i
%

f
\{{!

e
i%\% 82
SSas NN

~/ﬂ‘f‘{

3

&z

7

L

S N |

N

0

CHALMERS (2
N |)%f}_

/jk::

Distributed sleep mode handling and task
processing in massive multi-core processors

Master of Science Thesis in the Programme Computer Systems
and Networks

KARL STAAF
MARTIN ABERG

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, April 2013

The Author grants to Chalmers University of Teclogyl and University of
Gothenburg the non-exclusive right to publish therk\electronically and
in a non-commercial purpose make it accessibldenrternet.

The Author warrants that he/she is the authorédMork, and warrants that
the Work does not contain text, pictures or othatemal that violates
copyright law.

The Author shall, when transferring the rightshad Work to a third party
(for example a publisher or a company), acknowldtigehird party about
this agreement. If the Author has signed a copymgineement with a third
party regarding the Work, the Author warrants hgitlat he/she has
obtained any necessary permission from this thartlyto let Chalmers
University of Technology and University of Gothendpustore the Work
electronically and make it accessible on the Ir@ern

Distributed sleep mode handling and task processingassive multi-core
processors

K. Staaf,
M. Aberg

© K. Staaf, April 2013.
© M. Aberg, April 2013.

Examiner: J. Jonsson

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden April 2013

Distributed sleep mode handling and task
processing in massive multi-core processors

KARL STAAF
MARTIN ABERG

Distributed sleep mode handling and task processingassive
multi-core processors

KARL STAAF
MARTIN ABERG
Department of Computer Science and Engineering

Chalmers University of Technology

SUMMARY

This thesis addresses the problem of energy dfficieal-time task processing in
massive multi-core environments. A sleep mode hiagdinethod for processor
architectures with support for per-core power gaitsrdeveloped and the solution
is inspired by cellular automata. In a cellularcmiaton each subcomponent has
behavior based on local information which togetimakes up the behavior of the
system. In order to evaluate the method, a simulattwol is developed and used.
Presented and evaluated are a set of qualitatiasumes for benchmarking the
sleep mode handling policies.

A key result is that it is possible to construclistributed core sleep mode handling
policy which only depends on local information elge neighboring cores power
states, and still performs comparable to polidied aire not distributed. Simulation
results show that it is possible to save a conalleramount of energy without
extending the lateness compared to a system wifawer handling.

The developed simulator tool is useful for underdilag how the system behaves
as the number of cores increases beyond 1000 amdagion results show that
sudden changes in task load can affect latenessmntaniy.

Table of contents

Chapter 1, INtrodUCtionuviiiii e e e e e e e e eanree s 8
Chapter 2, TREOIY ..uuviiieee ettt ettt e e e e et e e e e e e e e sabre e e e e e s e e ntsreeseeeeeaesennnns 11
2.1 ENergy aware COMPULINGuuuuuueuiiiieieiiiteneeeeeeeeesnensseeeserereseerseeeerenenns 11
2.1.1 Static and dynamic power dissipation........cccoeccciiieeiei e, 11
2.1.2 POWET atiNgG.cccc oo 12
2.1.3 Core-individual power management.......cccccooeccivieeeeececcciieeee e 12
2.1.4 The skirental problem............oeveiiiiiieiiee e 12
2.1.5 Symmetric multiprocessor SYStEMS........ceeieeieeciiiiiieeee e 13
2.1.6 Massive MUILi-COre ProCESSOIS...ccccuiuiriiiiieeeeeectrrreeeeeeeecnrreeeeeeeeeennrraeeeas 13
2.1.7 The Adapteva Epiphany architecture......ccccccoeccriieeeeiiccccieee e, 14

2.2 Real-time COMPULING........uiiiieee et e e e e e e e e e e e e e e 15
2.2.1 Multiprocessor real-time schedulingcccoocciiieeieiicccieeee e, 16
2.2.2 Power-delay product........cccuviiieiii it 16
Chapter 3, Related WOrk ... e e 18
3.1 Thermal-aware SChedUliNg.........ccccuiiiiiii i 18
3.2 Thermal-friendly load-balancing with power gatingcccccoeecivieeeiinnnnnns 19
3.3 ClUSLEIING Of COMES coiiiiiiiiiiiee et e e et e e e e e e e arre e e e e aeeeeeeaas 20
3.4 Load-balancing packet proCesSOrs iciiiieeee et ecrrre e e 20
3.5 Simulating the thermal behavior of a multi-corecccccceeeiriiiiiiienns 22

3.5.1 Reliability-Aware Power Management (RAPM)cccceeeciieeeecveeeecnnennn. 22

Chapter 4, System MOdEl.........ueeiiiiiiiieeeee e e e e 24

A1 TASK MOEIeiiiiieiieeee et 24
4.2 COre MOAEL.....ciiiiiiiiieiieeee ettt e e sareesareas 25
4.2.1 The core task Managerooccuiiiiiee e 25
4.2.2 Core states and core Operationscccccviveeeeeeeecciiieeee e e eeecireeee e e e e eeneens 25
4.3 Distributed power mode handling and scheduling algorithms 26
4.3.1 Reasoning about sleep mode handling algorithms...........cccccviveeiinnnins 27
4.4 Algorithm: Fast WOrKeruuveeiiiiiee e 27
4.4.1 Algorithm description........oocccuiiiieee i 28
4.4.2 Characteristics, features and properties......cccccevcccvieeeeeeeecccciieeeee e 29
e B Y- Ty oY1 [Y U PRSRR 30
4.5 Algorithm: Friend WOTKETccvviii ittt 31
4.5.1 Algorithm description........cooccuiiiieeei e 31
4.5.2 Characteristics, features and properties......cccccvcccvveeeeeeeecccciieeeee e 32
e B Y- Ty oY1 1 USRS 33
4.6 Algorithm: Path home.........uumiiiiiii e 34
4.6.1 Algorithm desCription........cocccuiiieiii e e 35
4.6.2 Characteristics, features and properties......cccccevcccieeeeeececccciieeee e 36
4.6.3 FEASIDIIItY ..vvveeeee i e 36
4.7 Algorithm: All @CtIVE ..ccceeeeeeeee e 37
Chapter 5, EXPeriment SELUDcuiieecccciiieeee ettt e et e e e e e e e envare e e e e e e eannnes 38
5.1 The SIMUIATON c...eeiieeie et 38

S A -1 (o Y=o IR 40

5.3 Power consumption lower boundcccccuiiiiiiiiiicciiiiieee e 42

5.4 SIMUlation Parameters.... ..o 42
5.4.1 System Parameters. ... ———— 42
5.4.2 Algorithm parameterscccvveeeeei et ecrree e e e e e e nnaeee s 43

5.5 IMIBEEICS ettt e e e 43

Chapter 6, Queue time and Power-delay-product analysis.......cccccceeevivveereeennnnns 44

6.1 RESUIES ...ttt s 44
6.1.1 Task SEt: PAKeeeieieiie ettt 44
N B - T Y=Y - o o o PRt 45
6.1.3 Task set: OVErloadcccooceeeiiieiiee e 48

6.2 DISCUSSION...ceiiiuiiiieiiieee ittt ettt e e s e e e s st e s nee e e s ene e e e s e emreeessnnes 50
6.2.1 Fast worker adapts fast to increased workloadcccccovvveeeiininnnnneen. 50
6.2.2 Friend worker and Path home have damped waking-up behavior......... 50
6.2.3 Cores can survive low [oad periods.......ccccceeeeecciiiieeee e, 50
6.2.4 OVEIIOAUueeieieeeie ettt 51

6.2.5 Knowledge of the application at hand could be implemented in the

] ={o] 1 11 s TR 51

6.3 SUMIMIATY ettt e bbbt e bbb ba b et eee e st eeeeaeeeseseeesesee ererennneren 51
Chapter 7, Lateness @nalySiSccccuieieiiiiieieiiieeeciieeeescree e estvee e e are e e e arae e s s snaeeeeas 52
7.1 RESUIES 1.ttt 52
7.1.1 Ramp and peak task SEtSccccviiiiiiiieiiriieee e 52
7.1.2 0verload task SET.......ccceieereerieiiieiee e 56

A D 110l U 13 (o] o TSRS 58

7.2.1 Ramp and peak task Sets ... 59

7.2.2 0verload task SEt........ceevieeeiiieiiie et e 63
Chapter 8, EDF fetching of taskscccuviiiiiiii i 65
8L RESUIES .ottt ettt e e sar e e e s ar e sareas 65
8.2 DiSCUSSION....eeiiiiiieee ettt sttt e e st e e s e s e e e s s e e e s e e sareeesennes 67
Chapter 9, CONCIUSION ..cccecieeeee ettt et e e e e e e e era e e e e eeeeeeeeenans 68
Chapter 10, FULUIE WOIK........uuiiiieee ettt e e e rree e e e e e e e e ennnes 69
Chapter 11, REfErENCES. ...ttt e e e e e crrre e e e e e e e e e e eeannees 70

Chapter 1, Introduction

Chips with hundreds of computer cores are alreagblity, and chips with
thousands of cores could easily be manufacturel & the number of cores
continue to increase, the question of how to oittaesthese machines, and how to
use them to perform maximum amount of meaningfutknmzecomes more and
more important. So does the issue of power consampthe problem of how to
schedule work packages or tasks onto such massilg-aore chips is now
intimately connected to the question of which paftthe machine to switch on or
off, and thereby to the question of power efficienc

As the Information and Communication TechnologyTJGector grows, telecom

vendor companies such as Ericsson face increasgdnoer pressure regarding
energy efficiency. With corresponding annual energgsumption in the mobile

network infrastructure per mobile subscriber estadato around 50 kWh [25],

there is clearly a strong economic incentive toknactively on power efficiency

optimization in this sector. At the same time, iegments on increased data
bandwidth forces telecom vendors into extensiveafigaulti-core processors. The
number of computer cores in a single Ericsson radise station is even today
typically several hundreds.

This work considers sleep mode handling and lodahbang algorithms which are
distributed and scalable, and which as much asilpes®ly on local knowledge
only, and therefore only affect the system localljxe wordlocal, in this sense,
would mean the core itself, and its nearest neighbp all sides. The motivation is
to eliminate bottlenecks in the sense of centrdlighared data structures. To
understand what we are thinking about, one coutdpeme to a two dimensional

cellular automaton, e.g. the one usedtferforest-fire model [36] or the Game of
Life [11]. In the case of sleep-mode algorithms, thiesal decisions should
eventually lead to a predictive global system barawn terms of power
consumption and real-time responsiveness.

The problem that we study is how to reduce eneoggemption in massive multi-
core systems while still providing service. It wallso be investigated if there are
solutions that scale on systems with thousandsrefsc

There has been extensive research done on the dfeltynamic voltage and
frequency scaling (DVFS) as a mean of reducing powaensumption for
traditional multi-core processors [5, 13, 27, 28jith this technique both voltage
and processor frequency is changed dynamicallydardo save power. DVFS can
effectively reduce power in situations where fublrfermance is not required. As
DVFS works by only reducing the voltage, leakagerent is still present. With
power gating it is possible to reduce leakage ciirvéhile still maintaining fine
grained power management if combined with a magsiviéi-core processor.

The energy efficient scheduling problem is todayally solved by a centralized
unit managing both tasks and power. As an exangpliesider a system with 100
cores and a mean task execution time of 50 usc&htalized unit must handle up
to 2 million status updates from the cores eaclors®cThis system is not easily
scalable to several hundreds of cores.

For multi-core chips with huge number of coresn#ty be advantageous to go for
decentralized control of task scheduling and sleeples, as this would remove
possible bottle necks of the system. This workiierided to investigate scheduling
and power efficiency questions for such homogenenassive multi-cores used
for implementation of a task processing system with real-time requirements. A
similar approach has been used in [19, 22] to sthéymal properties of task
processing multi-core systems, but the used scimgdund power control
mechanism was still completely centralized, reaktbehavior was not considered,
and the number of nodes was never greater thain6dur case the number of
nodes can be virtually unlimited. This will giveetlsystem an often very complex
behavior even when sleep mode handling and tastepsing are controlled by a
“simple program” for each core individually. Furth@o implementation of the
studied system may yet be available. Our methaldeisefore to develop and study
a simple simulator. The authors agree that it igartant to judge the qualities of
any studied system by use of quantitative measlirasan however be hard to
foresee the system level consequences of locaidasi Analysis of such behavior
IS much helped by visualization. The simulatorneréefore designed to offer such
possibilities.

With our simulator we show that good power saviag de achieved. We have
managed to save 70% power of what is theoretigasible using our sleep mode

handling algorithms. A fully distributed sleep mdundling algorithm is proposed
and evaluated.

