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Quantum Hall effect in graphene with twisted bilayer stripe defects
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We analyze the quantum Hall effect in single layer graphene with bilayer stripe defects. Such defects are often
encountered at steps in the substrate of graphene grown on silicon carbide. We show that AB or AA stacked bilayer
stripes result in large Hall conductivity fluctuations that destroy the quantum Hall plateaux. The fluctuations are
a result of the coupling of edge states at opposite edges through currents traversing the stripe. Upon rotation
of the second layer with respect to the continuous monolayer (a twisted-bilayer stripe defect), such currents
decouple from the extended edge states and develop into long-lived discrete quasibound states circulating around
the perimeter of the stripe. Backscattering of edge modes then occurs only at precise resonant energies, and hence
the quantum Hall plateaux are recovered as twist angle grows.
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I. INTRODUCTION

The unique half-integer quantum Hall effect (QHE) in
monolayer graphene serves as a fingerprint of massless
Dirac electrons.!? It is therefore used in the laboratory to
distinguish monolayers from multilayers.> The electrons in
graphene under applied perpendicular magnetic field have an
unconventional Landau level spectrum, leading to a sequence
of Hall conductivity plateaux o, = Go(2n + 1), where Gy is
the conductance quantum, Gy = 262 / h (h is Planck’s constant
and e is the electron charge), and » is an integer including zero.*
The large energy level separation betweenthen = Qandn = 1
Landau levels adds robustness to the n = 0 plateau, which has
been observed also at room temperature.> More importantly,
measurements®® of the von Klitzing constant Ry = /e have
been performed to metrological accuracy on epitaxial graphene
on silicon-carbide (SiC). Large breakdown currents have been
observed for this material, and epitaxial graphene at present
outperforms conventional two-dimensional electron gases in
semiconducting heterostructures in this respect, and may very
well be the material of choice for metrology in the future.
Transistors with promising high cutoff frequencies have also
been fabricated from epitaxial graphene.”!'? It is therefore
of high current interest to establish the electron transport
properties of graphene on SiC.'!

Inhomogeneities in the two-dimensional material are often
detrimental to its transport properties.'>~'¢ Epitaxial graphene
on SiC may continuously cover the whole SiC substrate,'’-!
but steps on the substrate influence the graphene layer along
lines running across the wafer.’%?! At a step, the graphene
sheet may be more decoupled from the underlaying substrate
than on the wide terraces between steps, which may change
the doping level locally.?>>> Graphene may also suffer strain®®
since the SiC step is atomically sharp, while the graphene
sheet forms a continuous cover. In addition, since the steps
serve as seeds in the growth process of epitaxial graphene,
bilayers or multilayers are often observed;'*?*%> see Fig. 1(a).
Depending on the growth process, several islands may form
near the steps or continuous stripes may be formed along a
large part of the step. After fabrication of the Hall bar, the
bilayer stripe defects can reach from one side to the other of
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the Hall bar, resulting in a geometry similar to the one shown in
Fig. 1(b). Experimentally, it was recently observed?® that
narrow Hall bars intentionally fabricated perpendicular or par-
allel to steps display markedly different properties. When the
current path crosses many steps, a positive magnetoresistance
arises that can be explained, according to Schumann et a/ L ag
the result of Hall edge channel backscattering caused by new
edge channels developing along the substrate steps, although
the specific mechanism remains an open question. In contrast,
other experiments'®?"-?% show that the magnetotransport in
epitaxial graphene appears basically insensitive to surface
steps. Thus a theory that embraces both scenarios is still
missing.

