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Abstract

Results of numerical simulations are presented for flow past a stationary circular cylinder

at low Reynolds numbers (Re = 50 − 200). The simulations were carried out using a finite-

volume code employing a fractional step method with second-order accuracy in both space

and time. A sensitivity study on numerical parameters concerning the domain size, grid

independence and time step resolution was carried out in detail for Re = 100. Global time-

averaged results on force coefficients, non-dimensional velocities and pressures, including

their corresponding r.m.s. values, as well as various quantities related to the separation

and vortex shedding characteristics are presented. A non-monotonous streamwise velocity

recovery in the intermediate wake is observed for Re > 50, a phenomenon that has been

grossly overlooked in the past. There are two plateaus along the wake centerline, in particular

for Re = 200. The first, which is the most distinct, ranges from about x = 9 to x = 16

at a wake deficit velocity of 0.38, x being counted in diameters behind the cylinder axis;

the second one appears from x = 25 to x = 28 at a wake deficit velocity of 0.54. This

phenomenon seems to be related to an associated change-over in the orientation of the von

Kármán vortices and the merging trends, especially for Re = 200 beyond x = 25, as observed

from instantaneous vorticity fields. Three-dimensional simulations using spanwise lengths

of 10 and 12 (diameters) were carried out at Re = 200. After a long initial phase with

regular three-dimensional mode A flow features increasing very slowly in amplitude, the

flow went into a state with distinct pulsating forces acting on the cylinder, the pulsations
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being seemingly randomly localized across the cylinder span. In this second, much more

chaotic, flow state, the time-averaged results were in agreement with previous experiments

and with parts of previous numerical studies.

Keywords: Circular cylinder, Incompressible flow, Numerical simulation, Low Reynolds

number, Vortex shedding

1. Introduction

The flow past a circular cylinder has been intensively investigated, mainly because of

its fundamental importance and its relevance for practical applications. Due to the circular

shape of the cylinder, which means that the location of flow separation is only influenced by

the flow regime or the upstream conditions, the accuracy is a challenge for numerical study.

Depending on the Reynolds number, the flow behavior in the cylinder wake can be

generally classified as laminar, transitional or turbulent. Williamson (1996b) defined various

shedding regimes according to the variation of the base suction coefficient over a large

range of Reynolds numbers. In the so-called laminar shedding regime, which for sufficiently

long cylinders ranges from about Re ≃ 47.4 (Norberg, 1994; Kumar and Mittal, 2006) to

Re ≃ 165 − 190, the latter limit being hysteretic and somewhat dependent on the end

conditions (Norberg, 1994; Williamson, 1995), there is a large scatter in the results reported

in the literature, especially about the drag coefficient. We are trying to figure out the reason.

In this study, all physical lengths are scaled with the cylinder diameter, velocities with

the oncoming free stream velocity, physical times with the diameter divided by the free

stream velocity, and pressure differences with the dynamic pressure of the oncoming flow,

which is assumed to be steady and uniform.

Most previous numerical studies in the laminar shedding regime have concentrated on

the phenomenon of vortex shedding in the near-wake region (0 < x < 10, approximately).

Except for some very few studies, e.g. Inoue and Yamazaki (1999), it seems that the sub-

sequent wake recovery towards the free stream condition has been largely overlooked. As
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details of this recovery might be of importance for the subsequent instabilities that occur

in the very far wake, e.g. see Cimbala (1984) and Williamson and Prasad (1993), we will

present detailed distributions of the time-averaged streamwise velocity along the wake cen-

terline (y = 0, x > 0), in particular for Re = 150. Moreover, in the vast majority of

simulation studies, the emphasis has been on introducing new computational techniques

and code validation. The results reported are then often restricted to one or two Reynolds

numbers, for 2-D shedding flow mostly Re = 100 and/or Re = 200. Notable exceptions from

such studies are Henderson (1995), Park et al. (1998), Baranyi and Lewis (2006), St̊alberg

et al. (2006), and Posdziech and Grundmann (2007). As is well known, local and global

results may be influenced by various numerical parameters or factors. A high accuracy of

the results demands for not only a sufficiently fine spatial resolution but also a sufficiently

fine time resolution. Further, the required necessary minimum domain distances will be

dependent on the Reynolds number, as well as on the applied boundary conditions.

The selection of physical domain is a common problem in numerical simulation of cylinder

flow. The domain size and computational cost must be balanced to obtain the best results.

For 2-D simulations with a strictly polar or O-grid domain around the cylinder, the cross-

sectional domain size can be defined by a single parameter, e.g. the outer diameter, D. A

rectangular domain is more flexible and also more natural with respect to the specification

of boundary conditions. It can generally be described by three parameters: the distance Xu

from the cylinder center to the inlet or upstream boundary, the corresponding distance Xd to

the outlet or downstream boundary, and the lateral distance H between the upper and lower

boundaries, see Figure 1. If at lateral boundaries the transverse (normal) velocity component

is set to zero, the flow case can be regarded as being influenced by a blockage or confinement

effect. For rectangular domains, the blockage parameter then is H−1 (confinement parameter

H). In 3-D simulations, the domain is simply extended in the spanwise direction, as specified

with its linear spanwise dimension, here denoted Lz. For a rectangular domain, Behr et al.

(1995) investigated the influence of the location of the lateral boundaries on 2-D computation

of unsteady incompressible flow past a circular cylinder at Re = 100. They found, by

employing a traction-free condition at the outflow boundary and slip-wall consitions at the
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lateral boundaries, that the lateral boundaries should be removed from the cylinder by at

least a distance of eight cylinder diameters, i.e. that at least H > 16 is required. Kumar

and Mittal (2006) pointed out that the onset of vortex shedding is significantly influenced

by the confinement parameter H . A rectangular domain was used in their study, while a

slip-wall boundary condition was employed at lateral boundaries (H = 8−200). When using

a domain with Xu = Xd = 50, the effects of blockage (or confinement) were found negligible

only for cases with H > 100. Shi et al. (2004) demonstrated for Re = 100 that a polar

domain greater than D = 100 was needed to get results that were more or less independent

of this parameter. On the outlet boundary condition when using such large domains, they

found no essential difference when using the non-reflective boundary condition and the pure

Neumann (zero-gradient) boundary condition. In addition, when the downstream distance is

sufficiently long, it seems that the convective outlet condition performs in a similar manner

as the traction-free condition (Park et al., 1998). Since the independence from the domain

extensions seems to be an arbitrary assumption on the part of of many authors, Posdziech

and Grundmann (2007) used extremely large domain sizes to search for asymptotic solutions

for domain independence. They applied Neumann conditions at the outlet using a constant

value of Xd = 50 for various extensions of inflow length and height, from 20 up to 4000. They

concluded that, for any case, Xu should be larger than 20. They showed that, in contrast

to the Strouhal number, the force coefficient and the base suction coefficient are strongly

dependent on the resolution and even more on the size of the computational domain. In

particular when using H = 140 and H = 8000 and for laminar shedding conditions, Posdziech

and Grundmann (2007) presented high-order polynominal functions on the Re-dependencies

for the drag coefficient CD, the base suction coeffiient −Cpb, the Strouhal number St and

the amplitude coefficient of the sinusoidal lift variations ĈL =
√

2CL′ (CL′ is the r.m.s. lift

coefficient).

The accuracy of the numerical results depends strongly on the resolution of the velocity

shear layers near the cylinder walls. The adapted numerical method with different spatial

order of convergence has different requirements with regard to the location of the first grid

point. For instance, Franke et al. (1990) reported that the first grid point away from the wall
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(radial distance specified as δ) has a particularly strong influence on the results, especially

on the Strouhal number. For a circular cylinder using a polar domain with D = 40 and a

Neumann condition at the outlet, δ ≃ 0.001 were found to be sufficient (Re = 50 − 5000).

Mittal (2005) used the finite element mesh for his computations, with a thickness of the first

layer of 0.001, for Re from 50 to 350. Li et al. (2009) obtained a grid independent solution

by setting δ = 1/160 for Re = 50 − 300, using a volumetric Lattice-Boltzmann boundary

approach. The required cell size close to the cylinder surface is also dependent on the

Reynolds number. A lower Reynolds number case requires more uniform grid distributions

in the overall sense, whereas a very fine mesh density is required close to the walls at higher

Reynolds number, due to viscous effects. The studies mentioned above probably simply used

the same grid at different Reynolds numbers for convenience.

Obviously, the choice of time step, which is known to depend on the order of convergence

of the numerical time marching scheme, also plays an important role in numerical simulation

of vortex shedding flows. Implicit schemes are usually preferred because there are no stability

restrictions on the time step, the only restriction then being governed by the desired accuracy.

Baranyi and Lewis (2006) introduced two methods to simulate low Reynolds number cylinder

flow, namely a grid-based CFD method and a vortex dynamics method, using time steps of

0.0005 and 0.05, respectively, to get similar results. Posdziech and Grundmann (2007) used

a computational time step of ∆t = 0.005 in all computations to study the domain size effect

(Re = 50 − 250). Mittal (2001) carried out computations for a cylinder at Re = 100, by

setting the time step as 0.25. In his later paper (Mittal, 2005) for Re = 50 − 100, a time

step size of 0.0625 was utilized for all the computations, while adapting the same numerical

procedure. The above studies adapted totaly different time steps, mainly because of different

time marching schemes.

Since the reliability and accuracy of numerical results are strongly dependent on the above

numerical parameters, our first objective is to investigate these from various 2-D simulations

at a typical Reynolds number in the laminar shedding regime, Re = 100. The reason for

choosing this particular Re is that it is by far the one most investigated, which means that

there is a solid basis for comparisons. Our second objective refers to the lack of reliable data
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for various quantities in the laminar shedding regime. In particular, we will present results

on time-averaged quantities for Re = 50−200 based on variations around the cylinder surface

(pressure and vorticity) and along the wake centerline (pressure and streamwise velocity).

The final objective is to investigate the effects of flow three-dimensionality at Re = 200. From

experiments at this Re, e.g. see Williamson (1988); Norberg (1994); Williamson (1995), the

natural state is in the early transition regime, where the flow is highly three-dimensional.