Chapter 2, Theory

2.1 Energy aware computing

This section presents background theory on enefgyeacomputing and concepts
in real-time systems that are later used in thertep

2.1.1 Static and dynamic power dissipation

The power consumption of a transistor can be diigetwo parts: static and
dynamic power dissipation. Total power consumptsotheir sum. Dynamic power
consumption is the power dissipated by a transistan it is switching on and off.
This power dissipation is reduced when there islaaal on the system. Static
power consumption on the other hand is always pteseen if the transistor is not
performing any kind of activity.

According to Nam Sung Kim et al. in the paper “Lagé Current: Moore’s Law
Meets Static Power” [16], static power dissipatltas historically had very little
impact on the total power consumption of a transidBut as technology evolves
and transistor manufacturing processes improveiltieg in smaller and smaller
transistors, the static power consumption will make an increasingly larger
portion of transistors total power dissipation.

An equation explaining the relation is:

(1) P=ACV*f + Vleax

Here A is the fraction of gates actively switchiii@)js the equivalent capacitance
load of all gates, V is the supply voltage, f ie frequency and.l« is the leakage
current. The first term correspond to dynamic powensumption whereas the
latter term corresponds to static power consumpfiitis equation is presented in
[16]. From (1) it can be seen that a change in lswpgtage will have a quadratic
effect on the dynamic power consumption.

lieak IS In itself a sum ofgl, + lox Where }, is sub-threshold leakage angi$ gate-
oxide power leakage. The equation of the first texm

(2) Isub: Klwe—Vth/nVO(l_e—V/VO)
In (2) K; and n are empirically derived, W is the gate widthl \4 is the thermal

voltage which increase as temperature increaseeduace the leakage current of
Isubit is possible to either set the supply voltage t®/ero or to increase threshold

voltage (M). Increasing ¥, would however lead to a decrease in performance as
presented in [16] and we will in this report onlycfis onpower gating which
corresponds to setting the supply voltage to ZEhe gate-oxide leakage,l is
harder to reduce as presented in [16] and we mvith¢t not focus on this at all.

2.1.2 Power gating

As processor cores consume static power even ththagh are not utilized, an
intuitive way to save more power is to shut therwidoor make them sleep, when
able to. This technique is called “power gatingisl shown that in a system with
processors (cores) that can be turned off indivigubere is the potential to save
additional power in comparison with a system zitilg DVFS alone [8].

Power gating is no free lunch however. There axersé issues that need to be
solved in order for the technique to be effectiu&][One drawback is that

performance will decrease with the introductiorpofver gating as certain types of
transistors used will introduce a voltage drop.sTpierformance loss can be
compensated for by increasing the supply voltagfgoagh increasing the supply
voltage might completely nullify the initial intéoh of enhancing power

consumption efficiency [14].

2.1.3 Core-individual power management

It is possible to perform power gating on an indal core level. This technique is
referred to as per-core power gating (PCPG). WijizPCPG on a general
computing processor it is possible to save 30% nponger compared to DVFS
and up to 60% in total when used in conjunctiorhvidd/FS [18]. However, the
use of individual power settings for every corelwédquire as many on-chip-
voltage regulators as there are cores, which minarease chip complexity as well
as chip area and manufacturing cost [14]. A waywtok around some these
drawbacks is to divide the cores into clusters bhade each cluster to be power
gated. The drawback of this approach is that aelesnnot be shut down if it has
any cores that are currently active and working] #mus the potential power
savings will be less.

2.1.4 The ski rental problem

The ski rental problem asks the question if an siocel skier shall buy or
continue to rent his skis under the assumption tieatvill break his legs on an
unknown date. In the case of an early accidenbitld/be more beneficial to rent
the equipment, whereas an investment at any poititnie may pay itself back in
the long run. In computing and resource allocatinsame online problem comes
up in areas of memory caching [15] and TCP ackndgdenents [10]. It is also

applicable in power-mode handling on devices witltiette steps of power such as
power gating on multi-processor cores. There isghestion of whether an idle

core should go to sleep or not when there is n&kwoperform. In short it depends

on when it is expected that new work will arrive.

To formalize the problem, assumed that a transitiom the idle state to sleeping
is for free but going from sleeping to idle costBxad amount, B, of energy. The
idle state draws r energy units per time unit. Letenote the unknown time that
the system idles before work has to be done.

An optimal algorithm knowing T at the beginning thie idle period makes the
following decision. If T*r is greater than B, thenter the sleeping state, otherwise
remain idle. There exists a deterministic onlingoathm which is 2-competitive
that solves the problem [3]. Being 2-competitiveamge that for every possible idle
period, the energy consumed by the online algorihat most 2 times that of the
optimal algorithm. The deterministic online algbrit remains in the idle state for
B/r time units and then enter the sleeping stdte [3

A randomized algorithm exists with expected energgsumption less than 1.58
times that of the optimal algorithm [15]. Even lesgpected energy consumption
can be achieved if the particular application (kegth of the idle periods) is
known in advance or learned online.

2.1.5 Symmetric multiprocessor systems

A symmetric multiprocessor system consists of two neore homogeneous
processors which share a centralized memory. Theepsors communicate by
message passing or by shared memory.

2.1.6 Massive multi-core processors

The homogeneous massive multi-core processor liasa of processors that have
multiple, typically hundreds, processing units whigre all interconnected by a
communication subsystem, Network-on-Chip (NoC) [Fie cores can have both
shared and local memory and use common memory rbigraemployment
techniques. A tile-based architecture is presemté&igure 2-1.

1GHz
High Performance
RISC CPU

32KB+
Distributed
Local Memory

Figure 2-1, The Adapteva Epiphany architecture

The cores in a traditional multi-core architectaoenmunicate by broadcasting on
a shared bus. This has the consequence of not beataple as the number of cores
increase and closely located cores interchange dlatthe massive multi-core
processor architecture, a packet-switching andnmgw@pproach to communication
is usually taken. This gives good scaling in thenhar of processors because the
communication between neighboring cores does ne¢ lta adapt to remotely
located ones.

The consequences of a NoC-solution is that comste-communication latencies
may be unpredictable and that a new problem isodoited into processor
architecture design. That is the complexity of ratwrouting. In [4] it is
concluded that two-dimensional grid and torus dre most common network
topologies in NoC solutions.

Feature-wise the processing units in a homogena&oassive multi-core may

contain anything that is suitable for the actualpliption. Therefore the

implemented multi-cores can target fields such ideoy network, graphics and
cloud computing applications [4]. An overview oft@a implementations of

massive multi-cores can be found in [4]. In [20]jc@ncept where each tile on a
massive multi-core has its own frequency and veliagresented.

2.1.7 The Adapteva Epiphany architecture

An example of a homogeneous massive multi-core gzsmr is the Adapteva
Epiphany architecture [2] which emphases simpljcisgalability and power
efficiency. It consists of RISC cores tailored flmating-point operations placed in

a two-dimensional array interconnected with a mestiwvork. Up to 4096 cores can
reside on one chip.

Each core has a local memory and has through the address space also access
to the memory of the other cores. A portion of themory address is reserved for
addressing the local memory of a specific core.rd@li® no memory protection or
memory hierarchy. Shared memory is transparenttgssed through the NOC, but
is affected by relaxed synchronization: the ordememory operations among
cores may not always be deterministic. This mehasthe programmer must take
considerations when working on distributed data.

The instruction set architecture features the Ihdfruction which sets the issuing
core in a waiting low-power state by means of clgakng. Execution is continued
when the core is activated by an interrupt eventpek-core register contains
information on the cores chip grid coordinates.sTihformation can be utilized by
algorithms that make decisions depending on logatio

2.2 Real-time computing

In real-time computing the correctness of a progrash only depends on the
computational result, but also on the time at whiehresult becomes available. A
common way to model tasks in a real-time contexbigassign to each real-time
task a set of parameters [17] as will be descriterd.

A tasks release time is the point in time whent#sk is ready to begin execution.
The deadline is when the task must have complé&daakecution. A task is periodic
if it is released once every P time units where #e task period.

An upper bound on the tasks execution time is daNerst-case execution-time,
WCET. If system decisions are based on WCET itnipdrt that this time
estimation is realistic and tight. The complexity calculating WCET increases
with the complexity of both the program code anglttirget hardware. See [35] for
an overview of tools and methods for calculating ETC

Tasks may have precedence constraints which ditttaterder in which tasks are
allowed to execute. A set of tasks with precedexrsstraints can be represented in
a (directed) precedence graph [17].

Real-time tasks are divided into hard real-timeksaand soft real-time tasks

depending on how strict their timing constraings. &¥hen missing a tasks deadline
imposes a system failure, the deadline is hard.dBaelline is soft when missing a
deadline still gives usable results but with logaality.

An aid in making quality measures of a systems-tiesd behavior is théateness
metric. Lateness is defined as the difference betwtask finishing time and the
deadline [17].

2.2.1 Multiprocessor real-time scheduling

Traditional multiprocessor real-time scheduling daa divided into two major
categories; partitioned scheduling and global soliegl These two scheduling
paradigms differ in the way that tasks are disteduonto target processors and
cores for execution [26].

Partitioned scheduling consists of two parts. First each task is assigoezkactly
one core (partition) and then the tasks on eadh @@ scheduled in isolation using
some single-core scheduling algorithm, eae monotonic or earliest deadline
first [26]. As tasks arrive they are placed in the lapatue of the assigned core.
No task migration is allowed so a task assigned toertain core will always
execute on that particular core.

In global scheduling there exists a single system-wide priority quelens every
task resides once it is ready to execute. A cestrstiem, scheduler, is responsible
for distributing the highest priority tasks on care

Crossings between the classes partitioned schedaiid global scheduling exists
under the nambybrid scheduling.

Regardless of this classification, the schedulery rba preemptive or non-
preemptive. In preemptive scheduling, an executing task maytdmporarily be
interrupted for a higher priority task to be executIn the case of global
scheduling, there is no guarantee that a preentasédwill continue to execute on
the same core as it previously did [26].

The scheduling decisions can be made eitbdine or offline. In offline
scheduling, task parameters are known beforehathaaery decision is generated
before the system is started as opposed to ontinedslling where decisions are
made as tasks become ready to be executed indtesrsy

2.2.2 Power-delay product

One performance and quality metric used in NoC @RIDS gate design analysis
is the Power-Delay Product, PDP [23], [30]. Theim&én varies with the domain

but common is that some average power is multipliéith a delay to yield a

measure of energy. In the case of NoC analysisddfiiaition is PDP = (average
network latency) x (Energy per packet).

In [23], the PDP concept is extended to includeribgon of reliability. This is
done by defining “Performance, Energy and Faubftmhce” metric
PEF=PDP/(Packet completion probability).

Chapter 3, Related work
This section will give an overview of other publicas relevant for this work.

3.1 Thermal-aware scheduling

Thermal-aware scheduling techniques for multipregeghips are investigated in
[33]. The key concept is to monitor the thermaltestaf each core and assign
processes to cores based on this information. Nanmedf powering down
individual cores is mentioned and a system of updtaores is considered.

It is stated that the ideal scenario given a connsterkload is when all processors
have the same constant temperature, implying zextias and temporal diversity.
This is said to have positive impact on chip réligh Given this, a number of
scenarios where schedulers that are not aware ein#él information give
unfavorable results are presented. One such soeBasihen the chip has isolated
areas with relatively high thermal stress givingigh temperature gradient. Also
temporal fluctuation giving an oscillating tempewat profile in a single core is
another infeasible scenario.

To minimize the thermal diversities the authorspose thermal-aware scheduler
algorithms. The algorithms are suited for implernmentn an operating system with

centralized process-to-core-assignment running ommudtiprocessor system.

Scheduling decisions such as the order of proceasséise ready queue is not
considered, which has the implication that for eghamreal-time behavior is not

taken care of by the proposed mechanisms.

The assignment algorithms are stateless, reactigteuae input from sensors that
monitor the temperature of each core. Being stedetaeans that no backlog of
measurements is kept and that the thermal behakitve workload is unknown a
priory. One complication of demanding temperatwgasing for each core is that
the number of sensors increases with the numbeorek. Also comes the I/O and
driver overhead of doing the actual measuring. Ghothe authors mention that
there exist multiprocessors, for example IBM POWERS&th embedded
temperature sensors featuring low sensing overhead.

In the “Coolest” scheme, the scheduler assignptbeess to be dispatched to the
coolest idle core. The “Neighborhood” scheme iseaggalization of the former
where the environment of each core is taken intmpwat. This is achieved by
calculating for each core, a weighted sum of teperatures of the core itself, the
temperature of the surrounding cores, the numbedlefneighboring cores and

also the number of free edges. (A core has a fitge # it is located at the physical
border of the chip.) The “Neighborhood” scheme lbameduced into the “Coolest”
scheme by zeroing all weights except for the onba@target core’s temperature.

