
Chalmers Publication Library

Schmidt decompositions of parametric processes II: Vector four-wave mixing

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Optics Express (ISSN: 1094-4087)

Citation for the published paper:
McKinstrie, C. ; Ott, J. ; Karlsson, M. (2013) "Schmidt decompositions of parametric
processes II: Vector four-wave mixing". Optics Express, vol. 21(9),  pp. 11009-11020.

http://dx.doi.org/10.1364/OE.21.011009

Downloaded from: http://publications.lib.chalmers.se/publication/179876

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1364/OE.21.011009
http://publications.lib.chalmers.se/publication/179876


Schmidt decompositions of parametric
processes II: Vector four-wave mixing

C. J. McKinstrie,1,∗ J. R. Ott2 and M. Karlsson3

1Bell Laboratories, Alcatel–Lucent, Holmdel, New Jersey 07733, USA
2Department of Theoretical Physics, University of Geneva,

1211 Geneva 4, Switzerland
3Department of Microtechnology and Nanoscience, Chalmers University

of Technology, SE-41296 Gothenburg, Sweden
∗mckinstrie@alcatel-lucent.com

Abstract: In vector four-wave mixing, one or two strong pump waves
drive two weak signal and idler waves, each of which has two polariza-
tion components. In this paper, vector four-wave mixing processes in a
randomly-birefringent fiber (modulation interaction, phase conjugation
and Bragg scattering) are studied in detail. For each process, the Schmidt
decompositions of the coupling matrices facilitate the solution of the
signal–idler equations and the Schmidt decomposition of the associated
transfer matrix. The results of this paper are valid for arbitrary pump
polarizations.
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1. Introduction

Parametric (wave-mixing) processes provide a variety of signal-processing functions required
by classical communication systems [1, 2] and quantum information experiments [3, 4]. Such
processes are governed by coupled-mode equations (CMEs) of the forms

dzX1 = iJ1X1 + iKX∗
2 , dzX2 = iJ2X2 + iKtX∗

1 , (1)

where dz = d/dz is a space derivative, X1 = [x1 j] and X2 = [x2 j] are m× 1 mode-amplitude
vectors, J1, J2 and K are m×m coefficient matrices, and the superscripts ∗ and t denote com-
plex conjugate and transpose, respectively. The self-action (-coupling) matrices J1 and J2 are
Hermitian, whereas the cross-coupling matrix K is arbitrary. Equations (1) can be rewritten in
the compact form

dzX = iLX , (2)

where the 2m×1 mode vector and 2m×2m coefficient matrix are

X =

[
X1

X∗
2

]
, L =

[
J1 K

−K† −J∗2

]
, (3)

respectively. Because Eq. (2) is linear in the mode vector, its solution can be written in the
input–output (IO) form

X(z) = T (z)X(0), (4)

where the transfer (Green) matrix satisfies Eq. (2) and the input condition T (0) = I. The math-
ematical properties of this evolution equation and its solution were studied in detail in [5] and
papers cited therein. It was shown that the transfer matrix has the Schmidt decomposition

T (z) =

[
V1DμU†

1 V1DνUt
2

V ∗
2 DνU†

1 V ∗
2 DμUt

2

]
, (5)

where U1, U2, V1 and V2 are unitary matrices, Dμ = diag(μ j) is a positive diagonal matrix,
Dν = diag(ν j) is a non-negative diagonal matrix and j = 1, . . . ,m. The columns of Uj are input
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Schmidt mode-vectors, the columns of Vj are output Schmidt mode-vectors, and the entries of
Dμ and Dν are Schmidt coefficients that satisfy the auxiliary equations μ2

j −ν2
j = 1. By using

the columns of U1 and U∗
2 as bases for the input vectors X1(0) and X∗

2 (0), respectively, and the
columns of V1 and V ∗

2 as bases for the output vectors X1(z) and X∗
2 (z), one obtains the CMEs

x̄1 j(0) = μ j(z)x̄1 j(0)+ν j(z)x̄
∗
2 j(0), x̄∗2 j(0) = ν j(z)x̄1 j(0)+μ j(z)x̄

∗
2 j(0), (6)

where the Schmidt mode-amplitudes x̄1 j and x̄∗2 j are the components of X1 and X∗
2 relative to the

aforementioned bases. The physical significance of this result is that every parametric processes
(no matter how complicated), can be decomposed into a collection of independent two-mode
(stretching and squeezing) processes, about which much is known [6, 7].

