

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, June 2013

Binary-Level Fault Injection (BLFI) for

AUTOSAR-based Systems

Master of Science Thesis
Computer Systems and Networks Programme

NITHILAN MEENAKSHI KARUNAKARAN

II

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

NITHILAN MEENAKSHI KARUNAKARAN

© NITHILAN MEENAKSHI KARUNAKARAN, June 2013.

Examiner: JOHAN KARLSSON

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 31-772 10 00

Cover:

An illustration of fault injection in AUTOSAR,

3D man with lens © Texelart - Fotolia.com

Department of Computer Science and Engineering

Göteborg, Sweden June 2013

III

ABSTRACT

Safety is a prime requirement for the automotive industry. Increasing use of complex

electrical and electronic systems in vehicles has brought many safety concerns to the industry,

in terms of reliability and robustness of these systems. AUTOSAR is an automotive

development standard which aims to manage the increasing complexity of E/E systems

without affecting their robustness. AUTOSAR facilitates functional safety and promotes a

component-based development of automotive software. ISO 26262 is a functional safety

standard for road vehicles which provides requirements and processes for developing robust

automotive systems. Fault injection and interface testing are robustness assessment methods

recommended by ISO 26262. This thesis proposes a binary-level fault injection technique

called BLFI, which performs robustness testing on AUTOSAR-based systems. The proposed

technique is a wrapping based approach and it can perform black box testing. This technique

is evaluated with a proof-of-concept implementation on an AUTOSAR-based LED blinker

application.

Keywords: AUTOSAR, fault injection, binary wrapping, robustness, ISO 26262

IV

CONTENTS
ABSTRACT ... III

List of Abbreviations ... V

1. INTRODUCTION .. 1

2. RESEARCH METHODOLOGY.. 3

3. BASIC CONCEPTS ... 4
 3.1 Dependability .. 4
 3.2 Overview of AUTOSAR ... 5

 3.2.1 AUTOSAR Layered Architecture .. 5

 3.3 ISO 26262 – Functional Safety ... 6

 3.4 ELF File Format .. 7

4. OVERVIEW OF FAULT INJECTION ... 9
 4.1 Introduction to Fault Injection ... 9

 4.2 Fault Injection Environment .. 9
 4.3 Fault Model ... 10

 4.4 Software Implemented Fault Injection Techniques .. 11
 4.4.1 Binary Level Fault Injection .. 12

 4.4.2 SWIFI in Modern Automotive Systems .. 12

5. METHOD SELECTION ... 14
 5.1 GNU BinUtils .. 14
 5.2 DynInst .. 15

 5.3 Issues with DynInst ... 15

6. PROTOTYPE IMPLEMENTATION .. 17
 6.1 GNU wrap Option ... 17
 6.2 Function Prototype Extraction .. 18

 6.3 Wrapper Generation & Wrapping ... 19
 6.4 Development Environment ... 19

7. EVALUATION ... 21
 7.1 Experimental Setup ... 21

 7.2 Fault Injection ... 22
 7.3 Analysis ... 22

8. DISCUSSION AND FUTURE WORK .. 24

9. CONCLUSION ... 26

REFERENCES ... 27

V

List of Abbreviations

Abbreviation Description

ABI Application Binary Interface

API Application Programming Interface

ASIL Automotive Safety Integrity Level

AUTOSAR AUTomotive Open System Architecture

BFD Binary File Descriptor

BinUtils Binary Utilities

BLFI Binary-Level Fault Injection

BSW Basic Software

CAN Control Area Network

COTS Commercial Off-The-Shelf

DEM Diagnostic Event Manager

DynInst Dynamic Instrumentation

E/E Electrical and Electronic systems

ECU Electronic Control Unit

ELF Executable and Linkable Format

FMECA Failure Mode and Effect and Criticality Analysis

GAS GNU Assembler

GCC GNU Compiler Collection

GDB GNU Debugger

GNU GNU's Not Unix

GOOFI Generic Object-Oriented Fault Injection

IDE Integrated Development Environment

ISO International Organization for Standardization

LED Light Emitting Diode

MinGW Minimalistic GNU for Windows

MSYS Minimalistic System

OEM Original Equipment Manufacturer

OS Operating System

RTE Run-Time Environment

SW-C Software Component

SWIFI Software Implemented Fault Injection

VFB Virtual Function Bus

VI

Acknowledgements

I would like to express heartfelt gratitude to my examiner and supervisor Prof. Johan Karlsson

at Chalmers University of Technology for his tremendous support and expert guidance

throughout my thesis work. I am especially grateful to my supervisors Mafijul Islam and

Johan Haraldsson at Volvo GTT for their valuable time and technical assistance. I would like

to thank Mattias Wallander for making sure I got all the necessary equipment for conducting

my study. I would like to offer my special thanks to Fredrik Bernin for clearing all my

technical doubts patiently. I wish to acknowledge the help provided by Svante Möller and

Mats Olsson. I am thankful to Volvo Group Trucks Technology for making the study

possible. Finally, I wish to thank my parents for their continuous support and encouragement.

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

1

1. INTRODUCTION

Wheeled vehicles were first seen as early as the 4th millennium BC, from then on vehicles

have evolved through ages to automobiles and to present day sophisticated and luxurious cars.

With the current trend of integrating more and more computing technology, vehicles are

becoming computers on wheels.

One of the reasons for increasing use of E/E (Electrical and Electronic) systems in road

vehicles is the performance and capabilities these systems feature. Complex functionalities

that were traditionally implemented in a mechanical way are now being implemented using

E/E systems. Another reason is the increasing use of autonomous driver assistance systems.

One of the main causes for road accidents is human error or negligence. Humans have

physical limitations, for example they cannot foresee a vehicle coming at a road crossing, and

in many critical situations their reaction to the environment is more emotionally driven and

spontaneous, rather than being logical. In this light, computers and E/E systems function

efficiently, or at least it is believed so. Active safety systems and automated driving can save

lives. Thus, the future of automobiles is moving towards automation and the control is

shifting from humans to computers. The underlying assumption that goes unsaid is that these

systems are completely reliable and robust.

There is a natural increase in the complexity of these E/E systems with more complicated and

specific demands. Safety is a non-negotiable requirement in the automotive industry [1].

Increasing usage of complex E/E systems has increased the probability of failures and poses a

threat to the safety requirements. In order to manage this increasing complexity without

affecting the quality and reliability factors, major vehicle manufacturers and suppliers came

up with a common development standard called AUTOSAR (AUTomotive Open System

Architecture) [2]. The main goals of this standard include improving scalability of solutions,

increasing the use of Commercial Off The Shelf (COTS) components, and to facilitate

functional safety.