The “Neighborhood” algorithm takes into accounttthaseemingly cold idle core

in fact can being warmed up by its neighbors. Gnadther hand, a hot core located
at the chip’s corner is guaranteed not to be heayats missing neighbor and may
also benefit from a neighboring heat dissipater.

An extension to the above algorithms is to makeisitats based on threshold

temperature value. In this scheme the schedulémpagtpone a process if it can't

find a core with lower temperature cost than a gjitrereshold parameter. Among

other things, this will affect real-time propertidaterestingly, according to the

authors, using temperature thresholds can actungligase processing performance
in cases where the processor uses dynamic therar@gement techniques.

The authors discuss the “future of chip multiprece$architectures and they also

include the term in the title of an article pubéshyear 2006. Here, thermal-aware
schedulers are said to be necessary to be abledbthe decreasing chip sizes and
the increasing number of cores per chip.

3.2 Thermal-friendly load-balancing with power gating

The concept of power gating individual cores in @tirtore processor to achieve
power-aware scheduling decisions is investigatefil®). What makes the work
interesting is the study of how the powering dowridte cores affects response
time behavior and power consumption given certarkioads.

When waking up a sleeping core, the core is modatedot being available for
execution until after a certain time period, thekewgp latency, has elapsed. Also
the power consumption is different in sleep modke, mode and executing mode.

It is also assumed that the multiprocessor houst#sad-balancing control unit”.
This unit is implemented in hardware and has the ob assigning a suitable core
to a task. Not much is revealed about the unithgyauthors but it is apparently
here that the proposed load-balancing algorithmocated. It is certainly a
centralized solution and it records all the coates and acts according to this
information.

An essential tune-in parameter for each of thegmtes! load-balancing techniques
is the “waiting idle delay”. This is the time int@l that an idle core waits before it
powers off. The benefit of the waiting idle delaythat the wakeup latency penalty
can be avoided if the core is soon being reusedieP@onsumption becomes
higher though.

If there is more than one sleeping core that caeive a process, the problem is to
choose which one to wake up. Three regimes for mgaldp cores are presented by
the authors.

In the “Round-Robin” load-balancing technique, eamre is powered on in
sequence and thus the power consumption is evéstijodted among the cores.
The “Lower-Index-First” scheme powers on the slegpcore with the lowest
identifier. Cores with low identifiers will make wgp thermal hot spot in “Lower-
Index-First”.

The authors also propose the “Waiting-ldle-Firatad-balancing technique. It
records the identifier of the core that most relgefimished execution, and assigns
to that core the next job that arrives. If the mastently finished core is not
available, the “Round-Robin” scheme is used. A gaimtion of “Waiting-ldle-
First” (not being mentioned in the article) is ttways add the most recently
finished core to the back of a FIFO queue and ad$ig core at the front of the
queue to the next job. This scheme needs to hawne seeans of removing cores
from the back of the queue as they expire (powir of

Three metrics, latency, power and temperaturepaasured for different system
parameters. Only a small set of task sets is eteduay simulation and the results
are pure empirical. It is clear that results depsindngly on the properties of the
task sets. As workload (CPU utilization) increadbs, choice of load-balancing
technique and “waiting idle delay” becomes lessificant. On the other hand, the
choice of scheduling algorithm has great impacthlike workloads. Waiting-
Idle-First is said to give best performance whdnttalee metrics are taken into
considerations.

3.3 Clustering of cores

It is possible to reduce the chip area overheagaofer gating by sharing the
overhead among several cores. Grouping of coresciosters, where each cluster
shares a common power gating facility for all ites, can be used [22]. The
consequence of clustering is that power optimasitgompromised for chip area.
No specific task processing system is considere[®2h although the proposed
load-balancing technique is hardware-based andadized. Furthermore the load-
balancing is stateless which calls for simpliciBoth the power- and thermal
properties were investigated.

3.4 Load-balancing packet processors

Scheduling of network flows on massive multi-coregessors is the topic of [21].
The author defines a flow as “a sequence of padkats one particular source to a

single destination”. Coupled with a flow is a séjabs that perform operations on
the flows packets. One job is started for each @iatiat arrives.

The characteristics of the processing of packeidls that the jobs associated with
a given flow are highly dependent on each otherabthe same time independent
of other flows jobs. Another way to see this ig jbas in different flows can run in
parallel whereas the jobs in the same flow havelseonstraints among them.
Also there is a high communication rate betweerjdhs in the same flow.

In the context of massive multi-cores where commation cost depends on the
cores physical localization, it is desirable todtmcjobs of the same flow on cores
that are located close together. This is alsodhd balancing goal as stated in [21].
Spread the processing across the entire chip teeprahermal hotspots and to
increase reliability is a second objective.

A centralized load-balancing technique, named DyoaMirtual Clustering
(DVC), which takes the above in consideration, ieppsed. The multi-core is
divided into a number {2%) of virtual clusters. VCL stands for virtual clastevel
and is an algorithm variable that is updated dejpgndn system load. The DVC
policy assigns the job associated with an inconpiagket to a specific cluster and
core.

Each flow is associated with a flow number thatl wipically be a hash of the
source and destination addresses of the packdbeifiow. A cluster number is
derived from the flow number and the packets joassigned to that cluster. Note
that the number of clusters change dynamically. Wthe cluster has been selected
by the load-balancing policy, a core inside thatstdr is selected by using some
scheme like round-robin or lowest-index-first. ifthe cores in the cluster are busy
another cluster and core is selected. By using sh Hanction on the flow
properties, the load-balancer will distribute floexgenly over the clusters and thus
the workload is spread evenly across the chip akdathe same time the related
jobs are closely located.

When the number of active flows that have packetagprocessed increase, so
does the number of virtual clusters. Very roughlZlVequals the number of
currently active flows and the number of virtualaters is %°*. (The exact relation

is VCL=min(2" ©°%,“F")* NC) where CRF is the number of currently running

flows that have packets being processed by thes@ré NC is the total number of
cores.)

The presented load-balancing technique requirdédhibaassociations between jobs
are known before they are being executed. Nothéngaid about how the system
behaves after a step in the virtual cluster levéll).

3.5 Simulating the thermal behavior of a multi-core

In [34] the authors describe a software tool fendating a model of the thermal

properties of a single chip multi-core processone ool also simulates task
arrivals and it is possible to choose between idiffecore assignment (scheduling)
policies. It is possible to tune the model paramseter the simulated multi-core

and the task arrival pattern.

The simulator has its main focus on processor whiperature. For this purpose a
comprehensive thermal model for a chip multi-carpriesented.

Workloads are generated by the simulator. It issiids to tune the workloads by
specifying the average process execution time gatém workload. There is no
support for creating dynamic task arrival behagiach as bursts arrivals.

A graphical interface presents the multi-core asgaare mesh of cores, each
showing its local temperature and its running stitis possible to perform single
stepping on the simulators cycle level.

The tool has been used to draw conclusions abarmti-aware scheduling
policies [33, 34].

Centralized policies seem to be the only suppatéedduling approaches. Also no
means of measuring real-time behavior is suppdyeithe simulator (which seems
to be a reasonable limitation for this application)

3.5.1 Reliability-Aware Power Management (RAPM)

There is an implication in using DVFS to save pouereal-time applications.
When the voltage (and frequency) is reduced, ghiswn that hardware become
much more sensitive to cosmic radiation which imtieads to more transient
faults [9]. In addition, as the voltage and frequers reduced, the task will take
longer time to finish, resulting in less free CRidég (slack) [12]. This affects the
real-time reliability of the system negatively. Réme reliability is often achieved
in two ways; either the same task is executed rallgh over multiple processors
with a voting decision made over the results (gpatedundancy), or a task
suffering from a transient fault is executed againthe same processor (temporal
redundancy) [17]. Temporal redundancy is dependenhat enough slack exist so
that a task can execute more than once. This m#®ipsavings with DVFES in
direct conflict with the reliability of a systemiliging temporal redundancy as its
main method to achieve reliability.

Because of these issues with DVFS, a lot of repenter aware real-time oriented
research has been focused on what is referred tBediability-Aware Power
Management or simply RAPM [6, 9, 12, 32]. The basgay to think about RAPM

is that not all slack is utilized in order to sapewer. Some slack is left for
redundancy executions which may run at full speearier to utilize as little slack
as possible.

Chapter 4, System model

This section describes the system model and asgmaptirst the constituting
parts of the model will be introduced and then tao$eenergy mode handling and
scheduling algorithms are presented together witimeestigation of some of their
properties which can be determined offline.

The aim for the core model is to be general endaghap to different present and
future massive multi-core chips, and at the same #mphasize the properties of
this class of processors. The model is inspiredhgyNoC processors available
from Adapteva and Tilera.

4.1 Task model

In the context of this model, a computation taslsysonymous with a job or
computer program. Each task is associated withasel time, execution time and
deadline. The release time is the point in time e task becomes ready to run.
The notion of release time is independent of whetthee task can be processed by a
processing unit or not at that time instant. Tas#cation time is assumed to be
known before the task starts to execute.

A task is always in exactly one state and the itians between states are well
defined by transition operations. The task statesreamed ready, running and
finished. Figure 4-1 shows all possible transitibesveen task states.

execution_time = wcet

Figure 4-1, The task model state machine

The complete system workload will be modeled aseug of tasks. When a task is
placed in the task queue it is in the ready stiMieen a task is fetched by a core,
the task transitions into the running state whéreatays for the duration of
execution. Finally the task enters the finishetestéhen its execution is complete.

Any needed activity such as program loading, datatioutput etc is considered as
a part of the execution. Execution times and deedliare known as tasks arrive
while the actual arrival times are arbitrary.

4.2 Core model

In the model the cores are placed in a two-dimeradigrid, each with a local
memory and communication machinery. Each core éntified with a unique
number. It also has topological coordinates, angs th well-defined location
relative to the other cores. A core has knowledgermd a direct communication
link to, its nearest neighbors in all directions.

4.2.1 The core task manager

Each core has a task manager that can be deseskeetbcal operating system or a
dispatcher. The task manager is responsible faclitig tasks, one at a time, to the
core as well as performing operations on local stmared data structures. When a
core has started executing a task, the task withyd run to completion. That is, no

task preemptions occur. One part of the task n&madhe scheduler routine.

4.2.2 Core states and core operations

At every point in time, each core is in exactly dogical state, and the transitions
between states are dictated by the core operatened by the core itself or by a
remote core. The core states geeping, powering up, idle andexecuting and the
core operations that trigger transitions betwean dtates arenter deep mode,
wake up andprocess a task. Figure 4-2 illustrates the possible transitioesazen
states by means of core operations and task psoghesme delay is associated
with the powering up state to model the fact thatleseping core takes time to
become available due to power gating and local visarel and software system
initialization. Furthermore, each of the core faee associated with a fixed power
consumption. Transition to the powering up stategiggered externally, while the
other transitions are issued locally or implicitly.

process a task
/ start task

tas< is finished

powered up

Figure 4-2, The core model state machine

4.3 Distributed power mode handling and scheduling
algorithms

The responsibilities of a distributed power modendimg and scheduling
algorithm for the presented core and task modefhraréollowing.

1. Make sleep mode decisions
2. Pop tasks from task queue
3. Start execution of tasks

Another way to say the same thing is that the adiegl algorithm manages the
execution resources and power consumers.

A distributed power mode handling and schedulingpdthm is a routine that runs
locally in the core task manager. It can utilize ttore operations as well as
manipulate data structures that are either locatl@mred among all core task
managers. Every core runs its local algorithm whené is in the idle state and all
scheduling algorithm are run in parallel.

There exists a centralized task queue from whidryecore can pop a task. The
system model does not cover how tasks are pushed tba queue, but it is
assumed that new tasks arrive in an arbitrary way aut of control of the
scheduler. Thus the scheduling problerglabal in the sense that any core can run
any task. The actual scheduling decisions are takerun-time, so aronline
scheduling algorithm is needed. The situation wddeoores are in sleeping state is
considered as a system failure no core can evactbated.

4.3.1 Reasoning about sleep mode handling algorithms

When proposing an algorithm it is important to @dhat the algorithm does not
enter an infeasible state or stops making progess. properties for evaluating
the quality of a scheduling algorithm are preseiuteldw. The notion | represents
the number of cores in, or transition to, the stige. S and E represent the number
of cores in sleeping state and executing stateeotisply, and |Task Q] is the
number of ready tasks in the task queue waitingetdetched and executed on a
core.

