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Abstract—We derive the modified Cramér–Rao bound
(MCRB) for symbol timing and phase offset estimation in
the presence of nonlinear self-phase modulation (SPM) in a
dispersion compensated long-haul optical fiber link with coherent
detection at data rates below 10 Gigabaud. In the presence of
a low-pass filter at the receiver front-end, we find that SPM
degrades the MCRB. Moreover, depending on the pulse shape,
SPM induces underdamped oscillation on the bounds.

Index Terms—modified Cramér–Rao bound, self-phase modu-
lation, timing and phase estimation.

I. I NTRODUCTION

SELF-phase modulation (SPM) is an important impair-
ment in fiber-optic communication systems using dual-

polarization multilevel quadrature amplitude modulation(M-
QAM) formats. SPM induces a non-linear phase shift pro-
portional to signal power, leading to spectral broadening.
However, most of the literature neglects the impact of SPM on
one of the first tasks in a coherent receiver: synchronization
[1]. Existing studies on synchronization such as [2], [3] have
focused exclusively on linear impairments. Several synchro-
nization algorithms have been proposed for coherent receivers
[4], [5]. In terms of bounds, a Cramér–Rao bound for timing
offset estimation in presence of SPM was derived in [6], [7].
However, a detailed analysis in presence of other synchro-
nization parameters such as phase and frequency is missing.
In this work, we extend [6], [7] and derive a modified Cramér–
Rao bound (MCRB) for joint symbol timing and phase offset
estimation in the presence of SPM for low-rate (i.e., below 10
Gigabaud) dual polarized M-QAM transmission.

II. M ODEL

A. Signal Model for Low Baud Rates

The transmitted signal over two polarizations is given by

x0(t) =

N
∑

n=1

sn

√
Ap (t− nTs − τ) ejθ, (1)

wheresn is a vector of2 M-QAM symbols drawn independent
and identically distributed (i.i.d.) from a unit-energy constella-
tion,A is the power in each polarization,τ is a timing offset,θ
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is a phase offset,Ts is the symbol duration,N is the number
of transmitted data symbols, andp(t) is a real, unit-energy
return-to-zero (RZ) pulse, time limited to[−Ts/2, Ts/2] [8].

We assume a system consisting ofNa spans each of
length L with fiber amplifiers. The attenuation factor and
non-linearity parameter associated with the fiber are denoted
by α and γ respectively. It is assumed that in each span
the dispersion in the single-mode fiber (SMF) is perfectly
compensated by dispersion compensating fiber and that the
attenuation loss is compensated perfectly by Erbium doped
fiber amplifiers. Each amplifier generates complex circularly
symmetric Gaussian amplified spontaneous emission (ASE)
noise in each polarization with power spectral densityN0 =
hνnsp(G − 1), whereG is the gain of the amplifier,hν is
the energy of the photon, andnsp is the spontaneous emission
factor. Overall, the received signal after theq-th span is given
by [9]

xq(t) = Uqxq−1(t) exp
(

jγLeff ‖xq−1(t)‖2
)

+ nq(t), (2)

where Leff = [1− exp (−αL)] /α is the effective length
of the SMF, Uq is a unitary mixing matrix, and nq(t) is
complex Gaussian noise with double-sided power spectral
density N0. Note that no dispersive effects are considered.
The final received signal is

r̃(t) = Ux0(t) exp

(

jγLeff

Na−1
∑

q=0

‖xq(t)‖2
)

+ n(t), (3)

where n(t) is the aggregate complex Gaussian noise with
double-sided power spectral densityNaN0, andU =

∏

q Uq.
The signal r̃(t) is filtered with an anti-aliasing filter with
frequency responseH(f) = 1, for |f | < 1/(2T ), and
H(f) = 0 elsewhere, whereT is the sampling time of the
filter.

B. A Simplified Signal Model

The exponent in (3) can be expanded into three terms: a
signal termjγLeffNa‖x0(t)‖2, a signal–noise interaction term
(for Na > 1), and a noise–noise interaction term (which is
negligible in practice). For mathematical convenience, wewill
discard the latter two terms in several of the derivations. This
leads to the simplified model, where (3) is replaced by

r̃(t) = Ux0(t) exp
(

jγLeffNa‖x0(t)‖2
)

+ n(t). (4)

Note that (3) and (4) are equivalent whenNa = 1.
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C. Problem Formulation

Our aim is to compute lower bounds on the performance of
timing and phase estimators for the model from Section II-A.
We will denote these bounds byMCRB(τ) andMCRB(θ),
respectively.We will consider two distinct cases: (i)T ≪ Ts,
so that the filter does not affect the signal component in (3) or
(4). We will call this scenario “without low-pass filter (LPF)”;
(ii) T ≈ Ts, so that the filter serves as a true low-pass filter.

