
The Journal of Nutrition

Genomics, Proteomics, and Metabolomics

A Whole-Grain–Rich Diet Reduces Urinary
Excretion of Markers of Protein Catabolism
and Gut Microbiota Metabolism in Healthy
Men after One Week1,2
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Abstract

Epidemiological studies consistently find that diets rich in whole-grain (WG) cereals lead to decreased risk of disease

compared with refined grain (RG)-based diets. Aside from a greater amount of fiber and micronutrients, possible

mechanisms for why WGs may be beneficial for health remain speculative. In an exploratory, randomized, researcher-

blinded, crossover trial, we measured metabolic profile differences between healthy participants eating a diet based

on WGs compared with a diet based on RGs. Seventeen healthy adult participants (11 female, 6 male) consumed

a controlled diet based on either WG-rich or RG-rich foods for 2 wk, followed by the other diet after a 5-wk washout

period. Both diets were the same except for the use of WG (150 g/d) or RG foods. The metabolic profiles of plasma,

urine, and fecal water were measured using 1H-nuclear magnetic resonance spectroscopy and gas chromatography-

mass spectrometry (plasma only). After 1 wk of intervention, the WG diet led to decreases in urinary excretion of

metabolites related to protein catabolism (urea, methylguanadine), lipid (carnitine and acylcarnitines) and gut microbial

(4-hydroxyphenylacetate, trimethylacetate, dimethylacetate) metabolism in men compared with the same time point

during the RG intervention. There were no differences between the interventions after 2 wk. Urinary urea, carnitine, and

acylcarnitine were lower at wk 1 of the WG intervention relative to the RG intervention in all participants. Fecal water

short-chain fatty acids acetate and butyrate were relatively greater after the WG diet compared to the RG diet. Although

based on a small population and for a short time period, these observations suggest that a WG diet may affect protein

metabolism. J. Nutr. doi: 10.3945/jn.112.172197.

Introduction

Intake of whole-grain (WG)4 foods has consistently been asso-
ciated with a decreased risk of cardiovascular diseases (1,2),
diabetes (3–5), and some cancers (6,7) as well as lower body fat
(8) in both males and females and across diverse populations.

Whereas many studies support the health benefits of WGs,
especially for cardiovascular disease risk markers (9–15), others
report inconclusive results (16,17), creating a degree of uncer-
tainty around both the consistency of WG health benefits and
what mechanisms may lie behind any observed benefits.

The proposed mechanisms of action behind potential WG
health benefits have centered around dietary fiber and its effects
on absorption, continence, and possible prebiotic effects and the
greater amount of vitamins, minerals, and phytochemicals present
in WG compared with refined grain (RG) foods (18–21). This
picture, although plausible, is confounded by the wide variation
in the composition of different WGs (22), though epidemiolog-
ical studies support both mixed WG diets and specific grains
as having a disease reduction effect (23) and fewer disease
biomarkers can be observed in studies based on several different
grain types (11,13). However, the possible mechanisms for the
health benefits that could be common among cereal grains remain
elusive.
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To explore potential mechanisms of action of commercially
available WG cereal foods on healthy human metabolism, we
performed a cross-over study comparing a diet rich in WGs with
the same diet but with WG foods replaced with RG foods. The
metabolic profile of plasma, urine, and fecal water extracts was
analyzed using a combination of proton 1H-NMR spectroscopy
and GC-time of flight MS (TOFMS) to obtain a global view of
metabolic changes due to the WG and RG diets.

Materials and Methods

Study design
A randomized, researcher-blinded, cross-over study was designed to
compare the global metabolic effects of a diet rich in WGwith a diet rich

in RG, as previously described in detail (13). The study design is outlined

in Figure 1. This study was conducted in Lausanne, Switzerland ac-

cording to the guidelines laid down in the Declaration of Helsinki and
all procedures involving human participants/patients were approved by

the Ethical Committee of the Lausanne Region, Vaud Canton, Switzer-

land (Protocol 178/07). The study was carried out from February 2008

to December 2008. This was an exploratory trial with metabolic
profiling as the primary outcome, so no power calculations were

possible. The target number of participants to recruit was 15–25 based

on previous cross-over intervention trials on WGs (10,11).

