown in Figure 1. We
call wTx + b = 0 the separation hyperplane and wTx +
b = ±1 the positive and negative marginal hyperplanes. As
illustrated in the figure, the slack variables involved in the
computations at each step are chosen to be the “bad patterns”
in “Slackmin”. However, according to our new definition , the
“extreme patterns” are also ruled out.

3.2. Inclusion property and convergence

A sufficient condition for guaranteeing the convergence of the
algorithm is that the sequence of active sets obeys the inclu-
sion property defined below.

Definition 1. Inclusion property of active set S:
Given a sequence of active sets {Sk}, where k = 1, · · · ,K

andK is the maximum iteration number. We say the sequence
has the inclusion property if the following holds:

S1) S2 · · ·) Sk · · ·) SK (10)

i.e. once a pattern is removed at any time, then it will not be
included in any of the future steps.

In addition to guaranteeing convergence, the inclusion
property provides possibilities for faster computations and
smaller memory requirements. The reason is that the inclu-
sion property allows us to search in a subset of the previous
active set at each step instead of going through the whole
training set. A sufficient condition for such property is pre-
sented in Lemma 1. Note that we only discuss the linear case.
Similar results can be extended to nonlinear kernels.

Lemma 1. Sufficient condition for inclusion property:

Let C−1, C+1 denote the set of patterns from t = −1 and
t = +1 class, respectively. Suppose training data from set
Ct is bounded within a ball centered at mt

x with radius Rt.
Namely,

‖xt
i −mt

x‖2 ≤ Rt (11)

for all xt
i ∈ Ct andmt

x is the mean value of xt
i.

Let the active set S1 = Sall and Sk = {xi : t(i)(wT
k xi +

bk) < γ,∀i}. Let Mk =

[
βT
k

βT
k+1

]
. The inclusion prop-

erty of {Sk} holds if we have:∥∥∥∥Mk(MT
kMk)−1

[
t
t

]
−
[
tmt,k

x
t

]∥∥∥∥
2

≥ Rt, ∀k, t (12)

Proof. Without loss of generality it suffices to study the pos-
itive class. Similar results can be derived for negative in-
stances.

Let us construct a vector space Z by concatenating the
feature vector x and its label t (t = +1 in this case): z =[
x
1

]
. The hyperplanes defined by the optimizer β∗k at step k

and k + 1 intersect at points zk+1
0 . A sufficient condition for

inclusion property to hold is that zk+1
0 is inside the boundary

of the training patterns.

An intuitive example can be found in the figure above. At
step k, the intersection is located outside the ball which guar-
antees that Sk (Sk−1. However, at step k+1, zk+1

0 is inside
the boundary which allows the existence of the shallowed pat-
terns. This violates Sk+1 (Sk and hence the inclusion prop-
erty can not be fulfilled. Note that our derivation does not
depend on the two dimensional illustration. The example is
just to give an intuitive understanding.

The intersection zk+1
0 can be expressed as points z such

that: [
βT
k

βT
k+1

]
z = Mkz =

[
1
1

]
(13)

Hence it can be derived as follows.

ẑk+1
0 = Mk(MT

kMk)−1
[
1
1

]
(14)

Note that full rank is assured forM when k < K.
A sufficient condition for the intersection being inside the

boundary of class t = +1 is thus:∥∥∥∥ẑk+1
0 −

[
m+1,k

x
1

]∥∥∥∥
2

≥ R+1, ∀k (15)

If the inclusion property holds, it yields faster computa-
tions and requires less memory storage. Since Sk+1 is al-
ways a subset of Sk, we do not need to evaluate the whole
training patterns to select the active set at each step and the
global convergence is straightforward. Therefore, one usage
of Lemma 1 is that at each step k, if the sufficient condition is
fulfilled, we can safely assume inclusion property and restrict
our searching space at step k + 1 to be a subset of Sk. More-
over, in practice, the inclusion property holds in most of the
cases. Exceptions exist, yet |Sk+1 \ Sk| → 0 always holds
for all k.Therefore, in our study, the inclusion property is al-
ways assumed. Consequently, in the new approach, at each
iteration, we only select Sk+1 as a subset of Sk.