Comment on the validity of the model from Section II-A:
This idealized model is motivated in [7, Section II-B], and
is only justified for low baud rates (e.g., 10 Gbd). Our study
aims to investigate the isolated effect of SPM on sychroniza-
tion. For higher baud rates, dispersive effects (e.g., chromatic
dispersion) should be accounted for, and we expect the impact
of non-linearity to be less significant.

III. M ODIFIED CRAMÉR–RAO BOUND

A. Description

The modified Cramér–Rao bound (MCRB) is a lower bound
on the error variance of any unbiased estimator. Given an
unknown deterministic vector parameterΘ = [θ, τ ], the un-
known symbolsS, and a vector representation of received
signalrvec, we introduce the2× 2 Fisher information matrix

(FIM) [1] F(Θ) =

[

Fθθ Fθτ

Fτθ Fττ

]

, with

[F (Θ)]ij = −E

[

∂2lnp(rvec|Θ,S)

∂Θi ∂Θj

]

, (5)

where E[·] denotes the expectation operator and
lnp(rvec|Θ,S) is the log-likelihood function. The expectation
is taken over the noise and unknown data symbols. Then

var(θ − θ̂) ≥ MCRB(θ) =
1

Fθθ − F 2
τθ/Fττ

(6)

var(τ − τ̂ ) ≥ MCRB(τ) =
1

Fττ − F 2
τθ/Fθθ

. (7)

We will derive the MCRB based on the simplified model from
Section II-B, which will result in approximate lower bounds
for the orginal model from Section II-A.

B. Derivation of MCRB without Low Pass Filter

The received signal vectorrvec consists of samplesrk =
x̃k + nk at rate 1/T , comprising a signal term̃xk =

Uxk exp
(

jβ ‖xk‖2
)

, where we have introducedβ =

γLeffNa, xk = x0(kT ), and an i.i.d. noise termnk. The first
step towards computing the MCRB is to derive the expression
for the likelihood function:

p(rvec|Θ,S) =
+∞
∏

k=−∞

p(rk|Θ,S)

∝
+∞
∏

k=−∞

exp

(

−‖rk − x̃k‖2
NaN0/T

)

. (8)

Taking the logarithm and substituting into (5) yields

[F (Θ)]ij =
2

NaN0/T

+∞
∑

k=−∞

E

[

ℜ
{

∂x̃H
k

∂Θi

∂x̃k

∂Θj

}]

. (9)

Substituting (1) intox0(kT ) and introducingξn,k = kT −
nTs − τ , we find that

x̃k =
√
AejθU

N
∑

n=1

snp(ξn,k) exp
(

jβ

∥

∥

∥

∥

∥

N
∑

m=1

sn

√
Ap(ξm,k)e

jθ

∥

∥

∥

∥

∥

2
)

=
√
AejθU

N
∑

n=1

snp(ξn,k) exp
(

jβA ‖sn‖2 |p(ξn,k)|2
)

,

(10)

where the last equality is due to the finite duration ofp(t).
It will be useful to introduceIkl =

´ +∞

−∞
|p(t)|k |ṗ(t)|l dt and

Jkl =
´ +∞

−∞
|p(t)|k (ṗ(t))l dt.

Derivation ofFθτ = Fτθ: Since

∂x̃H
k

∂θ
= −je−jθ

√
AUH

N
∑

n=1

s
H
np(ξn,k)

× exp
(

−jβA ‖sn‖2 |p(ξn,k)|2
)

(11)

and

∂x̃k

∂τ
= −ejθ

√
AU

N
∑

m=1

smṗ(ξm,k) exp
(

jβA ‖sm‖2 |p(ξm,k)|2
)

− 2jβA3/2ejθ
N
∑

m=1

sm ‖sm‖2 |p(ξm,k)|2 ṗ(ξm,k)

× exp
(

jβA ‖sm‖2 |p(ξm,k)|2
)

(12)

we see that

E

[

ℜ
{

∂x̃H
k

∂θ

∂x̃k

∂τ

}]

= −2βA2
N
∑

n=1

E4 |p(ξn,k)|3 ṗ(ξn,k),

(13)

whereṗ(t) is the derivative ofp(t). In (13) we used the fact

that data symbols are i.i.d. and introducedEl = E

{

‖sn‖l
}

.