Williamson (1992) refers to this state as mode A∗.

2. Simulation Methodology

As incompressible viscous flow with constant fluid properties was assumed, the sole

governing parameter, except for geometrical domain restrictions, is the Reynolds number,

Re, traditionally based on the cylinder diameter and the uniform oncoming free stream

velocity.

2.1. Domain and Mesh

As shown in Figure 1, the circular cylinder was placed in a rectangular computational

domain with its center at the origin of a Cartesian coordinate system; coordinates x, y, z

indicate streamwise, cross-stream and spanwise directions, respectively. Boundary conditions

(Section 2.2) are also shown in the figure. Since the present computational domain was

square, the domain size can be defined by H , the height of the domain. Hence, the distances

of the upstream and downstream boundaries and side walls from the center of the cylinder

can all be specified as H/2 (Xu = Xd = H/2). In addition, the spanwise distance was

specified as Lz.

Structured meshes created by an in-house code called G3DMESH were used, see Eriksson

(1985). The grid topology is depicted in Figure 2. For Reynolds numbers beyond 80, a polar

grid of radius 20 (units) was adapted in a sub-domain enclosing the cylinder, see Figure 2(b).

For the lower Reynolds number cases (Re = 50, 60, 80), in order to get more orthogonal grid

distributions, a radius of 40 was used for the polar sub-domain. The polar grid was stretched

in the radial direction with a Cubic Hermite grid point distribution. Outside the polar grid
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Figure 1: Problem definition for flow past a stationary circular cylinder.

region, the grid was gradually merged into a quadratic region in four radial sectors, see

Figure 2(a). For the study of domain independence (Section 4.1.1), the inner (polar) mesh

distribution was left unaltered. Considering the importance of the wake region, but also to

some extent in the decelerating parts upstream of the cylinder, a biased accumulation of

grid points was applied in these regions, see Figure 2(a).

The mesh can be defined by three parameters, Ni, Nj, Nk, which indicate the number of

grid points in the circumferential, radial and axial directions, respectively. For 2-D cases,

the mesh can thus be specified only with two global parameters, Ni and Nj . For the case

referred to as 3-D (Re = 200, see Table 4), spanwise distances of Lz = 10 and Lz = 12 were

used, with 128 and 160 uniformly distributed cells (Nk = 162 and Nk = 130), respectively.

For cell sizes in the transverse xy-plane, they can be roughly specified by two parameters,

the distance of the first grid away from the cylinder surface, δ, and the streamwise cell size

at the outlet section close to y = 0, δe.

2.2. Numerical details

An incompressible, finite volume code was used (Davidson and Farhanieh, 1995; David-

son and Peng, 2003). The numerical procedure is based on an implicit, fractional step

technique with a multigrid pressure Poisson solver (Emvin, 1997) and a non-staggered grid
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Figure 2: Sketch of numerical grid, H = 120, Ni = 386, Nj = 322, δ = 0.0054, δe = 0.26. (a) full domain; (b)

near-cylinder close-up (polar grid).

arrangement. Second-order central differencing is used in space, and the second-order Crank-

Nicolson scheme is used in time.

The inflow was treated as a uniform free stream, u = 1, v = w = 0. No-slip conditions

were applied on the cylinder surface, u = v = w = 0. Symmetry boundary conditions

were imposed in the spanwise direction, ∂u/∂z = ∂v/∂z = w = 0. Lateral boundary

conditions were set as u = 1, v = ∂w/∂y = 0, called the free stream condition (Posdziech and

Grundmann, 2007). A convective boundary condition was applied at the outlet, described

as

∂ui

∂t
+ C

∂ui

∂x
= 0, (1)

where i indicates velocity components u (i = 1), v (i = 2) and w (i = 3). As recommended

for vortex shedding flow (Yoshida et al., 1993; Sohankar et al., 1998), the synthetic outlet

convective speed was set equal to the free stream velocity, C = 1.

The convergence criterion was set to 10−4. Tests with smaller values of this precision,

e.g. 10−5, showed no changes in the results. Convergence was assessed at the end of each
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iteration on the basis of the residual sources criterion, which compares the sum of the absolute

residual source with some reference values, typically taken as the inlet flux of the relevant

variable fed into the domain of calculation (Davidson and Farhanieh, 1995; Sohankar et al.,

1999). An efficient multigrid method was used to solve the Poisson equation for pressure

correction. Hence, only a few iterations (typically two) solving the momentum equations

and the Poisson pressure equations were required at each time step to obtain convergence.

More details can be found in Davidson and Peng (2003). The minimum number of iterations

for each time step was set to three although in general only two iterations were enough to

satisfy the convergence criterion.

The time integration interval for calculating time-averaged quantities was chosen within

the saturated state in which, for the 2-D cases, the time history of lift and drag coefficients

behaved almost perfectly sinusoidally. For all 2-D cases in this study the integration time

included at least 80 (time-averaged) vortex shedding cycles. The criterion (a posteriori) for

determining the beginning of the saturated state was based on the time variation of the drag

coefficient, which was found to be more conservative than using the lift signal. It can be

noted that the time required to reach the saturated state was strongly dependent on the

Reynolds number; it took almost 700 time units for Re = 50, whereas it only took about 80

and 60 time units for Re = 100 and Re = 200 (2-D cases), respectively. Interestingly, for the

3-D case (Re = 200, Lz = 12), and after an initial start-up period of about 60 time units,

the flow remained quite a long time in a state that appeared to be saturated with highly

ordered but rather weak mode A (Williamson, 1996a; Thompson et al., 2001) instability

structures. However, after about 500 time units, the flow gradually (within a time interval

of about 100 units) went in to another state with more disordered but still mode-A related

flow structures. Time-averaged quantities for this particular case were calculated from this

last flow state and were integrated from t = 680 to t = 1240 corresponding to about 100

time-averaged shedding cycles. For the case with Lz = 10, the time spent in the ordered but

still 3-D state was even longer. Similar experiences with rather long start-up times from 3-D

simulations in this regime can be found in Posdziech and Grundmann (2001) (Re = 210)

and Braza et al. (2001) (Re = 220). As clarified in Posdziech and Grundmann (2001), the
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main sources of errors with regard to the numerical results are found in the spanwise lengths,

domain extensions, resolution and integration time. Especially for the transition regime, it

is rather difficult to obtain accurate and trustworthy results.

3. Validation

3.1. Definition of global quantities

The bulk or global quantities were all calculated using commonly accepted definitions.

Time-averaged velocities are denoted with an overbar, e.g. u for the streamwise velocity.

r.m.s. values (standard deviations of fluctuations) are denoted with a prime, e.g. u′ for

the r.m.s. streamwise velocity. The reference pressure for the pressure coefficient, Cp, was

taken from the inlet section. The base suction coefficient, −Cpb, refers to the negative of the

time-averaged Cp at the base of the cylinder (x = 0.5, y = 0). For convenience and to avoid

redundant digits, the time-averaged Cp at the front of the cylinder (x = −0.5, y = 0), Cps, is

reported as as = (Cps − 1)Re, the scaling being based on that as = 4 for a stagnation line in

plane stagnation flow towards a circular cylinder at high enough Re, see Homann (1936a).

Time-mean drag (CD) and lift (CL) coefficients include pressure (CDp, CLp) and frictional

(CDf , CLf) components. The fluctuations of lift, drag and pressure coefficients are presented

using r.m.s. values (CL′, CD′, Cp′). For convenience, the ratio between the coefficients of

r.m.s. lift and r.m.s. drag is denoted r, i.e. CD′ = CL′/r. The Strouhal number, St, the

inverse value of the non-dimensional time-mean shedding period, was detected by FFT of

the time history of the lift coefficient. Since the force coefficients behave sinusoidally for 2-D

cases, the corresponding frequency was also calculated directly from the time series of lift

coefficients by detecting peak values and/or zero-crossing values. Both procedures gave the

same results, within ±0.1%.

The wake closure length, Lc, was determined as the second point of vanishing u along the

wake centerline, from negative to positive values. Angular positions of time-mean separation,

θs, were calculated from points of zero wall vorticity (ωz = ∂v/∂x − ∂u/∂y = 0) along the

cylinder surface. This definition is exact for steady 2-D flow, whereas for unsteady flow

it should, according to Sears and Telionis (1975), be defined as the point of simultaneous
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vanishing of the shear stress and velocity at a point within the wall-bounded shear layer.

Braza et al. (1986) checked both methods within a shedding period for Re = 100 and found

that the difference is less than 0.3% (less than 0.35◦).

3.2. Comparison with previous numerical results

Table 1 presents a comparison of present and previous global numerical results for Re =

100; the present ones were obtained with (H = 120, mesh 386 × 322, ∆t = 0.005). The

comparison studies in Table 1 all have comparable domain sizes.

Table 1: Comparison of flow quantities with earlier numerical results; Re = 100.

Author(s) (year) −Cpb CDp CD Lc St CL′ r

Park et al. (1998) 0.725 0.99 1.33 1.42 0.165 0.235 36.5

Kravchenko and Moin (1998) 0.73 0.99 1.32 1.45 0.164 0.222 –

Shi et al. (2004) – – 1.318 – 0.1640 – –

Mittal (2005) – – 1.322 – 0.1644 0.226 35.6

St̊alberg et al. (2006) - 0.972 1.32 – 0.166 0.233 36.7

Posdziech and Grundmann (2007) 0.709 – 1.325 – 0.1644 0.228 –

Li et al. (2009) 0.701 0.995 1.336 – 0.164 – –

Present, D9 0.709 0.984 1.319 1.41 0.1648 0.225 36.0

Park et al. (1998) used a finite volume method and employed a C-grid system with a

periodic boundary condition at the branch cut and a convective outflow boundary condition.

A Dirichlet boundary condition was used at the far field boundaries. The domain size was

Xu = 50, Xd = 20, D = 100 (polar part). Kravchenko and Moin (1998) used a zonal B-

spline method. The case in Table 1, which refers to their case 9, has a O-type zonal mesh

of diameter D = 120. The boundary conditions were similar to the ones used in Park et al.