Functional safety is defined as “absence of unreasonable risk due to hazards caused by

malfunctioning behavior of E/E systems” [3]. Avoidance of faults or else the detection and

handling of faults are the fundamentals of functional safety. ISO 26262 is a functional safety

standard for road vehicles that addresses possible hazards caused by malfunctioning behavior

of E/E systems. ISO 26262 standard recommends using fault injection as a tool for testing and

verifying E/E systems in automobiles [3]. Fault injection is defined as a dependability

validation technique in which faults are deliberately introduced into the target system, under

controlled conditions and the system behavior is studied in the presence of faults [4].

There are many fault injection tools in existence in the research world which perform fault

injection on traditional computer systems. Unfortunately, there are not many commercial tools

available in the market. The need for more commercial tools has risen with the introduction of

AUTOSAR and ISO 26262 standards. Developing a customizable and efficient fault injection

mechanism for AUTOSAR based systems is not straight forward, because of the inherent

complexity and abstractions in these systems [5]. An attempt to develop a guidance

framework for implementing fault injection in AUTOSAR based systems in a customizable

and efficient way is made in [5]. Lanigan and Fuhrman [6] discuss a technique that injects

fault into an AUTOSAR based system using a CANoe simulation environment. As

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

2

AUTOSAR standard is being adopted by many automotive industries, there is a need for

adopting existing fault injection techniques to cover AUTOSAR.

In this master’s thesis, existing fault injection techniques are studied with intent to adapt them

or derive ideas from them, for injecting faults in AUTOSAR. Based on the research a binary

level fault injection technique is proposed which introduces faults in AUTOSAR-based

systems, using a wrapping approach. The proposed fault injection method is validated by

implementing a proof of concept fault injection on an AUTOSAR test application.

The thesis report is organized into nine chapters. Chapter 1 gives an introduction and sets the

background for the thesis. Chapter 2 presents the research methodology adopted in this thesis.

Chapter 3 gives a broad overview about dependability, AUTOSAR, and other technical

concepts used in this thesis. Different fault injection techniques are described in Chapter 4,

and Chapter 5 is dedicated to binary level fault injection tools that were explored in detail.

Implementation of the proposed technique, its evaluation, and analysis are presented in

Chapters 6 and 7. Chapter 8 presents discussion and future work, while final conclusions are

made in Chapter 9.

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

3

2. RESEARCH METHODOLOGY

This master’s thesis is carried out in line with the methodology proposed for research in

information systems by Peffers et al [7]. Peffers divides the research process into six activities

as shown in Figure 1, they are problem analysis & identification, derivation of objectives of

the solution (literature review), design & development, implementation, evaluation, and

communication.

Problem analysis and identification is done in collaboration with the stakeholders and

supervisors. Objectives of the solution are derived from detailed study of relevant literature,

with the goal of identifying techniques and solutions that are applicable to the current context.

The literature for study is selected using the snowball technique. From the knowledge gained

in previous activity, a prototype tool is designed and implemented which addresses the

research problems. Regular feedback from the supervisors and examiner forms the evaluation

activity. The thesis report and oral presentation by the author constitutes the communication

activity. Development, implementation and evaluation activities are iterated until the research

problems are addressed suitably.

This thesis work is undertaken as part of the BeSafe project, at Electrical and Embedded

Systems department, Volvo Group Trucks Technology. BeSafe is a research project funded

by Vinnova which aims to identify benchmark targets, and develop methodology for

performing benchmark testing in the automotive industry. The research partners are, Volvo

AB, Volvo Cars Corporation, QRTECH, Scania AB, Chalmers University of Technology, and

SP Technical Research Institute of Sweden [8].

Figure 1. Research Methodology [7]

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

4

3. BASIC CONCEPTS

This chapter gives a technical overview of different concepts used in this thesis. Section 3.1

discusses about dependability, its attributes and the pathology of failure. Section 3.2 gives an

introduction to AUTOSAR and layered architecture. A broad picture of the ISO 26262

standards for functional safety is given in section 3.3. Section 3.4 gives an introduction to

ELF (Executable and Linkable Format) file format, for better understanding of the proposed

fault injection method since it is based on extracting information from the ELF file.

3.1 Dependability

Before getting into the details of dependability, we would like to clarify the notion of a

‘system’. A system in this thesis can mean different things, from a simple software

component to a complex system with several ECUs (Electronic Control Units) in a vehicle.

Avizienis et al. [9] presents the taxonomy of dependability in an organized fashion.

Dependability is defined as “the ability of a system to avoid service failures that are more

frequent and more severe than is acceptable”. The stress is on trust, a system is said to be

dependable if the user can trust the services provided by the system. Avizienis presents the

following attributes to measure the dependability of a system:

 Availability: readiness for correct service.

 Reliability: continuity of correct service.

 Safety: absence of catastrophic consequences on the user(s) and the environment.

 Integrity: absence of improper system alterations.

 Maintainability: ability to undergo modifications and repairs.

 Confidentiality: absence of unauthorized disclosure of information

Faults, errors, and failures are the threats to dependability. According to Avizienis et al. a

fault is: “the cause, either adjudged or hypothesized, behind an error”, where error is “the part

of total state of a system that may lead to its subsequent failure”. A failure or a service failure

is “an event that occurs when the service delivered by the system deviates from its correct

service”. Faults can occur internally or externally in a system, the presence of an internal fault

or vulnerability is necessary to enable an external fault to induce an error which may result in

subsequent failure(s).

The life-cycle of a system can be divided into two phases, namely the development phase and

the use phase. Faults can be introduced into the system in both these phases, due to many

reasons like physical environment, users of the system, intruders, and development tools. A

fault that can produce an error is called active fault, otherwise it is said to be dormant. An

active fault is either an external fault freshly introduced, or a dormant fault that got activated

because of certain conditions. The latter is defined as fault activation. An error in one part of

a system can lead to errors in other parts, this process is termed as error propagation. When

the error propagates to the system boundary and becomes visible to the environment then it is

becomes a failure. The ways in which a system can fail are called the failure modes of the

system. The genesis and manifestation of faults, errors, and failures and the relationship

between them is called “pathology of failure” and its causality flow is shown in figure 2.

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

5

Figure 2. Error propagation

Dependability is achieved in a four-fold way, namely fault prevention, fault tolerance, fault

removal, and fault forecasting. These are called “the means of dependability”

 Fault prevention means to prevent the fault from occurring or getting introduced.

 Fault tolerance means to avoid service failures in the presence of faults.

 Fault removal is reducing the severity of faults or their frequency of occurrence.

 Fault forecasting is the estimation of the number of faults, their future incidence and

likely consequences.