Here, we numerically investigate a scenario that reconciles
both observations, wherein a bilayer patch interferes with the
currents flowing in the underlaying monolayer, as sketched
in Fig. 1(b). We show that the QHE plateau quantization
is strongly suppressed by the presence of a single AA- or
AB-stacked bilayer stripe crossing the Hall bar, which opens
up the possibility of edge state backscattering by connecting
opposite edges. This effect, however, becomes much weaker
as the two layers are rotated by a finite relative angle, breaking
the perfect AA or AB stacking. We find that the QHE is least
distorted as the twist angle approaches 30° (midway between
AA and AB stacking). Although interedge backscattering
remains possible in this case, it becomes confined to narrow
resonances, apparent as narrow dips in the Hall plateaux,
and caused by quasibound states circulating around the patch
that are weakly coupled to the extended edge states. The
backscattering resonances are furthermore smeared out by
finite temperature effects. Hence a significant suppression
of Hall plateaux in SiC-grown epitaxial graphene typically
requires the Hall bar to lie across substrate steps, as found
in Ref. 26, but also good crystallographic alignment of the
multilayer patches seeded by the steps.

II. HALL EFFECT ACROSS A TWISTED BILAYER

The properties of bilayer graphene, particularly of twisted
bilayers, have been the focus of considerable interest
recently.?’3? For AB-stacked bilayer graphene, the two Dirac
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FIG. 1. (Color online) (a) Illustration of a continuous graphene
layer over a substrate with two terraces separated by a step. A second
layer is formed at the step. (b) Schematics of a graphene monolayer-
twisted bilayer-monolayer junction in a perpendicular magnetic field.
The ribbon’s width is W, the bilayer patch has a length L, and the
lattice twist angle between layers is 8. Allowed edge state paths for
electrons are sketched in each region.

cones of a decoupled double monolayer system are strongly
modified by the interlayer hopping, resulting in parabolic
bands and possibly trigonal warping.** In twisted graphene, on
the other hand, the two cones within each valley are separated
in reciprocal space and interlayer coupling leads to a finite
energy saddle point in the band structure at the intersection of
the two surviving Dirac cones. The corresponding van Hove
singularity has been observed experimentally.** The question
arises as to what the QHE looks like across a monolayer-bilayer
graphene junction, including the effect of interlayer twist in
the bilayer part.

It should be recognized that a heterostructure® consisting
of monolayer graphene occupying the half space x < 0 and
bilayer graphene occupying the other half space x > 01is rather
different from the geometry considered in this paper, where
the bilayer exists between 0 < x < L, see Fig. 1, and plays
the role of a complicated barrier for electron flow in the lower
extended monolayer. The finite length L of the bilayer patch
leads to the formation of a spectrum with quasibound state
resonances. Such states are chiral and circulate around the
perimeter of the patch, but may escape into the two extended
states at opposite edges of the monolayer (and eventually to
reservoirs) through two opposite corners of the patch [see
Fig. 1(b)]. When the Fermi energy equals a resonance energy,
a vertically propagating channel is opened that connects an
incoming edge state into an outgoing state at the opposite
edge, allowing for backscattering in the QHE regime. This
appears as a dip of depth G in the quantized value of the Hall
conductivity across the resonance. If the width of the resonance
levels exceeds the corresponding level separation, the Hall
conductivity plateaux are completely destroyed. Ultimately,
the existence of such transverse backscattering channels has
a topological origin, since the different Chern numbers of
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the monolayer and bilayer bands dictates that the number of
edge channels along a monolayer-bilayer interface is odd, as a
consequence of the bulk-surface correspondence.>®

A. Model

To illustrate the resonant backscattering effect, we have
performed quantum transport calculations for two-terminal
and six-terminal nanoribbon devices in a magnetic field. We
ignore the effects of inhomogenous doping and strain, which
may also modify magnetotransport as studied elsewhere,?* and
concentrate on the effect of a bilayer patch. The starting point
is the tight-binding Hamiltonian for graphene

H:Zt,-jcjcj, (1)
ij

where the hopping elements f;; include hopping beyond
nearest neighbors, and are modeled by the m-orbital overlap
at different carbon sites j and i separated by R; —R; =r =
ERNIL