Therefore,1 Fθτ is given as

Fθτ =
−4βA2

NaN0/T

+∞
∑

k=−∞

N
∑

n=1

E4 |p(ξn,k)|3 ṗ(ξn,k)

=
−4γLeffA

2E4NJ31
N0

. (14)

Note thatFθτ = 0 whenever the system is linear (i.e.,γ = 0)
or whenever the pulsep(t) is even.2

1Using
+∞
∑

k=−∞

∣

∣p(ξn,k)
∣

∣

3
ṗ(ξn,k) = 1/T

´ +∞
−∞

|p(t)|3 ṗ(t)dt, for suffi-

ciently smallT .
2Interestingly,Fθτ 6= 0 for non-even pulses.
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Derivation ofFθθ and Fττ : Using similar reasoning,Fθθ

is given as

Fθθ =
2A

NaN0/T

+∞
∑

k=−∞

N
∑

n=1

E2 |p(kT − nTs − τ)|2

=
4AN

NaN0
, (15)

where we have usedE2 = 2 and
´

|p(t)|2dt = 1. Note
that Fθθ does not depend on the nonlinearity of the channel.
Finally, it is easily shown that

E

{

∂x̃H
k

∂τ

∂x̃k

∂τ

}

= A

N
∑

n=1

|ṗ(ξn,k)|2 (2 + 4β2A2E6 |p(ξn,k)|4).

(16)
Then,Fττ is given as

Fττ =
4AN

NaN0
I02 + 8

γ2L2
effNaA

3E6N

N0
I42. (17)

Note that the first term is the conventional Fisher information
without nonlinearity.

MCRB: Substitution ofFθτ , Fττ , andFθθ into (6) leads to

MCRB (θ) =
NaN0

4AN

1− γ2L2

eff
A2E2

4
J2

31

I02

N2
a

+2γL2

eff
A2E6I42

, (18)

where the numerator is the conventional MCRB without
nonlinearity. It is easily verified that the second term in the
denominator is nonnegative, so that the nonlinearity always
increases the MCRB. Similarly

MCRB (τ) =

NaN0

4ANI02

1 + γ2L2
effN

2
aA

2 2E6I42−E2

4
J2

31

I02

, (19)

where the numerator is the conventional MCRB without non-
linearity. Contrary to the phase, the second term in the denom-
inator of MCRB (τ) can be positive or negative (depending
on the sign of2E6I42 − E2

4J
2
31), so that the nonlinearity can

reduce or increase the MCRB. In particular, for even pulses
J2
31 = 0, so that nonlinearity can only reduce the MCRB.

C. Derivation of MCRB with Low-Pass Filter

Here, rvec denotes the vector representation of the signal
after filtering r̃(t) by the filter h(t) (the inverse Fourier
transform ofH(f), introduced in Section II-A). We define
the filtered signal as (with⊗ denoting convolution)

rF (t) =
(

Ux0(t) exp
(

jβ ‖x0(t)‖2
))

⊗ h(t) +w(t)

=
√
AejθU

N
∑

n=1

snzn(t− τ ; sn) +w(t) , (20)

where we have introducedw(t) as the noise at the output of
the filter, and

zn(t; sn) = (21)
(

p(t− nTs) exp
(

jβA ‖sn‖2
∣

∣p(t− nTs)e
jθ
∣

∣

2
))

⊗ h(t).

Table I
SYSTEM AND CHANNEL PARAMETER VALUES

Parameters Symbol Value, unit

Nonlinearity parameter γ 1.2 W−1km−1

Attenuation α 0.25 dB/km
Length/span L 80 km

Spontaneous emission factor nsp 1.5
Bandwidth B, 1/Ts 14 GHz

Number of spans Na 22
Wavelength λ 1.55µm

From rF (t) we can create a vector representationrvec and
again determine the Fisher information matrix. Following a
line of reasoning similar to section III-B, we easily find that

[F(Θ)]ij =
2AN

NaN0/T
E

[

‖sn‖2 G(Θi,Θj ; sn)
]

, (22)

where

G(Θi,Θj; sn) =
+∞
∑

k=−∞

ℜ
{

∂
{

zHn (kT − τ ; sn)e
−jθ
}

∂Θi

∂
{

zn(kT − τ ; sn)e
jθ
}

∂Θj

}

.