(1998). The results chosen from Shi et al. (2004) were obtained by employing a finite volume

method using a convective (non-reflective) condition at the outflow boundary, with domain

size D = 300 in a circular domain. Mittal (2005) carried out finite element simulations with

a rectangular domain (H = 100, Xu = Xd = 50). A Neumann-type boundary condition

with a zero viscous stress vector was prescribed at the downstream boundary. The flow was
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allowed to slip on the lateral boundaries of the domain. St̊alberg et al. (2006) used a high

order finite difference method and put the far field boundary at 40 diameters away from the

cylinder(D = 80), with grid number of 130 × 80. The grid used was of O-type mapped by

a polar coordinate transformation. Posdziech and Grundmann (2007) used a spectral code

on a rectangular domain with Xd = 50; upstream (Xu) and lateral (H/2) distances were

between 20 and 4000. A free stream condition was applied at lateral boundaries; a Neumann

condition for velocities and zero pressure were prescribed at the outflow boundary. Please

note that their results in Table 1 are for H = 140. Unless otherwise noted, our subsequent

comparison results of Posdziech and Grundmann (2007) are also valid for this domain size

(H = 140, Xu = 70, Xd = 50). Li et al. (2009) used the lattice-Boltzmann method (LBM)

and placed the inlet, outlet and lateral boundaries at 50 units away from the cylinder center

(H = 100, Xu = Xd = 50). Free stream conditions with a constant pressure were imposed

on the upstream and downstream boundaries and periodicity on lateral boundaries.

When considering the various different boundary conditions, numerical methodologies,

domain sizes etc., the present results fit well with the comparison cases presented in Table 1.

However, it can be noted that domain sizes in general are much smaller than the ones

displayed in Table 1. The importance of having large enough domains has been emphasized

by Posdziech and Grundmann (2007). Although not all quantities in Table 1 can be found,

the overall conclusion is that the present results compare favorably with those of Posdziech

and Grundmann (2007).

4. Results and discussion

We start with the sensitivity study at Re = 100 in Section 4.1, with regard to domain

size, grid and time step, and then analyze the effect of Reynolds number at Re = 50 − 200

in Section 4.2. The streamwise wake-velocity deficit is described and briefly discussed in

Section 4.3, while the 3-D results at Re = 200 are presented in Section 4.4.
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4.1. Sensitivity study at Re = 100

4.1.1. Effect of domain size

Results for different domain sizes are compared here, using 386 cells in the circumferential

direction, which was proven to be good enough to capture the near cylinder flow features

(Section 4.1.2). The time step was ∆t = 0.02; see cases D1–D4 in Table 2. The cell size

close to the cylinder was δ = 0.0054; for cases D1, D2 and D4, δe = 0.26, for case D3,

δe = 0.25. For cases with a smaller domain size, such as H = 60, there was an increase

in the drag coefficient by about 1.2% and 1.9% for CL′, compared to H = 200. This was

probably caused by the greater blockage (Kang, 2006; Posdziech and Grundmann, 2007).

The base pressure coefficients increased by about 3% when the domain was decreased from

H = 200 to H = 60. The pressure coefficient at the front stagnation, the bubble size behind

the cylinder and the separation angles were all constant for the different domains, which

indicate that those quantities are not sensitive to the domain size (H > 60).

From Figure 3(a) it can be observed that the mean streamwise velocity has the same

reduction trend along the wake centerline for different domains, while no significant difference

can be observed in the near wake region (0 < x < 10). The r.m.s. pressure coefficients along

y = 0 are shown in Figure 3(b), which have rather consistent trends, except for the case of

the shortest domain, H = 60. When the outlet location was shorter than Xd = 60, some

spurious fluctuations occurred towards the outlet section. These fluctuations became rather

significant for the case with Xd = 30 (H = 60), affecting the wake flow upstream to about

x = 15. As the wake deficit decreased somewhat near the outlet, this ought to decrease the

drag; however, the blockage effect was probably greater so that, in total, there was only a

slight increase in drag. The increased blockage also caused some slight increases in r.m.s.

lift and Strouhal number.

From this subsection we conclude that the domain size of H = 120 is good enough for

Re = 100. When compared with H = 200, the maximum deviation for the Strouhal number

was about 0.8%; the deviations for all other quantities in Table 2 were less than 0.5%.
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Table 2: Global results from two-dimensional simulations; Re = 100.

Case H Ni × Nj ∆t CD CDp r CL′ −Cpb Lc θs[
◦] St

D1 200 386 × 482 0.02 1.310 0.976 37.1 0.2151 0.697 1.44 118.0 0.1647

D2 120 386 × 322 0.02 1.315 0.979 37.1 0.2163 0.703 1.44 118.0 0.1650

D3 100 386 × 290 0.02 1.317 0.981 37.1 0.2169 0.706 1.44 118.0 0.1652

D4 60 386 × 210 0.02 1.326 0.988 37.0 0.2191 0.719 1.44 118.0 0.1660

D5 120 482 × 322 0.02 1.315 0.980 37.0 0.2165 0.704 1.44 117.9 0.1651

D6 120 322 × 322 0.02 1.314 0.978 37.2 0.2160 0.702 1.45 118.0 0.1649

D7 120 242 × 322 0.02 1.312 0.977 37.6 0.2148 0.700 1.45 118.0 0.1645

D8 120 386 × 418 0.02 1.316 0.978 37.4 0.2131 0.701 1.46 117.5 0.1647

D9 120 386 × 322 0.005 1.319 0.984 36.0 0.2253 0.709 1.41 118.0 0.1648

D10 120 386 × 322 0.01 1.317 0.982 36.2 0.2224 0.707 1.42 118.0 0.1649

D11 120 386 × 322 0.04 1.309 0.973 38.8 0.2031 0.696 1.49 117.9 0.1652
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Figure 3: Distributions of mean streamwise velocity and r.m.s. of pressure coefficient for different domains,

Re = 100.

4.1.2. Grid sensitivity study

The grid sensitivity study was carried out for domain size H = 120; see cases D2, D5–D8

in Table 2. In cases D2, D5–D7, which have different grid numbers in the circumferential

direction (Ni) but the same Nj = 322, all variations were within ±0.6%, except ratio r =

CL′/CD′ for which there was an increase of 1.6% with a decrease from Ni = 482 (case D5)
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to Ni = 242 (case D7); the associated decrease in CD′ was 2.4%. When also considering

variations along the cylinder surface and in the very near wake, the judgement was here that

Ni = 386 was required to capture all the essential near-cylinder flow features (corresponding

to an angular wall resolution of 0.93◦). Cases D2 and D8 have the same Ni = 386 but

case D8 is better resolved in the radial direction (Nj = 418, δ = 0.003, δe = 0.22). In this

comparison, all quantities in Table 2 were within ±0.5%, except CL′ and wake bubble length

Lc, for which, when comparing case D8 with case D2, the relative changes were −1.5%

and +1.2%, respectively. This implies that these two quantities are somewhat sensitive to

the overall grid density, and especially in the radial direction. However, as the associated

changes in drag coefficients and in Strouhal number were indeed small, it was judged that

grid 386×322 could be used in the subsequent simulations, albeit with suitable adjustments

due to Reynolds number on δ and domain size H , to account for the anticipated changes in

the thickness of the wall-bounded shear layers (δ) and in the overall viscous-affected region

around the cylinder (H), respectively.

4.1.3. Effect of time step

The study of the influence of the time step was carried out for domain size H = 120

using mesh 386× 322; see cases D9, D10, D2 and D11 (∆t = 0.005 to ∆t = 0.04) in Table 2

and Figure 4. The corresponding maximum CFL (Courant-Friedrichs-Lewy) numbers were

around 0.58, 1.1, 2.3 and 4.6, respectively.

There were only small to negligible influences from the time step on CDp, CD, θs and St,

with changes within the percentage level. When the time step was increased from ∆t = 0.005

(D9) to ∆t = 0.04 (D11), the r.m.s. lift decreased by 9.8%; Lc was prolonged by about 5.6%

and −Cpb dropped by 1.8%; the ratio r = CL′/CD′ increased by 7.8%, which means that

CD′ decreased by as much as about 16%. When the time step was set to ∆t = 0.1, 0.2,

the results deviated far from the experimental and other simulation results, and thus those

results were not considered credible. When comparing with the most time-resolved case

(case D9, ∆t = 0.005), it can be noted that all variations when doubling this time step (case

D10, ∆t = 0.01) were within the percentage level.
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Figure 4(a) shows that all time steps produced similar trends along y = 0. The mean

streamwise velocity fluctuations along y = 0 show no significant difference beyond x > 4,

while, in the near wake region Figure 4(b), it is clear that the time-averaged flow is somewhat

affected by the time step. Figure 4(c) shows that the surface pressure fluctuations change

significantly with the time step used; for mean surface pressures (not shown), the associated

variations were hardly discernible. It can be noted that the upper and lower (shoulder)

sides of the cylinder are more sensitive to the time step than the front and rear. Since these

shoulder parts (with the nearby flow separation) are strongly associated with the fluctuating

lift (Norberg, 2003), it is not surprising that the r.m.s. lift coefficient is quite sensitive to

the time step. Figure 4(d) illustrates that the pressure fluctuation level in the whole near

wake decreases with an increase in time step, a reflection that the separated shear layers

are periodically swept through this region. In addition, Figure 4 indicates that the r.m.s.

pressure coefficients converge at a somewhat slower rate than the time-averaged velocity. To

some part, a reason for this is pure statistics. Second-order quantities need longer integration

times to converge compared to time-mean (first-order) quantities.

For the present simulations, the number of iterations per time step was about the same for

all cases tested, which means that the total computer time for each case was approximately

proportional to ∆t. To achieve reasonable computer times in the next step when studying

the influence of Reynolds number, and still be in the position to produce reasonably accurate

results, a time step of ∆t = 0.01 was selected for further simulations (except where noted

otherwise).
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Figure 4: Comparison of velocity and r.m.s. pressure distributions for different time steps, Re = 100: (a)

streamwise mean velocity; (b) r.m.s. of streamwise velocity. (c) r.m.s. of the pressure coefficients on the

cylinder surface; (d) r.m.s. of pressure coefficients along the wake centerline.