2 2 2
= 1(r) = _J/Oxr#e—l(\rl—am) _y, i_ze—mm—d)' @)
Here, yp and y; = 0.14y, are the nearest neighbor and
interlayer hopping parameters of graphite, a.. is the carbon-
carbon distance in plane, and d = 2.4a,.. is the interlayer
distance. The exponent is A =~ 3/a,.. The formula in Eq. (2)
is applied for atomic distances » = |r| reaching a cutoff R.,
beyond which #;; = 0. This generalization beyond simple
nearest-neighbor models is crucial to properly recover the low
energy electronic structure of twisted bilayers, in particular
its gapless and valley-decoupled double-cone spectrum, as
described by the continuum theory of Ref. 29. In practice, a
rather precise description at relevant energy scales is obtained
for R, 2 Tac..

B. Band structure of the leads

The band structure of the monolayer graphene nanoribbon
leads converges rapidly with increasing hopping cutoff R,
and is shown for a 10 nm wide zigzag nanoribbon with
R, = 3a.. in Fig. 2 for varying magnetic fields. The magnetic
field is included in the model through a standard Peierl’s
substitution. We note that, for large R, a large unit cell of
length a, > R, is needed for which the first Brillouin zone
in reciprocal space is small. This correlates with the folding
of the bands of a nearest neighbor tight-binding model, but
leads to slightly more complicated bands due to the long range
hoppings; see Fig. 2. For instance, for small magnetic fields,
Fig. 2(a), we see a positive energy shift of the cones of about
0.3y and the zero-energy edge modes of the zigzag ribbon
display substantial dispersion.*® For small magnetic fields B
the magnetic length £3 = \/hi/(|e| B) is larger or comparable
to the ribbon width W and the spectrum is dominated by
size quantization. This is the case in Fig. 2(a) where the
energy split of the zero mode is due to the small magnetic
field corresponding to a flux ® = 1072 ®, per hexagon, where
@y = h/2e is the magnetic flux quantum. For larger fields,
the Landau levels E,, = \/ﬂhvf/ﬁg = J/no. (v is the Dirac
electron velocity in the absence of magnetic field) become
visible as flat regions in the dispersion. The dispersive parts of
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FIG. 2. Band structure of a 10 nm wide zigzag graphene ribbon at
various magnetic fields for a hopping cutoff of R, = 3a,. and ribbon
unit cell size a, = 2«/§aw

the bands correspond to edge modes, carrying the current in
the quantum Hall regime.

III. MAGNETOTRANSPORT SIMULATION

To evaluate the effect of the bilayer patch, we compute
magnetotransport properties using recursive Green’s func-
tion (RGF) techniques,***’ where the coupling to reservoirs
are included through self-energies derived from the surface
Green’s functions of semi-infinite leads. The leads and the
system are modeled on equal footing through the Hamiltonian
in Eq. (1). The RGF algorithm gives the retarded Green’s
function of the system. Such Green’s function is obtained,
between certain pairs of points, by iterative application of the
Dyson equation, and may be then used to compute the Hall
conductivity, the current densities, or the scattering matrix
of the system. The recursive iteration is performed on slices
of the lattice that are connected only to neighboring slices,
and which hence increase in size as the hopping cutoff R,
increases. This has a rather steep computational cost, but has
the advantage that it cleanly avoids fermion doubling problems
that plague strategies based on the discretization of low energy
effective theories in graphene, and can moreover quantitatively
incorporate the precise edge termination of each of the Hall
bar regions.