3.2 Overview of AUTOSAR

AUTOSAR (AUTomotive Open System Architecture) is an open industrial standard for

automotive E/E architectures developed by major automotive OEMs and suppliers [2]. The

main incentives for this standardization are to manage the increasing complexity of E/E

systems, quality and reliability, to improve flexibility and scalability, and to enable

identification of design errors in the early phases of development [2].

The fundamental design concept of AUTOSAR is to separate the application from the

software infrastructure [2]. This is achieved by organizing the architecture as layered and

modular, where each layer abstracts the underlying layer and provides a standardized set of

services (interfaces) to the layer above.

3.2.1 AUTOSAR Layered Architecture

The different layers of the AUTOSAR architecture and how they communicate is described in

figure 3. The basic layers of the architecture are Application layer, RTE (Run Time

Environment), BSW (Basic Software), and the underlying ECU hardware.

The application layer is the topmost layer and it consists of SW-Cs (Software Component)

that encapsulates an application or parts of its functionality. Any communication between

SW-Cs is routed through the underlying RTE layer which provides a standardized interface

for the SW-Cs [11].

RTE implements the VFB (Virtual Function Bus) functionality on a specific ECU. VFB is a

key communication abstraction that hides the underlying layers from the SW-Cs [2]. This

makes the SW-Cs independent of the underlying hardware and they can be relocated to other

ECUs during system configuration. Since the communication requirements of SW-Cs are

dependent on the application, the RTE is generated individually for each ECU satisfying these

requirements [11].

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

6

Figure 3. AUTOSAR layered architecture [2]

BSW layer lies below the RTE layer and it provides necessary services to the application

running above. It contains both standardized and ECU specific components [2]. The earlier

include operating system, I/O and memory management services to the SW-Cs, and

microcontroller abstraction that provides access to the underlying hardware. ECU abstraction

and Complex drivers come under the latter [11]. ECU abstraction provides software interface

to higher-level software layers and complex drivers allow direct access to ECU hardware for

resource critical applications [2].

An AUTOSAR-based application consists of interconnected software components which

communicate through the standardized interfaces provided by AUTOSAR [5].

3.3 ISO 26262 – Functional Safety

ISO 26262 is a functional safety standard which specifies requirements and processes that

need to be adopted to develop safety critical E/E systems in road vehicles. It clearly states that

safety requirements are not confined to the end product, but safety features form an integral

part of each development phase. Functional safety is influenced by all the development phases

like requirements specification, design, implementation, verification and validation. The

standard specifies a set of activities that needs to be performed in each sub phase. It also

describes how to perform these activities, and how to document the findings [3].

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

7

The standard was published in November 2011 and it is intended to be applied for passenger

cars. Trucks and buses are expected to be included in the next revision of the standard in

2014. The standard has ten parts, among them parts 4, 5, and 6 specify necessary activities

and processes for product development at system level, hardware level, and software level

respectively. The standard strongly recommends fault injection and interface testing as

methods for assessing the robustness of E/E systems [3].

ISO 26262 provides a risk-based approach for classifying safety functions, these are called

risk classes or ASILs (Automotive Safety Integrity Levels). ASIL is a measure of the risk

reduction achieved by a safety function in a product. A software component that implements

safety functionality is assigned an ASIL. There are four ASIL classes namely, A, B, C, and D,

where A stands for lowest amount of risk reduction, and D stands for highest amount of risk

reduction. In general a software component with that requires a higher ASIL will have rigid

requirements and recommendations at each development stage [3].

3.4 ELF File Format

ELF is a standard file format for storing object files, executable files, shared libraries etc. It

was developed by Unix system laboratories as a part of the ABI (Application Binary

Interface) [12]. The file format provides two different views of the object file, one used for

program linking is called the Linking view, and the other used for program execution is called

the Execution view. The organisation of an ELF file and its different views can be seen in

figure 4. A general ELF file has a header section, followed by file data. The file data consists

of program header table, section header table, sections, and segments [12].

The ELF header provides information about the organisation of the rest of the file (e.g.

number of program and section headers), it tells how the file should be interpreted, whether it

is an object file, executable or a shared library. Program header table contains information

about the segments in the file, it is present in files that are used to create a executable program

[13]. Segments are specific to executable view they contain information for runtime execution

of the program [12].

Every section in the ELF file has an entry in the section header table, the entry contains

details like the section name, size etc. Sections are specific to the linking view, and they

contain information like instructions, data, symbol table, and relocation information that are

used during linking.

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

8

Figure 4. ELF Format [13]

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

9

4. OVERVIEW OF FAULT INJECTION

This chapter introduces fault injection and presents various fault injection techniques in

existence. We strive to give a picture of the state-of-the-art in fault injection techniques for

AUTOSAR-based systems.

4.1 Introduction to Fault Injection

Initial research on fault injection can be traced back to early 1970s [14] and many fault

injection techniques have emerged since then. Fault injection is defined as “the dependability

validation technique that is based on the realization of the controlled experiments where the

observation of the system behavior in presence of faults, is explicitly induced by the

deliberate introduction of faults into the system” [4]. Fault injection techniques can be used

for fault removal and fault forecasting which play a critical role in improving the robustness

of a system as described in Chapter 3 [4].

Depending on the basis of classification, fault injection techniques can be classified in many

different ways. On the basis of nature of the target system, fault injection techniques can be

classified into software based fault injection and hardware based fault injection [4]. In

software fault injection, the software running on the target system is modified in-order to

change the system state and then study the effects. In hardware fault injection, the fault is

introduced into the target system through specially crafted test hardware (for e.g. flipping a bit

in a system register) [4]. There is another class of Hybrid fault injection techniques that

combines the versatility of software based methods and the accuracy of the hardware based

methods.

From another viewpoint, fault injection techniques can be grouped into execution based and

simulation based [4]. The former method involves deploying of the original system and

introducing faults in it, these techniques can be useful for evaluating the robustness of a target

system which is in final design stage. In the latter, fault injection is performed on a simulation

of the actual system, this technique has a natural drawback that it cannot properly capture all

the system properties [15].

Based on the intrusiveness, fault injection techniques can be classified into invasive and non-

invasive methods [4]. Invasive techniques are those that leave behind a foot print during

testing or they take a toll on the performance of the system, whereas non-invasive methods

have minimum or no effect on the target system.

4.2 Fault Injection Environment

A general fault injection environment consists of the system under test plus a fault injector,

fault library, workload generator, workload library, controller, monitor, data collector, and

data analyzer [15]. The different components and how they interact can be seen in figure 5.

