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Blind Equalization in Optical Communications
Using Independent Component Analysis

Alon Nafta, Pontus Johannisson, and Mark Shtaif

Abstract—We propose a multi-tap independent component
analysis (ICA) scheme for blind equalization and phase recovery
in coherent optical communication systems. The proposed algo-
rithm is described and evaluated in the cases of QPSK and 16-
QAM transmission. Comparison with CMA equalization shows
similar performance in the case of QPSK and an advantage
for the ICA equalizer in the case of 16-QAM. The equalization
scheme was evaluated in a multi-span optical communications
system impaired by both polarization mode dispersion (PMD)
and polarization dependent loss (PDL).

Index Terms—Coherent communication, optical fiber commu-
nication, equalization, independent component analysis (ICA).

I. I NTRODUCTION

Advanced equalization techniques are key elements in mod-
ern coherent polarization multiplexed optical communications
systems. Blind equalization, where the equalizer operates
autonomously (i.e. without receiving predetermined control
sequences from the transmitter) is particularly attractive from
the standpoint of system simplicity. To date, with most optical
communications systems relying on phase-shift keying (PSK)
modulation, the most widely deployed equalizers are based
on the constant modulus algorithm (CMA) [1], where the
equalizer is designed to minimize variations in the amplitudes
of the received samples. Equalizers based on CMA have
been shown to be close to optimal in systems using binary
phase-shift-keying (BPSK) and quadrature phase-shift-keying
(QPSK) modulation [2]. In the case of quadrature amplitude
modulation (QAM) with more than one amplitude level, the
performance of CMA-based equalization deteriorates notice-
ably, motivating the search for alternative blind equalization
approaches. This is particularly important in view of the
rapidly growing rates of communications, which necessitate
the transition to more spectrally efficient modulation formats.

In this paper we explore the possibility of using an alterna-
tive blind equalization method relying on independent compo-
nent analysis (ICA) [3]. ICA was developed for situations in
which extraction of statistically independent componentsfrom
a measured mixture is necessary [4]. These algorithms were
demonstrated in various fields of signal processing including
biomedical informatics, image processing and wireless com-
munications [5]–[7]. In the context of optical communications,
ICA has been mostly considered for polarization demultiplex-
ing applications, disregarding channel induced impairments
such as polarization mode-dispersion (PMD) and polarization
dependent loss (PDL). In [8] it has been shown by Zhanget
al. that ICA solves the converge-to-the-same-source problem
of CMA while maintaining similar polarization tracking capa-
bilities. In [9], Xie et al. have shown that ICA can be used
for blind demultiplexing of 16-QAM polarization multiplexed

signals, and in a recent paper by Johannissonet al. [10] the use
of ICA was proposed for arbitrary constellations with multiple
amplitude levels and was shown to significantly outperform
CMA in terms of convergence rates.

In this paper we extend the work of [8]–[10] by considering
the use of ICA not only for polarization demultiplexing, but
also for the equalization of channel polarization impairments
induced by PMD and PDL. To achieve that we extended
the basic single-tap ICA algorithm of [11] to accommodate
multi-tap operation [12], and integrated the simulation ofthe
multi-tap ICA-equipped receiver with a detailed model of the
link PMD [13] and PDL [14]. The performance of ICA-based
equalization was compared with that of CMA in a variety of
cases. We show that consistently with [10], the ICA algorithm
displays faster convergence. The error-rate performance of
ICA was found to be comparable to that of CMA in the case of
QPSK transmission, but exceeds it considerably in the case of
16-QAM. This behavior has been observed consistently both
in the presence of channel polarization effects as well as in
their absence. The results that we present in what follows
suggest that a multi-tap ICA algorithm is a viable candidate
for replacing CMA, and even CMA combined with decision-
directed least-mean-square (DD-LMS) in constellations higher
than QPSK.

II. T HEORETICAL BACKGROUND

A. Problem Formulation

Throughout our study we assume operation in the linear
regime in which the effect of fiber nonlinearities is negligible.
As is customary in studies of algorithms for mitigating polar-
ization impairments, we assume that chromatic dispersion is
compensated for by a separate module (optical or electronic)
and hence it does not interfere with the process of equal-
ization, which combines the procedures of demultiplexing
and compensation for polarization impairments. The channel
is modeled as consisting of multiple fiber spans separated
by inline optical amplifiers. In each amplifier, unpolarized
white Gaussian noise is added to the propagating signal.
The noise contributions of different amplifiers are statistically
independent and identically distributed. The effect of link PDL
is accounted for by assigning statistically independent random
PDL values to each of the optical amplifiers, jointly producing
the prescribed average PDL value. The statistics of PDL in
the individual sections is discussed in [14], and the statistics
of overall link PDL (in decibels) is nearly Maxwellian, as
discussed in [15]. This way of modeling PDL is consistent
with the fact that in practical systems the PDL of the link
is dominated by the amplifiers’ contributions. The effect of
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PMD is modeled according to [13] by considering the link
as consisting of many statistically independent birefringent
sections, jointly producing the prescribed value of the mean
differential group delay (DGD).