The next step is to study the convergence of the algorithm.
First, we define the empirical estimate of JMSS called the
squared slack energy as follows:

Definition 2. Let ξ(i) be a slack variable and S the active
set. The squared slack energy is defined as:

JSS =
1

2

∑
i∈S

ξ(i)2 (16)

It can be easily seen that all previous mathematical results
still hold if expectations are replaced by their corresponding
empirical estimates. Therefore, we can conclude a sufficient
condition for convergence as follows. Note that here the con-
vergence is studied for the Slackmin algorithm, but it is valid
for the new proposed approach as well. The reason is that
in the new approach, we reject the outliers whose existence
does not affect the outcome of the algorithm since they are
not supposed to be involved in the training anyway.

Theorem 1. Given a sequence of active sets {Sk}, the Slack-
min Algorithm converges if the inclusion property holds.

Proof. Let K be the maximum step number of the algorithm.
We want to show that J1

SS > J2
SS > · · · > JK

SS .
We adopt the following notations:

a) Jk∗
SS = 1

2

∑
i∈Sk(1 − β∗Tk xi)

2, i.e. the minimized
squared slack energy at step k.

b) Jk+1
SS = 1

2

∑
i∈Sk+1(1−β∗Tk xi)

2, i.e. the squared slack
energy at step k + 1 before minimization:

c) J (k+1)∗
SS = 1

2

∑
i∈Sk+1(1 − β∗Tk+1xi)

2, i.e. the mini-
mized squared slack energy at step k + 1.

It can be shown that

1) Jk∗
SS ≤ Jk+1

SS : Under inclusion property Sk+1 (Sk,
we know that 1) holds because we are only removing
patterns from the training set, so the total energy is de-
creasing.

2) Jk+1
SS ≤ J

(k+1)∗
SS (because β∗k+1 minimizes Jk+1

SS at
step k + 1.

k = 1 · · ·K, a) > b) and b) > c)). Combining 1) and 2), we
conclude that Jk∗

SS ≥ J
(k+1)∗
SS .

Since this holds for all k, the sequence J1
SS , J

2
SS , · · · , JK

SS
is monotonically decreasing to a minimum value.

3.3. Ridge-adjusted extension
The Ridge trace [10, 11] in regression techniques penalizes
the size of the regression coefficients and therefore helps with
overfitting problems. In this section, ridge-adjusted extension
of the algorithm is presented. This is one of the features dif-
ferentiate Slackmin and our new algorithm.

3.3.1. Linear case

For the linear case, the extension to ridge regression is
straightforward. We just add a ridge trace to the regressor
as follows:

β∗k = γ

[
Rx + ρI mx

mT
x 1

]+ [
mtx
mt

]
(17)

3.3.2. Kernel case

Following [3] we call G the subset of Sall, which serves as
the basis in the kernel computations:

y(i) =
∑
j∈G

K(xi,xj)a(j) + b (18)

Without ambiguity, we use the notationG to represent the
basis matrix containing xi∈G as its columns. Besides, we use
the following notations for further computations:

- Data vector in the kernel space: φ(x).
- Data matrix in the kernel space:
Φ(x) = [φ(x1), · · · ,φ(x|S|)].

- Kernel matrix on the active set S: KS = Φ(x)TΦ(x),
x ∈ S.

- Kernel matrix on the basis set G: KG = Φ(x)TΦ(x),
x ∈ G.

- Inner product in the kernel space: KSG = Φ(x)TΦ(y),
for x ∈ S and y ∈ G.