In a previous paper [5], two specific examples were discussed: Scalar (inverse) modulation
interaction (MI) and phase conjugation (PC). Although these examples were sufficient to illus-
trate the general results, they involved only one or two complex modes: For such processes, the
Schmidt decomposition is an elegant, but unnecessary, tool. This paper is the first in a sequence
of papers on four-mode parametric processes. Such processes are more complicated than their
one- and two-mode counterparts, and their analyses showcase the benefits of Schmidt decom-
positions. In this paper, vector four-wave mixing (FWM) in a randomly-birefringent fiber is
considered [8–10].

2. Modulation interaction

Light-wave propagation in a randomly-birefringent fiber is governed by the vector nonlinear
Schrödinger equation (NSE)

∂zA = iβ (i∂t)A+ iγ(A†A)A, (7)

where ∂z and ∂t are space and time derivatives, respectively, A = [x,y]t is the two-component
amplitude vector, γ = 8γK/9 is proportional to the Kerr nonlinearity coefficient γK and the
superscript † denotes Hermitian conjugate. In the frequency domain, the dispersion function
β (ω) = ∑∞

n=1knωn/n!, where the kn are dispersion coefficients evaluated at some reference
(carrier) frequency, and ω is the difference between the actual frequency and this carrier fre-
quency. One converts from the frequency domain to the time domain by replacing ω with i∂t .
Equation (7) is the simplest equation that models the effects of convection, dispersion, nonlin-
earity and polarization, and is sometimes called the Manakov equation [11–17]. It is written
in a frame that rotates with the birefringence axes of the fiber, and is based on the assump-
tion that the FWM length is much longer than the length over which the birefringence strength
and axes change due to random fiber nonuniformities (1–100 m). Although this condition is
barely satisfied for fibers shorter than 1 Km, the predictions of the Manakov equation agree
with the results of many recent FWM experiments. The Manakov equation does not account
for polarization-mode dispersion [18], which can reduce the FWM efficiency [19, 20].

In the degenerate FWM process called modulation interaction (MI), one strong pump wave
(p) drives weak signal (s) and idler (r) waves (sidebands), subject to the frequency-matching
condition 2ωp = ωr +ωs, which is illustrated in Fig. 1(a). By substituting the three-frequency
ansatz

A(z, t) = Ap(z)exp(−iωpt)+Ar(z)exp(−iωrt)+As(z)exp(−iωst) (8)

in Eq. (7) and collecting terms of like frequency, one obtains the MI equations

dzAp = iβpAp + iγ(A†
pAp)Ap, (9)

dzAr = iβrAr + iγ(A†
pAp +ApA†

p)Ar + iγ(ApAt
p)A

∗
s , (10)

dzAs = iβsAs + iγ(A†
pAp +ApA†

p)As + iγ(ApAt
p)A

∗
r , (11)
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where the wavenumbers β j = β (ω j) and j = p, r or s. For reference, this procedure is described
in [9, 10]. Notice that the weak sidebands do not affect the strong pump, which is undepleted.
The right sides of Eqs. (9)–(11) contain the scalar operator A†

pAp = |Ap|2I, which produces self-
phase modulation (PM) and cross-PM, and the tensor operator ApA†

p, which produces cross-
polarization rotation (PR). Notice that (A†

pAp)Ap = (ApA†
p)Ap, so one can write the operator in

Eq. (9) as a PM or a PR operator, whichever is more convenient. Notice also that in Eqs. (10)
and (11) the self-coupling operators (matrices) are Hermitian, and the cross-coupling operators
(matrices) satisfy the equation ApAt

p = (ApAt
p)

t , as required by Eqs. (1). Because the pump
vector Ap depends on z, so also do the coupling matrices.

r p s

(a)

p s q

(b)

Fig. 1. Frequency diagrams for (a) modulation interaction and (b) inverse modulation in-
teraction. Long arrows denote pumps (p and q), whereas short arrows denote sidebands (r
and s). Downward arrows denote modes that lose photons, whereas upward arrows denote
modes that gain photons.