B. The Instantaneous ICA Algorithm

Following the notation in [14], the optical signal at the
receiver can be expressed as

x = T0s+ n (1)

where boldface lowercase symbols denote Jones vectors, and
boldface uppercase symbols denote matrices. The two com-
ponents of the Jones vectors in Eq. (1) represent the two
polarization multiplexed signals. The vectorx represents the
received signal ands is the Jones vector representing the
transmitted signal. The matrixT0 is the channel transfer
matrix accounting for signal propagation through the entire
link. The termn represents the contribution of amplifier noise.
Since the noise is also affected by the presence of PDL, it is
partly polarized, i.e. its coherency function is not proportional
to unity [14]. This property is reflected upon the performance
of the link, although as in the case of CMA, it is not accounted
for in the equalization procedure.

For the sake of simplicity, it is assumed that the
receiverand transmitterare synchronizedin terms of carrier
frequencyandsamplingclock.This is areasonableassumption
as frequency estimation and clock recovery are typically
performed separatelyfrom the equalizer, and are of little
relevanceto the choice of equalizationalgorithm. The ICA
algorithm that we use closely follows the work of Novey
and Adali [11], who have proposed an algorithm designed
specifically for separation of QAM sources. We start by
presenting the single-tap version of this algorithm, whereas
the expansion to multi-tap operation (accounting for inter-
symbol interference effects) will be described in what follows.
In the first stage of the algorithm we use the accumulated
data samples in order to estimate the covariance matrix of
the received Jones vectorΛx = E

[

xx†
]

. We then define

z = Λ
−1/2
x x, to which we refer as the whitened data samples,

and which can be written explicitly as

z = As+ ñ, (2)

where A = Λ
−1/2
x T0 and the noise isñ = Λ

−1/2
x n.

Assuming that the estimation ofΛx is accurate, the covariance
matrix E

[

zz†
]

≃ I, where I is the identity matrix, and in
the limit of high signal-to-noise ratio (SNR)A is a nearly
unitary matrix [16]. Hence, we extract the original signalss by
iteratively searching for a unitary matrixW that approximates
A’s inverse [3]. The ability to limit the search to unitaryW
reduces the number of degrees of freedom, which explains
the motivation for the above described whitening procedure.
While a number of approaches for extractingW have been
considered, we follow the one that relies on the principle
of maximizing the non-Gaussianity of the estimated signal
ŝ = W†z. The underlying idea is that the distribution of
mixed signals is closer to Gaussian than the distribution of
the individual entries, as implied by the central limit theorem.

One way to maximize the non-Gaussianity is by maximizing
the negentropy [17] of̂s, which is the summed entropy of
the components of̂s subtracted from the summed entropy
of the components of a Gaussian random vector of the same
covariance matrix. SinceW is unitary, the covariance matrix
of ŝ is identical to that ofz — namely it is constant and
approximately equal to the identity matrix. Hence, maximizing
the negentropy is equivalent to minimizing the sum of the
component entropies of̂s. While this is a viable procedure,
it requires estimation of the probability density of the various
components in order for their entropy to be calculated. Ways
to circumvent this difficulty have been proposed in the ICA
literature, and in particular Novey and Adali [11] propose
maximization of the following cost-function

JICA (W) =
∑

j=x,y

E [log pa(ŝj)] , (3)

where

pa (x) =
1

M2πσ2

M
∑

i=1

e−
(xR

−m
R
i )

2
+(xI

−m
I
i )