Subjects
A total of 22 participants were recruited into the study. Written informed

consent was obtained from each participant and selection took place

following a medical questionnaire and confirmation of adherence to
inclusion/exclusion criteria [healthy (normal blood lipid panel, BMI 19–

28 kg/m2, no chronic or recent illness, no recent use of antibiotics or

medication, nonsmokers), between 20 and 50 y old, and low habitual

WG intake (<30 g/d, as determined by FFQ (24)].

Study foods
Foods used in the study were all commercially available from Nestlé SA

worldwide or purchased from supermarkets (Lausanne, Switzerland and

FIGURE 1 Overview of changes to central energy metabolism in healthy men consuming WG- and RG-rich diets for 2 wk in a randomized

crossover trial. Data are based on urinary metabolite excretion measured by NMR. Significant differences were determined using the General

Linear Model including diet and diet order as factors and subject and baseline values as covariates. Bars are the mean change from baseline for

each diet 6 SD of the NMR peak height/creatinine peak height, n = 6. Symbols indicate that interventions differ at that time: y0.05 # P #0.10;

*P , 0.05. RG, refined grain; WG, whole grain.
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Huskvarna, Sweden). WG, energy, protein, fat, carbohydrate, and fiber

content were determined from the declared ingredient and nutrient

compositions. The WG component of foods was assumed to have all 3
major anatomical fractions of the cereal grain (bran, germ, and

endosperm) in the same proportions found naturally as per the American

Association of Cereal Chemists definition (25). These diets have been

described in detail in a previous publication (13).

Analytical methods
Sample collection. Plasma for metabolomics analysis was collected on

lithium heparin-coated tubes and separated from blood by centrifugation
at 1000 3 g for 10 min at 4�C. Then 24-h urine collections were made

and aliquots were stored at 280�C until analysis. Fecal water was

produced according to the method of Klindler et al. (26). Fecal water is
the liquid component of feces and is rich in gut microbiota-related

metabolites as well as nonabsorbed food components. All samples were

stored at 280�C.

Metabolic profiling. Baseline (after the initial 1-wk non-WG diet

washout period prior to each intervention period), intervention (after

1 wk and 2 wk), and postintervention non-WG diet (wk 1 and 2 after the

end of the intervention) plasma and urine samples were analyzed by
NMR. GC-MSwas used to analyze the same time points for plasma only.

Fecal water samples from baseline and at the end of each 2 wk

intervention periods were analyzed by NMR.

1H-NMR spectroscopy. Plasma, urine, and fecal water were analyzed

using standard methods (27) on a Bruker Avance III 600 MHz spec-
trometer equipped with a 5-mm inverse probe (Bruker Biospin). NMR

profiling generates a spectrum with 22,000 data points, from which ~50,

80, and 100 metabolites can be identified for plasma, urine, and fecal
water, respectively. Only those peaks highlighted as explaining differ-

ences in multivariate models were investigated for identification. Peak

height for these metabolites was used for further data analysis. Details

of sample preparation and NMR settings are provided in the Online
Supporting Material (Supplemental method information).

GC-TOFMS. GC-TOFMS profiling of plasma samples was carried out

using the method of A et al. (28) adapted for GC-TOFMS (Leco Pegasus

III) (29). This method separates 303 individual metabolites, with positive

identification of 70 metabolites.

Statistical analyses. Differences in metabolites between diet periods

were analyzed using multivariate statistical analysis to guide further

univariate statistical analysis, which was used to determine the outcomes
of this study. This approach has the advantage of using multivariate

statistics to pick out potential metabolite changes from the hundreds of

metabolites/features measured and then using the well-defined para-

digms of univariate statistical methods that are more easily comparable
with nonmetabolomic studies. Both multivariate and univariate model-

ing included all time points available for each biofluid, though reported

comparisons focused on differences between the diets at the 2 interven-
tion time points, as the goal was to compare WG and RG diets rather

than changes over time for either diet period.

Multivariate statistical analyses were performed using Principal

Components Analysis and Orthogonal Projections on Latent Structures-
Discriminant Analysis (OPLS-DA) with SIMCA software (Umetrics).

OPLS-DA is a modification of partial least squares modeling where

the systematic variation in the x matrix not correlated to the y matrix

is removed (30). Random Forests analysis (31) was performed on
GC-TOFMS datasets using the package RandomForest (32) in R (33).