(23)

Derivation ofFθθ, Fττ , andFθτ : It is readily shown that

G(θ, θ; sn) =
1

T

1/T
ˆ

−1/T

|Zn(f ; sn)|2 df, (24)

G(τ, τ ; sn) =
4π2

T

1/T
ˆ

−1/T

f2 |Zn(f ; sn)|2 df, (25)

G(θ, τ ; sn) = −2π

T

1/T
ˆ

−1/T

f |Zn(f ; sn)|2 df. (26)

Substitution into (22) then yieldsFθθ, Fττ , andFθτ , respec-
tively. The expectation in (22) over the data symbolssn can
be carried out numerically for any pulse. For even pulses,
G(θ, τ ; sn) = 0, so thatFθτ = 0. From Fθθ, Fττ , andFθτ ,
we can then computeMCRB (θ) andMCRB(τ).

IV. N UMERICAL RESULTS

A. Scenario

We will now investigate a112 Gbit/s 16-QAM dual polar-
ization system using the system parameters given in Table I.
The pulsep(t) is an RZ pulse with duty cycles of33% or 67%
from [8], andU = I2. We will consider two low-pass filters:
one forT = Ts (labeled LPF1) and one forT = Ts/2 (labeled
LPF2). The MCRBs derived for the simplified model from
Section II-B will be complemented with performance results
of practical estimators, applied to the model from Section
II-A, extended to dual polarization: a feed-forward (FF) timing
estimator from [1, pp. 433-437] and the well-known Viterbi
and Viterbi (V-V) phase estimator [1, pp. 280-281].
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Figure 1. MCRB for timing without and two cases with LPF (LPF1: T = Ts

and LPF2:Ts = 0.5T ) for even pulses with duty cycles of33% and67%
along with FF timing estimation.

B. Results
Timing: For timing, we observe that without low-pass filter,

the slope of the MCRB increases for input powers above
−5 dBm. The pulse with the shortest duty cycle has the
lowest MCRB. For the pulse with33% duty cycle, with
LPF1 (resp. LPF2), MCRB(τ) stops decreasing monotonously
after−1.5 dBm (resp.+1.5 dBm), and exhibits underdamped
oscillations. This is due to the interaction between spectral
broadening (energy leaking outside the filter bandwidth) and
increased received power. For the pulse with67% duty cycle,
we observe a reduced slope of the MCRB with higher input
powers. The pulse with the shortest duty cycle now has the
highest MCRB. This can be explained by the fact that the
shorter the duty cycle, the higher the peak power, thus the
more susceptible the pulse is to SPM and spectral broadening.
The practical FF estimator follows the MCRB up to around−5
dBm, and then degrades significantly. We see that the MCRB
is quite loose at high transmit power, but still provides insight
as to when algorithms may fail.

Phase: For phase, we see from Fig. 2 that contrary to
MCRB(τ), MCRB(θ) without LPF does not depend on the
pulse shape. In the case with low-pass filter, the conclusions
from MCRB(τ) carry over. As V-V operates after FF timing
recovery, we expect a large gap between the V-V estimator and
the MCRB, which can be attributed to the use of the simplified
model.

Relation to BER:Finally, we note that to achieve a pre-
decoding BER of 10−3 with 16-QAM, the required in-
put power is approximately−2 dBm. Both MCRB(τ) and
MCRB(θ) are in the nonlinear regime at this input power
level. Hence, synchronization algorithms may fail unless we
use a sufficiently broad low-pass filter.

V. CONCLUSIONS

We have derived approximate MCRBs for timing and phase
estimation in presence of nonlinear self-phase modulationfor
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Figure 2. MCRB for phase without and two cases with LPF (LPF1:T = Ts

and LPF2:Ts = 0.5T ) for even pulses with duty cycles of33% and67%
along with phase estimation by V-V algorithm.

single-channel optical communication at data rates below 10
Gigabaud with dispersion compensated fibers. We found that
the MCRB for timing estimation is reduced due to the presence
of SPM, but only when a prefilter with sufficiently large
bandwidth is present. The MCRB for phase estimation is
highly dependent on the bandwidth of the prefilter, with a
too narrow prefilter leading to a flooring effect of the MCRB.
Finally, we observed that the derived MCRBs give a good
indication of the performance of practical estimators.
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