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ABSTRACT 

The purpose of this Master’s project was to investigate how different finite element 
modelling techniques in three-dimensional structural analysis influenced the 
distribution of shear forces and bending moments for a case study bridge. It was 
examined how the different modelling techniques described the load effect and which 
model that was the most suitable to describe the results of interest. The structure that 
was analysed was a two girder concrete bridge in two spans with an overlaying bridge 
deck slab. The case study bridge was represented by three different FE-models in the 
FE-software Brigade/Plus, where the models were established by different finite 
element types. The first FE-model was created by beam elements representing the 
girders and orthotropic shell elements representing the bridge deck slab, where the 
slab was not assigned any stiffness in longitudinal direction of the bridge. The second 
FE-model was created entirely of isotropic shell elements and the third model was 
established by continuum elements. To do a comprehensive investigation, specific 
load cases of concentrated loads as well as moving vehicle loads were studied, and 
sectional forces in critical sections of the bridge were compared.  

The results from the analysis showed that the FE-model created by beam elements and 
orthotropic shell elements could be used to design the girders longitudinally. 
However, this model could not describe the structural behaviour of the slab. To design 
the bridge deck slab and consider the longitudinal load distribution, the models 
established by isotropic shell elements and continuum elements could be used. If 
output data was of interest in the girders at sections where loads were applied, it was 
to be aware of that shear forces were not described in a correct way at those sections, 
due to how shear forces were calculated and presented by Free Body Cut. In sections 
where no loads were applied, shear forces were described in the girders in a correct 
way and advantageous of the load distribution in the slab were taken into account. The 
results also showed that the FE-model established by continuum elements described a 
greater interaction between the girders when the cantilever was loaded, compared to 
the models established by structural elements. For moving vehicle loads all three FE-
models could be used to design the girders.  

Key words: FE-modelling, Finite element method, FEM, beam elements, shell 
elements, continuum elements, bridge design, load distribution, Free 
Body Cut, Brigade/Plus 
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SAMMANFATTNING 

Syftet med det här examensarbetet är att undersöka hur olika modelleringstekniker 
med finita element påverkar fördelningen av tvärkrafter och moment. Genom en 
fallstudie har en tvåbalksbro med överliggande brobaneplatta studerats. Bron var av 
betong och var i två spann. Tre olika FE-modeller skapades med olika elementtyper i 
programvaran Brigade/Plus. Den första FE-modellen var uppbyggd av balkelement 
som representerade balkarna och ortotropa skalelement som representerade 
brobaneplattan, där plattan inte tilldelades någon styvhet i longitudinell riktning av 
bron. Den andra FE-modellen skapades helt av isotropa skalelement och den tredje 
var uppbyggd av kontinuumelement. Både specifika lastfall med koncentrerade laster 
och lastfall med fordonslaster studerades där snittkrafter i kritiska snitt i bron 
jämfördes. Resultaten från analysen visade att en FE-modell uppbyggd av 
balkelement och ortotropa skalelement kunde användas för att dimensionera balkarna 
longitudinellt. Modellen kunde dock inte beskriva plattans strukturella respons. För att 
beskriva den longitudinella lastspridningen i plattan kunde modellerna som var 
uppbyggda av isotropa skalelement och kontinuumelement användas. För utdata i 
balkarna, i snitt där last var pålagd, var det dock viktigt att vara medveten om att 
tvärkraft inte beskrevs korrekt. Detta var en följd av att Free Body Cut användes för 
att beräkna och presentera snittkrafter. I de obelastade tvärsnitten beskrevs den 
gynnsamma longitudinella spridningen av tvärkraft. Resultaten från modellen 
uppbyggd av kontinuumelement visade också på en bättre samverkan mellan balkarna 
då konsolen belastades, jämfört med FE-modellerna uppbyggda av strukturella 
element. För rörliga fordonslaster kunde alla tre FE-modellerna användas för 
utformning av balkarna.  

 

Nyckelord: FE-modellering, finita elementmetoden, FEM, balkelement, skalelement, 
kontinuumelement, brodesign, lastfördelning, Free Body Cut, 
Brigade/Plus 
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Notations 

 
A  Cross-sectional area [m2] 
E  Young’s Modulus [Pa] 
G  Shear modulus [Pa] 
I  Moment of inertia [m4] 
M  Bending moment [Nm] 
q  Load [N/m] 

t  Torque load [Nm/m] 
V  Shear force [N] 
w  Deflection [m] 

ε  Strain [-] 

γ  Shear angle [-] 

κ  Curvature [1/m] 
ϕ  Angle [º] 

ν Poisson’s ratio [-] 
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1 Introduction 

In the process from idea to a physical bridge structure there is an iterative process in 
design. To achieve an optimal performance, effective modelling techniques are very 
important. In the last years there have been stricter requirements and 
recommendations in Swedish bridge design and application of the finite element 
method (FEM) has been increasingly used. The complexity of mathematics in FE-
modelling places great demands on improved knowledge of the engineers. 