4.2. Effect of Reynolds number; two-dimensional simulations

This section gives results from 2-D simulations for different Reynolds numbers within the

range 50−200. The domain size was partly adjusted according to the scale of 1/
√

Re, while

keeping the same number of nodes. At Re = 50, we have the cell sizes δ = 0.01, δe = 0.49,

while, at Re = 60, 80, we have the cell sizes δ = 0.008, δe = 0.37. For Re = 100, 120, we use

the same domain, where δ = 0.0054, δe = 0.26. Then, for Re = 150 − 200, the cell sizes are

δ = 0.0048, δe = 0.24.
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Table 3: Global results for different Reynolds numbers, mesh 386 × 322, ∆t = 0.01.

Re H as CD CDp r CL′ −Cpb Lc θs[
◦] St

50 200 5.11 1.397 0.943 327 0.0399 0.511 2.46 124.0 0.1240

60 160 5.43 1.377 0.956 134 0.0871 0.560 2.11 123.0 0.1354

80 160 5.53 1.336 0.967 56.9 0.1616 0.640 1.67 120.3 0.1528

100 120 5.73 1.317 0.982 36.2 0.2224 0.707 1.42 118.0 0.1649

120 120 5.73 1.306 0.997 27.1 0.2776 0.764 1.25 116.4 0.1739

150 100 5.70 1.305 1.024 20.5 0.3546 0.846 1.06 114.7 0.1841

150 160 5.70 1.301 1.021 20.6 0.3529 0.840 1.06 114.7 0.1837

180 100 5.62 1.310 1.051 17.0 0.4251 0.921 0.93 113.5 0.1919

200 100 5.51 1.316 1.068 15.5 0.4678 0.966 0.86 112.9 0.1958

4.2.1. Global time-averaged results

Table 3 shows the detailed global results for different Reynolds numbers. The time-

averaged pressure coefficient at the frontal stagnation point (line) of the cylinder, in Table 3

read-out as Cps = 1 + as/Re, decreased with increasing Re. The coefficient as reached a

local maximum value within Re = 100 − 120. To the authors’ knowledge and for laminar

shedding conditions, the frontal pressure coefficient Cps has not been explicitly presented in

earlier numerical investigations. However, for Re = 100, there are some investigations in

which the time-averaged Cp around the cylinder is presented, the values being as ≈ 5 (Park

et al., 1998; Sharman et al., 2005). For laminar shedding flow, the experimental values from

Thom (1928, 1933) and Homann (1936b) are within as = 2.3 − 8.4.

The drag coefficients decrease with increasing Reynolds number to Re = 120, then follows

a minor increase from Re = 150 to Re = 200, see also Figure 5. Other indicators vary with

Reynolds number monotonously. In Norberg (1994), it is mentioned that at a Reynolds

number lower than 250, where the vortex formation is laminar, an increase in St is associated

with an increase in the base suction coefficient (−Cpb). The results in Table 3 show agreement

with this.

Moreover, the increase in Re is associated with a reduction in the wake bubble length Lc
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and an upstream movement of the separation line, in agreement with e.g. Park et al. (1998)

and Wu et al. (2004), see also Figure 8. As evident from Table 3, the wake closure point

moves upstream with increasing Re in conjunction with an increase in base suction, and

that the vortex shedding formation occurs closer to the cylinder base at higher Reynolds

number, see Figure 13. Within Re = 50 − 200, the wake bubble length, Lc, decreases

by about 65%. Obviously, at higher Reynolds numbers, the convection effect on the flow

gets stronger while the viscous effect gets weaker. Balachandar et al. (1997) analyzed the

force balance on the mean separation bubble in the wake of a circular cylinder, with a wide

range of Reynolds numbers from 250 to 140000. They concluded that the Reynolds normal

stress outweighs the net force from the shear stress, so that the net pressure force tends to

push the bubble away from the body. However, in the present low Reynolds number cases,

viscosity plays quite an important role, which means that viscous forces cannot be ignored

as in Balachandar et al. (1997), especially for the lower Reynolds numbers. Hence, the

stretching effect of viscous shear stresses can partly explain why Lc becomes smaller at higher

Reynolds number. In addition, the increase with Re of the time-averaged normal stresses

due to shedding-related velocity fluctuations, the laminar equivalent of Reynolds normal

stresses, probably outweighs the pressure force in this laminar shedding regime where the

corresponding non-viscous shear stresses are quite small, contributing to pushing the bubble

towards the body. Consequently, the von Kármán vortices are formed closer to the base of

the cylinder with increasing Reynolds number.

As reported in Norberg (1998), from Re ≃ 1000 up to Re ≃ 6000, the product of

vortex formation length and base suction coefficient (−Cpb) was approximately equal to 1.8,

whereas, for greater Reynolds numbers, the value instead was about 1.6. However, in the

present study in the laminar vortex shedding regime, the product of the streamwise wake

closure distance (xc = Lc + 0.5) and corresponding base suction (−Cpb) varied from 1.51

to 1.31, with respect to Reynolds numbers from 50 up to 200. Even though this product

value was not really a constant as in the turbulent shedding regime mentioned above, the

variation was quite small, which is believed to be related to viscous effects.

Comparing the total drag coefficient, CD, and the pressure drag coefficient, CDp, it can
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Figure 5: Time-averaged drag coefficient versus Reynolds number.

be seen that CDp increases with Reynolds number, getting more dominant. Meanwhile,

the friction component of the drag coefficient, CDf = CD − CDp, drops with Re roughly

as C/
√

Re, where C = 3.21 at Re = 50, and C = 3.51 at Re = 200. A large scatter of

gathered drag coefficients can be seen in Figure 5, both experimental and numerical results.

Since laboratory experiments for low Re often have strict requirements, such as spanwise

aspect ratios, end conditions and the accuracy of instrumentation, it might be unavoidable

to get scattered data. On the other hand, possible reasons for the deviation of numerical

results could be small computational domains, spatial/temporal resolution problems, and

the boundary conditions applied. In addition, the numerical results that are gathered from

code validation studies can partly cause the scatter due to different numerical methods. It

should be noted that present results are nearly parallel to the constant-blockage data of

Posdziech and Grundmann (2007)(H = 140). If instead compared to their drag coefficients

obtained with H = 4000, i.e. negligible blockage, almost perfect agreement can be observed
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(not shown).
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Figure 6: Strouhal number versus Reynolds number.

As is well known, the Strouhal number increases rapidly with Re in the laminar shedding

regime (Roshko, 1954), see Figure 6. It can be seen that the present Strouhal numbers fit

very well with previous results. Please note that, in the experiments of Norberg (1987,

1994), it was not possible to maintain laminar vortex shedding flow for Re > 165. As

discussed e.g. in Williamson (1995), this is most likely due to the influence of the end plates

used in these experiments. By slightly manipulating the end conditions, it is possible to

maintain continuous laminar vortex shedding flow up to about Re = 190, e.g. see Williamson

(1995). The correlation inserted as another experimental reference is taken from the study

of Williamson and Brown (1998), based on the experiments that can be found in Williamson

(1988, 1989).

The r.m.s. lift coefficient, CL′, increases rapidly with increasing Re (Figure 7) due to

stronger alternate periodic vortex shedding. At the lower Re end, the ratio r = CL′/CD′
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decreases dramatically with increasing Re, which manifests a completely different initial Re

dependency for the variation of CD′ when compared to CL′. For CL′ at Re = 50, 60, the

inferred initial behavior was proportional to
√

Re. In fact, for both Re = 50 and Re = 60, the

CL′ could be represented as 0.17
√

ǫ, where ǫ = (Re − Rec)/Rec using Rec = 47.4 (Norberg,

1994; Kumar and Mittal, 2006). At higher Re, in particular for Re ≥ 100, the r.m.s. lift

variation could be very well approximated with the formula as presented in Norberg (2001),

CL′ =
√

ǫ/30 + ǫ2/90, again using Rec = 47.4. As seen in Figure 7, the fluctuating lift

due to alternating wall pressures already dominates at the lower Re end; the ratio CL′p/CL′

increases from 0.84 at Re = 50 to 0.92 at Re = 200. Over the whole interval, the ratio

between the coefficients of r.m.s. lift due to wall friction and total r.m.s. lift, CL′f/CL′,

showed a decrease that was proportional to the inverse square root of the Reynolds number,

the proportionality factor being c1 = 1.30 (±1%). As inferred from Park et al. (1998), there

is a phase shift between the lift fluctuations due to pressure and friction. For sinusoidal lift

signals and with a constant phase shift of φ between the frictional and pressure parts, the

relation between the r.m.s. lift coefficients can be written as

C2
L′ = C2

L′f + C2
L′p + 2CL′fCL′p cos φ. (2)

From inspection of the signals within Re = 50 − 200, it was found that the phase φ was

almost constant, φ ≃ 30◦, which means that wall-frictional lift leads its pressure counterpart

by about 1/12 of a shedding period. The (positive and constant) phase difference is probably

related to the maximum wall friction occurring upstream of the shoulder area, an area in

which the lift due to pressure has its main origin. The maximum wall pressure fluctuation

is located at around θ = (84 ± 3)◦, whereas the maximum time-mean wall vorticity is at

around (51 ± 1)◦ (as can be seen in Figure 11). In Figure 7, the results of Posdziech and

Grundmann (2007) for CL′ using their largest domain (H = 4000), which compare favorably

with the present ones, have been used to calculate (i) the inferred CL′f using c1 = 1.3, and

(ii) the inferred CL′p using a constant phase of φ = 30◦, in agreement with the present results

in these quantities.
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Figure 7: R.m.s. lift coefficients vs. Re. P&G = Posdziech and Grundmann (2007), H = 4000.