Progress property

If not all cores are in executing state (1) anddlexist at least one task in the task
queue (2) for a time longer than some thresholdn@) after this time has elapsed
at least one core will have changed its state ¢zuing (4).

Pre-conditions:

1. +S>0,A=1+S

2. |TaskQ|>0

3. Conditions 1. and 2. hold for a duration > thredhol
Post-condition:

4. 1+S=(A-1) after threshold

Responsiveness property

If not all cores are in executing state (1), theteast k cores are in idle state (2).
The property ensures that the system can servaaancamount of workload in the
task queue.

N := total number of cores in the system
1. IFE<N
2. THEN there are at least min(k, N-E) cores in idies

With these preparations at hand, a number of dlgus that controls the task
assignment and sleep mode handling can be investigad characterized.

4.4 Algorithm: Fast worker

One main property of this algorithm is that anyecbas partial knowledge of the
systems global state.

4.4.1 Algorithm description

One list and a counter are shared among all cdifes.shared list is called the
dleegping list and contains indexes to the cores that are clyranthe sleeping
state. The shared counter is calidi@ _cores. Its value is the number of cores that
are currently in the idle state.

The algorithm starts to execute when a core etitergle state and then executes
one loop per system time unit. Transition from itle state occurs when the core
decides to go to sleep or when a task is fetchddeaacuted. A textual description

is given together with a program flow graph in Fgd-3.

1. when core enters idle state:

2. idle_cores :=idle_cores + 1

3. idle_timeout := idle_delay

4. loop:

5. if task queue is empty then

6. idle_timeout := idle_timeout - 1

7. if idle_timeout <= 0 AND idle_cores > min_idl e_cores then
8. idle_cores :=idle_cores — 1

9. add self to sleeping list

10. enter sleeping state

11. endif

12. else

13. pop a task from the task queue

14. if sleeping_list.length >0

15. wake up n sleeping cores

16. endif

17. idle_cores :=idle_cores — 1

18. enter executing state (process the task)
19. endif

20. endloop

(©)
Activation

>

¥
T
Increment idle_cores
idie_timeout = idle_delay
Enter idle state

-+

4)
@ No ® e
Any task in the Decrement Ellfﬁtilmgogr;sg
2 i i 2
el e imendt min_idle_cores
(6) (5)
Fetch a task Decrement idle_cores
from the task Add self to sleeping_list
queue Enter sleeping state

(8)
Remove n nodes from
sleeping list
Send n processing node
activation requests

@)
Nodes in
sleeping_list?

-

Y
(9)
Decrement idle_cores
Enter executing state
Process the task

Figure 4-3, Fast worker algorithm

The algorithm has a parametem_idle_cores which is a goal for the minimum

number of idling cores in the system. The numbecarkes to wake up before
processing a task is given by the parameter n. hVbaces to wake up is chosen
random. Every core has a timer which controls hongla core is idling. The

algorithm integer parametatle_delay decides the timeout value.

4.4.2 Characteristics, features and properties

The fact that two data structures are shared anadhghe cores makes this
algorithm less distributed. Given a fixed per caverage load, then as the number
of cores in the system increases, so also doesutineer of operations on the two
shared lists.

The goal is that at least a tresholdwh _idle cores cores are ready to accept new
work. When a burst of tasks arrive, active cordsimimediately wake other cores
before they start to process one of the tasks. thafy the second generation of
cores will in turn follow this behavior. If thereist additional work when the first

cores have completed processing their tasks thiypisk new tasks, but before
that they will again wake yet more cores from treddreping state. In this way the
wake up rate of cores is exponential.

Because of its fast wake up rate, the Fast worlgarithm is suitable in cases
when the workload increases in big steps.

4.4.3 Feasibility

It will here be investigated which of the feasttyilproperties defined above hold
for the Fast worker algorithm.

Progress property

We identify three possible scenarios and prove weather the progress property
holds.

Scenario 1: There is at least one idle core.

Proof: According to the algorithrrast worker, a core that is idle will run the idle
loop as specified by lines 4-19. Should there bghamg in the task queue at the
time that the core checks the task queue, thatualslbe assigned to the core
according to line 16. The core will then enter ey state according to line 17.

Scenario 2: There are no idle cores, at least one core is ¢éxgcand the rest are
sleeping

Proof: Assuming a situation where no idle core existstbhete is at least one core
executing. If a new task arrives at this pointiinet there will be no core available
to process that task. However, as task executioe i$ bounded, any of the cores
that are currently in executing state will evenudinish and transition to idle
state. In the idle state, a core will wake up otberes if the task queue is non-
empty, and then start execution. Now when the nenescare waken up, they will
in turn enter executing state as needed, likeenado 1.

Scenario 3: There are no idle or executing cores, only sleeporgs.

Proof by contradiction: For every core to enter sleep mode it would reqinas
the last core awake should make the decision thgisto sleep. This is however
impossible as guaranteed by (1) in the algorithasuming that the idle_cores
shared variable is correctly updated.

Responsiveness property
There exist two scenarios that may break this ptgpe

Scenario 1: Every core enters sleep mode

Proof: This is impossible as presented in scenario 1 énpttogress property
above.

Scenario 2: Some cores are executing and some cores are gegpile no cores
are in idle state (or in transition to idle state).

Proof by contradiction: Assuming that there are cores in sleeping statecares

in executing state but no core is in idle stateifotransition to idle state). It has
already been proved in scenario 1 that it is imjptessfor a single core that is
among the last ones, as specified by the min_idiescvariable, to enter sleep
mode. Then the only way for scenario 2 to occlif tisere are no cores woken up
when a single idle core transitions into executstigte. In theFast worker
algorithm there is however at least one core asti/aefore the previously idle
core is starting to execute its task (as long esetlare sleeping cores to activate),
as seen on (8) and (9). So scenario 2 must be@ussible scenario.

4.5 Algorithm: Friend worker

In the quest for distributed solutions to the taskeduling and core activation
problem, the shared sleeping list is now droppdx ificentive is that the need to
lock a data structure and thus delaying transastmm the centralized data will
decrease.

4.5.1 Algorithm description

In this algorithm, the global countédle cores is still used and it has the same
meaning as in the Fast worker algorithm. The use afentral sleeping list is
replaced by forcing a core to instead of consultimg shared sleeping list, try to
wake up some of its nearby neighbors. A core maghibe to wake up zero or more
of its neighbors depending on their current statés requires that each core has
knowledge of the neighbor’s actual states, whicassumed to be provided by the
runtime system.

The Friend worker algorithm is presented in theecbelow and Figure 4-4.

1. when core enters idle state:

2. idle_cores :=idle_cores + 1

3. idle_timeout := idle_delay

4. loop

5. if task queue is empty then

6. idle_timeout := idle_timeout - 1

7. if idle_timeout <= 0 AND idle_cores > min_idle_c ores then
8. idle_cores :=idle_cores - 1

9. enter sleeping state

10. endif

11. else

12. pop a task from the task queue

13. wake up n sleeping neighbors

14. idle_cores :=idle_cores — 1

15. enter executing state (process the task)
16. endif

17. endloop

(0)
Activation

(1
Increment idle_cores
idle_timeout = idle_delay
Enter idle state

)
idle_timeout <=0

(2) No (3)

Any task in the Decrement s
. - AND idle_cores >
? B2,
ok feue] ittt min_idle_cores?
(6) 5)
Fetch a task Decrement \qle_cares
from the task Enter sleeping state
queue

(8)
Send n processing node
activation requests to
neighbor(s)

(1)
Sleeping neighbor
node(s)?

No

Y
(9)
Decrement idle_cores
Enter executing state
Process the task

Figure 4-4, Friend worker

4.5.2 Characteristics, features and properties

The requirement that each core has local knowledge neighbors’ state has no
implications on scalability. Each core has the samenber of neighbors
independent of how many cores that makes up theystem. There are scenarios

where a core fails to wake up any of its neighbasswhen it for example is
surrounded by executing cores as illustrated irudeigd-5. This may affect the
responsiveness of the system. On the other hangydtem makes progress over
time as all execution times are finite, and whea #xecutingblocking, cores
eventually enter idle state, they will processwiekload if still available.

This makes the algorithm suitable for workloads hwihoderate increase in

workload. For a constant workload, the Friend woikenore energy efficient than

the Fast worker. It is because Fast worker willaglsvwake up new cores for every
arriving task, while Friend worker does not as déesd above. The powering

down behavior of cores is the same as in Fast worke

4.5.3 Feasibility

It will here be proved whether the feasibility peofes hold for the Friend worker
algorithm. If they do not, it is explained why.

Progress property
Scenario 1. There is at least one idle core.

Proof: According to the algorithniriend worker, a core that is idle will run the
idle loop as specified by lines 4-17. Should theeeanything in the task queue at
the time that the core checks the task queue takktwill be assigned to the core
according to line 14. The core will then enter ey state according to line 15.

Scenario 2: There are no idle cores, at least one core is ¢éixgcand the rest are
sleeping

Proof: Assuming a situation where no idle core existsthete is at least one core
executing. If a new task arrives at this pointimet there will be no core available
to process that task. However, as task executioa it finite, any of the cores that
are currently in executing state will eventuallgish and transition to idle state.
When such a core enter idle state, it will wakeneps cores and start a new task.
As the cores are waken up, scenario 1 takes over.

Scenario 3: There are no idle or executing cores, only sleeporgs.

Proof by contradiction: For every core to enter sleep mode it would reqines
the last core awake should make the decision tgisto sleep. This is however
impossible as guaranteed by line 7 in the algoritagsuming that the idle_cores
variable is correctly updated.

Responsiveness property
Scenario 1: Every core enters sleep mode

Proof: This is impossible as presented in scenario 3 enptlogress property
above.

Scenario 2: Some cores are executing and some cores are gegpile no cores
are in idle state (or in transition to idle state).

Negative proof: In theFriend worker algorithm, as it is only possible for a core to
communicate with a certain set of its neighborsrghmight arise a scenario where
all the neighbors of a core are busy in executtatesIn that case, the core with
busy neighbors will not be able to activate anyeottore before it will transition
into executing state and the result will be thatcooe will be in idle state even
though that there may be a lot of cores sleepieg Fsgure 4-5.

If the neighbor set of a core contains at leastsbeeping core then this scenario is
the same as the one for the scenario 2 forelaonsiveness property of the Fast
worker algorithm with the same positive proof.

Figure 4-5, A single idle core (I) with only executing neighbors (E). No sleeping core (S)
can be activated by the idle core if the neighborhood is set to the eight closest cores.

4.6 Algorithm: Path home

Now let's see if also thedle cores counter can be dropped, and what the
consequences of that would be. As it must be edgiiag not all cores are in the
sleeping state, the algorithm needs some guarkefping the system awake. One
possible solution would be to pick a single cogdl, it the sink core, and forbid that

particular core to ever enter the sleeping staltenTevery other core can always
fall asleep knowing that it will not cause the gystto die. But that would also

imply that the sink core can never execute a tBskause if it did, then it could

happen that the sink is the only core that exeowte=n all other cores are in the
sleeping state. This would starve the system timtilsink finishes execution. It is

clearly an infeasible scenario. In the following,agorithm that allows the sink to

execute while not being responsible for starviregdstem is presented.

One core is selected as the sink core for tharliebf the system. The algorithm
assumes that each core is aware of the statefolit€losest neighbors. Also each
core has a private constant spith to sink, which contains references to the
neighbors which are closer to the sink than the a@self. The set contains one or
two references, except for the sink core whuath to sink set is empty.

Before a core enters sleep mode, it checks tdf $ke cores in theath to_sink set
are sleeping. If they all are, then one of themweken up. In this way the
responsibility of locating the sink is forwardeddamoved closer to the sink. This
policy sets up paths to the sink where active corege along.

4.6.1 Algorithm description

The algorithm assumes that each core is awareeo$ttite of its neighbors. Also
each core has a private constant jgatt) to_sink, which contains references to the
neighbors which are closer to the sink than the é¢zelf. In the case of a two
dimensional topology, the set contains one or teferences, except for the sink
core whoseath_to_sink set is empty. Below is the algorithm descriptiogether
with a program control flow graph in Figure 4-6.

©)
Activation

(1)
Enter idle state
idle_timeout = idle_delay

Yes

4
idle_timeout > 0
|18 _SINK?

No

Yes

(2}
Task queue
empty?

(3)
Decrement
idle_timeout

5
Every core in
path_fo_sink
sleeping?

(8)
Fetch a task from the task queue

()
Enter sleeping
state

Yes 10

(10)
Aclivate n sleeping
neighbors

(8)
Any sleeping
neighbor(s)?