 

1.1 Background 

Bridge design was traditionally performed by two-dimensional analyses where the 
longitudinal and transversal structural behaviour were treated separately. Assumptions 
regarding the interaction between the two directions were then introduced and 
sectional forces to be used in design were calculated. 

Stricter requirements from the Swedish Transport Administration (Trafikverket) 
regarding design of bridges, where the structural behaviour should be described in its 
entirety, has led to that the traditional way of analysing bridges is no longer sufficient. 
Accordingly, a three-dimensional finite element model needs to be established and 
analysed to account for the complex interaction between longitudinal and transversal 
direction. 

The theory of finite elements has been developed mathematically for a long time, but 
before the computer capacity was sufficient the advanced mathematics in finite 
element methods was not applicable in the engineering analysis. As the computer 
capacity has increased, the finite element method has started to be used more for 
practical engineering problems. 

A finite element model where the structural parts are assigned linear elastic material 
properties can describe the structural behaviour in the ultimate limit state. FE-models 
are complex and it can be difficult to establish a model which represents the real 
structural behaviour in good way. Results obtained from a FE-model can be hard to 
interpret and the output data needs in some cases to be post-processed before it is 
useful in design. Introducing assumptions and simplifications of the structural 
behaviour can lead to less complicated models which still represent a realistic 
structural response. This places great demands on understanding the structural 
behaviour since absence of knowledge of structural response easily can result in 
implemented errors and oversights in the finite element model. 

The finite element method consists of advanced theories and mathematical models. 
Different ways of modelling can be used to describe the same structural problem. 
Which method that suits best can vary depending on the results of interest. 

 

1.2 Purpose and objectives 

The purpose of this Master’s project was to investigate if simplified FE-models, 
established by structural elements, could be used to describe the structural response 
sufficiently well compared to a fully three-dimensional FE-model based on continuum 
mechanics. The project aimed to investigate if there were differences of the 
distribution of shear forces and bending moments in the bridge deck slab depending 
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on which modelling technique that was used and if the FE-models were able to 
describe the interaction between the girders. 

The intention was to state advantages and disadvantages with the different modelling 
techniques and come to a conclusion when the FE-models preferably can be used in 
design. 

 

1.3 Scope 

The structure modelled in the case study was a two span concrete bridge which was 
continuous over the mid support. This is a bridge type that is common for new bridges 
in Sweden, and therefore relevant for the investigation. The bridge was simplified to 
only consist of two longitudinal girders with an overlaying bridge deck slab and was 
symmetric both in longitudinal and transversal direction. 

The bridge was modelled by three different modelling techniques. The first model was 
established by beam and shell elements where beam elements represented the girders 
and shell elements represented the bridge deck slab. The shell elements were assigned 
stiffness in transversal direction only of the bridge. In the second model the entire 
bridge was established by isotropic shell elements and the last model was established 
by continuum elements. 

The analysis was performed for situations where the bridge was subjected to specific 
load cases of concentrated loads and moving vehicle loads. The material response was 
assumed to be linear elastic and the sectional forces of interest, used in the 
comparison of the modelling techniques, were shear forces and bending moments. 

 

1.4 Method 

In this Master’s project three different FE-models were established using different 
modelling techniques. The FE-models were representing a case study bridge and an 
investigation of how different modelling techniques describe variation and 
distribution of shear forces and bending moments in the bridge deck slab and along 
the girders was made.  

The FE-models were established and analysed in Brigade/Plus 5.1-1, a FE-software 
for bridge engineering based on the more general FE-software Abaqus. Two of the 
FE-models that were used in the analysis were established by structural elements 
where simplifications of the structural behaviour and geometry were made and the 
third was established by continuum elements based on continuum mechanics. The 
first FE-model was chosen to be established by beam elements representing the 
girders and shell elements representing the bridge deck slab, where the slab was not 
assigned any stiffness in longitudinal direction of the bridge. The second FE-model 
was established entirely of shell elements where the slab was assigned isotropic 
material properties to take the longitudinal distribution in the bridge deck slab into 
account. The third model was established by continuum elements without any 
simplifications of the mathematical model and the geometry of the case study bridge. 

In order to understand the underlying theories and assumptions in FE-software, a 
literature study of FE-theory and FE-modelling was performed. To ensure that the 
different theories represented the different structural parts included in the three FE-
models satisfactorily, the reliability and reasonableness of the established models 
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were verified both analytically and visually. Also element based tie constraints, used 
to constrain the beam elements and shell elements in model 1, were studied.   