The time-mean of separation angles, θs, are displayed in Figure 8. The separation points

move upstream with increasing Reynolds number, associated with the decreasing thickness

of the wall-bounded separated shear layers, due to stronger vortex shedding (visible in Fig-

ure 13). The instantaneous separation angle fluctuation amplitudes (small symbols) around

the time-averaged separation angle are shown in Figure 8. The location of the separation

angle oscillates periodically in time as shown by Braza et al. (1986) and Baranyi and Shi-

rakashi (1999). The present simulation results are shown as open circles including error bars

(small open circles), which demonstrate the maximum oscillation range of the instantaneous

separation angle around the individual mean value for a given Reynolds number. Due to

the oscillating character of the vortex-shedding process, plus the convective effect tending to

outweigh the viscous effect, the variation in the instantaneous separation angle with time is

greater for a higher Reynolds number case. Comparing with the numerical results of Park

et al. (1998) and experimental results of Wu et al. (2004), similar trends can be observed. For
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instance, the time-averaged separation angle decreases as the Reynolds number increases for

the presently studied Reynolds number range; the variations of the instantaneous separation

angle with time are greater for a higher Reynolds number. The empirical equation for the

separation angle and Reynolds number relationship (10 6 Re 6 200) suggested by Wu et al.

(2004) is also given in this figure as the dashed line.
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Figure 8: Separation angles versus Reynolds number. Large symbols: time-mean values; small symbols:

amplitudes.

Finally in this section, the Reynolds number dependency of the time-mean suction pres-

sure coefficients is shown in Figure 9. Present (2-D) results fit well with (i) the experiments

of Eisenlohr (1990) and Williamson and Roshko (1990), at least up to Re ≃ 165 where

3-D effects appear, and (ii) the gathered data of previous 2-D simulations, especially with

Posdziech and Grundmann (2007).

24



60 80 100 120 140 160 180 200
0.5

0.6

0.7

0.8

0.9

1

Re

−Cpb

Williamson and Roshko (1990), exp
Eisenlohr (1990), exp
Kravchenko and Moin (1998)
Posdziech and Grundmann (2007)
Li et al. (2009)
Present (∆t = 0.02)
Present (∆t = 0.01)

Figure 9: Base suction coefficient versus Reynolds number.

4.2.2. Distributions along the wake center line and cylinder surface

Some detailed comparisons for different Reynolds number are provided in the following

figures, along the wake center line in Figure 10 and along the cylinder surface in Figure 11.

Since the trends are monotonous with increasing Reynolds numbers, only results at Re =

50, 100, 150, 200 are displayed, for the sake of clarity.

Figure 10(a) depicts mean streamwise velocity distributions along the wake centerline.

For Reynolds numbers higher than 50, there was a velocity reduction behavior in the region

of 4.2 < x < 52. When the Reynolds number was higher than 150, the velocity reduction

phenomenon became more complicated. In particular for Re = 200, the velocity decrease

with increasing x was already initiated at x = 4.2 and lasted to around x = 32, with a

distinct plateau between that ranged from about x = 9 to x = 16 at a wake deficit velocity

of ud = 1 − u = 0.38, and a second slight plateau from about x = 25 to x = 28 at a wake

deficit velocity of ud = 1 − u = 0.54, see Figure 10(a,b). Most previous studies focus on
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the near wake region (up to around x = 10), and only few previous investigation was found

that covers a longer downstream wake distance. For instance, Persillon and Braza (1998)

carried out 3-D simulations at Re = 200, 300 and provided the streamwise mean velocity

along the wake center line up to x = 20. They noticed that the variation of the streamwise

mean velocity displays a strange behavior, similar to the distribution downstream towards

x = 25 presented in Lomtev et al. (1998) for Re = 100, both showing similar trends as in

Figure 10(a). In particular, Persillon and Braza (1998) tried to compare with the velocity

in the far wake calculated according to the assumption of similarity and some other classical

theories, but got a completely different behavior. No further discussion of this behavior can

be found in their paper. This wake phenomenon is discussed further in Section 4.3.

Figure 10(c) illustrates the level of r.m.s. streamwise velocity fluctuations, u′, along

y = 0. It can be seen that the peak fluctuations appear right behind the wake bubble

(wake closure points are marked by ”×”), ranging from 1.3 < x < 8.5. The reason for this

behavior is probably that the flow contracts and accelerates behind the bubble closure point,

with the result of stronger velocity and pressure fluctuations. Corresponding peak values

appear in distributions of v′ and Cp′ along y = 0 as well, not exactly the same location but

near, especially at higher Reynolds number cases. It can be noted that there is a second

peak of u′ for Re > 150, which occurs downstream of the initial decrease in u, as shown in

Figure 10(a,b).

Figure 10(e) shows the variation of time-mean pressure coefficient Cp along y = 0. The

pressure coefficients at the rear decrease with an increase of Re, and all the distributions

then decrease along y = 0 until they reach a minimum value inside the wake bubble. The

magnitude of the minimum values increases with Re in the near wake region; however, the

location moves upstream both at lower Reynolds number (Re < 100) and higher Reynolds

number (Re > 120). Afterwards, the pressure coefficients increase rapidly before x ≃ 3 and

then steadily recover to the free stream value (Cp = 0). The r.m.s. pressure coefficients

shown in Figure 10(f) reach a maximum value in the near wake region, right behind the

wake bubble. The second peak that occurs in the region of 3.6 < x < 4.2 exists at all

Reynolds numbers higher than 80. The peak values increase with Reynolds number, with the
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location moving upstream at higher Reynolds number. Obviously, the pressure fluctuations

get stronger and more complicated at higher Reynolds number.

Comparing the locations of the peak values of u′, v′, Cp, Cp′ shown in Figure 10(c)-(f)

and the corresponding wake closure points marked by ”×”, it can be observed that only

for Re = 200 are the peak values of u′, Cp′ located at the same place as the wake closure

point, whereas the deviations get smaller with an increase of the Reynolds number. In

addition, it is of interest to note that the peak values of v′ are located downstream of

the wake closure points for all Reynolds number cases, but the interval gap is smaller at

a higher Reynolds number. Meanwhile, the values of v′ are quite a bit larger than the

other fluctuation quantities, mainly due to the oscillating shedding vortex movement. For

Re = 100, the maximum v′ appears at the same place as the maximum u′, at around x = 2.9,

whereas, for Re > 100, the maximum v′ is located downstream of the maximum u′, with

a deviation increasing with Reynolds number; for Re < 100, the maximum v′ is located

slightly upstream of the maximum u′, with deviations less than 2.5%. However, the case of

Re = 50 is the exception, for which the maximum v′ (x = 8.9) is located downstream of the

maximum u′ (x = 8.5).
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Figure 10: Comparison of flow along y = 0 for Re = 50, 100, 150, 200 (time-averaged wake closure points

marked by ×): (a) mean streamwise velocity; (b) mean streamwise velocity in the very near wake region; (c)

r.m.s. of mean streamwise velocity; (d) r.m.s. of mean vertical velocity; (e) pressure coefficients; (f) r.m.s.

of the pressure coefficients.
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Figure 11(a) shows distributions of the time-mean pressure coefficient around the cylinder

surface. It can be observed that the pressure coefficient at the rear of the cylinder (Cpb)

is more sensitive than at the front (Cps). Both decrease with increasing Reynolds number.

A minimum is reached for the pressure coefficient in the range of θ = 81◦ − 87◦, showing

a gradual upstream movement with increasing Re. Meanwhile, the corresponding locations

of Cp = 0 have the same upstream moving trends, for which a constant angular distance

away from the minimum Cp can be observed, with ∆θ = (45 ± 0.3)◦. As can be seen in

Norberg (2002), Cp = 0 for cases in the subcritical regime, i.e. Re > 300, almost located at

the same angular positions (≈ 35◦), albeit with a slightly decreasing trend with increasing

Re, whereas, for the present laminar shedding regime, a maximum difference of 14% can be

observed (43.1◦ at Re = 50, 36.2◦ at Re = 200).

The r.m.s. pressure coefficients are shown in Figure 11(b), where Cp′ changes significantly

with Re. The higher the Reynolds number, the stronger the fluctuations on the cylinder

surface. As expected from a uniform and steady upstream flow, an extremely low level of

Cp′ at the frontal stagnation point (θ = 0◦) is exhibited for all distributions. From this low

stagnation value, there is a steady increase in Cp′ up to a local maximum, which occurs at

the angular position around 100.8◦ for Re = 50, 97.0◦ for Re = 100, 97.0◦ for Re = 150 and

96.1◦ for Re = 200. It can be seen that those peak values appear slightly upstream of the

point where there is a local maximum absolute value for the mean pressure gradient, which

can be detected in Figure 11(c), at around 101◦ − 110◦. Cp′ then decreases slightly until

around the angular position at around 123◦−133◦, which can be classified as a second peak.

Obviously, the pressure acting on the cylinder fluctuates more strongly on the sides than on

the front and the rear, which explains why CL′ is so much larger than CD′ .

Figure 11(c) shows (the negative of) the derivative of Cp, along the cylinder surface,

−dCp/dθ, with θ in degrees. The absolute maximum pressure gradient occurs around θ = 40◦

(±0.2◦). All pressure gradient distributions then contract to one point at the angular position

around θ = 69◦ and decrease rapidly to 0. From the zero pressure gradient point, a positive

pressure gradient occurs downstream towards the local absolute maximum value, at around

110.1◦ for Re = 50, 104.5◦ for Re = 100, 101.7◦ for Re = 150 and 100.8◦ for Re = 200.
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Afterwards, the flow separation points come up into the pressure gradient recovery region.

A small negative pressure gradient region can be observed at Re > 150, which can be related

to the distinct local maximum vorticity occurring around the base.