(6)
Activate a core in
path_to_sink-list

(11}
Enter executing state
Process the task

Figure 4-6, Path home algorithm

4.6.2 Characteristics, features and properties

In situations of constant workload, the algorithehaves as the Friend worker.
When going from a high workload to a lower worklp#te response time is held
high for some time because of the presence ofgdiores on their way to the sink.
This makes the algorithm suitable for periodic Wwoakis or when load peaks are
following each other.

The most characteristic feature of the Path horgeriéhm is the lack of data

structures shared between the cores for handlimgipmodes. There could be a
number of sink cores in the system. This numbern tlorresponds to

min_idle_cores parameter of the previous two atbors. Non-sink nodes

path_to_sink list will then contain the neighborstbe path to the closest sink.

4.6.3 Feasibility
It will now be investigated whether the feasibilyoperties hold for thé&ath
home algorithm.

Progress property
Scenario 1: There is at least one idle core.

Proof: According to the algorithnfPath home, a core that is idle will run the idle
loop as specified by lines 3-16. Should there bghamg in the task queue at the

time that the core checks the task queue, thatualslbe assigned to the core
according to line 13. The core will then enter ey state according to line 14.

Scenario 2: There are no idle cores, at least one core is ¢éxgcand the rest are
sleeping

Proof: Assuming a situation where no idle core existstbhete is at least one core
executing. If a new task arrives at this pointiinet there will be no core available
to process that task. However, as task executioa it finite, any of the cores that
are currently in executing state will eventuallgish and transition to idle state.
Now some of these finished cores will wake up aste@ne neighbor and scenario
0 takes over.

Scenario 3: There are no idle or executing cores, only sleeporgs.

Proof by contradiction: For every core to enter sleep mode it would reqties
the last core awake should make the decision togdsto sleep. This is however
impossible as thBath home algorithm use a sink core that may never go tepsle

Responsiveness property
There exist two scenarios that may break this ptgpe

Scenario 1: Every core enters sleep mode
Proof: This is impossible as presented above inptiogress property, scenario 3.

Scenario 2: Some cores are executing and some cores are gegpile no cores
are in idle state (or in transition to idle state).

Proof: See the proof for this scenario and property fog Emiend worker
algorithm.

4.7 Algorithm: All active

In the All active power mode handling and task processing algoritdmmgle core
never falls asleep once it has been activatedntbe seen as a special case of the
Fast worker algorithms, with the minimum idle cores paramesetr to the number

of cores in the system. The All active algorithmusseful in comparing online
algorithm qualities, and in particular it gives @pper bound on the system power
consumption.

Chapter 5, Experiment setup

The distributed power mode handling and task psiogsalgorithms are evaluated
by running a multi-core simulator with a variety adnfigurations. How the actual
system workload is designed may affect which petichat will be efficient, and is
thus a central part of our work. Three experimeeties are carried out to
investigate properties of the energy- and loadrzatg algorithm.

No attention is given to the absolute time and povatues or their physical units
because it is the relative times and powers thdatemaHence generalized power
units and time units are used. For simplicity, wagider the power consumption
of the cores to be 50% leakage and 50% dynamic Gtiresponds to a power
consumption of 1 power units for the core stamsering up andidle, and 2 power
units for theexecuting state. No power is assumed to be consumed whereasc
in the sleeping state. Our model does only consider one centsal gaeue for the
complete system.

5.1 The simulator

The system model is simulated in a computer prograncaptures and visualizes
the behavior of the system. This simulator is caesed by the authors and is
implemented using the computer programming languagéon, the graphics

toolkits Tk and the plotting librarymatplotlib. A screenshot of the simulator is
provided in Figure 5-1. All simulator parametersnche controlled by a

configuration file read by the simulator. This al® for running a set of
simulations in batch mode.

File Preferences
Multicore Task factory
Task queue—— Task generators
Core settings |~ |r8277c2e Noise Sine Pulse
Cores rB377elS Amplitude Amplitude Amplitude
=] . 0.0 047 053
Simulater centrol Wi _‘_‘ _‘_‘ _LI
M . 64 65 66 67 65 69 70 7L 72 73 74 -
2 2 cmin cmin cmin
Step State power settings W= ezres.w & 5 1 5
= Sieeping 96 97 o 100101102103 104 [os [l 09110111 [T il W e
o 3 o 3 cmax emax emax Task Assignment
Pouwering-up 40 0 40
= > 3 i L1 HE
Simulator time 8378 1dle 160161 Jf163 164 |60 [l 65 169 170) Period Period
Jstpon i e 6P i ﬂ 176177178179180181 182183184 1 55| a7 0
Becuting 192193 o5 98159 200 jif02) HE EIE|
3 % 209 210211 212213 214 215216 217 218 Width
224 zzmem =] 02
20241 144 247248 249250 251252253 254 255 Scistiier Ulattadites
1000F
800
Power 600
400
200
2000 3000 4000 5{!00 7[!00 BOUD
40000F T T 3
35000
30000 |
25000 |
ueue
g load 0000
150001
100001
5000
0 1
2000 3000
250F T T
200
State =y
100
0 et ooz . - iy
2000 3000 4000 5000 6000 7000 8000
200+~ Bl
Figure 5-1, The simulator used for evaluation of core sleep mode handling and task
scheduling.

The first column in Figure 5-1 contains buttons &arting and stopping the
simulator. Next to it are the system configuratgarameters. The grid in the top
middle shows a representation for a chip gridhis €xample the chip is made up
of 16 columns and 16 rows of cores. The fieldses@nting cores are color coded
according to core state: bluedseping, pink ispowering up, yellow is idle and red
Is executing. Colours are updated at run-time according t@gtansitions.

Next to the core area is the task queue. Eachitale queue is represented by a
textual description showing when the task arrivedha queue together with its
execution time. A task disappears from the taskugues it is acquired by a core.
The task generators at top right in the figure allows for injectingstes in the
system interactively. Task load with the shape ois@ sine or pulse can be
generated with different amplitude and period. He simulation runs presented
later in this report, the task generators are uiwfé and tasks are instead injected
by pre-made task load data files.

A visualization area at the lower part of Figurd 8isplays run-time statistics in
real-time. The power graph displays the momentary, per time unit, power
consumptionQueue load is the sum of all execution times currently in thsk
queue. At the bottom is the&ate graph which illustrates the distribution of core
states.

5.2 Task load

We have tried to design a workload that mimicsnapsified but typical LTE radio
base station receiver baseband similar to whaeseribed in [31] and [1]. The
tasks are processed in a run-to-completion marinea. real base station, time
deadlines are set equal for groups of tasks tlysther perform a complete work
package corresponding to e.g. all signal processéegled for reception of a data
transport block of a mobile user. The deadline wothlen be limited by the
standard requirements on delay time for transpdéockb CRC ACK/NACK
signaling. In our current experiments, deadlinessat individually for each task as
our model yet cannot handle ordered task graphs.

For the purpose of evaluating the previously preskalgorithms, the simulator is
fed with fixed task sets. The task sets consiseélefase times paired with execution
times and deadlines, e.g. one task is releasamhatitwith execution time ;cand
deadline d

For every task the execution time is uniformly diitted and ranges from 10 to 80
simulator time units. A task sequence is Poissatriduted and spans 500 time
units, with a peak at the first few time units. Eauch task sequence has a well
defined average load for the period.

The task sets devised are made up of concatersdkdséquences, all with their
own average load. In this way the workload of angvtasks vary over time and
thus it is possible to capture potential execuioenarios. The three task load sets,
ramp, peak andoverload, are presented in Figure 5-2, Figure 5-3 and Eidi4.
Percentages in the figures represent the fractisheosystems total computational
capacity. These task sets are used throughouixffeiments and the workload is
scaled as the number of cores varies.

1400

1200 fooo . S B :
1000 | R - e .
T 800 [e 11 e B .
o
i
w
= 600

400

200

0 it cde e i etk mstb il bt ot e
0 5000 10000 15000 20000 25000 30000
Time
Figure 5-2, Ramp task set for 256 cores. The load sequence is 10%, 40%, 80, 40%, 10% of
the systems computational capacity.

1600 . . ! T .

1400 [oeeeeeeeeeeees e e el LRl S :

1200 foooeoeoeeens e e -

1000 foooooeoeeens e O e S O e B B et -
o : :
3 : 5
o 800 [e -ttt -
% . H
|_

600

400

200

0 L h
0 2000 4000 6000 8000 10000 12000
Time

Figure 5-3, Peak task set for 256 cores. The load sequence is 10%, 90%, 10%.

1800

1600 r

1400 r

1200 r

1000 r

Task load

800 r

600

400

200

O il L
0 1000 2000 3000 4000 5000 €000 70OO 8000 9000

Time
Figure 5-4, Overload task set for 256 cores. The load sequence corresponds to 120% of
the systems computational capacity inside the interval 4000 to 5000 time units, and 80%
otherwise.

5.3 Power consumption lower bound

Given a task set, it is possible to estimate a toweund on the energy
consumption for the set, for any online algoritfiithe optimistic bound that will be
used is calculated as follows. Multiply the tasksssum of execution times with
the executing state power consumption. Then ditide product with the time

span of the task set and the number of cores. ilffeedpan is the time from that
the first task arrives until the last task finisteeuting.

It is important to stress that this constructicallsegives a lower bound because no
power consumed in the powering-up state nor indleestate is considered. On the
other hand, exactly the power needed to procestasiks in the execution state is
accounted for.

5.4 Simulation parameters

The simulated system and the algorithms have afggdrameters that can be set
and tuned according to system constraints, systguinements and task sets.

5.4.1 System parameters

Systems with 64, 256 and 4096 cores are investigdtansitions fronsleeping
state toidle state are chosen to take 20 time units, whichpjgaximately the

length of a short task. Power consumption for thee cstates is O power units for
sleeping, 1 unit for powering-up, 1 unit for idleda2 units for executing.

5.4.2 Algorithm parameters

Idle delay, which is the minimum time a core isthe idle state before going to
sleep, is selected as one of 5, 10, 20, 40, 16840rtime units. The number of
minimum idle cores applies to the Fast worker aridrié worker algorithms are
selected depending on the number of cores. The euoflcores to preferably be
woken up by the algorithms is set to two. This esponds to setting the parameter
n = 2 in the scheduling algorithms.

5.5 Metrics

We are using different metrics to evaluate the itjeal of the algorithms and
configurations.

» Theaverage power metric is defined as the total energy consumethby
chip cores divided by the number of cores and stran time. This metric
measures how energy efficient the execution is.

* Theaverage queue time metric is defined as the average time a task is in
the task queue before being executed. This metreasores the
responsiveness of the system when loaded withitles gask set.

e The power-delay product (PDP) is constructed as the product of metrics
average power and average queue time. This gives the possibility to
compare these metrics between different configomatiwith one single
metric.

* Average lateness represents the total lateness divided by the nurobe
tasks. This metric is used for measuring real-tipteperties. In our
lateness calculations we define task latenessrizthe deadline is met.

Chapter 6, Queue time and Power-delay-product analysis
The purpose of this experiment is to investigate Iiee sleep mode handling and
task processing algorithms impact the average qtime=and also how PDP can
be used as a measure. As average queue time mdasum connected to
deadlines, the results in this chapter are indepeaf deadlines.

6.1 Results

Presented below is a set of graphs showing PDRdeduling algorithms Fast
worker, Friend worker, Path home and All activeeTdlgorithms are evaluated
with the task loads presented in section 5.2 Tdrnéical axis represents the PDP
value, and the scheduling paramétite delay is on the horizontal axisdle delay
represents the idle_delay parameter of the algosthnd denotes the amount of
time a core idles before entering sleep mode. Sdimgdalgorithms Fast worker
and Friend worker are represented in two versidmsrevthe difference isin, the
algorithm threshold parameter min_idle_cores, wiscthe goal for the minimum
number of idling cores. For 64 cores the paramisteither 1 or 25 and for 256
coresitis 1 or 81.

6.1.1 Task set: Peak
Figure 6-1 shows the PDP results of running theukitor with 64 cores.

30 4

L 3
L 4
L 3

4
L 4

28 4

26

—&— All active

24 Path home

% . X X ’/. —#— Fast worker | min 1
o ® ® ® — Friend worker | min 1
20 | “"/{ —¥— Fast worker | min 25
. —@— Friend worker | min 25

18

16

14

5 10 20 40 160 640
Idle delay

Figure 6-1, Power delay product for task set Peak, evaluated on 64 cores.

We notice that running with all cores powered drihad time (All active) results in
a PDP of 28.8. The algorithm with the lowest PDFFast worker | min 1” with a
PDP of 19.1 which is 34% less than All active. Eacbposed algorithm has at
least 20% lower PDP than algorithm All active wtika Idle delay is less than or
equal to 40. Fast worker with 1 minimum active cpegforms best with low idle
delay but worst (together with its 25 minimum aetisores counterpart) when the
Idle delay approaches 640.