To state general conclusions about the advantages and disadvantages of using 
different modelling techniques two specific load cases of concentrated loads, applied 
on the bridge deck slab between the girders and on the cantilever, were studied. The 
distribution of loads in the bridge deck slab was compared between the FE-models 
and the interaction between the girders was investigated. The conclusions made from 
the specific load cases was thereafter used to interpret the results from an FE-analysis 
of moving vehicle loads from Load model 1, defined in Eurocode 1-2 Chapter 4.3.2 
(CEN, 2003).  
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2 Finite element method 

The Swedish Transport Administration (Trafikverket) has made stricter requirements 
regarding design of bridges. The new requirements were stated in TK Bro 2009 where 
the calculation model for system analysis should, with respect to loads, geometry and 
deformations, describe the structural behaviour in its entirety (Trafikverket1, 2011). 
Modelling of bridges in two dimensions is therefore no longer sufficient in order to 
meet the new requirements, unless a clear two-dimensional structural behaviour can 
be distinguished. The consequence of the new requirements is that a three-
dimensional FE-model needs to be established and analysed in order to capture the 
interaction between the structural behaviour in longitudinal and transversal direction 
(Trafikverket2, 2011). 

In this chapter the background and important theories of the finite element method are 
presented and element types used in this Master’s project are shortly explained.  

 

2.1 Background and history of FEM 

The theory of finite elements has been developed mathematically for a long time, but 
before the computer capacity was sufficient the advanced mathematics in finite 
element methods was not applicable in engineering analysis. The last decades, the 
computer capacity that was needed in order to perform FE-analyses of complex 
structures, were only available at research departments and large companies 
(Rombach, 2011). As the computers capacities have increased, the finite element 
method has become a standard tool in structural engineering design. 

In finite element modelling the problem domain is divided into elements where each 
element is given different properties depending of which structural behaviour that 
should be represented (Liu & Quek, 2003). The finite element modelling is used to 
establish a system of differential equations. The equation system is solved by a 
numerical method that gives an approximate solution. With mesh refinement the 
number of elements will increase and the approximate solution converges to become 
close to the exact solution (Rugarli, 2010). 

Bridge design has traditionally been performed by two-dimensional analyses where 
the transversal behaviour of the structure was analysed separately and taken into 
account in the longitudinal direction. The interaction of load distribution in transversal 
and longitudinal direction was thereby assumed by the structural engineer. In this 
way, a two-dimensional analysis may disguise important effects from the transversal 
direction. In recent years, three-dimensional linear elastic FE-modelling has been 
commonly used in bridge design (Davidson, 2003). A three-dimensional FE-analysis 
is preferably used with respect to accuracy in modelling and to represent a global 
structural behaviour, where the interaction between longitudinal and transverse 
direction is included. 

Advanced finite element software is a good engineering tool to describe a structural 
behaviour. In order to establish a model which represents the real structural behaviour 
in a good way, the knowledge of the underlying theories and assumptions is essential.  
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2.2 Mathematical models for structural behaviour 

To be able to create reliable FE-models with reasonable structural behaviours, the 
theories of beams and plates are studied. A plate can carry load in two directions in 
contrast to a beam that only can carry load in one direction. Despite this, plates are 
generalisations of beams and contain the beam theory. 

Both beam and plate theories solve equilibrium conditions based on a predetermined 
assumption of the deformations. It is important to be aware of the different 
simplifications in the different theories before they are applied and used in a FE-
model. If the simplifications are considered not to describe the behaviour of a 
structure sufficiently well continuum mechanics could advantageously be used. In 
continuum mechanics the equilibrium conditions are solved based on strain-
displacement relations, and do not introduce assumptions of the deformations. The 
theory is thereby considered to reflect the real structural behaviour. 

To determine whether the simplifications in beam and plate theory are valid to be 
introduced in the FE-models, the theories will be explained more in detail in this 
chapter. 

 

2.2.1 Beam theory 

There are two well known beam theories used in FE-modelling, Euler-Bernoulli beam 
theory and Timoshenko beam theory. Euler-Bernoulli beam theory is based on the 
fundamental assumption of plane sections normal to the beam axis remains plane and 
normal to the beam axis in the deformed shape (Ottosen & Petersson, 1992). This 
theory is applicable for slender beams. 

Deriving the differential equation for a three dimensional beam structure, based on the 
equilibrium conditions, kinematic and constitutive relations will give raise to a 
complex set of equations to be solved (Ottosen & Petersson, 1992). Therefore it is 
favourable to introduce assumptions that simplify the problem formulation 
significantly, provided that the geometry of the structure is such that it is possible. 

Beams are good examples of structures where assumptions about the structural 
behaviour can be made, which simplify the problem formulation of beam bending. 
The physical structure is three-dimensional but since beams are dominated by 
extension in the axial plane it becomes possible to make simplifications about the 
structural deformations (Ottosen & Petersson, 1992).  