As mentioned in Norberg (2003), the position of local maximum for the r.m.s. pressure

coefficient is an indicator of the mean separation point for high Re. The angular position of

the local maximum for pressure gradient can also be used to indicate the mean separation

point (Norberg, 2002), within the turbulent shedding regime. However, the related study of

Sharman et al. (2005) indicates that, for Re = 100 within the laminar shedding regime, the

actual separation occurs downstream of the positions detected by the above methods. This

was further proven from the present study for Re = 50 − 200, which can be seen from the

points marked by ”×” in Figure 11. From the collected maximum values above, it can be

noticed that, for increasing Re within the laminar shedding regime, the angular difference

between the separation point (ωz = 0) and the position of the local maximum for dCp/dθ is

(14◦−12◦), while, with regard to the position of the local maximum for Cp′, the difference is

(23◦−17◦). Further investigations are necessary to validate whether these angular positions

may eventually merge at higher Re.

According to the boundary layer theory (Schlichting, 1979), as well as the more appro-

priate way to represent the relationships between the wake characteristics and the Reynolds

number based on the square root of the Reynolds number (Williamson and Brown, 1998;

Norberg, 2003; Wu et al., 2004), which is associated with the shear layer thickness in the

laminar vortex shedding regime, the wall vorticity distribution was scaled with the square

root of the Reynolds number and is shown in Figure 11(d). It can be seen that the higher

Reynolds number has a stronger vorticity on the surface. The maximum value of vorticity

appears at around θ = 50◦ for all Reynolds number cases, which shows good agreement

with the values reported in (Park et al., 1998; Berthelsen and Faltinsen, 2008). Moreover,

vorticity decreases monotonically downstream of the separation points for Re = 50, whereas

a local maximum value can be observed at around θ = 160◦ for Re > 100.
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Figure 11: Mean (a), r.m.s. (b), gradient (c) of surface pressure and vorticity (d) distributions for Re =

50, 100, 150, 200 (time-averaged separation angles are marked by ×).

4.3. Velocity deficit distributions along the wake center line (Re = 150)

Regarding the wake flow of a circular cylinder, most studies focus on the near wake,

presenting wake features and other results limited to the range of approximately x < 8.

Only a few previous investigations concentrate on the wake features and developments fur-

ther downstream, even if it is known from experiments for laminar (near wake) shedding

conditions that there exists a breakdown of the primary vortex street in the wake farther

downstream with a subsequent development of a secondary vortex street (Cimbala, 1984;

Williamson and Prasad, 1993; Karasudani and Funakoshi, 1994). For instance, at Re = 150,

the position for this breakdown is reported to occur within the range from about x = 50 to

x = 150, the exact position being somewhat dependent on the experimental conditions and
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on the detection criteria; see Cimbala (1984), Williamson and Prasad (1993) and Karasu-

dani and Funakoshi (1994). In Inoue and Yamazaki (1999), the breakdown has also been

observed in 2-D numerical simulations.

In the present study, one interesting observation of the results along the wake centerline

is that, for Re > 50, the streamwise velocity decreases in the wake region x = 4 − 52

and then recovers towards the free stream velocity. As the Reynolds number gets higher,

the velocity recovery becomes more complicated in this region. Regardless of whether if

we change the domain size, mesh, time step or numerical scheme, this phenomenon always

shows up. We also carried out similar simulations using different commercial codes, namely

FLUENT, Star-CD and FLOWPHYS, and got similar results.

The present global results for Re = 150 are summarized in Table 3 (two cases: H =

100, 160). The case of H = 160 was extended directly from H = 100 by increasing the mesh

cells, while keeping the inner grid the same. Figure 12 shows a comparison of the streamwise

velocity deficit along the wake centerline for Re = 150. There is a significant disagreement

with the comparison experimental results (Cimbala, 1984; Williamson and Prasad, 1993),

especially for x < 80. Besides being fully 3-D, these experimental results, as evidenced

in Williamson and Prasad (1993), are to some extent facility-dependent. However, the 2-

D results of Inoue and Yamazaki (1999) also show disagreement with our present data in

the region of x < 80. Even though a rather large blockage (H = 60) and short upstream

distance (Xu = 30) were used in their study, a similar velocity deficit is expected to be

observed. Besides, they used a quite large downstream distance (Xd = 400), although only

with around 1841 grid points. Considering that a radius of 8 was adapted for the polar sub-

domain, the mesh beyond x = 8 must then be a bit coarse. The numerical issues mentioned

might be part of the reason that they did not capture the wake streamwise velocity deficit

as we do. The loosely dotted line in Figure 12 refers to the far-field approximation behind

a cylindrical body in two-dimensional steady flow, as adopted from White (1991). For the

circular cylinder case, the deficit velocity along the wake center line can be written as

ud = CD

√

Re

16π(x − x0)
, (3)
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where x0 can be seen as an effective position of the far wake generation, see Eames et al.

(2011). With regard to the present 2-D simulations at Re = 150, CD = 1.30, x0 = 25 was

adapted. As seen in Figure 12, x0 = 25 fits the results rather well, but only from about

x = 60 and onwards.

Karasudani and Funakoshi (1994) experimentally studied the evolution of the vortex

street and found that the primary vortex street breaks down into a nearly parallel shear flow

with a Gaussian profile at a certain downstream distance, before a secondary vortex street

of larger scale appears further downstream. They suggested that the viscous effect probably

contributes to this breakdown process. Their discussion inspired us to look at the vortex

evolution especially in the non-monotonous wake deficit region. We made several movie

clips of the vortex development for Re = 50, 100, 150, 200, covering the downstream region

up to x = 40. Similar to the results by Karasudani and Funakoshi (1994), the primary

vortex street evolves into a nearly parallel shear flow for Re = 100, 150, 200. Moreover,

the distortion and turning of von Kármán vortices can be observed twice for Re > 50, see

Figure 13. For Re = 100, 200, shown in Figure 13(b,d), this behavior is in general agreement

with the results of Mittal (2005). The first one appears around x = 5, where the von Kármán

vortices are initially formed and shed from the shear layer, with the vortex center quickly

moving away from the wake centerline. This is probably the reason for the local maximum

value observed in the streamwise velocity deficit, see Figure 10(a). The second one shows up

at around x = 20 and further downstream, which is especially apparent at higher Reynolds

number, say Re = 150, 200. As can be seen in Figure 13(c), (d), beyond x ≈ 15, the vortex

centers, as indicated from local extreme values of ωz within the vortices, were at an almost

constant cross-stream distance from the wake center line. During the initial transferring

process, there is a change-over in the tilting of the von Kármán vortices, and the shape

of the vorticity region changes from being closely circular to kind of elliptical. Moreover,

a merging trend can be seen for Re = 200 beyond x = 25, where the neighboring von

Kármán vortices seem to connect with each other. The issues mentioned above might be the

reasons for the plateau-like behavior in the stream velocity deficit region, see Figure 10(a)

and Figure 12 (Re = 150). However, none of the above phenomena can be found for Re = 50
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(Figure 13(a)), which explains why the streamwise velocity distribution along y = 0 increases

monotonously after the wake bubble for Re = 50. As providing further confidence on the

velocity deficit behavior found in the present study, the decay of the peak vorticity within

the von Kármán vortices was found to be in agreement with the numerical results reported

in Ponta (2010) and the soap-film experimental results in Vorobieff et al. (2002).
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Figure 12: Streamwise velocity deficit along the wake centerline, ud = 1 − u(x, 0), Re = 150.

4.4. 3-D simulations; Re = 200

Experimentally, the highest Reynolds number for which a continuous laminar shedding

flow can be maintained is about Re = 190 (Miller and Williamson, 1994; Williamson, 1995).

For completeness, we therefore present in this subsection some results of 3-D simulations at

Re = 200, using two spanwise lengths, Lz = 10 and Lz = 12.

4.4.1. Preliminaries and global results

For realizability of a 3-D simulation of this canonical flow case, the spanwise dimension

of the cylinder, the spanwise length Lz, should be long enough to be able to capture the
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Figure 13: Comparison of instantaneous vorticity (ωz) at different Reynolds numbers: (a) Re = 50; (b)

Re = 100; (c) Re = 150; (d) Re = 200.

essentials of the anticipated large-scale 3-D spanwise flow developments (Gioria et al., 2011).

For the same reason, it is also required to employ a spanwise resolution that is fine enough, as

judged from the anticipated smallest flow features of dynamical importance, a requirement

that also involves considerations of the approximation order of the employed numerical

schemes. In addition, the spanwise boundary condition ought enforce a minimum amount of

disturbance from the cylinder ends, and especially so when using a limited spanwise length.

The experiments of Norberg (2003) indicate that the one-sided spanwise correlation

length of lift-related near wake velocity fluctuations in the inital transition regime (up to

about Re = 220) is about 7 units. Moreover, when using end plates in a laboratory ex-

periment, the study of Norberg (1994) shows that the Strouhal number and base suction

coefficient at around Re = 200 are unaffected by the aspect ratio (length-to-diameter ratio)

down to ratios of about 30. As the boundary conditions adopted at the cylinder ends (Sec-

tion 2.2) are believed to be of a much softer nature than the above experimental ones with

a no-slip termination, the choice of using a maximum spanwise length of about half the one

required from experiments seems motivated. In addition, at Re = 200, the neutral curve

of possible mode A wavelengths that in fact can be excited ranges from about λz = 3.3 to
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λz = 5.1, the most unstable being at λz = 3.9 (Barkley and Henderson, 1996; Posdziech and

Grundmann, 2001). This means that Lz = 12 is more than twice the largest mode-A wave-

length that can be excited and about three times the most unstable one. Due to computer

limitations, it was not possible at this stage to carry out any tests with even longer spanwise

lengths.

Some selected global results for the two 3-D cases and a corresponding 2-D case are given

in Table 4. For a lateral domain width of H = 80, the near wall and outlet wake resolution

parameters were here set at δ = 0.0035, δe = 0.21, using sectional mesh 386×322. The time

step was ∆t = 0.02. To indicate the lower expected accuracy when using this longer time

step (Section 4.1.3), in combination with an integration time that for computer time reasons

was limited to about 100 time-mean shedding periods, the number of significant digits in

Table 4 have been limited to three. Both 3-D cases in Table 4 had about 13 spanwise

grid points per unit diameter, corresponding to a spanwise distance between the equidistant

planes of about ∆z = 0.075. When including all related investigations referred to in this

part, Posdziech and Grundmann (2001); Carmo and Meneghini (2006); Labbé and Wilson

(2007); Behara and Mittal (2009); Rajani et al. (2009); Cao et al. (2010); Leontini et al.