In-house Matlab (The Mathworks) routines were used for data impor-

tation and preprocessing. Discriminant and quantitative models con-
trolled for over-fitting and rejected if this was evident. The robustness of

the models tested was determined using the Q2
Y value from SIMCA.

Further modeling of potentially discriminating features OPLS-DA

modeling was used to guide further univariate analysis, and potentially
discriminating features were then quantified and analyzed using the

general linear model (Minitab 15.0). Gender, diet, and diet order were

included as factors in the model and subject and baseline values included

as covariates. Where gender was a significant covariate, both genders

were analyzed using the same model (excluding gender). Differences

between groups for diet were determined using Tukey�s pairwise
comparisons and these P values are reported. Only differences between

diets at the same time point (i.e., wk 1 or 2) are reported. Data are

presented as normalized values (either to internal standard for GC-MS,

total spectral intensity for NMR profiling of fecal water, or value relative
to creatinine peak height for NMR profiling of urine).

Values frommetabolic profiling are reported as mean (95%CI) based

on normalized peak areas (GC-TOFMS) or spectral peak heights (NMR).

Unadjusted P values < 0.05 are reported as indicating potentially
interesting results, based on the International Conference of Harmoni-

zation E9 guidelines (34). As this type of exploratory trial was designed

to be hypothesis generating rather than aiming to prove a previous
hypothesis, no correction for multiplicity was applied during statistical

analyses. Trends (P = 0.05–0.1) are also reported. All metabolic changes

reported are comparisons between WG and RG interventions at the

same time point, after correction for baseline values prior to each
intervention period.

Results

Of the 22 participants recruited into the study, 17 completed
the study. Only samples from participants who completed the
study were included in subsequent analyses. Participant drop-
outs during the study were due to an inability to comply with
the controlled diet (1 participant), conflicts with work com-
mitments (3 participants), and unrelated illness (1 participant)
(13). The clinical chemistry results of this study were previ-
ously reported (13) and this work focuses on differences in the
metabolite profiles of systemic biofluids and feces. There was
a small difference in carbohydrate intake (P < 0.05) due to the
lower relative amount of carbohydrate in WGs. Substitution
of RGs for WGs was done a weight for weight basis, so this
relative difference is reflected in overall intake. Dietary fiber
also differed between the WG and RG interventions (Supple-
mental Table 1).

Plasma. Based on Principal Components Analysis and OPLS-
DA modeling, 1H-NMR–based metabolic profiles of plasma did
not differ between the 2 diet periods. GC-TOFMS plasma
profiling detected that at wk 2 only, the plasma urea concen-
tration was greater during the WG intervention than during the
RG intervention (Table 1).

Urine. Multivariate modeling of urine 1H-NMR analyses
indicated that gender was a key determinant of the models
obtained, so male and female participants were analyzed sep-
arately. Two cross-validated OPLS-DA models for the WG
compared with the RG intervention periods were generated for
1H-NMR analysis of urine from men at 1 wk and at 1 and 2 wk
combined (Q2

Y = 0.28 and 0.3, respectively). These Q2
Y values

are within the range normally found in nutrition studies. In all
participants, there was less excretion of carnitine, acetylcarni-
tine, urea, and taurine at wk 1 and no differences observed at
2 wk (Table 1). The only additional diet-relatedmetabolic change
in women was an increase in fumarate at wk 1, a difference
not observed in men. In men, the WG diet led to less excretion
of 4-hydroxyphenylacetate (gut microbiota metabolite of aro-
matic amino acids), dimethylamine and trimethylamine (gut
microbiota processing of choline and related precursors), and
methylguanadine (a metabolite of protein catabolism), pyruvate,
citrate, succinate (central carbon metabolism intermediates),
3-hydroxyisovalerate (metabolite of leucine metabolism and
indicator of biotin status), and N-acetyl-glycoproteins (unclear
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TABLE 1 Metabolite concentrations in plasma and 24-h urine and fecal water samples from healthy adults consuming WG- and
RG-rich diets each for 2 wk1