When a beam with an arbitrary cross-sectional area is loaded with a distributed load in 
vertical direction the deflections will occur in the same direction only, see Figure 2.1. 
This holds true if the cross-section of the beam is symmetric to its vertical plane. In 
Euler-Bernoulli beam theory these assumptions are made in order to simplify the 
problem formulation from a three-dimensional problem to two dimensions. The 
complex set of equations is then reduced. 
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z 

x 

q(x) 

 
 

Figure 2.1  A beam with an arbitrary cross-section, loaded with a distributed load, 

adapted from Ottosen och Petersson (1992). 

The equilibrium conditions of a beam problem can be stated by looking at an 
infinitesimal part of the beam, see Figure 2.2. In the horizontal direction, it is assumed 
that no normal forces will occur. This hold true for deflections that are small 
compared to the depth of the beam, when the supports are constrained 
(Blaauwendraad, 2010). Therefore the horizontal equilibrium only states the 
assumption of no resulting forces.  

dx 

M 

V+dV 

M+dM 

q (dx) 

V 

 
 

Figure 2.2 Equilibrium conditions for an infinitesimally part of a beam loaded 

vertically, adapted from Ottosen och Petersson (1992). 

This means that, if looking at the equilibrium conditions for the element, the 
equilibrium in vertical direction and moment equilibrium will be of interest. The 
vertical equilibrium gives the expression in equation 2-1 and 2-2.  

 

��� − � + �� + ��� = 0  (2-1)    

    

��

�

= −�   (2-2)  

     

Moment equilibrium from the same infinitesimal element is presented in equation  
2-3. If ��� and �� are infinitesimally the relation that the derivative of the moment 
force is equal to the shear force can be stated, see equation 2-4. 

 

� + ���
�


�
+ �� + ����� − �� + ��� = 0 (2-3)                        

 

��

�

= �  (2-4)  
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The kinematic relation in beam theory is, as mentions earlier, based on Euler-
Bernoulli beam theory of plane sections remain plane and normal to the beam axis 
even after deformation. To clarify this, two points at the cross-sectional plane of a 
beam in the unloaded state is defined, and the longitudinal axis of the beam is the 
normal to the plane between these points, see Figure 2.3 (a). The theory implies that 
the position of the two points will change when the beam is loaded, but both the 
distance between the points and the normal to the plane will remain, see  
Figure 2.3 (b).  

b) 

a) 

dw 
dx 

w 

 
 

Figure 2.3  Deformation of a beam when the section rotates, using Euler-Bernoulli 

beam theory; (a) undeformed beam and (b) deformed beam. Adapted 

from Ottosen och Petersson (1992). 

The kinematic relations together with the equilibrium conditions give the equations of 
strain and shear strain, see equation 2-5 and 2-6.  

 

�

 = −�
���

�
�
 (2-5)  

     

��� = ��� = �
� = ��� = �
� = 0 (2-6) 

 

The last assumption that is needed to formulate the differential equation for a beam, 
based on Euler-Bernoulli beam theory, is a constitutive relation where a small slope of 
the curvature is assumed. The curvature can then be expressed as the second 
derivative of the deflection, see equation 2-7, and the moment is then given by the 
expression in equation 2-8.  

 

� =
���

�
�
 (2-7)  

  

� = −���  (2-8)  
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When all needed relations are known, the differential equation for Euler-Bernoulli 
beams can be derived. Combining equation 2-1to 2-8, the differential equation can be 
stated, see equation 2-9.  

 

��
���

�
�
− � = 0                                                                                                (2-9) 

 

From the differential equation, based on Euler-Bernoulli beam theory, all forces of 
interest can be derived when the deflection has been determined. By linear elasticity 
and consideration of Hook’s law, also stresses can be calculated.  

Even though the beam theory involves a number of assumptions it still reflects the 
real structural behaviour of beams satisfactorily (Ottosen & Petersson, 1992). It 
should be remembered that the approximation of no shear strain vertically along the 
beam means that the theory only consider flexural deformations. As long as the beam 
holds a high ratio between length and height of the beam cross-section, the real shear 
strain is generally small and Euler-Bernoulli beam theory is generally a good 
approximation.  

Timoshenko’s beam theory is a more general way of explaining the beam theory, 
where the angular change between the normal of the deformed plane and the beam 
axis is taken into account. The theory keeps the assumption that the sections remain 
plane, but not necessarily normal to the beams axis in the deformed position (Rugarli, 
2010). In Timoshenko beam theory, both flexural and shear deformations are taken 
into account, when the beam deforms due to loading. Therefore Timoshenko’s beam 
theory is advantageously applied on non-slender beams to account for a more correct 
structural behaviour (Blaauwendraad, 2010).  