Fault injector is the component which injects fault into the target system, fault values that are

injected into the system are selected from the fault library. Workload generator generates

work for the target system, the workload is stored in the workload library. Controller

controls the fault injection experiment and monitor tracks the execution of the fault injection

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

10

Figure 5. Fault Injection Environment [15]

experiment. Data collector is used to collect trace data for analysis during the experiment.

Data analyzer analyzes the data collected by data collector.

The fault injection tool proposed in this thesis consists of a fault injector and fault library. The

other components like monitor, data collector, and data analyzer are not implemented yet.

4.3 Fault Model

The most critical step for a fault injection experiment is selection of an appropriate fault

model. The fault model is a subset of the real fault space and all the faults that are introduced

into the system during fault injection experiments are extracted from the fault model selected.

Johansson et al classify fault models into data-type based, random or fuzzing based, and bit-

flip fault models [35]. Data-type based fault model is constructed based on the data types used

in programming the target system. It provides a list of interesting fault values for each of the

data types. On the other hand, fuzzing fault model is based on randomness and it provides

random fault values, it doesnot consider the data type. Fault injection can also be brought

about by flipping bits in the registers of the target system, the fault model for this kind of fault

injection is called bit-flip fault model.

Testing the target system with all the possible fault values from the fault model is expensive

and inefficient. Intelligent selection of test values from the fault model is required. Input test

values can be categorized into valid inputs and invalid inputs. N. Kropp [34] shows that it is

necessary to test both these values during robustness testing.

In this thesis we explore two types of input testing, one based on data types and other using

random strings as inputs (fuzzing). Data type based interface testing is used in the Ballista

project [17]. Implementation of different data types vary with different programming

languages and compilers used. Each data type has valid and invalid range of values that needs

to be identified for each system under test. Experience shows that boundary values between

valid and invalid ranges constitute interesting test values [34]. For example, for testing Integer

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

11

inputs, a good test case would be to use {0, 1, -1, MaxInt, MinInt}. For random testing,

random strings are generated and are typecasted to the respective data types to be tested.

4.4 Software Implemented Fault Injection Techniques

In recent years, software faults are the major cause of system outages [4]. A detailed study of

the field data to understand the nature of software faults is made in [18]. It is observed that

software faults are mostly human born and thus are extremely difficult to emulate, especially

with the current trend of COTS (Commercial Off-The-Shelf) development. A natural

consequence of this is more interest in developing software-implemented fault injection tools

[15].

Based on the type of errors introduced, SWIFI (Software Implemented Fault Injection)

techniques attempted till now can be broadly classified into three categories, namely data

errors, interface errors and code changes [16].

Data errors: In this approach fault injection is achieved by data corruption, this is an indirect

approach since data corruption is an effect of the fault and not the fault itself (e.g. corrupting

the contents of a register).

Interface errors: The error is injected at the inter module interfaces in order to test the

robustness of the target module (e.g. passing wrong values as input to functions inside a

module). This way of injecting faults is called Interface testing, and an implementation of this

technique is found in [17], called as ballista tool.

Code changes: In this method the code of the target system is changed (e.g., changing the

destination address of an assignment operation). But this kind of fault injection is not easy

because a clear knowledge of where to introduce the code change is required and the syntactic

correctness of the modified code has to be ensured (e.g. having two branches in a SWITCH

construct).

Two different ways of performing fault injection are identified in line with the different

software access levels [5].They are fault injection at source code level and fault injection at

binary level. Instrumentation of source code is possible when the source code of the system is

accessible (called as white box access), but providing access to the source code is purely the

choice of the supplier and in many cases they don’t (black box access). Fault injection at

binary level is the way to go in the latter case. In some cases, suppliers provide partial access

(e.g. access to the header files and libraries), and fault injection can be attempted at this level.

It is also called as grey box access.

There are some well-established and tested SWIFI tools in literature. FIAT is an automated

real-time fault injection tool that validates and characterizes the dependability of a system

[19]. DOCTOR is a modular software fault injection environment that evaluates the

dependability of a system under generated synthetic workloads, and collect performance and

dependability data [20]. Xception is a commercial fault injection tool used for testing in space

agencies, which is based on target processor’s debugging and performance monitoring

features [14].

A software fault injection tool G-SWFIT is proposed in [18] which injects fault directly into

the binary code by using fault emulation operators. Fault emulation operators are derived

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

12

from a library that contains assembly code pattern and corresponding mutations required to

emulate the software fault for that code pattern. The tool is applicable to standard

architectures like ARM and MIPS [21]. GOOFI is a fault injection tool that performs test port

based fault injection by introducing transient bit flips [22].

4.4.1 Binary Level Fault Injection

There are many binary level fault injecting tools in literature. G-SWFIT is a binary level

SWIFI technique in which fault injection is brought about by changing the object code. The

object code is subjected to pattern analysis to identify code patterns referred as fault operators,

where valid faults can be injected. It falls under the category of software implemented fault

injection techniques brought about by code changing [18]. This technique is dependent on the

hardware platform and compiler of the target system, because programming constructs can be

translated differently, depending on the hardware of the system.

Binary wrapping is another technique which performs instrumentation by manipulating the

symbol table entries. The routine to be traced or instrumented is renamed by making

necessary modifications in the symbol table, a new routine is created which poses as the

original routine by assuming its name. This new routine can be used to perform necessary

instrumentation and then the original routine is called to do the original operation. Limitation

of binary wrapping is that code insertions can be made only at beginning or end of the target

routine without affecting the actual implementation of the routine. A possible improvisation

would be to hijack unresolved external calls by manipulating the external reference section of

the symbol table allowing us to possibly change the actual functionality of the routine [23].

Etch is a binary rewriting tool for WIN32/86 binaries used for measurement and optimization

purposes [24]. A binary extraction technique based on control graphs is proposed in [25],

which involves control flow discovery and function identification. Dyninst [26] is a binary

modification tool used in many research environments, which performs runtime code

patching.

4.4.2 SWIFI in Modern Automotive Systems

The need to develop robust automotive systems has increased with the introduction of

automotive standards like AUTOSAR and ISO 26262. As mentioned in section 3.3, ISO

26262 recommends fault injection for verifying robustness. Performing efficient fault

injection in AUTOSAR-based systems is challenging, due to the fact that AUTOSAR systems

are built using model-based development and automated code generation, and they can have

different software access levels.

Lu et al. propose a fault injection technique for AUTOSAR based systems which performs

fault injection by using the software hooks that are provided by the AUTOSAR OS [27].

Software hooks are entry points or empty routines that are provided for debugging purposes,

these hooks can be placed intelligently inorder to trace the execution and control flow. The

downside of this approach is that it is limited to the OS level and demands white box access

for inserting hooks[5]. The same authors also propose another technique which employs the

software hooks provided by the RTE of the AUTOSAR-based system to trace the calls

between SW-Cs and the RTE at the interface level [28].

