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Subset-Optimized Polarization-Multiplexed PSK for
Fiber-Optic Communications

Martin Sjödin, Erik Agrell, Senior Member, IEEE, and Magnus Karlsson

Abstract—A more power-efficient modulation format than
polarization-multiplexed quadrature phase-shift keying (PM-
QPSK) can be obtained by optimizing the amplitude ratio
between symbols with odd and even parity in the PM-QPSK
constellation. The optimal amplitude ratio approaches the golden
ratio at high signal-to-noise ratio (SNR), yielding a 0.44 dB
increase in asymptotic power efficiency compared to PM-QPSK.
Union bound expressions are derived for the bit and symbol
error rate of the new format, which together with Monte Carlo
simulations give the power efficiency at both low and high SNR.
A similar optimization performed on PM-8PSK gains 1.25 dB.

Index Terms—Polarization-multiplexing, quadrature phase-
shift keying, power-efficiency, four-dimensional modulation.

I. INTRODUCTION

COHERENT detection has been used for only a short
time in optical communications, since it only recently

became feasible to implement at high data rates. Compared to
traditional noncoherent detection, it offers advantages with re-
spect to required received signal power and spectral efficiency
and enables digital equalization of transmission impairments.
In addition, it gives access to the full four-dimensional (4-
D) signal space of the electromagnetic field (two polarization
components and two quadratures) for data transmission. The
benefits of coherent receivers are currently being exploited to
increase the data rates in future systems. Binary modulation
formats such as on-off keying (OOK) and differential phase-
shift keying (DPSK) have been used in fiber-optical networks
for many years, but there is now an urgent need for more
bandwidth-efficient modulation schemes.

The most common use of the 4-D signal space is to trans-
mit independent two-dimensional constellations in the two
polarizations, which is known as polarization-multiplexing.
Quadrature phase-shift keying with polarization-multiplexing
(PM-QPSK) has attracted enormous attention in recent years
and has, e.g., been used to set the current world record of
112 Pbit/s·km for the product of capacity and transmission
distance [1]. On the other hand, there are modulation formats
with similar complexity and better performance than PM-
QPSK. By choosing one of the subsets with even or odd
parity of the PM-QPSK constellation, a format which may be
described as QPSK transmitted in one selected polarization-
state per symbol is created [2]. It has become known as
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polarization-switched QPSK (PS-QPSK) [3], [4], and is the
most power efficient modulation format in signal spaces with
up to four dimensions. Unfortunately, PS-QPSK, with 8 dif-
ferent levels, is less spectrally efficient than PM-QPSK, and
the 16-point analogy of PS-QPSK is less power-efficient [2].
It would be valuable to find modulation formats with higher
power efficiency than PM-QPSK and similar or higher spectral
efficiency. The best 4-D 16-level constellation exhibits 1.11 dB
gain over PM-QPSK but is far too complex to be implemented
at high data rates [5]. The 16-level constellation suggested by
Kim et al. [6] is nearly optimal with 0.9 dB gain but is also
very difficult both to generate and to decode.

In this letter we report on a new modulation format called
subset optimized PM-QPSK (SO-PM-QPSK), which is the
first practically feasible 4-D 16-level constellation with higher
power efficiency than PM-QPSK. SO-PM-QPSK is obtained
by scaling the relative amplitude between symbols with odd
and even parity in the PM-QPSK constellation. We show
that the improvement in asymptotic power efficiency over
PM-QPSK is 0.44 dB for an amplitude ratio equal to the
golden ratio (≈ 1.618). In addition, by using the union bound
approximation and Monte Carlo simulations, we investigate
the performance of SO-PM-QPSK with different amplitude
ratios as a function of the signal-to-noise ratio (SNR) and
determine the optimal ratio for each SNR. We also show that a
similar optimization can be made for PM-8PSK, with 1.25 dB
asymptotic gain.

While the performance benefits of the new modulation
formats are smaller at limited SNR, they will be useful for
uncoded applications with strong constraints on latency, such
as stock market trading and cellular base station coordination.
By studying uncoded transmission, we follow a long-standing
tradition in communication theory, exemplified by numerous
classical papers by, e.g., Forney and Sloane. Most of the papers
in our reference, which also focus on uncoded transmission,
follow the same tradition.