 

2.2.2 Plate theory 

A plate is a collective term for systems in which forces are transferred in two 
directions. Plates are distinguished in two main categories depending on if they are 
loaded in their plane or loaded out of plane (Blaauwendraad, 2010). A slab is loaded 
out of plane and does not show any membrane like behaviour (Rugarli, 2010). 

Two commonly used plate theories that imply out of plane loading are Kirchhoff plate 
theory and Mindlin-Reissner plate theory. Similar in both theories is that the three-
dimensional plate is reduced to a two-dimensional problem.  

Since the plate structure generally is a structure with a small thickness, it is dominated 
by its in plane dimensions. The set of equations can therefore be reduced by its 
coordinate in the direction of the plate thickness (Ottosen & Petersson, 1992). To be 
able to do this, it must be assumed that all dependent variables are independent of the 
thickness and that all external loads only are applied in the normal direction to the 
plane of the plate (Liu & Quek, 2003). By these assumptions the plate become a two 
dimensional structure and since the dominating dimensions are in the plane there is 
also an assumption of a plane stress situation. Plane stress implies that the stresses 
over the height of the plate is very small and can be neglected (Ottosen & Petersson, 
1992). 

As in Euler-Bernoulli beam theory, Kirchhoff plate theory assumes that shear 
deformations are small and can be neglected. The assumption of plane sections remain 
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plane after deformation, and the beam axis is kept normal to the deformed plane is 
also made in Kirchhoff plate theory. These are assumptions that simplify the problem 
and give good results for sufficiently thin plates (Rugarli, 2010).  

As in beam theory it is assumed that no normal forces will occur due to constrained 
supports. This hold true for small deflections compared to the depth of the plate 
(Blaauwendraad, 2010). According to this assumption, the structure will have no 
strains in the longitudinal direction. This means that application of load, instead will 
lead to a rotation of the cross-section. 

Introducing these assumptions of the structural behaviour of plates, the problem 
formulations can be simplified significantly. By looking at a small element of a plate, 
see Figure 2.4, the kinematic, constitutive and equilibrium relations can be derived.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V V+dV 

dx 

q 

 V V 

dx 

M+dM M 

t 

π/2-γ 

φ 

dω/dx 

φ φ+ dx 
dx 
dφ 

dφ 
dx 

dx κdx= 

a) b) 

c) d) 

 

Figure 2.4 Equilibrium conditions for a infinitesimally plate. (a) Vertical 

equilibrium, (b) moment equilibrium, (c) shear deformation and (d) 

bending deformation. Adapted from Blaauwendraad (2010). 

The kinematic relation is given from Figure 2.4 (c) and (d) where the shear angle and 
curvature can be derived respectively, see equation 2-10 and 2-11. 

 

� = � +
��

�

    (2-10)  

                             

� =
��

�

   (2-11) 

 

The constitutive relation of bending and shear is then given by equation 2-12 and  
2-13, respectively. The equilibrium conditions is derived from Figure 2.4 (a) that 
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gives the vertical equilibrium and (b) that gives the moment equilibrium, see equation 
2-14 and 2-15, respectively.  

 

� = ���  (2-12)  

     

� =  !�               (2-13)                            
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�
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The relations from equation 2-10 to 2-15, together with the assumption that shear 
deformations are negligible results in the governing differential equation for 
Kirchhoff plates, see equation 2-16.  
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'()
" (2-16)    

 

The analogy between beam and plate theory can be seen in the first term in the 
differential equation. The term relates to the load bearing capacity in longitudinal 
direction which can be seen to correspond to the beam action. The main difference 
between plate and beam theory is that the differential equation for plates must include 
the fact that plates carry load in two directions. This can be seen in the third term in 
the expression of the differential equation. The second term treats the torsion capacity. 
As in the case for beams, sectional forces and moments can be derived when the 
deflection has been determined since the differential equation is based on the field 
relations. By linear elasticity and by Hook’s law also stresses can be calculated. 

Mindlin-Reissner plate theory is an extension of Kirchhoff plate theory which takes 
shear deformations into account. Mindlin-Reissner plate theory is more generalized 
where the assumption of plane sections remain plane after deformation is kept but not 
necessarily the normal of the plane (Rugarli, 2010). In thick plates, shear 
deformations occur to a greater extent than in thin plates, hence Mindlin-Reissner 
plate theory is preferably used. 

 

2.3 Finite element types  

In finite element modelling there are different finite element types with various 
structural properties. Often more than one element type can be used to describe the 
same structural problem. All finite element types can be assigned different shapes and 
different number of nodes and the formulation of the mathematical model can be 
chosen to, in the best way, represent the real structural behaviour (Simulia, 2009). In 
each integration point in the finite elements, the material response is evaluated. 
Elements with one node in each corner of the elements are called first order elements 
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and use linear interpolation. Elements with one intermediate node between the corner 
nodes are called second order elements and use quadratic interpolation.  