30

28

26

—&— Al active
Path home
—— Fast worker | min 1
Friend worker | min 1
—¥— Fast worker | min 81
—@— Friend worker | min 81

L 4
*

24

22

PDP

20 A

(23
&

18
16 l’"‘.'/-,

14

5 10 20 40 160 640
Idle delay

Figure 6-2, Power delay product for task set Peak, evaluated on 256 cores.

On 256 cores we see lower PDP values accordingigord- 6-2, Power delay
product for task set Peak, evaluated on 256 coresining with no sleep mode
(All active) at all result in a PDP of 25. Agaimgetalgorithm with the lowest PDP
is “Fast worker | min 1" with a PDP of 16.1. Thés34% less than the “All active”
scheduler. Every algorithm has at least 24% lovi& Ehan scheduling algorithm
“All active”, when the Idle delay is less than aual to 40. “Fast worker | min 1”
performs best with low idle delay but worst (togatlvith its 81 minimum active
cores counterpart) when idle delay approach 640.

6.1.2 Task set: Ramp

Figure 6-3 shows that the PDP results of the Raamp $et simulated on 64 cores
are similar to those of the Peak task set. WithRhmp task set the maximum PDP
of the “All active” scheduler is 9.1. The algorithyielding the lowest PDP is “Fast
worker | min 1” with a PDP of 6.2 which is 31.9%ddhan “All active”. The same
algorithm together with it's “| min 25”-core courpart has the highest PDP when
the idle delay approaches 640. With an idle delfagGor lower all scheduling
algorithms are at least 20% better than the “Alive¢ scheduler.

On 256 cores, we notice a few differences. “Frievmtker | min 1" actually
improves as the idle delay increases but its PDiR wilow idle delay is much
larger (7.9) than for 64 cores (6.9).

10

9,5

L g
L g
L4
L g

4

851 —&— All active

Path home
—— Fast worker | min 1

\

75
Friend worke | min 1
ox x—x—* / e
—¥— Fast worker | min 25
oO—-0— .)
6,5 — —@— Friend worker | min 25

55

5 10 20 40 160 640
Idle delay

Figure 6-3, Power delay product for task set ramp, evaluated on 64 cores.

10

9,5

©
L
L
*
L
L
\I

8,5

—&— All active

8 —— Fast worker | min 1
Friend worker | min 1
Path home

7 T = ﬁ’ 4 === a5t worker | min 81
6,5 ’__—.7 —@ —@— Friend worker | min 81
6

551

PDP

75

5 10 20 40 160 640
Idle delay

Figure 6-4, Power delay product for task set Ramp, evaluated on 256 cores.

It is interesting to note in Figure 6-4 that thgamlthms Fast worker and Friend
worker indicate disparate behavior. First, the asker algorithm shows growing
PDP for higher idle delay values, all other parargebeing the same. At the same
time, Friend worker gets lower PDP with increaditig delay. Also the minimum
idle cores threshold parameter impacts the PDPiandifferently. Especially the
Friend worker algorithm shows lower PDP results nvimereasing the threshold as

seen in Figure 6-4, whereas Fast worker does nbat\g also evident is that this
behavior depends on the task set and the numizeres.

Average power consumption for the ramp task se266 cores is studied in
isolation by means of the average power graph guréi 6-5. The calculated
theoretical lower bound sets a lower limit on tf@vpr consumption, and at the
same time the “All active” scheduling algorithmas upper limit. Other sleep-
mode handling algorithms fall in between.

In Figure 6-6, the average queue time for the ssimalation run is presented. No
theoretical lower bound on the queue time is cated, although an over-
optimistic one would be zero.

1,4
y . . . V. .
v v v hd hd /
1,2
g 11 X %
g —e—All active
2 —@— Fastworker | min 1
s 0,8 "‘__’_,,K K Friend worker | min 1
° Path home
[
g 0.6 —¥—Fastworker | min 81
a i = = r S TS A —e—Friend worker | min 81
% ==jr==| ower Bound
204
<
0,2
0
5 10 20 40 160 640

Idle delay
Figure 6-5, Average power consumption for task set Ramp, evaluated on 256 cores.

It is observed that the Friend worker algorithm &adh home algorithm have the
common property of being stable in PDP when the d#lay setting is varied but
the other parameters remaining the same. Furtherthese two algorithms show
the same power consumption behavior as the idkydslincreased, compared to
that of the Fast worker algorithm whose power comion reaches that of the All
active algorithm at an idle delay of 640. This baseen in Figure 6-5.

12 4

10

—o—All active

8 A —@— Fastworker | min 1
%> M— Friend worker | min 1

Path home

—¥¢—Fastworker | min 81
—@— Friend worker | min 81

Average queue time

5 10 20 40 160 640
Idle delay

Figure 6-6, Average queue time for task set Ramp, evaluated on 256 cores.

6.1.3 Task set: Overload

The situation is changed when investigating the f&Rlts for the overload task
set in Figure 6-7. Here we see that the algorithith the highest PDP result is the
one with no sleep mode handling. However “Fast woik25” reaches the same
PDP result, 80.5, as “All active”. “Friend workeR%" is also close to this value.
With an idle delay of 160 there is little differenbetween any of the algorithms.

—&—All active

~>¢—Path home

—@— Fast worker | min 1
Friend worker | min 1

—X¥— Fast worker | min 25

—e— Friend worker | min 25

PDP

5 10 20 40 160 640
Idle delay

Figure 6-7, Power delay product for task set Overload, evaluated on 64 cores.

In Figure 6-8 we see that “Path home” and “Frieratke&r | 1” has a higher PDP
than the others. None of these algorithms ever geta reach the levels of the
“All active” scheduler. Of the algorithms with dituted sleep mode handling,
“Fast worker | 81" is the one with the lowest PDP.

256

—&—All active

¢~ Path home

—@— Fast worker | min 1
Friend worker | min 1

—X¥— Fast worker | min 81

—e— Friend worker | min 81

PDP

5 10 20 40 160 640
Idle delay

Figure 6-8, Power delay product for task set Overload, evaluated on 256 cores.

6.2 Discussion

6.2.1 Fast worker adapts fast to increased workload

One general observation is that the Fast workerithgns give good performance
in terms of PDP when the idle cores thresholdvs dmd at the same time the idle
delay is short. Also the average queue time iseclooptimum. This holds for the
ramp and peak workloads. The property comes franfdht adaption to a sudden
increase in workload inherit in Fast worker. Namehe algorithm can always
activate the number of cores it requests, as lentha system is not overloaded.
The algorithms shared counter makes this possible.

6.2.2 Friend worker and Path home have damped waking-up
behavior

The similarity between Friend worker and Path h@walescribed in section 6.1.2
can be explained by the damping mechanism inh@reheir waking-up schemes:
it is not always possible for a core to wake upwented number of cores. The
more filled a particular chip area is with idling éxecuting cores, the fewer cores
in that particular area can be woken up. If all teees in this hot spot area are
active then the area can only grow outwards, sotimeber of cores that are waken
up in a peak load situation is dependent on thene¢er of that hot spot area. The
Fast worker algorithm does not have this propeesabse it can always wake up a
core if there is a sleeping one at any locationtlen chip. What is particularly
interesting is that this damping mechanism of thenfl worker and path home
algorithms, and its system impact, is maintainedbbgl decisions.

6.2.3 Cores can survive low load periods

One property of the application at hand is thatrapgoral peak load relative to the
average load arrive every 500 time units. The pgedalgorithms do not take care
of this particular behavior. One consequence is ifhtne algorithm's idle delay
parameter is set greater than 500, then a onceatedicore will stay awake for the
full time of such 500 time units period. This meahat the temporal response
(queue time) of the next peak will be at least &t fas the last one. Another
consequence is that the system is staying prepangtcess a higher load than the
actual average, which is favorable in the caseudfdenly increasing loads but
unfavorable in the sense of power efficiency fanstant load.

6.2.4 Overload

For the overload task set, it is apparent thathallproposed power mode handling
and task processing algorithms perform worse irPfb® sense than the All active
regime.

First, one could argue that this task set represantextreme scenario so it is in
some sense reasonable that it gives extreme reditiat the result tells us is that
the three proposed algorithms are not useful io\arload-like scenario in terms
of the PDP quality as stated in this work; it istéeto not bother putting cores to
sleep in this particular scenario.

Second, the result sheds some light on the chd3@mfetric and the fact that both
the average power and queue times are weightedlyequa

6.2.5 Knowledge of the application at hand could be
implemented in the algorithm.

Because of the damped wake-up in Friend worker Raith home, the average
queue (response) time is strongly dependent omthanum idle cores threshold
and the number of sinks. It seems reasonable himparameter is tuned for the
anticipated task set or changed online based dilipgobehavior over time. The
parameter can also be set based on calendar tiime a@jpplication can benefit from
it.

On the short scale the sleep-mode handling andsts&duling algorithms could
be tailored for the specific application. In theseaof this work and the studied
application it would be suitable to prepare commstiie 500 time unit peaks. The
more an algorithm is tailored for one applicatithe more it will lose in generality
and predictability on arbitrary workloads.

6.3 Summary

The PDP is stable for Friend worker and Path horhenwdle delay varies. It
cannot be said whether this behavior is true ewveslightly altered task sets, like
for example if all loads were scaled up by sometioa.

Chapter 7, Lateness analysis

One can wonder how much the average queue timesiofilation says about the
system qualities. As it is an arithmetic averagesuee the distribution of queue
time is hidden. For the analysis of a real-timeteaysthis is unacceptable. In fact,
the notion of task deadline was not taken into antat all. With the addition of
the notion of deadlines to tasks, it is possibleuse the lateness measure as
described in Chapter 5,.

The purpose of this experiment is to investigate kiee sleep mode handling and
task processing algorithms impact the average dateon the given task sets with
the addition of task deadlines.

A similar experiment setup as before is used buh whe addition of per-task
deadlines. Deadlines are chosen so that they ¢arfsthe tasks execution time
plus a random number from the interval 40 to 246is Theans that task lengths are
¢ = random(10,80) with deadlines d = ¢ + randon#40). The system parameters
and sleep mode algorithms are preserved.

Examined multi-core configurations consist of twiiedent settings with 256 and
4096 cores. Fast worker and Friend worker algomttare evaluated using three
different values for the min idle parameter.

7.1 Results

For each algorithm and hardware configuration, gnaphs are presented. The first
one shows average power consumption and the ssbomgs average lateness.

7.1.1 Ramp and peak task sets

In Figure 7-1, power consumptions range from 0.&.8®o0n the scale from 0.0 to
2.0, with All active at 1.3. This means that thermage power consumption spread
covers roughly 40% of the energy scale. The sartustor Figure 7-3, Figure 7-5
and Figure 7-7.

Ramp

Ramp 256 cores

14

13

1'2 /
/ —— Al active
- / —=— Fastworker | min 1

Fastworker | min 36

g 1 —#— Fastworker | min 121
o
=% Friend worker | min 1
o 09 — Pl - Frendworker|mi
g / / —— Friend worker | min 36
3 0,8 : —— Friend worker | min 121
—
Path home
0,7 —— Lower bound
0,6
0,5
5 10 40 160 640
Idle delay

Figure 7-1 Average power consumption for task set Ramp, evaluated on 256 cores.

Figure 7-1, shows average power consumption forh eatgorithm and
configuration tested. “Friend worker | min 1” staralit as having the lowest power
consumption.

Ramp 256 cores

0,007
0,0065
0,006 -
0,0055 —e— All active
—a— Fastworker | min 1
§ 0,005 Fast worker | min 36
é 0,0045 —x— Fastworker | min 121
© —e— Friend worker | min 1
g 0.004 7 —— Friend worker | min 36
o
; 0,0035 - —— Friend worker | min 121
Path home
0,003 -
0,0025
0,002 T T T T T
5 10 20 40 160 640
Idle delay

Figure 7-2, Average lateness for task set Ramp, evaluated on 256 cores.

The price for low power consumption is apparenfigure 7-2 where it can be
seen that “Friend worker | min 1” has an averatgnkss which is 110% higher
than that of “Fast worker | min 36", when the ididay is set to 5.

Ramp 4096 cores
1,4

13

1,2 4
—e— Al active
11
/

—a— Fastworker | min 1

Fastworker | min 484

-
L

Average power
o o
[o<] ©

—¥— Fastworker | min 1849
—e— Friend worker | min 1

—+— Friend worker | min 484
/ ——Friend worker | min 1849
/ Path home
Lower bound

Idle delay

o
=
,

o
=)
L

o
3

Figure 7-3, Average power consumption for task set Ramp, evaluated on 4096 cores.