It is convenient to define the operator Op, which satisfies the evolution equation

dzOp = i(βp + γApA†
p)Op (12)

and the input condition Op(0) = I. Because the pump equation conserves the products |Ap|2
and ApA†

p, the operator on the right side of Eq. (12) is constant. It is also Hermitian. Hence, the
operator

Op(z) = exp[i(βp + γApA†
p)z], (13)

which is unitary. Op describes linear PM and nonlinear PR, which in Stokes space [18] is a
rotation about the Stokes vector of the pump by the angle 2γ|Ap|2z [9, 21].

It is also convenient to define the transformed amplitude vectors

Aj(z) = Op(z)Bj(z). (14)

By substituting the first of these definitions in Eq. (9) and using Eq. (13), one finds that dzBp =
0: The transformed pump vector is constant. By substituting the other definitions in Eqs. (10)
and (11), one obtains the transformed MI equations

dzBr = i(βr −βp + γ|Bp|2)Br + iγ(BpBt
p)B

∗
s , (15)

dzBs = i(βs −βp + γ|Bp|2)Bs + iγ(BpBt
p)B

∗
r . (16)

Notice that the self-coupling matrices are still Hermitian and the (common) cross-coupling
matrix is still symmetric, but all three matrices are now constant. By measuring the phases of
Bp, Br and Bs relative to a common reference phase (which could be the input phase of one of
the components of Bp), one can remove common phase factors from Eqs. (15) and (16).

Every complex matrix M has the Schmidt decomposition M = VDU†, where U and V are
unitary matrices and D is a non-negative diagonal matrix. The columns of U (input Schmidt vec-
tors) are the eigenvectors of M†M, the columns of V (output Schmidt vectors) are the eigenvec-
tors of MM†, and the entries of D (Schmidt coefficients) are the square roots of the (common)
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eigenvalues of M†M and MM†. Because the cross-coupling matrix K = γBpBt
p is symmetric,

it has the simpler Schmidt decomposition K = VDγVt . Let E‖ and E⊥ denote unit vectors that
are parallel and perpendicular (orthogonal) to the pump vector Bp. Then, in the context of MI,
the columns of V are E‖ and E⊥, and the diagonal entries of Dγ are γ|Bp|2 and 0 (parallel side-
bands couple to the pump, whereas perpendicular sidebands do not couple). The self-coupling
matrices are proportional to the identity matrix, which has the unitary decomposition I =VV †.
Notice that the polarization properties of MI are determined completely by the Schmidt vectors
of the cross-coupling matrix.

By substituting the decompositions

Br = ∑ jbr jVj, Bs = ∑ jbs jVj, (17)

which are based on the same Schmidt vectors, in Eqs. (15) and (16), one obtains the scalar
equations

dzbr j = iδrbr j + iγ jb
∗
s j, dzbs j = iδsbs j + iγ jb

∗
r j, (18)

where j = ‖ or ⊥. The wavenumber mismatches δr = βr − βp + γ|Bp|2 and δs = βs − βp

+γ|Bp|2, and the coupling coefficients γ‖ = γ|Bp|2 and γ⊥ = 0. Equations (18) describe two-
mode stretching and squeezing. Their solutions, which are well known, can be written in the IO
forms

br j(z) = e(z)μ j(z)br j(0)+ e(z)ν j(z)b
∗
s j(0), (19)

bs j(z) = e∗(z)μ j(z)bs j(0)+ e∗(z)ν j(z)b
∗
r j(0), (20)

where the transfer functions and phase factor are

μ j(z) = cos(k jz)+ iδa sin(k jz)/k j, (21)

ν j(z) = iγ j sin(k jz)/k j, (22)

e(z) = exp(iδdz), (23)

respectively. In these formulas, the mismatch average δa = (δr+δs)/2, the mismatch difference
δd =(δr−δs)/2 and the MI wavenumbers k j =(δ 2

a −γ2
j )

1/2. Notice that k‖ can be imaginary, so
the parallel process is conditionally unstable (as required for amplification). For the perpendic-
ular process γ⊥ = 0, so k⊥ = δa, ν⊥(z) = 0, e(z)μ⊥(z) = exp(iδrz) and e∗(z)μ⊥(z) = exp(iδsz).