A. Multiterminal Hall conductivity

In Fig. 3 we display a six-terminal monolayer graphene
Hall bar device with six contacts (leads) enumerated by L1-
L6. In a typical experiment, a current is sent from L1 to L2,
and the voltage between L3 and L5 gives the longitudinal
resistance, while the Hall resistance is obtained by measuring
the transverse voltage between, for instance, L5 and L6. Since
this Hall bar is of monolayer graphene only, it is sufficient to
use a nearest neighbor model. After computation of the full
scattering matrix connecting the six leads, we compute the
longitudinal resistance p,, and the transverse conductance o,
in the linear response regime. We display both in Fig. 3(c) as
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FIG. 3. (Color online) (a) Current flow pattern in a monolayer
graphene Hall bar with six leads, enumerated by L1-L6. The Fermi
energy of the Hall bar is Er = 0.5yy, which corresponds to the n = 2
Landau level [at the middle of the third plateau in (c)]. Currents are
injected at L6 and L1 and collected at L4 and L3. (b) The current flow
patterns for Er = 0.4507yy, corresponding the step between plateaux
n = landn = 2.(c) The longitudinal resistance p,, (red dots; voltage
measured between L3 and L5) and the transverse conductance o,
(black squares; voltage measured between L5 and L6). The color
scales in (a) and (b) are given in units of G¢V, where V is the small
increase of the chemical potentials in L6 and L1 with respect to the
other leads. The applied field corresponds to a flux ® = 0.01d, per
hexagon, and the temperature is zero.

function of Fermi energy of the system (related to the electron
density). The transverse conductance display quantized values
oy = £(@2n + )Gy, where Gy =2¢*/h and n =0,1,2, ...
This sequence is characteristic for the monolayer quantum Hall
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FIG. 4. (Color online) (a) Hall bar with a L = 10 nm long AB-
stacked bilayer stripe defect in the middle of the device, connecting
the two edges at y = 0 and y = 20 nm. The local current flow pattern
is for the Fermi energy Er = 0.5y, [the same as in Fig. 3(a)]. (b) The
longitudinal resistance p,, (red dots; voltage measured between L3
and L5) and the transverse conductance o, computed for a voltage
measured either between L5 and L6 (black squares) or between L3
and L6 (green squares). The color scale in (a) is given in units of
GoV, where V is the small increase of the chemical potentials in L6
and L1 with respect to the other leads. The applied field corresponds
to a flux ® = 0.01d, per hexagon, and the temperature is zero.

effect. The longitudinal resistance is zero except at the steps
between plateaux. The random fluctuations at the steps are
due to the added randomness of 10% of the nearest neighbor
hopping integral f;; around y; in this simulation.

The current flows along edge states, as is clearly seen
in Fig. 3(a), which shows the local current flow patterns
throughout the device when currents are injected at L6 and
L1 and subsequently collected at L4 and L3. In Fig. 3(b) we
show the current redistribution throughout the entire device
that appears at each step between plateaux (in this case the
n = 1and n = 2 plateaux at Er = 0.4507yy).

In Fig. 4 we show the influence of an AB-stacked bilayer
stripe defect placed in the middle and connecting the two edges
of the Hall bar. The current can now enter into a circular path
around the bilayer patch and eventually go out into both leads
L5 and L4; see Fig. 4(a). This leads to large fluctuations of the
longitudinal resistance p,,, as shown in Fig. 4(b), red circles.
At the same time, the transverse conductance is affected. If the
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FIG. 5. (Color online) (a) Conductance at zero temperature for a
10 nm wide zigzag ribbon with a 10 nm long bilayer patch at various
twist angles 6. The magnetic field corresponds to a flux & = 0.01d,
per hexagon. The hopping cutoff is R, = 7a... (b) Energy blowup
of (a) around the first conductance step from Landau level n =0
to n = 1. The blue arrow in the figure points to the conductance
fluctuation at which we display the local current flow patterns in
Fig. 6. The curves are shifted by 3G relative to each other for clarity.

voltage probes are set between L5 and L6, the influence of the
patch is minimal. On the other hand, when the voltage probes
span the patch, for instance when they are placed between L3
and L6, the fluctuations are added into oy, as well, and the
plateaux are destroyed.