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

13

A Fault injection approach at the Basic software level is proposed in [6], they use CANoe

simulation environment, which is a commercial tool providing simulation and evaluation

environment for automotive applications. They also rely on software hooks to achieve fault

injection. A guidance framework for developing fault injection tools for different access

levels in AUTOSAR is proposed in [5]. Pintard et al [36] tries to integrate fault injection

techniques throughout the development process as recommended by ISO 26262. They show

the similarity of Failure Mode and Effect and Criticality Analysis (FMECA) and fault

injection at model level.

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

14

5. METHOD SELECTION

This chapter describes the two methods selected from literature namely, GNU BinUtils and

Dyninst in order to implement fault injection in AUTOSAR-based systems. The prototype

tool proposed in this thesis is based on GNU BinUtils. We also present why we didn’t select

Dyninst.

5.1 GNU BinUtils

GNU is a free operating system, which provides a software collection of applications,

libraries, and developer tools. It is typically used with Linux kernel [29]. GNU BinUtils is a

collection of programming tools that are used for creating and modifying programs at binary

level [30]. Most of them depend on BFD (Binary File Descriptor) library and opcodes library

to perform low-level operations. They are generally used with compilers like GCC and GDB

[10].

The most widely used tools are ‘ld’ which is GNU linker, and ‘as’ which is GNU assembler

also known as GAS [30]. There are other tools like nm, objdump, objcopy, readelf etc. which

are predominantly used in binary world. GNU Binutils come with several options which help

in tailoring these tools for specific scenarios.

nm lists the symbols from the object file (binary file), for each symbol nm shows the symbol

value, symbol type and the symbol name. nm can be used with different options to extract

different information from the object file (e.g. -l option displays the line numbers of the

symbols) [31].

objdump displays information about the object file, the information displayed is controlled

by the options (e.g. -t displays the symbol table entries of the file) [31]. If supplied with an

archive of object files, objdump displays information about each of the object file.

objcopy utility is used to copy one binary file into another. It uses the BFD library to read and

write the object files. The exact behavior of objcopy is controlled by the various command-

line options. It can copy the contents of an object file and write it in another format different

from the source format [31].

readelf displays information about object files in ELF format. It is similar to objdump but it

displays more detailed information and it is independent of the BFD library. It also comes

with various command-line options (e.g. -wi option displays information from the debug

section) [31].

Minimalistic GNU for Windows is called MinGW, it is a minimalistic GNU development

environment ported to windows environment. It provides GNU Binutils and GCC support on

windows for developing native MS-Windows applications. It generally comes with a

command line interpreter called MSYS which can be used as an alternative to Microsoft’s

cmd interpreter [31].

These GNU tools can be used to extract and modify ELF files, they can be tailored together

intelligently to inject faults in AUTOSAR-based systems. The prototype tool developed in

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

15

this thesis relies on GNU BinUtils, the details of the implementation is discussed in next

chapter.

5.2 DynInst

Dyninst is a post-compiler program instrumenting API developed by the paradyn project [37].

It supports run-time code patching, it provides a C++ class library that acts as a machine

independent interface which can be used to create tools and applications that can perform

binary code patching. There are two ways in which binary instrumentation can be realized.

One, additional code can be augmented to the existing program to measure performance or to

do input testing. Two, the control flow of the program can be changed by mutating the

subroutines and function calls [26].

The API is based on two basic abstractions, namely points and snippets. “A point is a location

in a program where additional code can be inserted”. “A snippet is a representation of a bit of

executable code to be inserted into a program at a point,” [26]. To illustrate with example, to

count the number of times a procedure or function is called, the first instruction in the

function body can be used as a point, and a snippet can be used to implement a counter which

performs the actual counting. Two additional abstractions, threads and images are included in

the API in-order to support multi process instrumenting. “A thread refers to a thread of

execution” [26], it can either be a normal process or a lightweight thread. “Image refers to the

static representation of a program on disk,” [26]. Each thread is associated with exactly one

image.

Figure 6 shows how the API is implemented [26]. Mutator is the program which uses the

Dyninst interface and abstractions like points and snippets to instrument the target application

program (Mutatee). The API provides callback functionality to notify the mutator about

interesting events that occur in the application program, for example application process

termination.

Dyninst could be used to perform fault injection in an AUTOSAR-based system. An

AUTOSAR-based system basically consists of an ECU hardware and a software ELF file

which runs on the ECU. The target ELF can be instrumented with snippets and the mutator

program can be used to control and monitor the execution of the target system. The main

problem that could arise is that the ELF runs on a target embedded platform and the mutator

program can either be run from PC or directly on the target platform. Running the mutator on

the target platform can add as additional overhead and may result in memory related

problems. On the other hand controlling the execution from a PC can add timing overhead.

Running the mutator from PC or directly on the target platform is a design related issue.

5.3 Issues with DynInst

Dyninst can perform run-time fault injection in applications. But the tool is not fully mature

for Windows environment. When we tried to build the tool on Windows using Eclipse IDE

and GCC compiler, we ran into several technical problems. The most prominent problem was

“missing libdwarf.h library”, we got reply from the Dyninst support team that the possible

reasons for the error could be incompatible name mangling between the test program and

Dyninst libraries, linker misinterpreting how to handle an exports lib/code in DLL situation,

or incompatible ABIs between GCC C++11x and MSVC C++11x.

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

16

We successfully built Dyninst using Microsoft Visual Studio 2010, and we were able to

extract function prototype information from .exe and .dll files compiled with the Visual C++

compiler. But the tool doesn’t recognize .lib and .elf formats, and files compiled using other

compilers like GCC. Another drawback of Dyninst is that it cannot instrument binary files on

Windows environment, it only can attach to a running process or create a process and attach

to it. So, the executable needs to be up and running for the tool to perform fault injection. In

our case, we needed a tool which can implement fault injection on ELF files running on target

hardware. Getting Dyninst to do this will require building the tool for the target architecture

(PowerPC in our case) on a Windows environment. This was considered out of the scope for

this thesis and we decided to proceed with GNU BinUtils. Dyninst can be a very attractive

area of future work for fault injection in AUTOSAR. There are other APIs like SymtabAPI,

ParseAPI developed by the paradyn project [37] which can also be explored for possibilities

of using them for fault injection.

Figure 6. Dyninst API [26]

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

17

6. PROTOTYPE IMPLEMENTATION

This chapter describes the development environment, and the steps involved in implementing

the Binary-Level Fault Injection (BLFI) tool, henceforth we would refer to the tool as BLFI.