2

2σ2 , (4)

is an auxiliary function, which would be the probability density
function of the samples of an M-QAM signal accompanied
by additive Gaussian noise of varianceσ2. Sincepa (x) is not
the true distribution of the signal,JICA (W) is not rigorously
related to the entropy. Nonetheless, as was claimed in [11],
maximization ofJICA (W) is equivalent to the maximization
of the negentropy. The value ofσ2 is selected so as to
achieve satisfactory convergence of the optimization proce-
dure. Throughout the simulations presented in this Paper the
value ofσ2 was chosen as 0.5 and 0.2 for QPSK and 16-QAM
correspondingly, which were found to produce satisfactory
results [11]. Systematic optimization of the procedure with
respect to the choice ofσ2 has not been performed within
our study. The termsmi are the ideal M-QAM constellation
points and the superscriptsR andI indicate real and imaginary
parts, respectively. Note that the averaging denoted by the
symbolE in Eq. (3) is performed with respect to the received
samples and not with respect to the auxiliary distributionpa.
In all the numerical studies presented in what follows the
iterative search for the optimalW was performed on the
basis of Newton’s method, following [11]. Other numerical
approaches for obtaining theW that maximizesJICA are of
course possible.

C. The Multi-tap ICA Algorithm

We now extend the above described ICA algorithm to
account for dispersive effects resulting from PMD. This prob-
lem falls into the category of non-instantaneous ICA, and a
number of approaches to handling it have been proposed [18],
[19]. Here we adopt a simple approach where the vectors
and matrices are simply expanded in dimension in order to
account for the non-instantaneous effects [3]. In the case of
symbol-spaced sampling, and neglecting the possible effects
of coding, subsequent samples are statistically independent, as
are different polarization components of the launched signal.
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Fig. 1. Block diagram of the simulated system.

In that case, the symbol-separation problem can be reformu-
lated as standard ICA. Specifically in the case of polarization
multiplexing, the two dimensional Jones vectors considered
earlier are replaced by2L-component vectors, whereL is the
expected dispersive delay. Following [3], we define a time-
extended input vector

s̃(t) = [s1(t), ...s1(t− L+ 1), s2(t), ...s2(t− L+ 1)] , (5)

and similarly define

x̃(t) = [x1(t), ...x1(t− L+ 1), x2(t), ...x2(t− L+ 1)] , (6)

where the firstL components are samples of one polarization
channel, whereas the subsequentL components are samples
of the other polarization channel. Using these definitions,the
convolutive mixing model can be written as

x̃(t) = Ãs̃(t), (7)

where Ã is a 2L × 2L matrix containing the FIR filters’
coefficients in a suitable order. Using this representation, we
can apply the formalism described earlier with no changes to
recoverÃ. Hence, in the first stage of the multi-tap algorithm,
the samples of the received polarizations are used to generate
the extended vectors defined in Eq. 6. In the second stage,
the instantaneous ICA algorithm is applied to the extended
vectors, recovering̃A which is then used to recovers1(t)
and s2(t). Since the ICA cost function presented in (3) is
optimized when the QAM symbols are aligned, the phase
shift estimation problem is simplified to the detection ofπ/2
multiples. Moreover, since the cost function is not changed,
the expression for the fixed-point update as presented in [11]
is directly used in the equalizer implementation.

Traditionally, ICA algorithms use symbol-spaced sampling,
assuming zero sampling offset. In the case of fractional sam-
pling with more than one sample per symbol, the assumption
of independence between adjacent samples is unjustified, but
simple adaptations of the above approach can be considered
[20]. The explicit evaluation of fractionally spaced ICA algo-
rithms and their possible advantage in terms of sensitivityto
timing errors will not be considered within the scope of the
present work.

III. N UMERICAL ANALYSIS

A. Comparison with the CMA Algorithm

In what follows we describe the performance of the ICA
equalization algorithm in the case of QPSK (4-QAM) and
16-QAM polarization multiplexed systems. We also show the
results obtained with CMA-based equalization as a reference
[12], [21], [22]. The CMA equalizer in our simulations was
followed by a decision directed least-mean square (DD-LMS)
equalization stage, as is common in most implementations
[22]. The DD-LMS stage was not applied in the ICA equal-
ization results that we present. Unlike the ICA implementa-
tion which used symbol-spaced sampling, we used fractional
sampling in the case of CMA-DD-LMS with 2 samples per
symbol, where the signal was upsampled and filtered using a
raised cosine filter. The number of taps wasL = 5 in the case
of ICA and L = 11 in the case of CMA-DD-LMS, since its
operation rate is twice the symbol rate, so that 4 symbol-delays
are accounted for in both cases. This number was chosen to be
large enough to mitigate the effects of PMD. The cost function
used by the CMA algorithm was

JCMA (W) =
∑

j=x,y

E

[

(

|ŝj |
2
−R2

)2
]

, (8)

whereR2 = E
[

|sj|
4
]

/E
[

|sj |
2
]

with sj denoting the signal
launched into thej-th polarization channel — constant for a
given constellation. The optimal matrixW was found by the
gradient descent method, whose update rule was

Wk+1 = Wk + µ · ∇̂JCMA(Wk)

= Wk + µ · x · e†k, (9)

whereek denotes the equalization error after thek-th iteration
and is given byek = yk(R

2 − |yk|
2) andyk = W†x is the

k-th equalizer output. The step size parameterµ determines
the convergence rate.