B. Two-terminal conductance and twist angle

Next we study the influence of a finite twist angle on
the fluctuations of the Hall conductance. In contrast to the
AB-stacked bilayer patch explored above, this requires that we
include long-range hopping #;; with a cutoff R. = 7a,,. For this
study it is convenient to limit the calculations to a two-terminal
setup, as in Fig. 1(b). In the absence of contact resistances, like
in the present case, the two-terminal conductance equals the
Hall conductivity oy,. In Fig. 5 we show the conductance for
a W = 10 nm wide ribbon in a quantizing magnetic field as
function of Fermi energy (i.e., doping). The band structure
of the underlaying monolayer is shown in Fig. 2(d). The
bilayer patch length is L = 10 nm. The twist angle 6 =0
corresponds to a bilayer patch with AB stacking, while & = 60°
would correspond to AA stacking. For small twist angles, all
plateaux are destroyed by backscattering caused by a number
of resonance states in the patch, which are rather broad and tend
to overlap. For increasing twist angle, these resonances become
sharper, signaling a decoupling of the quasibound states from
the edge modes in the underlying monolayer that is connected
to source and drain reservoirs. The plateaux become better
defined, starting with the n = 0 plateau at small twist angle
and continuing with the higher Landau level index plateaux at
higher twist angles (higher index require larger twist angle to
recover).*!

The dependence with twist angle of the width of
the backscattering resonances, or, in other words, of the
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coupling between the corresponding quasibound state and the
monolayer edge states, can be traced to the band structure
of the twisted bilayer. In the limit of a vanishing interlayer
coupling y; < yp, the states become perfectly bound and lie
fully on the decoupled layer. Their momentum components are
concentrated around the Dirac point of said layer. In contrast,
the delocalized edge states in the extended monolayer are
spectrally concentrated around the monolayer Dirac point,
which has a shift AK = 2 sin(8/2) x 471/(3\/§a“.) [for 0 <
0 < 30°] with respect to the former. The momentum spread
grows linearly with energy. Therefore, for a given energy,
the larger the momentum mismatch of the two Dirac points,
the smaller the overlap between delocalized edge states and
localized patch states will be. Since this overlap is a measure of
the inverse lifetime of the quasibound state in the limit of small
y1/vo, we see that twist angles around 30° (halfway between
AB and AA stacking, maximum A K) will correspond to least
coupling, narrower resonances, and cleaner Hall plateaux, as
seen in Fig. 5.

A second consequence of this analysis is that, as soon as
the Fermi energy approaches the van Hove singularity where
the two Dirac cones intersect (at energy ~vpAK /2 — y1), the
spectral spread becomes comparable to AK, so the overlap
will increase greatly, and the backscattering will be enhanced.
Hence higher Hall plateaux will be eventually destroyed for
any value of the twist angle as the filling factor grows. This
is also apparent in Fig. 5(a). For instance, for 6 = 20° (blue
curve), it is clear that the n = 0 and n = 1 plateaux have sharp
resonances, while plateau n = 2 and especially plateauxn > 3
at higher doping (i.e., higher E/yy) are destroyed.

C. Circulating quasibound states

To demonstrate the connection between resonant backscat-
tering and quasibound states of circulating currents around
the patch, we present in Fig. 6 the local current flow pattern
throughout the system for filling factors near and at the
resonance dip indicated by the blue arrow in Fig. 5(b). In
the first panel the edge current flows from left to right, from
source to drain, along the upper edge in the n = 0 Landau
level of the monolayer undisturbed by the patch. On resonance
(fourth panel) the current circulates in the patch and suffers
perfect back reflection at the lower edge (blue back-flowing
current), and the conductance from such edge state is zero
on resonance. Similar resonances occur at higher plateaux,
where resonant backscattering from each patch state always
removes at most one conductance quantum G from the Hall
conductivity (assuming unbroken spin symmetry).