Figure 7-3 and Figure 7-4 present power and lateoegelations to the idle delay
in a system with 4096 cores. The power performaeselts are similar to those for
the system with 256 cores as shown in Figure 7-1.

Ramp 4096 cores

0,09

0,08

oor | .\‘\

0,06 —e— All active

—=— Fastworker | min 1

0,05 Fastworker | min 484
\ —%— Fastworker | min 1849

—e— Friend worker | min 1

Average lateness
o
o
I~

0,03 —+— Friend worker | min 484
—— Friend worker | min 1849

Path home

T T T T T
5 10 20 40 160 640
Idle delay

Figure 7-4, Average lateness for task set Ramp, evaluated on 4096 cores.

In Figure 7-4 we see how “Friend worker | min Jdrgts out from the rest. With an
idle delay between 5 and 20 it has an averagedasebeing at least 300% higher
than the closest competitor, Path home.

We see that the lateness of “Friend worker | midi’ 4ibes not differ considerably
from that of “All active”, although the power savéy the former algorithm is
about 80% of what is theoretically possible.

Peak
Figure 7-5 to Figure 7-8 show the results for thakptask set.

Peak 256 cores

1,4
13 =

' —e—All active
—a— Fastworker |[min 1
1,2

Fastworker | min 36

—x¥— Fastworker | min 121

5 L19
= —e— Friend worker | min 1
°
: 1 7\/ —+— Friend worker | min 36
2 > Friend worker | min 121
2 0,9 Path home
Lower bound
0,8
07
5 10 20 40 160 640
Idle delay

Figure 7-5, Average power consumption for task set Peak, evaluated on 256 cores.

“Friend worker | min 1” with the idle delay set %ohas again the lowest average
power consumption of all algorithms. It is also thee with the highest average
lateness as seen in Figure 7-6. Note the differdrateeen the lateness of the
algorithms for the Peak task load in Figure 7-6 parad to that of the Ramp task
load in Figure 7-2.

Peak 256 cores

0,0245

0,0225 —

—e— All active
0,0205 —a— Fastworker | min 1

o \\ Fastworker | min 36
2 —%— Fastworker | min 121
% 0,0185 —e— Friend worker | min 1
% - k\\ —+— Friend worker | min 36
§ 0,0165 B— —— Friend worker | min 121
< \.—\’\5 . Path home

0,0145 -

0,0125 T T T T T

5 10 20 40 160 640
Idle delay

Figure 7-6, Average lateness for task set Peak, evaluated on 256 cores.

With 4096 cores the “Friend worker | min 1” algbnt comes close to the
theoretically lower bound at 0.73. The algorithnesform similar in relation to
each other when compared to the results for thec@®& configuration.

Peak 4096 cores

L
I

/

—e—All active
—=— Fastworker | min 1

Fastworker | min 484

I
w

In
N

L
i

—¥e— Fastworker | min 1849

—e— Friend worker | min 1

Average power
[

—+— Friend worker | min 484

4
/ ——Friend worker | min 1849
/— Path home
Lower bound

————

o
©

o
©

0,7

5 10 20 40 160 640
Idle delay

Figure 7-7, Average power consumption for task set Peak, evaluated on 4096 cores.

Looking at the lateness results in Figure 7-8 hawethe “Friend worker | min 1”
stands out. It has an average lateness being 17@i@%er than the closest
algorithm, Path home.

Peak 4096 cores

14

—+—Friend worker | min 484

\ —

12

1 —e—All active

0 —s— Fastworker | min 1
g 0,8 Fastworker | min 484
T —x— Fastworker | min 1849
© N .
2 06 —e— Friend worker | min 1
]
>
<

——Friend worker | min 1849

0,4
\ Path home
0,2

5 10 20 40 160 640
Idle delay

Figure 7-8, Average lateness for task set Peak, evaluated on 4096 cores.

7.1.2 Overload task set

One general observation for the system respongée toverload task set is that the
spread of power consumption is less than 10% ofdage from 0.0 to 2.0. Also

two groups of lines can be recognized in the awe@mver plots: Path home and
Friend worker with low values on the minimum idleres parameter consume
significantly less power than the rest. For exantpble Fast worker algorithms

always consume more power than Friend worker wiheanghe same parameters.

256 cores

1,85

1,84 %
—e— All active
—s— Fastworker | min 1
1,75

Fastworker | min 36

-—_— ’/‘/ —%— Fastworker | min 121

—e— Friend worker | min 1

1,71 —+— Friend worker | min 36

Average power

Friend worker | min 121

Path home
1,65

Lower bound

16
5 10 20 40 160 640

Idle delay
Figure 7-9, Average power consumption for task set Overload, evaluated on 256 cores.

For the 256-core system the algorithms make twagsas seen in Figure 7-9.
One group where it seems like the idle delay patanm@akes no impact on the
power consumption and the other group where it.dbee algorithms affected by
the idle delay setting are “Friend worker | min Friend worker | min 36” and

“Path home”. Note that the bound of possible poe@rsumption figures are not
that wide as the average power consumption onlyraage between 1.68 to 1.81
due to the high load of the system.

256 cores

2,9 A

2,81
27 —e— All active
—=— Fast worker | min 1
2,6 4 Fastworker | min 36

25 1 —%— Fastworker | min 121
—e— Friend worker | min 1

2,4 —+— Friend worker | min 36

Average lateness

Friend worker | min 121

2,34
Path home

2,2

2,14

5 10 20 40 160 640
Idle delay

Figure 7-10 Average lateness for task set Overload, evaluated on 256 cores.

In the lateness graph in Figure 7-10 we see the $aum groups of configurations
as in Figure 7-9. Here the group which had the &twmwer consumption in
Figure 7-9 has the highest lateness results. btiegty enough all of the
algorithms in the high lateness group gets an asmén lateness as the min idle

core parameter is increased. Intuitively a higheoant of idle cores would give
the system an increased response time and loveselss values.

Overload 4096 cores
1,83

1,81

1,79 A
—e— All active

1,77 —a— Fastworker | min 1

Fastworker | min 484

o
§_ 1,75 A —w— Fastworker | min 1849
@ —e— Friend worker | min 1
g 1731 —+— Friend worker | min 484
in Friend worker | min 1849
Path home
1,69 Lower bound

Idle delay

Figure 7-11, Average power for task set Overload, evaluated on 4096 cores.

4096 cores

44

43 1
—e— Friend worker | min 1

42 Path home

41

40

Average lateness

28 —e— All active

2,6 4 —a— Fastworker | min 1
Fastworker | min 484

24 -— —x— Fast worker | min 1849

221 ——Friend worker | min 484

Friend worker | min 1849

Average lateness

5 10 20 40 160 640
Idle delay

Figure 7-12, Average lateness for task set Overload, evaluated on 4096 cores.

7.2 Discussion

The general trend for all simulated scenarios & tfhe energy consumption
increases and the lateness decreases when théeldle parameter is increased.
But this behavior is in fact no necessity as ig a¢dent from the simulations: see
for example “Fast worker | min 36" in Figure 7-5dalfigure 7-6. Modifying the
idle delay parameter will impact which cores arailable for execution and thus
where on the chip new tasks will end up. Differexgcution locations for a certain
task may result in different core activation patser

The lateness tends to converge for all load-bataneailgorithms as idle delay
reaches 640. The value converged to be not nedgsHae lowest possible
lateness.

7.2.1 Ramp and peak task sets

Anomalous behavior is seen in Figure 7-8 regarthteness for the Friend worker
algorithm with a minimum idle cores parameter sebme on systems with 4096
cores. The anomaly is the extremely high averagméss for this configuration.
To investigate this case in detail, Figure 7-13 &iglire 7-14 present task loads
overlaid with information on where lateness actuaticurs for two configurations.
On the Time axis is the actual simulation tim&ask load is the cumulative
execution time of arriving tasks at a certain satioh time and.ateness is the
total lateness for tasks arriving at this same time

The extra lateness at the beginning of the sinmlai explained by the fact that
the initial workload cannot be handled with thep@ssiveness delivered by a sole
core. More cores are waked up by the power-moddléaand after some wake-up
time the task load can be processed. In the meantiask deadlines may have
timed out. At time 500, the system has stabilizedsystem load of 10% and

deadlines are no longer missed.

16000 T T T

Task load
Lateness

14000 ¢

12000

10000

8000 |

6000

4000 |

2000

0 2000 4000 6000 8000 10000 12000

Time

Figure 7-13, Workload and lateness for Friend worker | min 1 with idle delay 5 on 4096
cores. The task set is Peak.

A similar reasoning goes for the load change a¢ #®00: the system with the goal
of having one core idle is not prepared for theéased task load whereas the

system with 484 idle cores apparently can handg whithout missing too many
deadlines. It is also interesting to note thatsystem in Figure 7-13 stabilizes with
regard to lateness and has a lateness patterrastmiFigure 7-14 after 6000 time
units. The later configuration doesn’t have thadrant behavior.

16000 T T T T
Task load

Lateness

14000 |
12000 |-
10000
8000 |
6000 |
4000 - m 1
2000 | W”W wmm .

2000 4000 6000 8000 10000 12000
Time

o

Figure 7-14, Workload and lateness for Friend worker | min 484 with idle delay 5 on
4096 cores. The task set is Peak.

Another perspective that can be taken on the saewm®asos is to investigate the
power consumption with regard to core state forftlesimulation run. This is
shown in Figure 7-15 and Figure 7-16. In Figuresatie minimum number of idle
cores is 1 out of 4096 (< 1%) and in Figure 7-16sit484 (12%). All other
parameters are held the same. The difference émdas occurs at the beginning
and after the task load steps up from 10% systeh io 90% system load at time
4000.

Energy consumption per core
2 T T T

Bxecuting
Idie
Powering-up

O 1 Il 1 1 1
0 2000 4000 6000 3000 10000 12000

Figure 7-15, Energy consumption per core for different core states. The configuration is
Friend worker | min 1 with idle delay 5 on 4096 cores. The horizontal axis is simulation
time.

In Figure 7-15 we clearly see how the slower adapto the increased workload

affects the power consumption profile. Especialig tslope of the area (red)

corresponding to energy consumed by executing catrdsne 0 and time 4000

differs. Another key point to note is how the yell@areas, energy consumed by
idling cores, differ in Figure 7-16. The heighttb&se stripes roughly corresponds
to the minimum number of idling cores algorithmaoraeter, and so corresponds to
the momentary responsiveness to new tasks.

Energy consumption per core
2 T

Executing
Idle
Powering-up

O 1 1 1 1 1
0 2000 4000 6000 2000 10000 12000

Figure 7-16, Energy consumption per core for different core states. The configuration is
Friend worker | min 484 with idle delay 5 on 4096 cores.

The observed anomaly can be connected to the aamlyadithm as described in
Chapter 4,. Friend worker is characterized by wgkip cores on the edge of an
active spot, and because of this the wake up sabtmunded by the perimeter of
that spot area. Figure 7-17 shows this behavios chip with 1024 cores. Notice
the broad area on the middle of the chip where aresccan be activated as no
neighboring cores are active. The Fast worker dlgorhas different behavior: as
long as there are sleeping cores and there is meveimthe task queue, new cores
will be woken up at random locations on the chipewlasked for, even if the net
workload does not in fact increase.

One solution to this problem is to enlarge the lnletyhood of each core in the
Friend worker algorithm. Then the paramatan line 13 in the description of the
Friend worker algorithm in Figure 4-4 could be ni@di to increase the number of
cores that may be activated.

Another extension for solving the problem is to lempent sporadic core activation
to create new spots of active cores and thus iser¢ge number of potential
neighbors to wake up resulting in faster workloddgation.

82 83 8
107 115 . .
130} 132 13?138139

156
161] 1761?‘.’
=

mm
s o

Figure 7-17, Core state geography of Friend worker | min 1, with idle delay 5, visualized
on 1024 cores.

7.2.2 Overload task set

In the case of 4096 cores, two algorithm configaregt definitely shoot out in
lateness. That is the Friend worker with a minimofrone idling core and Path
home. The situation doesn’t seem to be addressétclgasing the minimum idle
delay as can be seen in Figure 7-12. It is theeefeasonable to suspect that the
high level of lateness is contributed at the stageare the task load increases step-
wise. For an example, see Figure 7-18 and Figut® Which show the lateness
related to task load for two simulations with theeRd worker having different
minimum idle cores.

90000 T T T T T
Task load

Lateness
80000 8

70000 .

60000 f

50000 .

40000 .

30000

20000 ¢

10000

h i i
3000 4000 5000 6000 7000 8000 9000
Time

i L L

h i
0 1000 2000

Figure 7-18, Workload and lateness for Friend worker | min 1 with idle delay 5 on 4096
cores. The task set is Overload.