The actual fault injection is brought about by wrapping a function call and passing wrong

values as input to the original function (this is called as interface testing). BLFI relies on the

“wrap” feature provided by the GNU linker to perform the actual wrapping.

6.1 GNU wrap Option

GNU linker ld provides a --wrap option for redirecting function calls [33]. We will

understand the usage of wrap with a simple hello world example. Let us consider a

helloworld.C program as shown in figure 7.

For instance, the “print_number” function can be wrapped using --wrap option by following

steps. We will write a wrapper module called hellowrap.C which contains the wrapper

function named “__wrap_print_number”. The naming convention used for wrapping is

specified by the GNU linker and it has to be followed carefully [33]. Figure 8 shows a simple

code snippet illustrating the implementation.

Now the wrapping can be achieved by compiling the wrapper module (hellowrap.C) together

with the target program (helloworld.C) and supplying --wrap=print_number to the GCC

compiler. When the compiled program is executed any call to “print_number” function will

be redirected to “wrap_print_number” function. And in order to call the original

“print_number” function “real_print_number”should be used. In this way we can modify the

value of parameters passed to “print_number” function and thus perform interface testing.

Figure 7. Code for helloworld.C

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

18

Figure 8. Wrap Module

This --wrap feature of GCC compiler is the core of the proposed BLFI. The prototype tool is

implemented in three major steps namely, function prototype extraction, wrapper generation,

and wrapping.

6.2 Function Prototype Extraction

The AUTOSAR test system is generated from a library and linker script using the Arctic

Studio IDE. The library contains object files for different modules of the AUTOSAR test

system, the linker script contains information about how to map the object files into the

executable. The generated AUTOSAR test system is an ELF file. As discussed in Chapter 3

the resulting ELF file contains an ELF header followed by sections of file data. All the above

steps can be skipped if we directly test on a target ELF file.

Inside the ELF there is a section named .debug which contains information about symbols

used in the ELF file. These symbols can be function names, function parameters, and

variables. The debug section is in DWARF debugging format which is a file format used by

compilers to support source level debugging [32], and it has a nested tree structure. It contains

information about function names, function return type, parameter names, and their types.

GNU BinUtils provides a tool called readelf to dump the contents of the debug section [31].

Figure 9 shows the snapshot of a portion from the debug section. The attribute name

Dw_Tag_subprogram stands for the function name (in this case Rte_DigitalOutput_Set), the

following lines give other details about the function, like code address ranges, whether the

function is external or not, the function’s return type, the file containing the source code etc.

[32]. Dw_Tag_formal_parametemer contains details about the function parameters, parameter

type, location etc. [32].

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

19

Figure 9. Snapshot of debug section

A parser is used to extract this information from the debug section, the output is a text file

containing the prototype of all the functions, in a human readable format.

6.3 Wrapper Generation & Wrapping

The function to be wrapped is selected from the function prototype file (generated in previous

step), the test values to be fed to the function are generated by the fault library, which can be

configured to be either data-type based or fuzzing based. A generator takes the selected

function name and the test values as input and generates the actual wrapper (a C source file).

Then the powerpc-eabi compiler (which is a cross compiler for PowerPC architecture) is used

to link this wrapper with the test AUTOSAR system and produce the wrapped ELF file. The

steps involved can be seen in Figure 10, where the fault injection module performs function

prototype extraction and wrapper generation, and ELF generator module compiles the

wrapper together with the library to generate the wrapped ELF. Table 1 summarizes the whole

tool chain.

6.4 Development Environment

The BLFI is developed on a PC running Microsoft Windows 7 operating system. The function

prototype extractor and wrapper generator are implemented in C# using Microsoft Visual

Studio 2010 development environment. The actual wrapper is generated in C language, and

the wrapping is implemented for a PowerPC target, using powerpc-eabi development tools,

which contains the GCC, GDB, and GNU binary utilities which include the GNU assembler

and linker. The AUTOSAR test system is built using Arctic Studio, which is an Eclipse based

IDE provided by Arccore.

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

20

Figure 10. BLFI Tool Chain

Steps Description

Step 1 Extracting function prototype from target ELF file. If target ELF is not

available it is generated from target library using linker script as shown

in the ELF generator module.

Step 2 Generating wrapper using the input from step 1 and test values from the

fault library.

Step 3 Compiling the wrapper module together with the target library to

produce the wrapped ELF.

Table 1. Steps Involved

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

21

7. EVALUATION

A proof-of-concept implementation of the BLFI is performed on an AUTOSAR-based test

application. In this chapter we describe the details of the experiment and also analyze the

efficiency of the tool.

7.1 Experimental Setup

The proposed method was tested on a Led blinking application. The Led blinking application

is a full-fledged AUTOSAR system built using Arctic Studio IDE supplied by Arccore. It

consists of two software components, namely LedActuatorSWC and SignalMirrorSWC. The

LED actuator sends signals periodically to the LED on the ECU board, it keeps the LED

blinking continuously. The SignalMirror component reads messages from the CAN bus and

send the message back to the CAN bus as a new message with a new message ID. The system

is compiled using powerpc-eabi cross GCC compiler for PowerPC target architecture, the end

result is an ELF file which can be flashed onto an ECU board. The system layout can be seen

in figure 11. The test system is run on an ECU board with MPC5567 series freescale

microprocessor. P&E micro debugger is used to control the application, like setting

breakpoints in the program or resetting the ECU board.

Different possible failure modes for this system are, LED blinking without any effect (error is

masked), LED continuous On, LED continuous Off, LED blinks with different pattern.

Figure 11. Target System

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

22

7.2 Fault Injection

To show the efficacy of the prototype tool, a series of fault injection experiments were

performed on the blinker module (LedActuatorSWC) of the test application. The executable

(ELF) of the original test system is generated using Arctic studio, the parser extracts from the

ELF, function prototypes of all the functions in the test system. Then the function to be

wrapped is selected by the user, in this case the blinker function is selected for wrapping.

Then the wrapper generator generates the wrap_blinker.C module. In this experiment the

wrapper module is tailored intelligently in order to produce a different blink pattern on

wrapping, which is a proof for successful wrapping and fault injection.

Figure 12(a) shows the call pattern before wrapping, figure 12(b) shows after wrapping.

Figure 12(c) shows how the blinking pattern changes because of wrapping. The high in the

square wave signifies LED On and low signifies LED Off. Before wrapping, whenever the

“blinker” function is called the original blinker function gets executed. Whereas after

wrapping, any call to “blinker” is redirected to “wrap_blinker” function, which performs

neccesary changes to the input values and calls the original function inside its implementation

as “real_blinker”. In this way fault injection is achieved.