D. Effects of disorder

In the above two-terminal simulations of the bilayer stripe
defect we have neglected disorder. A simple model of disorder
was included in the six-terminal simulations in Sec. III A
through a 10% randomization of the nearest neighbor hopping
integrals #;; around yp in that case. To simulate the influence of
disorder on the conductance fluctuations induced by the bilayer
patch, we do the same for the #;; in Eq. (2). In practice, we make
the substitution t;; — #;;(1 + Ap;;), where the level of disorder
is A and p;; is arandom number between —0.5 and 0.5. In Fig. 7
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FIG. 6. (Color online) Local current flow (x component of the
bond currents in units of GV) at zero temperature at a twist angle
6 = 12°. The four frames correspond to energies near the conductance
fluctuation indicated by the blue arrow in Fig. 5(b), starting at an
energy below the conductance dip on the plateau and ending near the
minimum of the dip. Model parameters are the same as in Fig. 5.
The source and drain reservoirs are located to the left and right of the
device and the current flows from left to right for red color (positive
sign).

we show results of this type of disorder for a bilayer patch with
twist angle 8 = 20° for energies E € [0.63,0.66]yy, which is
on the n = 1 plateau in Fig. 5. We vary the disorder strength
from A =5% to A = 30%, with the same random number
sequence p;;. For small disorder strength, the resonances are
shifted in energy. For increasing disorder strength (bigger A),
resonances get broadened. Eventually, resonances overlap and
the plateau is completely destroyed again, despite its 6 = 20°
twist angle. This destruction can be understood as due to
enhanced momentum relaxation that reduces the effect of the
momentum mismatch between the Dirac cones of the two
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dirty: 20%
| ‘V' — dirty: 15%
dirty: 10%
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L Y ' v V ' v — clean
2 . | | ‘
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*S)

FIG. 7. (Color online) Effect of disorder on the conductance
fluctuations for a bilayer patch with twist angle 6 = 20°. With
increasing amount of disorder, conductance dips are shifted and
broadened. Eventually, dips overlap and the plateau is destroyed
despite the large twist angle.
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layers that in the first place (without disorder) decoupled the
layers and lead to sharp resonances. We find, thus, that a
sizable amount of disorder is necessary to cause an appreciable
correction to the general results found in the clean case.

IV. CONCLUSIONS AND OUTLOOK

We have analyzed the effect of bilayer stripes transverse to
graphene Hall bars on the Hall conductivity. Such stripes are
observed to naturally arise at substrate steps in epitaxially
grown graphene. We have found that, in agreement with
Ref. 26, the Hall plateaux are destroyed by the coupling
between opposite edge states via transverse transport channels
circulating around the bilayer perimeter. Such channels arise
as a result of the jump in Chern number between the band
structures of bilayer and monolayer graphene, and give rise
to the formation of circulating quasibound states in finite
length bilayer patches. Hall plateaux develop backscattering
resonances, visible as dips of depth one conductance quantum,
whenever the Fermi energy crosses a quasibound level in the
patch. The width of the backscattering resonances diminishes
as the bilayer twist angle approaches 30°, which leads to
well defined low energy plateaux despite the patch. However,
resonance width grows with Fermi energy, completely spoiling
Hall plateaux above the van Hove singularity of the twisted
bilayer patch. Both features are explained in terms of the
momentum mismatch between the Dirac cones in the two
layers. We propose that this scattering mechanism should be
relevant in understanding deviations of the QHE in epitaxial
graphene Hall bars etched across SiC steps, like the anomalous
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positive magnetoresistance and non-quantized Hall plateaux in
Ref. 26.

In this study of such Hall bars, sketched in Fig. 1(a), we
have neglected effects of strain, inhomogeneous doping, and
the possibility of a Zeeman term due to an in-plane component
of the magnetic field. In addition, we have neglected electron-
electron interactions that may lead to wider wave functions of
the edge states [the current paths in, for instance, Fig. 3(a)].
The relevance of these effects, which should be present at
least to some extent in real experiments, are left as future
work. However, our expectation is that, since the essential
mechanism for the low energy protection of Hall plateux found
in our work stems from the momentum mismatch between
layers, the destructive effect of inhomogeneities, including
those arising from strain and screening, will be small, as long
as their characteristic length scales are greater than the Moiré
period of the twisted bilayer patch L = \/§acc /2 sin(6/2).
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