If the structural model is analysed by inappropriate element types it does not matter 
how detailed the model is made or how dense the mesh is; the analysis is wrongly 
stated and the FE-model does not reflect the real problem in a good way. 

The most common element types are from the categories truss, beam, shell and 
continuum finite elements where the last three element types are used in this Master’s 
project and described below.  

 

2.3.1 Beam elements 

The most common beam theory is Euler-Bernoulli beam theory, described in Section 
2.2.1. The solid beam elements available in Brigade/Plus are based on Euler-Bernoulli 
beam theory. It is important to evaluate if the simplifications in the theory is correct to 
use for a certain problem or if other finite elements that take the deformation in the 
plane into account may be used (Simulia, 2009). 

Beam elements can be two-dimensional or three-dimensional and are represented by 
lines in FE-modelling (Liu & Quek, 2003). The deformation of a beam is only in the 
direction perpendicular to its longitudinal axis. Every node in a three-dimensional 
beam element consists of six degrees of freedoms, i.e. three translations and three 
rotations. 

Beam elements are generally easy to use in FE-modelling and are therefore relatively 
inexpensive in terms of computational cost, compared to other finite element types. 
The beam elements are good at describing bending and bending failure but cannot 
describe shear cracking or shear failure. 

The differential equation for beam theory is derived from the field equations and 
therefore all sectional forces of interest can be found when the deflection is known, 
see 2.2.1. This leads to the advantage that sectional forces easily can be calculated at 
any arbitrary node, without post-processing, when the FE-analysis has been 
performed. 

 

2.3.2 Shell elements 

Plate structures, e.g. slabs, carry load in its plane and distribute the load in both 
longitudinal and transversal direction to the supports. In FE-modelling, plate 
structures are often treated as special cases of shell structures analysed by shell 
elements (Liu & Quek, 2003). 

Shell elements are often formulated by a combination of two-dimensional plane stress 
solid elements and plate elements, where the plate theory is implemented, but can also 
be formulated by defining shape functions (Liu & Quek, 2003). A difference between 
plate elements and shell elements is that shell elements can describe membrane forces 
in the plane of the shell, but plate elements cannot.  

In Brigade/Plus different plate theories are implemented, (Simulia, 2009). If a four 
node, quadrilateral stress-displacement shell element is used, these elements allow for 
transverse shear deformations. For this element type, plate theory for thick plates is 
used when the shell thickness increases, see Kirchhoff plate theory in Section 2.2.2, 
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and thin plate theory is used when the shell thickness decreases, see Mindlin-Reissner 
plate theory in Section 2.2.2.  

A common shape of the shell elements, often used in modelling, is rectangular shape 
but other shapes are also available in many FE-software. A mesh of rectangular 
elements should have regular element sides and it should be sought to have elements 
with perpendicular corners. 

Shell elements are represented by surfaces in FE-modelling and they have six degrees 
of freedom in every node, three rotations and three translations (Simulia, 2009). They 
are good at describe bending and bending failure and can to some extent describe in-
plane shear. 

Analogous to beam elements and beam theory the differential equation for plate 
theory is derived from the field equations, see Section 2.2.2. All sectional forces of 
interest can therefore be calculated from the system of differential equations when the 
deflection is known. 

 

2.3.3 Continuum elements  

Typical continuum problems are structures with thick members loaded generically in 
space, but all kind of structures can be modelled by continuum elements  
(Rugarli, 2010). Beam and shell structures are often modelled by structural elements 
where introduced assumptions about the behaviour are made. This leads to an 
approximated mathematical problem where the structural behaviour is described in a 
line or surface respectively (Liu & Quek, 2003). In reality beams and plates are 
volumes.  

The continuum elements are based on a strain-displacement relation in continua, and 
no assumptions of the structural behaviour are introduced. For that reason a structure, 
modelled by continuum elements, is in general more accurate with regard to the 
structural behaviour, compared to a structure modelled by structural elements 
(Simulia, 2009). 

Continuum elements are represented by volumes and have three degrees of freedom in 
every node, translation in three directions (Rugarli, 2010). When establish a model, 
using continuum elements, the interpretation of results becomes more difficult 
compared to e.g. a model established by beam or shell elements. Only deflection and 
stresses are easily obtained from the FE-analysis. This creates a need of post-
processing of results before any sectional forces can be found and used in design. 

Continuum elements can have combinations of solid and structural properties and also 
have many different shapes. Some continuum elements are more or less sensitive to 
distortions, for example triangular and tetrahedral elements (Simulia, 2009). In order 
to get a reliable model, the element shape should be structured with regular element 
sides. Hexahedral elements, for example, should have perpendicular corners  
(Rugarli, 2010). 