Figure 1 shows the block diagrams of the ICA and CMA
equalizers, and the principle setup in which they were used for
performance comparison. We note that the parameters of both
equalization schemes can be optimized in different manners
(emphasizing convergence speed vs. accuracy) and hence the
choice of parameters under which the comparison is conducted
necessarily involves some degree of arbitrariness. We chose
to compare their performance under conditions where the
convergence rate is similar, which we find satisfactory in the
current scope of this work.NotethatsincetheCMA algorithm
is insensitiveto theabsolutephase,aphaserecoveryalgorithm
had to be implementedexternally as illustrated in Fig. 1.
Specific parameters used in the simulations are given in the
section that follows.

B. Simulation Results

To ensure the reliability of our results, we reproduced the
CMA results reported in [21] and [22] in certain configu-
rations, obtaining consistent results. Blind phase estimation
of QAM-modulated signals (which needs to be implemented
externally in the CMA case) is considered a classic problem in
digital communications theory, and many algorithms have been
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Fig. 2. Illustrated constellation diagrams for QPSK modulated signals, using
the parameters described in section III, where each column shows a different
polarization. Top panel: The received constellation. Middle panel: After CMA-
DD-LMS. Bottom panel: After ICA equalization.

suggested for its solution. Here we used the algorithm of Chen
et al. [23], which is standard in many practical implementa-
tions. The step-size [10], [21] in our implementation of the
CMA was set to beµ = 0.001. We also assumed block-type
equalization in both the ICA and CMA cases, meaning that the
equalizer receives the entire set of samples in each iteration,
as opposed to symbol-by-symbol equalization in which the
equalizer’s coefficients update gradually in every sample.
Although typically block-type equalization cannot be used
by real-time equalizer implementations, it is plausible when
the goal is to compare the performance of two equalization
strategies. All simulations were performed withNs = 10
amplified spans and with SNR values of20 dB in the case of
16-QAM and13.5 dB in the case of QPSK. [24] These values
were chosen as they provide a 2 dB margin with respect to a
nominal (back-to-back) bit-error-rate (BER) of10−4 [25], and
also since they allow some comparison with the results in [12],
[21] and [22] which used similar SNR values. Figures 2 and
3 show the received and equalized constellations in the cases

Fig. 3. Illustrated constellation diagrams for 16-QAM modulated signals,
using the parameters described in section III, where each column shows a
different polarization. Top panel: The received constellation. Middle panel:
After CMA-DD-LMS. Bottom panel: After ICA equalization.

of QPSK and 16-QAM, respectively. The top panel in each
of the figures shows the received signal prior to equalization.
The center panel shows the constellation after CMA-DD-LMS
and phase recovery. The third panel shows the constellation
obtained after ICA equalization is applied. As can be seen
in the figures, the ICA and CMA-DD-LMS equalizers both
perform similarly in the case of QPSK, whereas in the 16-
QAM case the ICA approach is seen to have somewhat better
performance. This property is further quantified in Figs. 4–7.
Figure 4 illustrates the convergence rates of the proposed ICA
and the CMA-DD-LMS equalizers. The vertical axis shows
the measured SNR reduction with respect to the nominal
SNR of each scheme, the solid curves were plotted for the
case in which the PMD was 0 and hence they represent
polarization demultiplexing, similarly to [8]–[10]. The dotted
curves were computed in the presence of PMD and PDL,
where equalization is meant to mitigate these phenomena (in
addition to polarization demultiplexing). In all cases theICA
algorithm is seen to converge in a satisfactory manner, slightly
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Fig. 4. The averaged (with respect to PMD and PDL) SNR penaltyas a
function of the number of symbols used for equalization for various combi-
nations of PMD and PDL. The top panel corresponds to QPSK modulation
and nominal SNR of 13.5 dB. The bottom panel corresponds to 16-QAM and
20 dB SNR. The SNR values were chosen to provide 2 dB margin in back
to back with respect to BER of10−4.

faster than CMA. We remark that Fig. 4 was plotted only in
order to verify acceptable convergence of the ICA algorithm
and it is not based on a systematic optimization of parameters
with respect to convergence rate for the two equalization
methods.