By combining Eqs. (19) and (20) with Eqs. (17) and their inverses

br j =V †
j Br, bs j =V †

j Bs, (24)

one can write the solutions of Eqs. (15) and (16) in the vector IO forms

Br(z) = ∑ jVje(z)μ j(z)V
†
j Br(0)+∑ jVje(z)ν j(z)V

t
j B

∗
s (0), (25)

B∗
s (z) = ∑ jV

∗
j e(z)ν∗

j (z)V
†
j Br(0)+∑ jV

∗
j e(z)μ∗

j (z)V
t
j B

∗
s (0). (26)

Equations (25) and (26) can be rewritten in the compact form
[

Br(z)
B∗

s (z)

]
=

[
VeDμV † VeDνVt

V ∗eD∗
νV † V ∗eD∗

μVt

][
Br(0)
B∗

s (0)

]
. (27)

The transfer matrix in Eq. (27) is similar to the matrix in Eq. (5). It is in Schmidt-like form,
rather than Schmidt form, because the diagonal matrices eDμ , eD∗

μ , eDν and eD∗
ν are complex,

rather than non-negative. Nonetheless, Eq. (27) is useful: It shows that the polarization proper-
ties of MI are determined by the single unitary matrix V , rather than the four matrices allowed
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by the general theory of parametric processes. Let φe = arg(e), φμ = arg(μ) and φν = arg(ν),
and define the phase average φa = (φμ + φν)/2 and phase difference φd = (φν − φμ)/2,
which depend implicitly on j. Furthermore, define the column vectors Uj = Vj exp(iφd),
Vr j = Vj exp[i(φa + φe)] and Vs j = Vj exp[i(φa − φe)]. Then, by using this notation, one can
rewrite Eq. (27) in the (canonical) Schmidt form

[
Br(z)
B∗

s (z)

]
=

[
Vr|Dμ |U† Vr|Dν |Ut

V ∗
s |Dν |U† V ∗

s |Dμ |Ut

][
Br(0)
B∗

s (0)

]
, (28)

in which the diagonal matrices |Dμ | and |Dν | are non-negative. Notice that in Eq. (28) the
output Schmidt vectors of the signal and idler are different. However, if one were to measure
the output signal and idler phases relative to φe and −φe, respectively, this difference would
disappear and decomposition (28) would involve only two unitary matrices (U and V ).

3. Phase conjugation

In the nondegenerate FWM process called phase conjugation (PC), two strong pumps (p and q)
drive weak sidebands (r and s), subject to the frequency-matching condition ωp+ωq =ωr+ωs,
which is illustrated in Fig. 2. By substituting the four-frequency ansatz

A(z, t) = Ap(z)exp(−iωpt)+Aq(z)exp(−iωqt)

+ Ar(z)exp(−iωrt)+As(z)exp(−iωst) (29)

in Eq. (7) and collecting terms of like frequency, one obtains the PC equations

dzAp = iβpAp + iγ(A†
pAp +A†

qAq +AqA†
q)Ap, (30)

dzAq = iβqAq + iγ(A†
qAq +A†

pAp +ApA†
p)Aq, (31)

dzAr = iβrAr + iγ(A†
pAp +ApA†

p +A†
qAq +AqA†

q)Ar

+ iγ(ApAt
q +AqAt

p)A
∗
s , (32)

dzAs = iβsAs + iγ(A†
pAp +ApA†

p +A†
qAq +AqA†

q)As

+ iγ(ApAt
q +AqAt

p)A
∗
r . (33)

The right sides of Eqs. (30)–(33) contain the scalar operators A†
pAp and A†

qAq, which produce
PM, and the tensor operators ApA†

p and AqA†
q, which produce PR. Notice that in Eq. (30) one

can replace (A†
pAp)Ap by (ApA†

p)Ap and in Eq. (31) one can replace (A†
qAq)Aq by (AqA†

q)Aq.
Notice also that in Eqs. (32) and (33) the self-coupling matrices are Hermitian, and the cross-
coupling matrices satisfy the equation ApAt

q+AqAt
p = (ApAt

q+AqAt
p)

t , as required by Eqs. (1).
Because the pump vectors Ap and Aq depend on z, so also do the coupling matrices.