A disadvantage with continuum elements is that it is in general difficult to create a 
mesh without distortions. A relatively dense mesh is needed to describe the structural 
behaviour satisfactorily. Generally, high order elements are good to use if the problem 
induces high bending. If first order elements are used, many elements must be used 
over the height of the cross-section to describe bending in a good way. For these 
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reasons it is more expensive in terms of computational cost to use continuum elements 
compared to structural elements (Liu & Quek, 2003).  

Another disadvantage with a model established by continuum elements is that it is 
difficult to predict critical sections. This is because it is not possible to visualise 
contour plots of sectional forces of the FE-model.  

   

2.4 Interaction by tie constraints 

When different element types are used within a FE-model, the different structural 
parts must be connected to each other to create an interactive structure. In 
Brigade/Plus this can be made in different ways and in this Master’s project surface 
based tie constraints have been used. 

A surface based tie constraint, is a stiff links between nodes, where all active degrees 
of freedom within the constrained nodes will be equal (Simulia, 2009). Tie constraints 
are good to use to interact different element types or to avoid mesh disturbance if the 
mesh density is rapidly changed within the model. 

To interact two structural parts in a FE-model, a master surface and a slave surface 
have to be defined. The surfaces can be chosen as element-based or node-based, see 
Figure 2.5 and Figure 2.6, respectively. For an element-based master surface stiff 
links, orthogonal to the master surface, are coupled to the nodes in the slave surface 
within a position tolerance. The position tolerance is either chosen as the default 
value, where the tolerance is selected by the software and is based on the distance 
between the surfaces, or specified by the user. The tied region can also be chosen to a 
set of nodes. For a node-based master surface the slave nodes are directly constrained 
to the closest master node, if the slave nodes are within the tolerance distance from 
the master node. 

 

Position tolerance 

Element-based master surface 

Slave surface 

1 
2 

 

Figure 2.5 Surface-based master surface constrained to the slave surface within 

the position tolerance, adapted from (Simulia, 2009). 

 

Position tolerance 

Node-based master surface 

Slave surface 

 

Figure 2.6 Node-based master surface constrained to the slave surface within the 

position tolerance, adapted from (Simulia, 2009). 
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For both element-based and node-based master surfaces, slave nodes are not 
constrained unless they are within the tolerance region or included in the set to be 
constrained. Unconstrained nodes will remain unconstrained during the FE-simulation 
and will not interact with the master surface as a part of the constraint. 

In Brigade/Plus, there are two formulations of how the slave nodes projects on the 
master surface, surface-to-surface formulation and node-to-surface formulation. The 
position tolerance criterion is dependent on which constraint formulation that is used, 
why surface restrictions need to be taken into account. For a surface-to-surface 
formulation all nodes to an element edge that is within the position tolerance will be 
constrained, i.e. both node number 1 and 2 in Figure 2.5 will be constrained. For a 
node-to-surface formulation only the nodes within the position tolerance will be 
constrained, i.e. node number 1 in Figure 2.5  will not be constrained. 

Due to how the node-to-surface approach formulates the projection from the slave 
surface to the master surface, the node-to-surface formulation is somewhat more 
efficient for complex surfaces than the surface-to-surface formulation. In addition to 
that there are generally more master nodes per tie constraint in a surface-to-surface 
formulation compared to a node-to-surface formulation. For that reason the surface-
to-surface formulation may be more costly to use in terms of computational cost. The 
same occurs if the mesh of the master surface is very fine compared to the slave 
surface and could also affect the accuracy of the solution. The master surface should 
be chosen as the surface with the coarser mesh for the best accuracy of the solution.  

 

2.5 Free Body Cut 

Free Body Cut is a feature in Brigade/Plus which calculates sectional forces  
for FE-models established by continuum elements or shell elements  
(Scanscot Technology AB, 2013). Because continuum elements only are able to 
describe deformations and stresses, Free Body Cuts can be created to get e.g. shear 
forces and bending moments in specific sections. Free Body Cut can also be used to 
distribute loads over a specific width. For that reason, sectional forces are 
advantageously calculated by the feature Free Body Cut to get sectional forces to be 
used in design when load effects is to be distributed over certain widths. 

The great advantage with Free Body Cut is that it can be used in analyses where the 
combined load effects from different load cases are of interest. In design of bridge 
structures there are often many load combinations and load positions to take into 
account and each load position is analysed separately. Without the use of Free Body 

Cut in FE-models established by continuum elements, the sectional forces for the 
maximum stress component are calculated for each point individually. The 
contribution from all load cases and load positions obtained by linear analysis are then 
combined and superimposed, see Figure 2.7. A disadvantage with this is that the 
sectional forces may be calculated from stress distributions that are not possible to 
arise from any of the examined load cases. For this reason continuum elements faced 
many constraints and the process of finding sectional forces was not useful in design.  
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Figure 2.7 Calculation of sectional forces by post-processing. The stresses were 

here summarised independently for each point and the design profile 

for sectional forces became often unrealistic.   