Metabolite Analytical method Gender, n RG WG P

Plasma

Wk 2

Protein metabolism/kidney function

Urea GC-MS B (17) 0.41 (0.36, 0.46) 0.58 (0.45, 0.71) 0.05

Urine

Wk 1

Mitochondrial b-oxidation and breakdown of carnitine;

transport of fatty acids across the mitochondrial membrane

Carnitine NMR B (17) 1.02 (0.86, 1.18) 0.80 (0.66, 0.94) 0.06

N-acetylcarnitine NMR B (17) 0.75 (0.64, 0.81) 0.63 (0.56, 0.71) 0.03

Bile acid synthesis

Taurine NMR B (17) 2.46 (1.8, 3.12) 1.78 (1.48, 2.08) 0.01

Gut microbiota metabolism of aromatic amino acids

4-hydroxyphenylacetate NMR B (17) 0.31 (0.27, 0.34) 0.34 (0.28, 0.40) 0.932

F (11) 0.34 (0.29, 0.40) 0.40 (0.33, 0.48) 0.42

M (6) 0.27 (0.18, 0.35) 0.22 (0.19, 0.25) 0.05

Gut microbial metabolism of dietary precursors (e.g.,

choline, carnitine)

Dimethylamine NMR B (17) 1.08 (0.96, 1.20) 0.95 (0.85, 1.05) 0.062

F (11) 1.09 (0.93, 1.26) 1.04 (0.93, 1.16) 0.81

M (6) 1.06 (0.81, 1.30) 0.78 (0.71, 0.84) 0.02

Trimethylamine NMR B (17) 0.45 (0.36, 0.55) 0.40 (0.32, 0.48) 0.602

F (11) 0.50 (0.40, 0.60) 0.47 (0.39, 0.56) 1.00

M (6) 0.37 (0.15, 0.59) 0.26 (0.20, 0.33) 0.03

Protein metabolism/nitrogen balance, increased degradation

of branched chain amino acids and/or increased flux

through the urea cycle

Urea NMR B (17) 18.9 (15.7, 22.1) 13.9 (11.8, 16.0) ,0.012

F (11) 21.0 (16.5, 25.5) 16.1 (14.0, 18.2) 0.05

M (6) 14.9 (12.4, 17.5) 9.86 (7.49, 12.2) 0.01

Product of protein catabolism

Methylguanadine NMR B (17) 0.53 (0.46, 0.59) 0.49 (0.43, 0.55) 0.602

F (11) 0.55 (0.47, 0.63) 0.55 (0.50, 0.61) 1.00

M (6) 0.48 (0.35, 0.62) 0.37 (0.35, 0.39) 0.05

Muscle energy metabolism (conversion of creatine to creatinine)

Creatinine NMR B (17) 9.67 (9.64, 9.71) 9.72 (9.69, 9.74) 0.022

F (11) 9.67 (9.63, 9.71) 9.71 (9.68, 9.74) 0.72

M (6) 9.68 (9.60, 9.75) 9.73 (9.70, 9.77) 0.01

Central energy metabolism (TCA cycle)

Pyruvate NMR B (17) 0.45 (0.39, 0.51) 0.40 (0.35, 0.46) 0.382

F (11) 0.47 (0.39, 0.55) 0.38 (0.33, 0.43) 1.00

M (6) 0.41 (0.30, 0.52) 0.30 (0.28, 0.33) ,0.01

Citrate NMR B (17) 4.89 (4.14, 5.64) 4.66 (3.53, 5.79) 0.892

F (11) 5.25 (4.29, 6.23) 5.51 (4.00, 7.02) 0.98

M (6) 4.21 (2.81, 5.61) 3.10 (2.17, 4.03) 0.04

Succinate NMR B (17) 0.72 (0.59, 0.85) 0.68 (0.53, 0.82) 0.78

F (11) 0.74 (0.58, 0.91) 0.82 (0.65, 0.99) 0.92

M (6) 0.68 (0.42, 0.94) 0.41 (0.36, 0.46) 0.03

Fumarate NMR B (17) 0.25 (0.20, 0.30) 0.31 (0.26, 0.37) 0.132

F (11) 0.28 (0.22, 0.34) 0.37 (0.31, 0.43) 0.02

M (6) 0.20 (0.12, 0.29) 0.21 (0.17, 0.24) 0.98

Diverse range of glycoproteins with excretion possibly

resulting from differences in kidney function

N-acetyl-glycoproteins NMR B (17) 0.97 (0.84, 1.10) 0.86 (0.74, 0.98) 0.212

F (11) 1.03 (0.87, 1.18) 0.99 (0.87, 1.11) 1.00

M (6) 0.87 (0.59, 1.15) 0.61 (0.56, 0.67) ,0.01

(Continued)
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what these may indicate in healthy participants) and an increase
in creatinine (muscle metabolism).