p q sr

(a)

r s qp

(b)

Fig. 2. Frequency diagrams for (a) outer-band and (b) inner-band phase conjugation. Long
arrows denote pumps (p and q), whereas short arrows denote sidebands (r and s). Down-
ward arrows denote modes that lose photons, whereas upward arrows denote modes that
gain photons.
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It is convenient to define the operators Op and Oq, which satisfy the evolution equations

dzOp = i[βp + γ|Aq|2 + γ(ApA†
p +AqA†

q)]Op, (34)

dzOq = i[βq + γ|Ap|2 + γ(ApA†
p +AqA†

q)]Oq, (35)

together with the input conditions Op(0) = I and Oq(0) = I. Because the pump equations con-
serve the products |Ap|2, |Aq|2 and ApA†

p +AqA†
q, the operators

Op(z) = exp{i[βp + γ|Aq|2 + γ(ApA†
p +AqA†

q)]z}, (36)

Oq(z) = exp{i[βq + γ|Ap|2 + γ(ApA†
p +AqA†

q)]z}. (37)

These unitary operators describe linear and nonlinear PM, and nonlinear PR, which in Stokes
space is a rotation about the total Stokes vector of the pumps [9, 21].

It is also convenient to define the transformed amplitude vectors

Ap(z) = Op(z)Bp(z), Aq(z) = Oq(z)Bq(z), (38)

Ar(z) = Op(z)Br(z), As(z) = Oq(z)Bs(z). (39)

By substituting definitions (38) into Eqs. (30) and (31), and using Eqs. (36) and (37), one
finds that dzBp = 0 and dzBq = 0: The transformed pump vectors are constant. By substituting
definitions (38) and (39) in Eqs. (32) and (33), and using the facts that O†

pOq, Ot
pO∗

q, O†
qOp, and

Ot
qO∗

p are scalar operators, one obtains the transformed PC equations

dzBr = i(βr −βp + γ|Bp|2)Br + iγ(BpBt
q +BqBt

p)B
∗
s , (40)

dzBs = i(βs −βq + γ|Bq|2)Bs + iγ(BpBt
q +BqBt

p)B
∗
r . (41)

Notice that the self-coupling matrices are still Hermitian and the (common) cross-coupling
matrix is still symmetric, but all three matrices are now constant.

The transformed PC equations are similar to their MI counterparts. The self-coupling matri-
ces are diagonal, with (repeated) entries δr = βr −βp + γ|Bp|2 and δs = βs −βq + γ|Bq|2, and
the (common) cross-coupling matrix γ(BpBt

q +BqBt
p) is symmetric. Hence, the polarization

properties of PC are determined completely by the Schmidt vectors of the cross-coupling ma-
trix. Specific formulas for these vectors are stated in terms of the pump components and Stokes
vectors in [9] and [10], respectively. The latter formulas are more compact. Let �p and �q denote
the (unit) Stokes vectors of pumps p and q, respectively. Then the Stokes representations of the
idler and signal (unit) Schmidt vectors are ±�r and ±�s, respectively, where

�r =�s = (�p+�q)/(2+2�p ·�q)1/2. (42)

For reference, if a Jones vector has the Stokes representation (v1,v2,v3), the conjugate vector
has the representation (v1,−v2,−v3). Pump vectors that are perpendicular in Jones space are
anti-parallel in Stokes space [18]. This configuration, for which Eq. (42) is indeterminate, is
discussed in [10]. The associated Schmidt coefficients (entries of Dγ ) are

γ2
± = [3+�p ·�q±2(2+2�p ·�q)1/2]|BpBq|2/2, (43)

where |BpBq|= (B†
pBpB†

qBq)
1/2. The dependences of these coefficients (coupling strengths) on

the polarization alignment of the pumps (�p ·�q) are illustrated in Fig. 3. Parallel pumps produce
strong sideband-polarization-dependent coupling (γ+ = 2|BpBq| and γ− = 0), whereas perpen-
dicular pumps provide moderate polarization-independent coupling (γ+ = γ− = |BpBq|). Notice
that γ++ γ− = 2|BpBq|.
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Fig. 3. Normalized Schmidt coefficients (γ±/|BpBq|) plotted as functions of the pump-
polarization alignment (�p ·�q). The solid and dashed curves represent γ+ and γ−, respec-
tively.