This phenomenon is much like what was previousgcdbed for the Peak task set.
That is, the wake-up rate is limited by the peregneff the active chip areas.

25000 T T T

"Task Ioad |
Lateness
20000 | 4
15000 - =
10000 -
5000 |
0 i i i i i i i i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time
Figure 7-19, Workload and lateness for Friend worker | min 484 with idle delay 5 on
4096 cores. The task set is Overload.

Chapter 8, EDF fetching of tasks

As stated in the model description it is assume tie task queue is centralized
and that tasks are handled in FIFO order. A compaicty in both single- and
multi-processor systems is to dispatch the mosenirgask: the task with the
earliest deadline. This is called earliest deadiisé (EDF).

The purpose of this experiment is to investigatatthe EDF policy can do to the
studied job processing system in terms of poweswmption and lateness.

8.1 Results

Having the task queue sorted using EDF resultsahdlmost no lateness is present
for the ramp and peak task sets and therefore we tlaosen not to study them
further.

The system setup is identical to the previous expmatt but only the Overload task
sets for 256 and 4096 cores are presented asrsé&agure 8-1 to Figure 8-4. The
power consumption in the EDF case, as seen in &igur and Figure 8-3, does not
change considerably compared to the non-EDF pditeyglied in the previous

chapter. This indicates that the wake-up behavigores is not affected by EDF.

Overload EDF 256 cores

1,8 1 . - = —e—All active
—=— Fastworker | min 1
Fastworker | min 36

1,75

—x— Fastworker | min 121
‘\,— // —e—Friend worker | min 1
—+— Friend worker | min 36
17

Friend worker | min 121

Average power

Path home
Lower bound

1,65

1,6

5 10 20 40 160 640
Idle delay

Figure 8-1, Average power consumption for task set Overload, evaluated on 256 cores.

Real-time behavior on the other hand is greatlgaéd. For the 256 core system in
Figure 8-2, lateness has been reduced by factor 50.

Overload EDF 256 cores

o
=)
a

—e— All active
—a— Fastworker | min 1

o
£
a

—«— Fastworker | min 36

—%— Fastworker | min 121

—e— Friend worker | min 1
—+— Friend worker | min 36
- —— Friend worker | min 121

Path home

0,04

Average lateness

Idle delay

Figure 8-2, Average lateness for task set Overload, evaluated on 256 cores.

Overload EDF 4096 cores

—e—All active
—a— Fastworker | min 1

—«— Fastworker | min 484
—¥— Fastworker | min 1849
—e— Friend worker | min 1

—+— Friend worker | min 484

Average power

—— Friend worker | min 1849
Path home
Lower bound

Idle delay

Figure 8-3, Average power consumption for task set Overload, evaluated on 4096 cores.

In Figure 8-4 we see that with EDF, algorithms &fd worker | min 1” and “Path
home” are improved by 15% when compared to the EDR- case. The other
algorithms reach an improvement of factor 10.

Overload EDF 4096 cores

35

—e— EDF Friend worker | min 1

341 /\\ EDF Path home

33,5

Average lateness

33

0,04 —e— All active
ﬁ 0,035 - —s— Fastworker | min 1
g Fastworker | min 484
& 003
X * —% —x— Fastworker | min 1849
&
§ 0,025 —— Friend worker | min 484
< 0,02 T T T T T —=— Friend worker | min 1849
5 10 20 40 160 640
Idle delay

Figure 8-4, Average lateness for task set Overload, evaluated on 4096 cores.

8.2 Discussion

For a system with a centralized task queue, EDFS da¢ incur greater demands
than that of inserting a task in order in an alyesdrted list of tasks. The system
studied in this work benefit of this policy, as wa®wn. However, as the focus in
this work is on distributing the job processing idens, and ultimately also the
task queue, it must be noted that the notion oéraralized EDF queue does not
always apply. For example, the task queue coulduxstered so that a fixed set of
cores always fetch tasks from a predefined queuét €duld be that any core in
the system could supply any other core with taaks, thus removing the concept
of task queues altogether.

Chapter 9, Conclusion

This work presents a distributed sleep mode hagdiimd task processing method.
In order to evaluate the method, a simulator toasd Weveloped and used. With the
simulator, it is shown that the proposed method lmamsed to handle power and
tasks in a massive multi-core computer. The maltiought to be general enough
to be adapted to suit an actual hardware platfaime. simulator tool is also useful

for understanding how the system behaves as thdewof cores increases far
above 1000.

A fully distributed sleep mode handling polidath home, which only depends on
local information has been constructed which pgliforms comparable to policies
that are not fully distributed. This shows that #teategy of mimicking a cellular
automaton is successful in this problem domain.

The simulation results show that sudden changesskiload can incur transients in
lateness. Algorithm parameters have to be tunedctmunt for this. It is also
shown that there exist configurations that giveyanbdest increase in lateness but
at the same time decrease power consumption up% o & what is theoretically
possible.

Sleep mode handling and task processing algoritiimsh performs well on 256
cores might in fact produce very poor power-peecasults when executed on a
higher number of cores. With simulator producedhda¢ are able to investigate,
explain and give solutions to this anomalous bedravi

Chapter 10, Future work

A sleep mode handling a task processing algoritboidcbe developed that takes
advantage of the qualities of the tasks as theyestbed. For example, a core may
fetch more than one task at once to run in sequemzk before execution starts,
decide to wake up an appropriate number of neighblepending on perceived
urgency of the fetched tasks. This gives an aduititevel of feedback.

Below are areas of how the simulator and modelccbalextended.

e Task could be scheduled as belonging to task graptis dependency
constraints.

e Fully distributed task queues and scheduling caninip@emented. For
example “work stealing” [7] or the ability for eatdsk to spawn new tasks
onto neighboring cores e.g. “Cuckoo scheduling?.[28

e« The chip geometry can be generalized to includémedsional chip
networks.

* The assumption that each core could individuallyfldey switched off
may be wrong for some multi-core systems and thagswo group the
cores into “power islands” form another possibldidn to the simulator.

For more realistic simulations there is a needmplément additional hardware
parameters such as network on chip latencies aweémpoonsumption for core-to-
core data transfers. Implementing latency penalf@s utilizing shared data
structures can also give additional information hetp in deciding how beneficial
it is to create even more distributed algorithms.

Chapter 11, References

[1]

(2]
3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

Lte uplink receiver phy benchmark. http://sourceforge.net/projects/Ite-
benchmark/.

Adapteva. Epiphany Architecture Reference (G3). Adapteva Inc., 2012.

Susanne Albers. Energy-efficient algorithms. Commun. ACM, 53(5):86-96,
May 2010.

Jos L. Ayala. Communication Architectures for Systems-on-Chip. CRC Press,
Inc., Boca Raton, FL, USA, 1st edition, 2011.

H. Aydin, R.Melhem, D.Mossé, and P.Meja-Alvarez. Power-aware
scheduling for periodic real-time tasks. Computers, IEEE Transactions on,
53(5):584-600, 2004.

H. Aydin and Dakai Zhu. Reliability-aware energy management for
periodic real-time tasks. Computers, IEEE Transactions on, 58(10):1382 —
1397, oct. 2009.

R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations
by work stealing. In Foundations of Computer Science, 1994 Proceedings.,
35th Annual Symposium on, pages 356—368. IEEE, 1994.

Sangyeun Cho and R.G. Melhem. On the interplay of parallelization,
program performance, and energy consumption. Parallel and Distributed
Systems, IEEE Transactions on, 21(3):342 —353, march 2010.

Hakan Aydin Dakai Zhu. Handbook of Energy-Aware and Green
Computing, volume 2. Chapman and Hall/CRC, jan. 2012.

Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. Tcp dynamic
acknowledgment delay (extended abstract): theory and practice. In
Proceedings of the thirtieth annual ACM symposium on Theory of
computing, STOC ‘98, pages 389-398, New York, NY, USA, 1998. ACM.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Martin Gardner. Mathematical games - the fantastic combinations of john
conway’s new solitaire game "life". Scientific American, 223:120-123,
1970.

Yifeng Guo, Dakai Zhu, and H.Aydin. Reliability-aware power
management for parallel real-time applications with precedence
constraints. In Green Computing Conference and Workshops (IGCC), 2011
International, pages 1 -8, july 2011.

I. Hong, D. Kirovski, Gang Qu, M. Potkonjak, and M.B. Srivastava. Power
optimization of variable-voltage core-based systems. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
18(12):1702 -1714, dec 1999.

Hailin Jiang, M. Marek-Sadowska, and S.R. Nassif. Benefits and costs of
power-gating technique. In Computer Design: VLS| in Computers and
Processors, 2005. ICCD 2005. Proceedings. 2005 IEEE International
Conference on, pages 559 — 566, oct. 2005.

Anna R. Karlin, Mark S. Manasse, Lyle A. McGeoch, and Susan Owicki.
Competitive randomized algorithms for non-uniform problems. In
Proceedings of the first annual ACM-SIAM symposium on Discrete
algorithms, SODA ’90, pages 301-309, Philadelphia, PA, USA, 1990.
Society for Industrial and Applied Mathematics.

N.S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J.S. Hu, M.J. Irwin,
M. Kandemir, and V. Narayanan. Leakage current: Moore’s law meets
static power. Computer, 36(12):68 — 75, dec. 2003.

C. M. Krishna. Real-Time Systems. John Wiley & Sons, Inc., 2001.

J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis.
Power management of datacenter workloads using per-core power
gating. Computer Architecture Letters, 8(2):48 —51, feb. 2009.

E. Musoll. A thermal-friendly load-balancing technique for multi-core
processors. In Quality Electronic Design, 2008. ISQED 2008. 9th
International Symposium on, pages 549 —552, march 2008.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

E. Musoll. A process-variation aware technique for tile-based, massive
multicore processors. Computer Architecture Letters, 8(2):52 —55, feb.
20009.

E Musoll. A cost-effective load-balancing policy for tile-based, massive
multi-core packet processors. ACM Trans. Embed. Comput. Syst.,
9(3):24:1-24:25, March 2010.

E. Musoll. Hardware-based load balancing for massive multicore
architectures implementing power gating. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 29(3):493 —-497,
march 2010.

C.A. Nicopoulos and The Pennsylvania State University. Network-on-Chip
Architectures: A Holistic Design Exploration. Pennsylvania State University,
2007.

Andreas Olofsson. A 1024-core 70 gflop/w floating point manycore
microprocessor. In HPEC 2011, 2011.

The Climate Group onbehalf of the Globale Sustainability
Initiative (GeSl). Smart 2020 : Enabling the low carbon economy in the
information age. GeS!’s Activity Report June 2008, 2008.

Michael Palis. Real-time scheduling algorithms for multiprocessor
systems. In Handbook of Parallel Computing, chapter 24, pages 1-26.
Chapman and Hall/CRC, December 2007.

Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. SIGOPS Oper. Syst. Rev.,
35(5):89-102, October 2001.

M. Prakash, R. Saranya, K.R. Jothi, and A. Vigneshwaran. An optimal job
scheduling in grid using cuckoo algorithm.

Xuan Qi and Da-Kai Zhu. Energy efficient block-partitioned multicore
processors for parallel applications. Journal of Computer Science and
Technology, 26:418—-433, 2011.

B. P. Singh. Electronic Devices And Integrated Circuits. Pearson Education,
2006.

[31]

[32]

[33]

[34]

[35]

[36]

Magnus Sjalander, Sally A. McKee, Peter Brauer, David Engdal, and Andras
Vajda. An Ite uplink receiver phy benchmark and subframe-based power
management. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software,, 2012.

R. Sridharan, N. Gupta, and R. Mahapatra. Feedback-controlled reliability-
aware power management for real-time embedded systems. In Design
Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, pages 185 —
190, june 2008.

K. Stavrou and P. Trancoso. Thermal-aware scheduling: A solution for
future chip multiprocessors thermal problems. In Digital System Design:
Architectures, Methods and Tools, 2006. DSD 2006. 9th EUROMICRO
Conference on, pages 123 —126, 0-0 2006.

Kyriakos Stavrou and Pedro Trancoso. Tsic: Thermal scheduling simulator
for chip multiprocessors. In Panayiotis Bozanis and Elias Houstis, editors,
Advances in Informatics, volume 3746 of Lecture Notes in Computer
Science, pages 589-599. Springer Berlin / Heidelberg, 2005.
10.1007/11573036_56.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenstrom. The worst-case execution-
time problemoverview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., 7(3):36:1-36:53, May 2008.

Stephen Wolfram. Cellular automata as models of complexity. Nature,
311:419-424, 1984.