These results suggest that changes after 1 wk of the WG diet
were the key drivers for the combined wk 1 and 2 model.
Univariate analysis of key 1H-NMR measured urinary metab-
olites from women confirmed the multivariate analysis result
that there were limited differences in the urinary metabolic
profile due to a greater inter-subject variability, possibly related
to different phases of the menstrual cycle (35) (not controlled in
this study).

Fecal water. Metabolites in fecal water were profiled using 1H-
NMR spectroscopy and a significant OPLS-DA model was
obtained for a difference between the two dietary periods for all
subjects (Q2

Y = 0.35) (Table 1). The WG diet was associated
with a greater excretion of nicotinurate, acetate, and butyrate
and a lower excretion of isovalerate. The succinate concentra-
tion of fecal water was lower during the WG diet period only in
women.

Discussion

The metabolic changes due to a WG diet compared with a RG
diet suggest that a WG diet may affect a variety of different
pathways, including protein, lipid, and microbial metabolism.
The urinary excretion of tricarboxylic acid (TCA) cycle inter-
mediates suggests a reduction of energy flux through the TCA
cycle from glycolysis (lower concentrations of pyruvate indicate
lower conversion of pyruvate to acetyl-CoA). Cis-aconitate and
a-ketoglutarate behaved similarly, though not different, between
diet periods, possibly due to greater variability. Succinate was
different at wk 1 as were pyruvate and citrate. One reason for an
overall lower flux through the TCA cycle could be the slightly
lower amount of carbohydrate consumed during the WG diet.
Replacement of RGs for WGs was done on a weight for weight

basis, as would be likely under everyday conditions, rather than
matching for macronutrients. This led to a 6 and 7% lower
carbohydrate intake during theWG diet intervention in men and
women, respectively, corresponding to the difference in carbo-
hydrate composition between RGs and WGs, with no difference
in fat or protein intake. Differences in food structure may have
also played a role in energy utilization, though all foods were
processed in a similar manner, reducing the chance for major
differences in food structure between similar RG andWG foods.

The increase in urinary excretion of creatinine after consum-
ing the WG diet may support the change to protein metabolism
being reflected in lean mass, given that excretion is normally
stable; however, there were no anthropometric data collected in
this study to back this up. Three studies have indicated that a
WG diet can alter body composition (reduce body fat or hip
circumference) without greater weight loss than a RG diet (36–
38), suggesting that lean mass may be altered by aWG diet. This
apparent change in protein metabolism cannot be explained by
gross differences in protein intake, as this was the same during
both diet periods and most protein was from meat and dairy
intake rather than cereals. Prebiotic fiber sources have been
found to reduce urinary N excretion during a 24-h period after
ingestion (39), and rats fed WG millet had a lower 24-h urinary
urea excretion compared with controls (40), pointing to other
fermentable foods having a possible effect of N balance in
humans. This potential effect of WGs on protein metabolism
needs to be assessed using stable isotope methods for measuring
protein turnover before clear conclusions can be made.

Fumarate was the only urinary metabolite that significantly
differed between diet periods for women, but not for men.
Fumarate has been previously found to differ between genders in
metabolic profiling (41), suggesting that enzymes/metabolites
close to fumarate respond differently to the 2 diets due to gender.
The differing response compared with other TCA-cycle metab-
olites may be due to a difference in flux through gluconeogenesis

TABLE 1 Continued

Metabolite Analytical method Gender, n RG WG P

Metabolic product of leucine and biotin metabolism

3-hydroxyisovalerate NMR B (17) 0.48 (0.40, 0.57) 0.43 (0.35, 0.51) 0.302

NMR F (11) 0.51 (0.39, 0.64) 0.49 (0.39, 0.59) 0.98

NMR M (6) 0.43 (0.33, 0.53) 0.32 (0.26, 0.38) 0.03

Fecal water

Microbial fermentation of carbohydrates

Acetate NMR B (17) 660.2 (559.4, 761.0) 738.3 (619.4, 857.1) 0.02

Butyrate NMR B (17) 56.5 (42.4, 70.6) 66.6 (48.3, 84.9) 0.05

Metabolism of nicotinic acid (niacin)