7.3 Analysis

A series of test runs were performed on the LED actuator module of the target system, passing

different values as input. The values were selected based on the data type of the input

(Unsigned Integer in this case) as discussed in section 4.3. The module was also tested with

random inputs (fuzzing). The results from the tests are presented in Table 2. As we can

observe, in more than 50% of the cases the LED is just lit without blinking. Even though this

is a simple analysis, it successfully demonstrates the functionality of the tool.

BLFI does not modify the source code of the target application, it is compiled together as an

extra module while compiling the application. This method is intrusive in the sense that it

changes the size of the resulting ELF file, but in terms of overhead it doesn’t affect the

performance of the system significantly. It also supports simultaneous wrapping of multiple

functions, so it is possible to see the effect of the fault introduced immediately when the

function returns, or we can study how the fault propagates and transforms as the program

executes, by wrapping another module at different layer of the application.

Value Failure mode

1 Led Off

0 Led On (no blinking)

-1 Led Off until -5, but then Led On for all negative values below -5

UINT_MAX Led Off

UINT_MAX+1 Led On (no blinking)

UINT_MAX-1 Led On (no blinking)

Random Input Led On (no blinking)

Table 2. Test Results

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

23

Figure 12. Wrapping Call Pattern & Effect

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

24

8. DISCUSSION AND FUTURE WORK

In this chapter we discuss the current capabilities and limitations of BLFI, and also suggest

some methods for improving and expanding the tool.

BLFI is dependent on the compiler for wrapping (GCC wrap option). At present the tool

cannot be used on AUTOSAR systems compiled using other compilers. For example, the

Wind River compiler which is used at Volvo GTT does not provide a wrap feature. This

restricts the tool to be applicable only on AUTOSAR systems compiled using GCC compiler.

A positive remark at this point is that Wind River suppliers are taking steps to incorporate the

wrap feature in their future compiler releases. A possible solution for overcoming the

compiler dependency is to replace the target function name entry in the symbol table of the

ELF file with the function name of the wrapper. In this way any call to the target function can

be redirected to the wrapper module. This technique is discussed in [23].

The parser that is implemented as a part this tool extracts function prototype from the debug

section of the target ELF. This extraction is based on pattern matching and regular

expressions provided by the C# language, but it was observed that the format of the debug

section varies a little based on the compiler used for building the AUTOSAR system. So in

order to use the tool with other compilers, the parser needs to be updated depending on the

format of the debug section for that specific compiler. Since the tool is built using GNU

Binary utilities there are some low level dependencies, like libraries that need to be installed

before we can use the tool.

A fault injection tool is complete when it has all the basic components as described in section

4.2. In that sense, we have implemented only the first two components, namely the fault

injector and the fault library, rest of the components are yet to be implemented. A possible

approach to implement the data collector component can be to wrap the functions that are

output interfaces of the target system, and write to a CAN bus, the data that gets passed to the

function. In figure 13 we can see how we can track the values that get passed as input to the

original “print_number” function and also since the original function returns to the wrapper,

it is also possible to capture the return values of the original function. Then the fault injection

effect can be studied by analyzing the collected data.

Figure 13. Capturing Trace Data Inside Wrapper

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

25

AUTOSAR architecture provides facility for storing state information in the form of freeze

frames, through the Diagnostic Event Manager (DEM) [38]. DEM stores events detected by

software components, the diagnostic events are stored in a dedicated memory location called

event memory. So another solution for implementing data collector could be to configure the

DEM in the AUTOSAR test system.

In the implemented tool, we perform two types of fault injection, one based on the data-type

of the function parameters and other by passing random values to the functions (fuzzing). In

data-type based testing the scope was limited only to wrapping functions that have parameters

of basic types (e.g. integer, char). More data types may be introduced in the AUTOSAR

standard in the future. Pointers and strings are interesting candidates for data-type based

testing, for example knowing how a null pointer is handled by the system would be very

useful. BLFI needs to be extended to handle more complex data types like enumerations and

structures. We have implemented the two main components of the fault injection environment

as discussed in section 4.2, namely the fault injector and the fault library. Other components

like monitor, controller, data collector, and data analyzer are left for future work.

BLFI extracts necessary information from the ELF of the AUTOSAR test system, it does not

require any source code access, so it can be used for black box testing of components supplied

by different vendors. Another important feature of BLFI is that it can wrap functions from any

layer of the AUTOSAR layered architecture. It can inject faults by wrapping functions on the

application software layer and simultaneously track the impact by wrapping functions in the

basic software layer or the RTE. BLFI can also be used to inject timing errors in the target

system. The flow of the program can be blocked briefly inside the wrap function, before or

after the wrapped function is called.

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

26

9. CONCLUSION

Increasing usage of E/E systems in vehicles has increased the complexity but reduced the

reliability of safety critical automotive systems. Automotive standards like AUTOSAR and

ISO 26262 specify requirements and methods to build robust systems. Automotive industries

are adapting to these standards and they need a means to verify the robustness of E/E systems.

Fault injection can be a viable technique for assessing the robustness of automotive systems.

We presented in this thesis a binary-level fault injection tool (BLFI) that can perform

robustness testing on AUTOSAR-based systems. BLFI is a wrapper based approach which

relies on the wrap option provided by the GCC compiler. As it requires no source code access

it can be used to perform robustness testing in black box software systems. This can assist

automotive industries to compare and select software supplied by third party vendors. An

important feature of the tool is that it can inject faults into any layer of the AUTOSAR layered

architecture and it can be extended to perform fault tracing in different layers. BLFI was

evaluated on a LED blinker application which is an AUTOSAR-based test system. Faults

were injected into the application layer and basic software layer of the test system, and a

preliminary study on the results was performed. We use data-type based and fuzzing based

fault injection in this tool. These fault injection models are used in other researches and are

found to be good in exposing faults. The wrapping based BLFI can be a promising tool for

verifying robustness in AUTOSAR environment.

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

27

REFERENCES

[1] AUTOSAR, “AUTOSAR Basics,” 2013. [Online]. Available:

http://autosar.org/index.php [Accessed 26 April 2013].

[2] AUTOSAR, “AUTOSAR Technical Overview v2.2.2,” AUTOSAR, Munich, 2011a.

[3] ISO, “International standard ISO 26262 – Road vehicles – Functional safety,” ISO,

Geneva, 2011.

[4] Y. Yangyang and B. W. Johnson, “Fault Injection Techniques – A Perspective on the

State of Research,” in Fault Injection Techniques and Tools for Embedded Systems

Reliability Evaluation, A. Benso, P. Prinetto (Eds.), Frontiers in Electronic Testing,

Vol. 23, pp. 7-39, 2004.

[5] T. Piper, S. Winter et al, “Instrumenting AUTOSAR for dependability assessment: A

guidance framework,” IEEE International Conference on Dependable Systems and

Networks (DSN), 2012.