Equations (17)–(28) also apply to PC (with the appropriate definitions of δr, δs and V ), so no
further analysis is required. Nonetheless, it is instructive to define the alternative amplitudes

Br(z) =Cr(z)exp(iδdz), Bs(z) =Cs(z)exp(−iδdz), (44)

where δd was defined after Eq. (23). By substituting these definitions in Eqs. (40) and (41), one
obtains the alternative (symmetrized) PC equations

dzCr = iδaCr + iγ(BpBt
q +BqBt

p)C
∗
s , (45)

dzCs = iδaCs + iγ(BpBt
q +BqBt

p)C
∗
r , (46)

where δa also was defined after Eq. (23). In Eqs. (45) and (46) the mismatches are equal, so the
phase factor e(z) does not appear in the associated Schmidt-like decomposition (27) and only
two unitary matrices (U and V ) appear in the associated Schmidt decomposition (28), as stated
previously.

In degenerate PC (inverse MI), ωr = ωs and the pumps drive only a single sideband (s),
subject to the frequency-matching condition ωp +ωq = 2ωs, which is illustrated in Fig. 1(b).
For this degenerate process, the pump equations (30) and (31) are unchanged, and the signal
equation is

dzAs = iβsAs + iγ(A†
pAp +ApA†

p +A†
qAq +AqA†

q)As

+ iγ(ApAt
q +AqAt

p)A
∗
s . (47)

It is only because the cross-coupling matrix is symmetric that Eqs. (32) and (33) have this
common limit. It is convenient to define the unitary operator

Os(z) = exp{i[(βp +βq)/2+ γ(|Ap|2 + |Aq|2)/2

+ γ(ApA†
p +AqA†

q)]z}, (48)

which is a symmetric combination of the operators Op and Oq. By using Os in the second of
Eqs. (39), one obtains the transformed signal equation

dzBs = iδsBs + iγ(BpBt
q +BqBt

p)B
∗
s , (49)

where the mismatch δs = βs − (βp +βq)/2+ γ(|Bp|2 + |Bq|2)/2 depends symmetrically on the
pump wavenumbers and powers. Thus, the cross-coupling matrix for inverse MI is the same
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as that for PC, so it remains true that K = VDγVt , where the Schmidt vectors (columns of V )
and coefficients (entries of Dγ ) were defined by Eqs. (42) and (43), respectively. The equations
for the signal vector and its conjugate are similar to Eqs. (45) and (46), so the IO relations for
these quantities can be written in the form of Eq. (27), but without the phase factor e (because
δd = 0).

For any pump alignment, there are two signal polarizations for which the signal experi-
ences (one-mode) phase-sensitive amplification. The most useful configuration involves per-
pendicular pumps, for which the amplification strength is signal-polarization independent. If
the pump vectors are used as basis vectors, the signal-polarization vectors are [1,eiφ ]t/21/2 and
[1,−eiφ ]t/21/2, where φ is an arbitrary phase. For example, if the pumps are polarized linearly
along reference axes, φ = 0 corresponds to signals polarized linearly at ±45◦ to these axes,
whereas φ = π/2 corresponds to left- and right-circularly-polarized signals. If the pumps are
circularly polarized, φ = 0 corresponds to signals polarized linearly along the axes, whereas
φ = π/2 corresponds to signals polarized linearly at ±45◦ to the axes. The preceding results
generalize those of [22, 23].