(2010), the average number of spanwise points/nodes per unit diameter is approximately

10. Further, for Re = 220, it is demonstrated in Posdziech and Grundmann (2001) that

about 8.5 spanwise points/nodes per unit diameter is sufficient to produce converged global

results, at least for (St, CD). In Carmo and Meneghini (2006) but for Re = 320, the number

of spanwise points/nodes to achieve an ”adequate representation of the flow”was found to be

approximately 12.8 spanwise nodes per unit diameter. From these facts the present spanwise

resolution levels seem well motivated to be sufficient.

These above previous investigations all employed periodic spanwise boundary conditions,

except Behara and Mittal (2009) who used the same spanwise boundary condition as in the

present study, the symmetry condition. At least for relatively short spanwise lengths, it

can be argued that the symmetry condition ought to be more physical than the spanwise

periodic one; there is no particular reason why the flow should instantaneously repeat itself

at specific spanwise positions. Here it should be noted that the values gathered in Table 4

36



were calculated by taking away spanwise sectional values at distances 0.3 units away from

each end of the cylinder, thus reducing possible end condition effects from the forcing of

vanishing spanwise velocity at the ends (Section 2.2). Please note that the CL′ and implied

CD′ = CL′/r in Table 4 represent spanwise-averaged sectional values.

Table 4: Global results for Re = 200, H = 80, ∆t = 0.02.

Case CD CDp r CL′ −Cpb Lc St

2-D 1.32 1.07 15.9 0.457 0.963 0.88 0.196

3-D, Lz = 10 1.24 1.00 12.1 0.339 0.847 1.15 0.181

3-D, Lz = 12 1.25 1.01 8.31 0.350 0.861 1.11 0.183

As mentioned earlier (subsection 2.2), the cases with Lz = 10 and Lz = 12 eventually

went into a state that can be characterized as a spatiotemporal chaotic flow (Henderson,

1997), in laboratory experiments denoted as mode A∗ (Williamson, 1996a); see Figure 14

and Figure 17. Although both these cases produced global results in reasonable agreement

with available experiments (CD, −Cpb, St), the case with Lz = 10 exhibited features that

indicated a strong influence from the its spanwise length. For instance, the spanwise cor-

relation coefficient of fluctuating sectional lift (RLL, not shown) for Lz = 12 exhibited an

expected monotonous drop-off appearance at large separations, almost reaching zero corre-

lation (RLL ≃ 0.05) at a spanwise separation distance of 10.5 length units, similar in appear-

ance with the lift-related correlation function as presented in Norberg (2003) for Re = 240

but in sharp contrast to the one for Lz = 10 that exhibited a seemingly non-physical ap-

pearance at separation distances greater than about 2 (units), showing undulations on a

declining trend but with all correlation levels above RLL = 0.65. When calculating these

correlation functions, the reference plane was placed at about 0.5 units from either end of

the cylinder. Since the case with Lz = 10 exhibited non-physical features albeit producing

seemingly reasonable global results, all aspects as provided below, except when specifically

noted, are related to the case with Lz = 12.
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Figure 14: Time history of spanwise-averaged lift and drag coefficients for Re = 200 : (a) Lz = 10, (b)

Lz = 12. The dash lines indicate the start time for integrations.

4.4.2. Comparisons with 2-D, experiments and previous 3-D studies

The base suction coefficient from the 3-D simulation with Lz = 12 (−Cpb = 0.861)

is within ±2.5% when compared with the experimental results (−Cpb ≃ 0.84 − 0.88) of

(Williamson and Roshko, 1990; Norberg, 1994, 2002). The corresponding Strouhal number

of St = 0.184 is within the range of St = 0.182 − 0.184, which represents values reported

in (Norberg, 1987; Williamson, 1988; Norberg, 1994; Fey et al., 1998). The pressure drag

coefficient of CDp = 1.01 is in close agreement with the experimental value of CDp = 1.02

reported in Norberg (2002), see also Figure 15(a).

In previous numerical studies for Re = 200, Posdziech and Grundmann (2001) reported

St = 0.182, CD = 1.24 and −Cpb = 0.87 from a simulation with H = 140 and a spanwise

periodic length equal to the most unstable wavelength of the mode A instability, Lz = 3.9,

and about 8.3 spanwise spectral nodes/points per unit diameter. The results of Posdziech

and Grundmann (2001) are intriguing. As demonstrated convincingly in Henderson (1997),

the expected scenario when using a spanwise length matching the most unstable mode A

wavelength, in a regime where this is the only 3-D instability that can be excited, the flow

ought to be locked to a deterministic and time-periodic state with only clean mode A struc-
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tures present. In Posdziech and Grundmann (2001) the indicated final state is much more

disordered, displaying strong and seemingly random variations in the temporal development

of the indicated Strouhal number. The reasons for this behavior are unclear. They did not

test other spanwise lengths since the results fitted very well with experimental data. Carmo

and Meneghini (2006) carried out tests with spanwise periodic lengths varying from Lz = 3

to Lz = 18 using (at least) 12.8 spanwise spectral nodes per unit diameter and H = 100. For

Lz = 18 they reported St = 0.185 and CD = 1.27; for Lz = 12, St = 0.184 and CD = 1.28.

Labbé and Wilson (2007), using Lz = 6.3 and 20.4 spanwise spectral nodes per unit di-

ameter, reported St = 0.195, CD = 1.318; these values are close to the ones reported in a

corresponding 2-D simulation using the same cross-sectional polar grid/domain (D = 30)

and are also in agreement with the 2-D results in Table 4. The corresponding global results

of Rajani et al. (2009), also using Lz = 6.3 but at a significantly lower spanwise resolution

(about 5.1 spanwise nodes per unit diameter), are very similar to the ones of Labbé and

Wilson (2007); St = 0.1936, CD = 1.338. The plot of vorticity fields in Labbé and Wilson

(2007) for Lz = 6.3 show a very regular pattern of mode A structures, which means that

the ”chaotic” state was not reached in this simulation. Interestingly, the change-over to the

”chaotic” state is in Carmo and Meneghini (2006) reported to occur when the periodic length

changes from Lz = 8 to Lz = 12, and being associated with a sudden drop in Strouhal num-

ber (from St = 0.195 to St = 0.184). Cao et al. (2010) reported St = 0.186 and CD = 1.30,

using a polar sectional domain with D = 60, Lz = 8, and 10 spanwise grid points per unit

diameter. For this simulation, in contrast to the results of Carmo and Meneghini (2006) for

the same Lz, the final state appears to be the chaotic one, as judged from their vorticity plot

(Re = 200), and also manifested from their its’ lower Strouhal number. Behara and Mittal

(2009) reported St = 0.195, CD = 1.38 using Lz = 10 with 5.1 nodes per unit diameter. The

flow state was associated with parallel shedding without any signs of vortex dislocations.

Their vorticity plot do not suggest the presence of chaotic flow developments. However,

it seems that only 120 time units were simulated. Based on the indeed very long time to

reach the chaotic state for the matching case of the present study, it seems that insufficient

simulation time is the plausible main cause of the deviations between the present results
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and those of Behara and Mittal (2009). Finally, Leontini et al. (2010) obtained St = 0.187

and Lc = 1.07, with H = 30, Lz = 16 and 6 spanwise spectral nodes per unit diameter.

When considering the diversity in other numerical parameters as well, the present 3-D results

(Table 4) are in reasonable agreement with the above numerical studies.

When comparing the 3-D case of Lz = 12 with the 2-D case, the most severe effect can

be found for the ratio r between sectional r.m.s. drag and lift, which showed a reduction

of 48%; the reduction in the sectional r.m.s. drag coefficient, CD′ = CL′/r, was 46%; CL′

decreased by about 23%. Despite being quite comparable on Strouhal number, base suction,

time-mean drag coefficients and sectional r.m.s. lift, respectively, there was a notable and

significant difference between the two 3-D cases for the sectional r.m.s. drag; the sectional

CD′ for Lz = 12 was about 150% higher than for Lz = 10 whereas the sectional r.m.s. lift

only was about 3% higher. As discussed further in the next subsection, the reason for this

large difference in sectional r.m.s. drag is that the case for Lz = 12 exhibited distinct and

occasional strong flow pulsations due to severe distortions of the shedding flow in the near

wake region; for the case with Lz = 10 such pulsations were also present but not as distinct

and powerful as for Lz = 12.

When compared with 2-D, the was a drop in Strouhal number of about 6%. The Strouhal

number within the long-lived intermediate 3-D state with very weak mode A instability

structures, in Figure 17(a) referred to as the ”quasi-2D” state, only was about 1.5% lower

than the corresponding 2-D value. This successive decrease in Strouhal number is in general

agreement with the scenario presented in Henderson (1997) for Re = 220 and Lz = 14.78.

The one-sided correlation length of sectional lift fluctuations, calculated from integration

of the cross-correlation function RLL (as briefly described in Section 4.4.1), was about 5.1

units. The ratio γL between spanwise-averaged to spanwise-mean sectional r.m.s. lift was

calculated to γL = 0.784, in agreement with the value calculated from the formula for γL in

Norberg (2003) using the correlation function RLL and a segment length equal to the the

spanwise length, Lz = 12. Since the reference position for RLL was placed at about 0.5 units

from either end of the cylinder, the remaining small part (up to a separation corresponding

to the full cylinder length) was simply extrapolated to RLL = 0. From this exercise it can
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be deduced that the effects from the symmetry condition enforced at the cylinder ends were

indeed very small. This was also inferred from the very small differences between spanwise-

averaged sectional time-averaged values using the full spanwise length and the time-averages

of spanwise-averaged values of quantities that for spanwise homogeneous conditions should

not depend on the segment length of integration, e.g. St and CD.