[6] P. E. Lanigan and T. E. Fuhrman, “Experiences with a CANoe-based Fault Injection

Framework for AUTOSAR,” In Proceedings, IEEE/IFIP International Conference on

Dependable Systems and Networks, vol. IEEE Computer Society, p. 569—574, 2010.

[7] K. Peffers, T. Tuunanen, M. A. Rothenberger and S. Chatterjee, “A Design Science

Research Methodology for Information Systems Research,” Journal of Management

Information Systems, vol. 24, no. 3, pp. 45-78, 2007.

[8] C. T. University, “BeSafe - benchmarking of functional safety,"2011. [Online].

Available: http://www.chalmers.se/safer/EN/projects/pre-crash-safety/associated-

projects/besafe-benchmarking. [Accessed 13 May 2013].

[9] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, “Basic Concepts and

Taxonomy of Dependable and Secure Computing,” IEEE Transactions on Dependable

and Secure Computing, vol. 1, no. 1, pp. 11-33, 2004.

[10] GNU Binutils, Wikipedia, The Free Encyclopedia, [Online]. Available:

http://en.wikipedia.org/wiki/GNU_Binutils. [Accessed 15 April 2013].

[11] H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour, K.

Nishikawa, J.-L. Mate, and T. Scharnhorst, “AUTomotive Open System ARchitecture

- An Industry-Wide Initiative to Manage the Complexity of Emerging Automotive E/E

Architectures,” Convergence International Congress & Exposition On Transportation

Electronics, 2004, pp. 325–332.

[12] Executable and Linkable Format, Wikipedia, The Free Encyclopedia, [Online].

Available: http://en.wikipedia.org/wiki/ Executable_and_Linkable_Format. [Accessed

07 May 2013].

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

28

[13] ELF, “Executable and Linkable Format,” Tool Interface Standards (TIS), Portable

Formats Specification, Version 1.1, Chapter 1, 2.

[14] J.M. Voas and G. McGraw, “Software Fault Injection – Inoculating Programs Against

Errors”, New York: John Wiley & Sons, Inc, pp. 5-6, 1998.

[15] M.-C. Hsueh, T. K. Tsai, R. K. Iyer, “Fault Injection Techniques and Tools,” IEEE

Computer, pp. 75-82, April 1997.

[16] D. Cotroneo, R. Barbosa et al, “Experimental Analysis of Binary-Level Software Fault

Injection in Complex Software,” Dependable Computing Conference (EDCC), 9th

European, pp. 162 -172, 2012.

[17] P. Koopman, K. DeVale, and J. DeVale, “Interface robustness testing: Experiences

and lessons learned from the ballista project," Dependability Benchmarking for

Computer Systems, p. 201, 2008.

[18] J. Durães and H. Madeira, “Emulation of software faults: A field data study and a

practical approach,” IEEE Trans. on Software Engineering, vol. 32, no. 11, pp. 849-

867, 2006.

[19] J. H. Barton, E. W. Czeck, Z. Z. Segall et al, “Fault injection experiments using

FIAT,” IEEE Transactions on Computers, vol. 39, no. 4, pp. 575-582, 1990.

[20] S. Han, H. Rosenberg, and K. Shin, “DOCTOR: An integrated software fault injection

environment,” Technical Report, University of Michigan, 1993.

[21] A. Jin, J.-h. Jiang, “Fault Injection Scheme for Embedded Systems at Machine Code

Level and Verification,” 15th IEEE Pacific Rim International Symposium on

Dependable Computing, 2009.

[22] J. Aidemark, J. Vinter, P. Folkesson, J. Karlsson, “GOOFI: Generic Object-Oriented

Fault Injection Tool,” International Conference on Dependable Systems and

Networks, 2001.

[23] J. Cargille, B. P. Miller, “Binary wrapping: A Technique for Instrumenting Object

Code,” ACM SIGPLAN Notices, 27(6):17 18, June 1992.

[24] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad, and B.

Chen., “Instrumentation and optimization of win32/Intel Executables using Etch,”

Proceedings of the USENIX Windows NT Workshop, pages 1-7, August 1997.

[25] L. C. Harris and B. P. Miller, “Practical analysis of stripped binary code,” SIGARCH

Comput. Archit. News 33(5), 2005.

[26] B. R. Buck and J. Hollingsworth, “An API for Runtime Code Patching,” Journal of

High Performance Computing Applications, 14(4), pp.317-329, 2000.

Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems

29

[27] C. Lu, J.-C. Fabre, and M.-O. Killijian, “An approach for improving Fault-Tolerance

in Automotive Modular Embedded Software,” Proc. of the 17th International

Conference on Real-Time and Network Systems (RTNS), 2009.

[28] C. Lu, J.-C. Fabre, and M.-O. Killijian, “Robustness of modular multilayered software

in the automotive domain: a wrapping-based approach,” Proc. of the 14th IEEE

International Conference on Emerging Technologies & Factory Automation, pp.

1102–1109, 2009.

[29] GNU Operating System, [Online]. Available: http://www.gnu.org/home.html.

[Accessed 15 April 2013].

[30] GNU Binutils, [Online]. Available: http://www.gnu.org/software/binutils. [Accessed

15 April 2013].

[31] MinGW, [Online].Available: http://www.mingw.org/ [Accessed 15 April 2013].

[32] DWARF, “Dwarf Debugging Information Format,” UNIX International, Programming

Languages SIG, Revision: 2.0.0, 1993.

[33] Linux man pages, [Online]. Available: http://linux.die.net/man/. [Accessed 09 May

2013].

[34] N. P. Kropp, P. J. Koopman, and D. P. Siewiorek, “Automated robustness testing of

off-the-shelf software components,” in Fault Tolerant Computing. Digest of Papers.

Twenty-Eighth Annual International Symposium, pp. 230-239, IEEE, 1998.

[35] A. Johansson, N. Suri, and B. Murphy, “On the selection of error model(s) for OS

robustness evaluation,” in Dependable Systems and Networks. DSN’07. 37th Annual

IEEE/IFIP International Conference, pp. 502–511, IEEE, 2007.

[36] L. Pintard, J-C Fabre, K. Kanoun, M. Leeman, and M. Roy, “Fault Injection in the

Automotive Standard ISO 26262: An Initial Approach,” in 14th European Workshop

on Dependable Computing, LNCS 7869, pp. 126-133, 2013.

[37] Dyninst, [online]. Available: http://www.dyninst.org/. [Accessed 02 June 2013].

[38] AUTOSAR DEM, “Specification of Diagnostic Event Manager v4.2.0,” AUTOSAR,

R4.0.