Nicotinurate NMR B (17) 0.94 (0.83, 1.06) 1.18 (1.02, 1.34) 0.02

Microbial fermentation of peptides and amino acids

Isovalerate NMR B (17) 42.8 (37.4, 48.3) 37.7 (34.2, 41.2) 0.04

Microbial fermentation of diverse compounds (e.g.,

amino acids and SCFAs)

Succinate NMR B (17)2 0.49 (0.46, 0.53) 0.43 (0.39, 0.48) 0.012

F (11) 0.51 (0.47, 0.55) 0.47 (0.43, 0.50) 0.04

M (6) 0.46 (0.39, 0.53) 0.37 (0.28, 0.46) 0.11

1 Mean values (95% CI) based on peak area (GC-MS) or peak height (1H-NMR). GC-MS values are peak areas normalized to internal standard (methyl stearate). NMR values for

fecal water are peak heights normalized to total spectral intensity and multiplied by 1 3 107; and for urine are peak heights normalized to the creatinine peak height, except for

creatinine, which is based on absolute peak height. P values are for the metabolite differences between the two diets accounting for gender, diet order, baseline values, and

subject. 95% CI values may overlap for significant differences as the model accounts for the crossover design (based on intra-individual differences in response to the diets, rather

than mean differences). Where gender was a significant covariate, both genders were analyzed separately using the same model (excluding gender) and results were reported

separately. B, both genders; F, females only; M, males only; RG, refined grain; TCA, tricarboxylic acid; WG, whole grain.
2 Gender also a significant covariate.
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(malate and oxaloacetate are key initial intermediaries in this
pathway), tyrosine metabolism, or an increased flux through the
urea cycle.

The lower urinary excretion of carnitine and acetylcarnitine
during the WG diet points to an effect on lipid metabolism,
possibly associated with the decrease in circulating LDL
cholesterol (13). Increased urinary excretion of acetylcarnitine
is associated with extended fasting in healthy humans as well as
type 2 diabetics (42), implying that theWG diet may decrease fat
oxidation during fasting periods.

The observed changes in fecal microbiota composition (13)
appeared to be reflected in the urinary metabolic profile via a
lower urinary excretion of 4-hydroxyphenylacetate, a colonic
metabolite of tyrosine and phenylalanine breakdown by enter-
obacteria Clostridium perfringens and C. difficile respectively
(43,44). Changes to trimethylamine and dimethylamine excre-
tion in urine are also likely to be of microbial origin, possibly due
to a difference in substrate availability between the 2 diets (45)
Clostridium leptum, a preferential carbohydrate-fermenting
bacteria, increased during the WG diet (13) at the same time
as protein-derived gut microbiota metabolites decreased, sug-
gesting that more carbohydrate was available in the distal colon,
reducing the use of protein as a substrate (46). The WG diet
lowered fecal excretion of isovalerate, a product of metabolism
of amino acids by microbiota and previously found to decrease
during diets high in fermentable carbohydrates (47). These
changes support the hypothesis that the WG diet leads to a shift
toward carbohydrate as the main fermentation substrate.
Previous studies have found that a WG diet may modulate fecal
microbiota in humans (21,48), though this is yet to be linked to
functional changes outside of increased fecal content of SCFAs.

Previous studies using metabolomics to understand global
metabolic changes due to WG-based diets have generally found
only limited changes to plasma metabolites [phosphatidylcho-
lines (49), DHA (50), TGs, and ribose metabolites (51)] and
3-hydroxybutyric acid and acetone (52). Our study did not
replicate these findings and 2 wk may also have been too short a
time to observe major metabolic changes due to the intervention
diets. However, 48 h was sufficient to reestablish metabolic
equilibrium after switching from a RG to a WG diet in rats (53)
and some differences between gut microbiota populations were
discernible after 2 wk (13), indicating that some global meta-
bolic changes start to be apparent within a relatively short time
frame. These previous WG metabolomics studies used WG diets
based on rye, 3 used unhealthy populations (prostate cancer and
metabolic syndrome), the other in postmenopausal women,
whereas the present study was based on mixed WG sources
(predominantly wheat) in healthy adults.