4. Bragg scattering

In the nondegenerate FWM process called Bragg scattering (BS), two strong pumps (p and q)
drive weak sidebands (r and s), subject to the frequency-matching condition ωp+ωs =ωq+ωr,
which is illustrated in Fig. 4. By substituting the four-frequency ansatz (29) in Eq. (7) and
collecting terms of like frequency, one obtains the BS equations

dzAp = iβpAp + iγ(A†
pAp +A†

qAq +AqA†
q)Ap, (50)

dzAq = iβqAq + iγ(A†
qAq +A†

pAp +ApA†
p)Aq, (51)

dzAr = iβrAr + iγ(A†
pAp +ApA†

p +A†
qAq +AqA†

q)Ar

+ iγ(ApA†
q +A†

qAp)As, (52)

dzAs = iβsAs + iγ(A†
pAp +ApA†

p +A†
qAq +AqA†

q)As

+ iγ(A†
pAq +AqA†

p)Ar. (53)

Equations (50) and (51) are identical to Eqs. (30) and (31), respectively. In Eqs. (52) and (53),
the self-coupling matrices are Hermitian, and the coupling matrices satisfy the equation A†

pAq+

AqA†
p = (ApA†

q +A†
qAp)

†. Notice that Ar is coupled to As, rather than A∗
s . This type of coupling

differentiates BS from MI and PC.

r q sp

(a)

q r sp

(b)

Fig. 4. Frequency diagrams for (a) distant and (b) nearby Bragg scattering. Long arrows de-
note pumps (p and q), whereas short arrows denote sidebands (r and s). Downward arrows
denote modes that lose photons, whereas upward arrows denote modes that gain photons.
The directions of the arrows are reversible.

The sideband equations can be written in the compact form

dzX = iHX , (54)
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where the mode vector and coefficient matrix are

X =

[
Ar

As

]
, H =

[
Jr K
K† Js

]
, (55)

respectively. Jr and Js are the aforementioned self-coupling matrices and K is the (common)
coupling matrix. Notice that H is Hermitian. Equation (54) is both a special case of Eq. (2), in
which J1 = H and the other block matrices are absent, and an equation worthy of study in its
own right.

The solution of Eq. (54) can be written in the form of Eq. (4) and the associated transfer
matrix has the Schmidt decomposition

T (z) =

[
V1DτU

†
1 V1DρU†

2
−V2DρU†

1 V2DτU
†
2

]
, (56)

where Uj and Vj are unitary matrices, Dτ = diag(τ j) and Dρ = diag(ρ j) are non-negative di-
agonal matrices whose entries satisfy the auxiliary equations τ2

j +ρ2
j = 1, and j = 1 or 2 [24].

The physical significance of this result is that every BS process, no matter how complicated,
can be decomposed into a collection of independent beam-splitter-like processes, about which
much is known [25,26].

Because the pump equations for BS are identical to those for PC, the pump evolution (linear
and nonlinear PM, and nonlinear PR) is described by Eqs. (34)–(38). By substituting definitions
(38) and (39) in Eqs. (52) and (53), and using the facts that O†

pOq and O†
qOp are scalar operators,

one obtains the transformed BS equations

dzBr = i(βr −βp + γ|Bp|2)Br + iγ(BpB†
q +B†

qBp)Bs, (57)

dzBs = i(βs −βq + γ|Bq|2)Bs + iγ(B†
pBq +BqB†

p)Br. (58)

Notice that the self-coupling matrices are still Hermitian and cross-coupling is still described
by a single matrix (and its Hermitian conjugate), but all three matrices are now constant.
The cross-coupling matrix has the Schmidt decomposition K = UDγV †, whereas the self-
coupling matrices are proportional to the identity matrix, which has the unitary decomposi-
tions I =UU† =VV †. Hence, the polarization properties of BS are determined completely by
the Schmidt vectors of the coupling matrix. Specific formulas for these vectors are stated in
terms of the pump components and Stokes vectors in [9] and [10], respectively. The Stokes
representation of the idler and signal Schmidt vectors are ±�r and ±�s, respectively, where

�r = (2�p+�q)/(5+4�p ·�q)1/2, �s = (�p+2�q)/(5+4�p ·�q)1/2, (59)

and the associated Schmidt coefficients are

γ2
± = [3+2�p ·�q± (5+4�p ·�q)1/2]|BpBq|2/2. (60)

The dependences of these coefficients on the pump-polarization alignment is illustrated in Fig.
5. For any pump alignment, there are strongly- and weakly-coupled sideband polarizations: The
coupling is always sideband-polarization dependent. Notice that γ+− γ− = |BpBq|.