In the top panel of Fig. 5 we show the symbol error-rate
(SER) of the 16-QAM system as a function of the SNR
for two sets of PDL and DGD values. These curves were
plotted after averaging the measured penalties with respect
to 150 fiber realizations and their role is to give an idea of
the relative performance of the ICA and CMA schemes. In
the bottom panel of Fig. 5 we show the SNR penalty as a
function of mean DGD for varying PDL values. Here too
the displayed SNR penalty is averaged with respect to fiber
realizations. The advantage of ICA is evident in all cases.
The averaging with respect to fiber realizations in Fig. 5
was performed in order to provide a rough quantitative idea
of the comparison between the ICA and CMA schemes. A
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Fig. 5. Top panel: The SER as a function of SNR in the cases of ICA
and CMA. The SER values in the plot are averaged with respect to PMD
and PDL realizations. Bottom panel: Average SNR penalties as a function of
the mean DGD with SNR= 20 dB. All curves were produced for 16-QAM
transmission and each point in both panels was averaged withrespect to 150
random fiber realizations.

more complete analysis would have to account for the PMD
and PDL statistics, while focusing on the penalties that they
induce with the probabilities associated with system outage
(usually 4 × 10−5). This procedure would however imply
very long computation times and it was not included in the
scope of our study. Nonetheless, in order to give some idea
on the distribution of the penalties, we plot in Figs. 6 and 7
histograms of the SNR-penalties for a few sets of DGD and
PDL values and for a fixed SNR of 13.5 dB, in the case of
QPSK, and 20 dB in the case of 16-QAM. The randomness
of the SNR penalties in the absence of PMD and PDL results
from the randomness of the equalization algorithms in the
presence of noise. In the case of QPSK, the variances in the
SNR penalties are fairly small for both algorithms (of the order
of 0.2 dB), but in the case of 16-QAM modulation the variance
of ICA is noticeably smaller than that of CMA. In the large
PMD and PDL regime, the SNR penalty randomness is mostly
dominated by the randomness of PDL. As the displayed results
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Fig. 6. Histograms of the SNR penalty in the case of QPSK, SNR= 13.5

dB. In the top panel polarization impairments are absent. Inthe bottom panel
the mean DGD is half symbol duration and the average PDL is 3dB.

indicate, the ICA equalizer typically achieves lower SNR
penalties, with and without PMD. As expected, the differences
in typical SNR penalties are larger for 16-QAM modulated
signals than for QPSK modulated signals.

IV. SUMMARY

Although complexity considerations are not a key factor in
this study, a rudimentary comparison follows from estimating
the number of multiplications that needs to be performed in
each iteration. In the case of CMA the number of multi-
plications is known to be of the orderO(NL) [26], where
N is the number of data samples in a block andL is the
filter length. The complexity of CMA is independent of the
size of the constellation. In the case of ICA the number
of multiplications grows linearly with the block lengthN ,
with the filter lengthL and with the number of constellation
pointsM , so that the complexity isO(NLM). In both cases
the dependence onN is linear, which is the most relevant
property in the comparison. The extra factor ofM appearing
in the ICA’s complexity should not be of major significance

Fig. 7. Histograms of the SNR penalty in the case of 16-QAM, SNR= 20

dB. In the top panel polarization impairments are absent. Inthe bottom panel
the mean DGD is half symbol duration and the average PDL is 3dB.

when comparing between the two schemes. Note that the ICA
approach can be optimized for complexity, and as has been
shown in [27] ICA with lower complexity than CMA can in
principle be deployed.The proposedICA algorithmrecovers
theabsoluteopticalphase,therebyin principleeliminatingthe
need for an externalphaseestimationmodule. However an
explicit characterizationof its performancein the presenceof
dynamic(e.g.laser)phase-noiseis deferredfor futurestudies.

To conclude, we proposed and analyzed a blind equalization
scheme that relies on the ICA algorithm. It has been shown to
perform similarly to CMA-DD-LMS equalization in the case
of QPSK transmission and to noticeably outperform it in the
case of 16-QAM. Our studies were conducted while taking
into account the possible presence of PMD and PDL and hence
a non-instantaneous ICA algorithm was used, and shown to
successfully mitigate channel polarization effects. The ICA
algorithm proposed in this paper can be further optimized in
terms of performance, complexity and implementation aspects.
Our results suggest that ICA should be a good candidate
for replacing CMA and even CMA-DD-LMS in higher-than
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QPSK constellations.
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