- Vector with all ones: e = [1, · · · , 1]T .
- Matrix with all ones: E.
When we have the same size for the basisG and the active

set S, ridge extension is obvious to show. However, due to
the computational complexity, it commonly happens that we
choose G to be a proper subset of S. In this case, the kernel
matrix is no longer square, and hence ridge regression has to
adapt accordingly with respect to the kernel tricks applied.
We discuss the two cases as follows:

Case G = S:
α∗k =

[
a∗

b∗
]

= γ [KS + ρI , e]
+
tS (19)

Case G (S:
α∗k =

[
a∗

b∗
]

= C+
k (KGS +E)tS , (20)

where Ck = [(KGS +E)KSG + ρKG, KGSe+NSe].
Note that the purpose of selecting a subset G (S as the

basis is to reduce the computational cost. Instead of produc-
ing a |S| × |S| kernel matrix, we only compute the matrix
with size |S| × |G|. Furthermore, by changing the size of the
basis |G|, the classification performance varies. This has been
studied in Section 5.

4. SEQUENTIAL AND PARALLEL RISVO

4.1. Sequential RiSVO algorithm

The algorithm we have introduced so far is called Ridge-
adjusted Slack Variable Optimization (RiSVO). It is summa-
rized in Algorithm RiSVO.

Algorithm RiSVO
- Initialization: S1 = Sall
- For k = 1 : K

- Switch kernel
Case linear

Update βk according to Equation (17).
Compute y(i)t(i) from Equation (7)
for all i ∈ Sk.

Case nonlinear
Update αk according to Equation (19)
or (20).
Compute y(i)t(i) from Equation (8)
for all i ∈ Sk.

- end
- Identify Sk+1 = {xi : γ1 < y(i)t(i) < γ2}, where
γ1 and γ2 are predefined
(can be set as γ1 = −1 and γ2 = 1).

- end

4.2. Parallelization of RiSVO

In this work, parallelization of RiSVO is simulated using a se-
quential process implemented by a ‘for’ loop in Matlab. The
simulated scheme is the well known technique called MapRe-
duce. The MapReduce framework has been proposed in 2004
[12]. It allows simultaneous computation to reduce the com-
plexity on each computing unit. Such a computing unit is
called a node in this context. There are two steps in this
framework: Map (dividing the work) and Reduce (merging
the results). Many machine learning techniques adopt this
concept to cope with big data problems [14, 13].

Fig. 2. MapReduce for parallel RiSVO. The data set is di-
vided into L nodes. Each node carries out 1

L of the compu-
tation. The solutions computed from all the nodes are then
combined in a linear fashion.

MapReduce is straightforward to apply for RiSVO. An il-
lustrative example can be found in Figure 2. At the Map step,
we simply divide the data set into L nodes and distribute the
iterative computation to each node. At the Reduce step, the
computed classification parameters are combined in a linear
fashion to obtain the final classifier.

4.3. Choice of G

The choice of G may affect the generalization performance.
From our experiences:

• When |Sall| is reasonably large, let |G| = |Sall|. How-
ever, when the computation of a |Sall| × |Sall| kernel
matrix is too heavy, choose G (S.

• For parallel RiSVO, since the data are divided into L
nodes, we have several possibilities of choosing G:

a. Choose G1 = G2 = · · · = GL and Gl a subset of
Sall.

b. Choose Gl as a random subset of Sl, ∀l =
1, · · · , L.

c. Choose G1 as a random subset of Sall and Gl+1

to be a subset of Sall/(G1 ∪ · · · ∪ Gl), ∀l =
1, · · · , L− 1.

5. EXPERIMENTAL RESULTS

We have conducted simulations studies on three standard UCI
data sets: adult, bank and shuttle. [5] The only preprocessing
is to normalize each feature with its maximum value. In this
section, we show the results obtained by sequential RiSVO
and compare them with SVM [15] implemented by SVMlight
[16]. Moreover, the results of parallel RiSVO is simulated by
an independent sequential process. More results obtained by
tuning some of the parameters can be found in Figure 3.

Data Parameter

Adult
ρ = 0.0001, |G| = 30× dim, RBF
Train accuracy Test accuracy

88.15 % 85.11 %

Bank
Parameter

ρ = 0.0001, |G| = 30× dim, RBF
Train accuracy Test accuracy

94.57 % 90.05 %

Shuttle
Parameter

ρ = 0.0001, |G| = 30× dim, RBF
Train accuracy Test accuracy

99.80 % 99.81 %

Table 2. The results of the simulated parallel RiSVO. The
simulation is carried out by a sequence of independent com-
putations in Matlab.