By substituting the decompositions

Br = ∑ jbr jUj, Bs = ∑ jbs jVj, (61)

which are based on different Schmidt vectors, in Eqs. (57) and (58), one obtains the scalar
equations

dzbr j = iδrbr j + iγ jbs j, dzbs j = iδsbs j + iγ jbr j, (62)
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Fig. 5. Normalized Schmidt coefficients (γ±/|BpBq|) plotted as functions of the pump-
polarization alignment (�p ·�q). The solid and dashed curves represent γ+ and γ−, respec-
tively.

where the mismatches δr = βr −βp + γ|Bp|2 and δs = βs −βq + γ|Bq|2, and j =+ or −. Equa-
tions (62) describe two-mode beam splitting (frequency conversion). Their solutions, which are
well known, can be written in the IO forms

br j(z) = e(z)τ j(z)br j(0)+ e(z)ρ j(z)bs j(0), (63)

bs j(z) = −e(z)ρ∗
j (z)br j(0)+ e(z)τ∗j (z)bs j(0), (64)

where the transfer functions and phase factor are

τ j(z) = cos(k jz)+ iδd sin(k jz)/k j, (65)

ρ j(z) = iγ j sin(k jz)/k j, (66)

e(z) = exp(iδaz), (67)

respectively. In these formulas, the mismatches δa = (δr +δs)/2 and δd = (δr −δs)/2, and the
BS wavenumbers k j = (δ 2

d + γ2
j )

1/2. Notice that τ j and ρ j depend on δd , rather than δa, and the
k j are real, so BS is always stable.

By combining Eqs. (63) and (64) with Eqs. (61) and their inverses

br j =U†
j Br, bs j =V †

j Bs, (68)

one can write the solutions of Eqs. (57) and (58) in the vector IO forms

Br(z) = ∑ jUje(z)τ j(z)U
†
j Br(0)+∑ jUje(z)ρ j(z)V

†
j Bs(0), (69)

Bs(z) = −∑ jVje(z)ρ∗
j (z)U

†
j Br(0)+∑ jVje(z)τ∗j (z)V

†
j Bs(0). (70)

Equations (69) and (70) can be rewritten in the compact form

[
Br(z)
Bs(z)

]
=

[
UeDτU† UeDρV †

−VeD∗
ρU† VeD∗

τV
†

][
Br(0)
Bs(0)

]
. (71)

The transfer matrix in Eq. (71) is in Schmidt-like form, because the diagonal matrices eD(∗)
τ

and eD(∗)
ρ are complex. Nonetheless, Eq. (71) shows that the polarization properties of BS are

determined by only two unitary matrices (U and V ), rather than the four matrices allowed by
Eq. (56). Let φτ = arg(τ) and φρ = arg(ρ), and define the phase average φa = (φτ + φρ)/2
and phase difference φd = (φρ − φτ)/2, which depend implicitly on j. Furthermore, define
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the column vectors Ur j =Uj exp(iφd), Vr j =Uj exp[i(φe +φa)], Us j = Vj exp(−iφd) and Vs j =
Vj exp[i(φe −φa)]. Then, by using this notation, one can rewrite Eq. (71) in the Schmidt form

[
Br(z)
Bs(z)

]
=

[
Vr|Dτ |U†

r Vr|Dρ |U†
s

−Vs|Dρ |U†
r Vs|Dτ |U†

s

][
Br(0)
Bs(0)

]
, (72)

where the diagonal matrices |Dτ | and |Dρ | are non-negative.

5. Summary

In this paper, vector four-wave mixing in a randomly-birefringent fiber was studied for arbitrary
pump polarizations. The coupled-mode equations for (inverse) modulation interaction, phase
conjugation and Bragg scattering were derived from the Manakov equation (7) and solved an-
alytically. For each process, one can reduce a complicated system of four coupled equations
to two simple systems of two coupled equations by using the Schmidt vectors of the cross-
coupling matrix as basis vectors. Not only do these Schmidt vectors facilitate the solution of
the coupled-mode equations and the Schmidt decomposition of the associated transfer matrix,
they also determine completely the polarization properties of each process. This simplification
is not required by the Schmidt decomposition theorem. It is a consequence of the facts that the
dispersion term in the Manakov equation does not depend on the wave polarizations and the
nonlinearity term depends on the polarizations in a relatively simple way.
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