II. PRELIMINARIES

We assume a discrete-time memoryless additive white Gaus-
sian noise channel with noise variance N0/2 per dimension.
The constellation of a modulation format with M symbols
is defined as C =

{
ccc1, . . . , cccM

}
, where the symbols ccck

occur with equal probabilities and are formed from the real
and imaginary part of the electromagnetic field’s x and y
polarization components [7]. The Euclidean distance between
the symbols ccck and cccj is denoted by dkj = ∥ccck −cccj∥, and the
smallest distance between any pair of symbols in C is then
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Fig. 1. (a) SO-PM-QPSK with the optimal Ar shown in a three-dimensional
projection orthogonal to (0 0 0 1). The lines connect nearest neighbors. (b)
The transmitter for SO-PM-QPSK with a Mach-Zehnder amplitude modulator
followed by a PM-QPSK transmitter.

dmin = mink ̸=j dkj . The asymptotic power efficiency γ of C
is [4]

γ =
d2minlog2 (M)

4Es
=

d2min

4Eb
, (1)

where the factor of 4 in the denominator is used for normal-
ization to 0 dB for the PM-QPSK constellation, defined by the
levels CPM-QPSK =

{
(±1,±1,±1,±1)

}
, Es is the energy per

symbol, and Eb the energy per bit

Eb = Es/log2 (M) =
1

M log2 (M)

M∑
k=1

∥ccck∥2. (2)

Finally, the signal-to-noise ratio (SNR) is Eb/N0, which is
varied by changing N0 while keeping Eb fixed.

III. SUBSET-OPTIMIZED CONSTELLATIONS

To obtain SO-PM-NPSK, we first consider an NPSK con-
stellation in a single polarization. We assume Gray coding, i.e.,
nearest neighbors have different parity, and the symbols with
an even and an odd number of one bits belong to the subset Se

and So, respectively. The even and odd parity subsets of PM-
NPSK are then CPM-NPSK, even = (Se,x × Se,y)∪(So,x × So,y)
and CPM-NPSK, odd = (Se,x × So,y)∪(So,x × Se,y), where x and
y denote the polarization components of the pair of 2-D NPSK
symbols used to form a polarization-multiplexed symbol in
four dimensions. Scaling the amplitude of the symbols in one
of the subsets with a factor Ar gives the SO-PM-NPSK con-
stellation CSO-PM-NPSK = CPM-NPSK, even ∪ (Ar · CPM-NPSK, odd).
Using (2) we find Es = 2

(
A2

r + 1
)
, regardless of N .

A. Minimum distance decoding

The squared minimum distance in SO-PM-QPSK is

d2min = min
{
8, 8A2

r, (1 +Ar)
2
+ 3 (1−Ar)

2 }
, (3)

and using (3) in (1) we find a maximum improvement in
power efficiency over PM-QPSK of 0.44 dB for Ar = φ
and 1/φ, where φ =

(√
5 + 1

)
/2 ≈ 1.618 is the golden

ratio. The SO-PM-QPSK constellation is shown in a three-
dimensional projection in Fig. 1(a), where the green and
red spheres represent symbols in the subset with even and
odd parity, respectively. The outer spheres have 4 nearest
neighbours, just like the symbols in conventional PM-QPSK,
while the inner spheres have 10. Although there are 4-
D 16-level constellations with higher asymptotic gain over
PM-QPSK [5], [6], these have irregular constellations and
are harder to generate and to decode. SO-PM-QPSK has,
to the best of our knowledge, the best power efficiency of
all published 16-level formats with similar implementation
complexity. Since it consists of two subsets of PM-QPSK
with different amplitudes, it can be generated by placing a
single Mach-Zehnder amplitude modulator (MZM) before a
conventional PM-QPSK transmitter, as shown in Fig. 1(b).
Depending on the parity of the SO-PM-QPSK symbol to be
transmitted, the MZM sets the light amplitude to one of two
possible values, which have a mutual ratio of Ar.

A maximum-likelihood decoding algorithm for SO-PM-
QPSK can be obtained by modifying the standard algorithm
for decoding the D4 lattice [8] as follows.

1) The received symbol rrr is first decoded as for PM-QPSK.
We denote the resulting vector as ccc1.

2) The most uncertain bit in ccc1 is inverted to create the
vector ccc2, which will have different parity than ccc1.