5.1. Sequential RiSVO

As we can see in Table 1, RiSVO outperforms SVM in most
of the cases. For the data set shuttle, however, SVM with lin-
ear and rbf kernels work slightly better than the correspond-
ing RiSVO algorithm. For fair comparison and consistency,
we use the same kernel parameters for different methods, e.g.
σ = 1 in rbf kernel and degree d = 2 of polynomial kernel.
In our experiments, we select the basis matrix G according to

method b. and the choice of |G| depends on the dimension n
of the feature vector. We choose |G| = m×n, wherem ≤ 50
and m is an integer. The results shown in Figure 3 indicate
that when |G| is too small, w cannot be represented properly
by too few samples. When |G| is too large, the linear inde-
pendence between the samples make it redundant to include
all the data. Therefore, an optimal |G| needs to be determined
by cross validation.

0 10 20 30 40 50

0.15

0.155

0.16

0.165

0.17

0.175

0.18

m = |G|/n

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

Dataset: adult

RBF Kernel: σ=1

Polynomial Kernel: d=2

0 10 20 30 40 50
0.1

0.105

0.11

0.115

0.12

0.125

m = |G|/n

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

Dataset: bank

RBF Kernel: σ=1

Polynomial Kernel: d=2

10 20 30 40 50
10

−3

10
−2

10
−1

10
0

m = |G|/n

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

Dataset:shuttle

RBF Kernel: σ=1

Polynomial Kernel: d=2

Fig. 3. Classification results of RiSVO with some different
parameters versus the size of the basis |G|.

5.2. Parallel RiSVO

The parallelization of RiSVO is simulated by a sequence of
independent computations in Matlab using a “for” loop. The
training and testing results are shown in Table 2.

Data
Dataset Number of features Number of training patterns Number of testing patterns
Adult 14 32561 16281
Bank 16 45211 4521

Shuttle 9 43500 14500
Classifier Slackmin SVM RiSVO

Dataset Kernel Parameter Acc.% Parameter Acc.% Parameter Acc.%
LNR × 84.10 C = 10 84.12 ρ = 0.0001 84.43

Adult POLY d = 2, |G| = 560 84.95 C = 10, d = 2 84.85 ρ = 0.0001, d = 2, |G| = 560 85.17
RBF σ = 1, |G| = 560 85.06 C = 10, σ = 1 84.97 ρ = 0.0001, σ = 1, |G| = 560 85.23
LNR × 88.83 C = 10 88.48 ρ = 0.0001 89.01

Bank POLY d = 2, |G| = 576 89.69 C = 10, d = 2 88.98 ρ = 0.0001, d = 2, |G| = 576 89.69
RBF σ = 1, |G| = 576 90.47 C = 10, σ = 1 90.40 ρ = 0.0001, σ = 1, |G| = 576 90.60
LNR × 96.75 C = 10 97.56 ρ = 0.0001 97.39

Shuttle POLY d = 2, |G| = 450 99.30 C = 10, d = 2 99.03 ρ = 0.0001, d = 2, |G| = 450 99.85
RBF σ = 1, |G| = 450 99.84 C = 10, σ = 1 99.78 ρ = 0.0001, σ = 1, |G| = 450 99.72

Table 1. In this table, simulations are conducted on three UCI datasets. The descriptions are given in the table. The proposed
new algorithm RiSVO is compared with the related work (Slackmin algorithm) and SVM. In comparison, RiSVO provides a
fast and accurate solution to classification of big datasets.