The present study was designed as an exploratory study, and
hence a relatively small population was used. Possibly due to this
fact, most results were only found after 1 wk in men, which
limits their generalization across a wider population. The results
do suggest that in healthy individuals, metabolic equilibrium is
reestablished within 14 d of the dietary change, which matches
some earlier results from this study (e.g., plasma betaine
concentration no longer significantly differed after 2 wk) (13),
though not all results (trend for greater cholesterol reduction
after 2 wk). Study adaptation or fatigue may be another ex-
planation for different results between wk 1 and 2, though
compliance measured by diaries, food weighbacks, and plasma
alkylresorcinols did not suggest any difference between wk 1 or
2 during either dietary period. The small sample size would also
make our study underpowered for finding smaller metabolic
changes, though we can have some confidence in those that we

have observed, as more than one metabolite in related pathways
were similarly altered (e.g., for protein, central energy, and
microbial metabolism). A follow-up study would need to
address these weaknesses by having a larger sample size and
equal gender distribution and preferably be carried out over a
longer time period.

In conclusion, a diet based on WG cereal products appears to
affect protein catabolism in men, a possible mechanism of action
for WG health effects that hitherto has not been suggested.
Other areas of metabolism that were apparently different
between a WG and RG diet include central energy metabolism,
lipid oxidation, and microbial metabolism. It is possible that
improved regulation of energy metabolism plays a key role in the
observed changes, possibly mediated by the inherently lower
carbohydrate content of the WG diet. Further work using fully
quantitative analyses of the biomarkers highlighted here and
stable isotope studies to investigate underlying changes to energy
flux are needed to confirm these metabolomics-generated hy-
potheses for WG benefits on health.
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Basu S, Åman P, Vessby B. Whole-grain foods do not affect insulin
sensitivity or markers of lipid peroxidation and inflammation in healthy,
moderately overweight subjects. J Nutr. 2007;137:1401–7.

17. Brownlee IA, Moore C, Chatfield M, Richardson DP, Ashby P, Kuznesof
SA, Jebb SA, Seal CJ. Markers of cardiovascular risk are not changed by
increased whole-grain intake: the WHOLEheart study, a randomised,
controlled dietary intervention. Br J Nutr. 2010;104:125–34.

18. Slavin J. Why whole grains are protective: biological mechanisms. Proc
Nutr Soc. 2003;62:129–34.

19. Fardet A. New hypotheses for the health-protective mechanisms of
whole-grain cereals: what is beyond fibre? Nutr Res Rev. 2010;23:65–
134.

20. Harris KA, Kris-Etherton PM. Effects of whole grains on coronary heart
disease risk. Curr Atheroscler Rep. 2010;12:368–76.

21. Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C,
Gibson GR, Tuohy KM. Whole-grain wheat breakfast cereal has a
prebiotic effect on the human gut microbiota: a double-blind, placebo-
controlled, crossover study. Br J Nutr. 2008;99:110–20.

22. Franz M, Sampson L. Challenges in developing a whole grain database:
definitions, methods and quantification. J Food Compost Anal. 2006;
19:S38–44.

23. Sun Q, Spiegelman D, van Dam RM, Holmes MD, Malik VS, Willett
WC, Hu FB. White rice, brown rice, and risk of type 2 diabetes in US
men and women. Arch Intern Med. 2010;170:961–9.

24. Ross AB, Pineau N, Kochhar S, Bourgeois A, Beaumont M, Decarli B.
Validation of a FFQ for estimating whole-grain cereal food intake. Br
J Nutr. 2009;102:1547–51.

25. American Association of Cereal Chemists. Whole Grains [cited 2013
Apr 11]. Available from: http://www.aaccnet.org/initiatives/definitions/
Pages/WholeGrain.aspx.

26. Klinder A, Karlsson PC, Clune Y, Hughes R, Glei M, Rafter JJ, Rowland
I, Collins JK, Pool-Zobel BL. Fecal water as a non-invasive biomarker
in nutritional intervention: comparison of preparation methods and
refinement of different endpoints. Nutr Cancer. 2007;57:158–67.
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