3) In the final step, we find min
{
∥rrr−ccc1∥, ∥rrr−ccc2∥

}
, which

gives the decoded codeword.
For SO-PM-8PSK the squared minimum distance is

d2min = min
{
b, A2

rb, 4 + 4A2
r −Ar

(
4 + 2

√
2
)}

, (4)

where b = 8−4
√
2. Using (4) in (1) we find that the maximum

power efficiency improvement over PM-8PSK is 1.25 dB for
Ar =

√
2 or 1/

√
2. Among modulation formats with the same

number of levels suitable for practical implementation, star
8-QAM with polarization multiplexing exhibits an additional
0.35 dB gain over PM-8PSK [9, p. 197]. Fig. 2 shows the
dependence of γ on Ar for SO-PM-QPSK and SO-PM-8PSK.
There are two optimal ratios, since it does not matter which
subset is scaled in amplitude. The conventional formats are
obtained when Ar = 0 dB, and the gain for optimal Ar

is indicated for each case. The subset optimization can be
performed for higher-order NPSK formats as well, but since
the power efficiencies of these are very low, we focus on QPSK
and 8PSK.

B. Symbol and bit error rates

We investigated the performance of the subset optimized
formats as a function of the SNR by using both the union
bound approximation for the BER and the SER and Monte
Carlo simulations. The methods complement each other, since
Monte Carlo simulations are very time consuming for simulat-
ing low BER, while the union bound is asymptotically correct
for high SNR but inaccurate for low SNR. In the Monte Carlo
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Fig. 2. The improvement in asymptotic power efficiency over PM-QPSK
and PM-8PSK as a function of Ar . Maximum gains of 0.44 dB and 1.25 dB
are achieved with the subset optimization.

simulations we used 220 symbols of random independent data
and counted at least 25000 bit errors for each SNR value.
For SO-PM-QPSK the decoding scheme in III was used for
symbol decisions while full search over the symbol alphabet
was employed for SO-PM-8PSK.

The SER is approximated by the union bound [9, p. 184]

SER ≤ 1

M

M∑
k=1

M∑
j=1
j ̸=k

Q

(
dkj√
2N0

)
, (5)

where Q(x) = erfc(x/
√
2)/2. Due to the symmetry of SO-

PM-QPSK the SER expression in (5) can be expanded as

SER ≤ 3Q

(√
1

A2
r + 1

8Eb

N0

)
+ 3Q

(√
A2

r

A2
r + 1

8Eb

N0

)

+ 4Q

(√
A2

r −Ar + 1

2A2
r + 2

8Eb

N0

)
. (6)

By considering all pairwise symbol errors independently, we
obtain an expression for the BER of SO-PM-QPSK

BER ≤ 3

2
Q

(√
1

A2
r + 1

8Eb

N0

)
+

1

2
Q

(√
2

A2
r + 1

8Eb

N0

)

+
3

2
Q

(√
A2

r

A2
r + 1

8Eb

N0

)
+ 3Q

(√
A2

r +Ar + 1

2A2
r + 2

8Eb

N0

)

+Q

(√
A2

r −Ar + 1

2A2
r + 2

8Eb

N0

)
+

1

2
Q

(√
2A2

r

A2
r + 1

8Eb

N0

)
.

(7)

IV. NUMERICAL RESULTS AND CONCLUSIONS

Fig. 3 shows the BER and the SER for SO-PM-QPSK and
SO-PM-8PSK with Ar optimized for each SNR value. The
Monte Carlo results and the union bound expressions are used
below and above Eb/N0 corresponding to a BER of less than
5.0 × 10−4, respectively. For comparison we show the BER
and SER for PM-QPSK (using the exact expressions in [9,
pp. 192–193]) and PM-star-8QAM (using Monte Carlo simu-
lations and the Union bound). In the low SNR regime, PM-
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Fig. 3. The BER and SER as a function of Eb/N0 for the different formats.
For SO-PM-QPSK and SO-PM-8PSK we used the optimal Ar for each SNR.

QPSK and SO-PM-QPSK perform similarly since the optimal
Ar ≈ 1. The difference gets noticeable when increasing the
SNR and at a BER of 10−3 Ar = 1.275 gives SO-PM-QPSK
a 0.05 dB reduction in required SNR compared to PM-QPSK.
The optimal Ar converges slowly to φ and a reduction in
required SNR of 0.31 dB is gained at BER = 10−9 for
Ar = 1.525. The amplitude scaling gives negligible BER
reduction for Eb/N0 of less than approximately 5 dB, but
the SER is decreased noticeably already from Eb/N0 ≈ 2 dB.
When comparing SO-PM-8PSK and PM-star-8QAM we find
the expected 0.35 dB difference in the high SNR regime, which
decreases to 0.30 dB at a BER of 10−3. For SO-PM-8PSK we
note that Ar = 1 (conventional PM-8PSK) and Ar =

√
2 yield

similar performance at low SNR.
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