Finally, when comparing with the experimental results on the time-averaged Cp-distribution

of Norberg (2002), see Figure 15, the 3-D results show good agreement. It can be seen that

the deviation of Cp between the 2-D and the 3-D results, as well as the experimental data,

occurs at around 50◦ and gets larger in the downstream direction, where the unsteady 3-D

effects appear. However, the pressure coefficients for the 3-D case fluctuate more weakly on

the cylinder sides, comparing with the 2-D results, see Figure 15(b). This is related to the

drop of the r.m.s. lift coefficient.
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Figure 15: Pressure coefficients distributions along the cylinder wall, Re = 200.

4.4.3. LF and HF regions

A distinct pulsation can be observed from the time history of force coefficients shown in

Figure 14, indicating high and low levels of forces, which can be referred to as HF and LF

regions (Sohankar et al., 1999). Similar force pulsations were observed by Sohankar et al.

(1999) for square cylinder flow, while no numerical investigations regarding circular cylinder
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flow have yet been found. As evident in Figure 14(a), the envelope of force fluctuating

amplitudes within HF regions is close to the level within the initial state (approx. 60 <

t < 500), a state in which the wake flow exhibited rather weak but clearly distinguishable

and regular mode A instability structures, in three pairs, indicating, as expected, a most

unstable wavelength of about 4 diameters (Posdziech and Grundmann, 2001). Within the

HF regions, the spanwise near wake flow also exhibited those mode A instability structures,

but not as regular as in the initial region. Within the time intervals of low force amplitudes,

the LF regions, the near wake flow was much more chaotic, albeit with occasional remnants

of mode A. Overall, it seems that the wake flow from about t = 550 and onwards can be

characterized as being of mode A∗, as described in Williamson (1992).

Regarding the above two distinct pulsation regions, a significant spanwise variation of

sectional lift and drag coefficient versus time in Figure 16 can be proposed as evidence,

associated with the three-dimensionality development. It can be seen in Figure 16(a) that the

lift fluctuations are essentially in phase over the spanwise length, except for occasional events

of the extreme LF regions that occurred at around (z = 2.0, t = 729), (z = −0.60, t = 808),

(z = −4.6, t = 836), (z = −5.5, t = 879), (z = 0.45, t = 927) and (z = −1.5, t = 939). At

the location for the first-in-time of these LF regions, which is the most extreme one in this

plot, the minimum sectional drag coefficient value was as low as 1.07, about 14% lower than

the time- and spanwise-averaged value (CD = 1.25). The corresponding spanwise-averaged

envelope drag coefficient at this time (Figure 14(b)) was about ĈD = 1.20, about 4% lower

than CD = 1.25. The sectional lift amplitude at around this most extreme LF region is

almost zero, which is much lower than the time-corresponding spanwise-averaged envelope

lift coefficient of ĈL = 0.30 from Figure 14(a). As for the forces acting on the cylinder

and at this particular Re, the LF regions are thus indicated to be rather spanwise localized

with small to moderate effects on the spanwise-averaged force at the particular time of its

occurrence.

Within time period of Figure 16, which covers about 52 time-mean shedding periods,

two events of near-wake spanwise vortex dislocations were observed. The actual dislocation

behavior was observed from movie clips on the evolution of spanwise vorticity but can also
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be inferred from the Y-shaped connections of the iso-contours of sectional lift at the right

end of Figure 16(a). The flow features in the near wake region with regard to different flow

states, ”quasi-2D”state (t = 463), ”chaotic”state with LF (t = 928) and HF (t = 974) region,

are illustrated in Figure 17. Obviously, quite regular vortex structures can be observed at

t = 463, whereas a major vortex dislocation is present at t = 928 (LF region). No vortex

dislocation events in the very near wake were observed for the case with Lz = 10. At

worst, there was a significant phase distortion at around the time for the lowest envelope

amplitude of the lift fluctuations that occurred at around t = 1600, see Figure 14(a). For a

more complete picture of how the LF-regions and these seemingly rare occasions of vortex

dislocations are distributed both in time and spanwise requires studying longer time intervals

and longer spanwise dimensions. That was not possible within the limitations of this study.
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Figure 16: Isocontours of sectional lift (a) and drag (b) coefficients versus time and the spanwise position

for Re = 200 (Lz = 12). The black lines in (a) indicate zero values of sectional lift.
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(a)

(b)

(c)

Figure 17: Iso-vorticity surfaces along y = 0 of cross-stream (|ωy|, left) and spanwise (|ωz| = 1, right)

vorticity for Re = 200 (Lz = 12, x ∈ [−0.7, 6.6], z ∈ [−6, 6]; flow from below). (a): t = 463 (|ωy| = 0.4); (b):

t = 974 (HF, |ωy| = 1.0); (c): t = 928 (LF, |ωy| = 1.0).

5. Concluding Remarks

Flow past a stationary circular cylinder was simulated for Re = 50 − 200, using a finite

volume code employing an implicit fractional step method with second-order accuracy in
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both space and time. Several cases were carried out to study the numerical parameters that

may affect local or global results. The most sensitive flow quantity regarding the domain

size was proven to be base pressure, followed by r.m.s. lift. In contrast, the streamwise wake

bubble length and the separation angle were not affected by the domain size. Using a square

domain, the necessary value for obtaining independent results in our study was H = 120 at

Re = 100. The comparisons among different grid density both in the circumferential and

radial directions demonstrated that r.m.s. drag was the most sensitive quantity, followed by

r.m.s. lift and wake bubble length, which were especially sensitive to the grid density in the

radial direction. As expected, there should be a high enough grid density along the cylinder

surface, within the separated shear layer regions and inside the very near wake. It should

be noted that r.m.s. force coefficients were rather sensitive to the time step size, especially

r.m.s. drag coefficient, for which an increase of 16% can be observed when the time step

size was increased from 0.005 to 0.04. The wake bubble length was also somewhat sensitive

to the time step size, as well as the base pressure. In this study, a time step of 0.01 was

sufficiently short to capture the local and global features for 2-D shedding flow.

With respect to the effect of Reynolds number, global time-averaged results were ana-

lyzed in detail and compared with previous experimental and reliable numerical results. In

addition, corresponding values distributed along the wake center line and cylinder surface

were presented and discussed for Re = 50, 100, 150, 200. Regarding the huge drop of the

wake bubble length, by about 65% within Re = 50 − 200, the stretching effect of viscous

shear stresses and increasing time-averaged normal stresses due to shedding-related velocity

fluctuations were believed to be the main contributing factors with respect to pushing the

bubble towards the cylinder. A comparison of drag coefficients revealed that the frictional

part of the (total) drag coefficient drops with Re roughly as C/
√

Re, where C = 3.21 at

Re = 50, and C = 3.51 at Re = 200. The ratio between frictional r.m.s. lift and total r.m.s.

lift was found to decrease with increasing Reynolds number approximately as 1.3/
√

Re.

Within Re = 50−200 and still 2-D flow, an almost constant phase shift, φ ≃ 30◦, was found

from the force signals due to friction and pressure, presumably related to the maximum wall

friction occurring upstream of the shoulder area, where the lift due to pressure has its main
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origin.

As to the time-averaged results’ distribution along the wake centerline, the locations of

corresponding peak values deviate from the wake closure points more at lower Reynolds

numbers, while coincidence can be observed for Re = 200. Good agreement and similar

trends were achieved in flow quantities distributed around the cylinder surface, in compar-

ison with previous numerical and experimental results. A maximum (time-averaged) wall

vorticity appeared at around θ = 50◦, whereas a maximum absolute pressure gradient oc-

curred at around θ = 40◦ for all Reynolds number cases. As for the angular positions of

maximum (time-averaged) wall pressure gradient and maximum r.m.s. wall pressure, both

being used previously as measures for the (time-averaged) location of flow separation at

higher Re with turbulent shedding conditions, it can be noted that, with laminar shedding,

both these positions were significantly upstream of the actual flow separation, although with

a decreasing difference with increasing Re.

Regarding the streamwise mean velocity deficit in the intermediate wake region, a local

maximum value can be observed for Re > 50 between the range of 4 < x < 32. That is to

say, for all Re ≥ 60, there was a non-monotonous recovery of the time-averaged streamwise

velocity along the wake center line (y = 0, x > 0.5); for Re ≥ 100, the final monotonous

recovery was initiated at x = 32 ± 2. Comparisons with related experimental and 2-D

numerical results for the time-averaged streamwise velocity were made for Re = 150, showing

disagreement in the region of x < 80. For instance, the present 2-D results exhibited a local

maximum wake velocity deficit of about 0.55 at x ≃ 34; previous related results indicate a

local maximum at a velocity deficit of 0.38 ± 0.02 occurring at x = 44 − 50. In addition, in

the present results but not seen elsewhere, there was a distinct plateau for Re = 150 from

x = 12 to x = 20 at a velocity deficit of about 0.37. This distinct plateau behavior was

observed for all Re > 120 and occurred within x = 9−20 at around the same velocity deficit

(0.37−0.38). The study of the primary vortex street evolution revealed that the appearance

of the first wake velocity deficit observed for Re > 50 was due to the von Kármán vortices

quickly moving away from the wake centerline. As for the plateau-like behavior occurring for

Re > 100, distortion and turning of the von Kármán vortices were thought to be the main
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reason. In particular, a merging trend of the von Kármán vortices appearing for Re = 200

beyond x = 25 was believed to contribute to the formation of the second plateau behavior.

Finally, for the 3-D simulations at Re = 200 (Lz = 10 and Lz = 12) and comparing with

2-D simulation results, significant changes in most global quantities were observed. Good

agreement with previous experiments and reliable numerical results was obtained after a

rather long simulation time until the presumably ultimate and much more chaotic state was

reached, referred to as mode A∗ in Williamson (1992). In the high force regions, the near

wake flow exhibited mode A instability structures, but not as regular as in the initial flow-

developing region. Present 3-D results as well as those of previous studies at this particular

Re = 200 suggest that a spanwise length of at least Lz = 12 is needed to reach a final flow

state in good agreement with experiments.
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