6. CONCLUSION

In this paper, we have proposed a new classification algorithm
called Ridge-adjusted Slack Variable Optimization (RiSVO).
Compared to the previous work, the active set is selected
according to a different criterion for better flexibility. Fur-
thermore, ridge regression is incorporated to maintain the
robustness of the technique. By assuming inclusion prop-
erty, RiSVO achieves a faster computations and convergence.
Moreover, parallelization of RiSVO are simulated using se-
quential computations in Matlab, which allows RiSVO to
tackle big data problems. In most of our experiments, RiSVO
outperforms Slackmin and SVM with faster computations.
Future work including implementation of parallel RiSVO,
comparison of computational time, and RiSVO for multi-
classifications are under progress. More parameter tuning
and analysis will also be conducted at the next stage of the
study.

7. ACKNOWLEDGMENT

This material is based on research sponsored by DARPA un-
der agreement number FA8750-12-2-0126. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright nota-
tion thereon.

This work is also sponsored by the Swedish Research
Council (VR) which is gratefully acknowledged.

8. REFERENCES

[1] Vapnik, Vladimir N., Statistical Learning Theory, 1st
Edition, Wiley-Interscience, September, 1998.

[2] Mavroforakis M., Theodoridis S., A Geometric Approach
to Support Vector Machine (SVM) Classification. IEEE
Transaction on Neural Networks, vol. 17(3), pp.671-683,
2006.

[3] Diamantaras K. I. and Kotti M., Binary Classification
By Minimizing the Mean Squared Slack, Proceeding of
IEEE ICASSP, 2012.

[4] Kotti M. and Diamantaras K. I., Towards Minimizing the
Energy of Slack Variables for Binary Classification, Pro-
ceeding of 20th EUSIPCO, 2012.

[5] Bache, K. and Lichman, M. UCI Machine Learning
Repository [http://archive.ics.uci.edu/ml], Irvine, CA:
University of California, School of Information and Com-
puter Science. 2013.

[6] Schlkopf, B. and Smola, A. J., Learning with Kernels:
Support Vector Machines, Regularization, Optimization,
and Beyond 1st Edition, The MIT Press, Dec. 2001.

[7] Slavakis K., Theodoridis S., Yamada I., Online classi-
fication using kernels and projection-based adaptive al-
gorithms. IEEE Transactions on Signal Processing, vol.
56(7), pp. 2781-2797, 2008.

[8] Bouboulis P. and Theodoridis S., Extension of Wirtinger
Calculus to Reproducing Kernel Hilbert Spaces and the
complex kernel LMS. IEEE Transactions on Signal Pro-
cessing, vol. 53(3), pp. 964-978, 2011.

[9] Slavakis K., Bouboulis P., Theodoridis S., Online Learn-
ing in Reproducing Kernel Spaces. E-reference for Signal
Processing, Elsevier, 2013.

[10] Hoerl A. E. and Kennard R. W. Ridge regression: Biased
estimation for nonorthogonal problems, Technometrics,
42(1):80-86, 1970.

[11] Jain R.K., Ridge regression and its application to med-
ical data, Computers and Biomedical Research Volume
18, Issue 4, pp. 363368, Aug. 1985.

[12] Jeffrey Dean and Sanjay Ghemawat, MapReduce: Sim-
plified Data Processing on Large Clusters, 6th Sympo-
sium on Operating System Design and Implementation,
San Francisco, CA, Dec., 2004.

[13] F. Ozgur Catak, and M. Erdal Balaban, CloudSVM:
Training an SVM Classifier in Cloud Computing Sys-
tems, Pervasive Computing and the Networked World,
Lecture Notes in Computer Science, Vol. 7719, pp 57-68,
2013.

[14] Chu C., Kim S. K., Lin Y., Yu Y., Bradski G., Ng A. Y.
and Olukotun K., Map-Reduce for Machine Learning on
Multicore, proceeding of NIPS, Dec. 2006.

[15] Cristianini, N. and Shawe-Taylor, J., An Introduction to
Support Vector Machines and Other Kernel-based Learn-
ing Methods, 1st Edition, Cambridge University Press,
March, 2000.

[16] Joachims T., Making large-Scale SVM Learning Practi-
cal, Advances in Kernel Methods - Support Vector Learn-
ing, B. Schölkopf and C. Burges and A. Smola (ed.), MIT-
Press, 1999.