With the Free Body Cut feature in Brigade/Plus it is possible to perform analyses for 
FE-models established by continuum elements when the effect from load 
combinations is to be examined. Instead of combining the maximum possible stress 
components for all load combinations into sectional forces, Free Body Cut calculates 
the sectional forces for each load case separately, see Figure 2.8. Thereafter the 
sectional forces are summarised to get the design sectional forces for the chosen 
section. 
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Figure 2.8 Calculation of sectional forces by Free Body Cut.  
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The first step to generate a Free Body Cut is to select a surface containing the element 
sides where sectional forces are to be calculated, see Figure 2.9. For the selected 
surface, a normal vector must be defined to expose one of the sides of the surface. 
Sectional forces are then calculated at that surface.  

 

 

y 

x 

z 

 
 

Figure 2.9  A Free Body Cut surface in a continuum. 

For the chosen surface, Free Body Cut calculates the gravity centre of the surface by 
the weighted centre of gravity for all element sides in the cut. Thereafter the average 
normal vectors for all element sides within the surface are summarised to calculate the 
resultant normal direction. If the normal direction for any individual element within 
the Free Body Cut surface deviate more than 60 degrees from the chosen normal 
vector for the surface, these element surfaces will be excluded in the calculations. The 
choice of element shape is for that reason of importance and a structured mesh is 
important to not generate an unreliable result. Therefore, irregular and polygonal 
elements should be avoided. 

Sectional forces are calculated in the global coordinate system by integrating the 
internal nodal forces around the calculated gravity centre. Finally, the sectional forces 
can be transformed to the local coordinate system of the cut.  

If the sectional forces are of interest along a section, a number of Free Body Cut 
surfaces can be defined along that section, see Figure 2.10. Sectional forces are then 
calculated for each Free Body Cut surface.  

 

y 

x 

z 

 
 

Figure 2.10 Free Body Cut surface defined along a section where sectional forces 

are of interest.   
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2.6 Output data in Brigade/Plus 

To create output data in Brigade/Plus, to present in the graphs, two different methods 
can be used. The most common method is to use the feature path and the other 
method is to use Free Body Cut.  

One difference between the methods is about the workability of the creation of the 
output data. Paths are created in the mesh after the FE-simulation. Critical sections 
can then first be obtained by looking at the deformed shape of the FE-model and by 
looking at contour plots of the results of interest. Free Body Cuts, on other hand, must 
be created before the FE-simulation, and it is therefore not possible to study the 
deformed shape or the contour plots to find critical sections. 

The two methods also differ in how results are presented. With the feature path, the 
output data is collected at the element nodes. The nodal values are average values, 
interpolated from the integration points of the elements sharing the same node. An 
exception of this is when a path is created at sections where the discontinuities of the 
results exceed the chosen tolerance. At these nodes, two values are given, namely the 
average value from the element pair from each side of the discontinuity. Figure 2.11 
show a mesh where a path is created between node 1 and 8. For a shear force 
variation, node 3 is given an interpolated nodal value from the integration points in 
the four elements sharing node 3. Node 6, on other hand, is given two values of the 
shear force due to a higher discontinuity; one value from the integration points in the 
elements on the left side of the node and one value from the integration points in the 
elements on the right side, see the striped contour and the shaded grey contour, 
respectively, in Figure 2.11. 

 

1 

P 

Integration point 

2 3 4 5 6 7 8 

V 

 

Figure 2.11 Schematic sketch of a path in a mesh, where the sectional forces in the 

nodes are interpolated from the integration points.   

Free Body Cut does not define the shear forces and bending moments as nodal values. 
As explained in Section 2.5, a normal vector to the Free Body Cut surface has to be 
defined to expose one of the sides of the surface. Sectional forces are then calculated 
from the internal nodal forces from the elements of the exposed surface and are then 
collected in the gravity centre of the surface, see Figure 2.12. 
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Figure 2.12 Schematic sketch of Free Body Cuts in a mesh, where the sectional 

forces in the Free Body Cut surfaces are calculated from the internal 

element forces.   
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3 Modelling process  

Establishing a FE-model that sufficiently well represents the real structural behaviour 
requires several steps in the process of FE-modelling. Some steps require that the 
structural engineer does choices of the model and other steps are performed by the 
software. It is important that the engineer is aware of and understand how the different 
steps affect the outcome. 

In this chapter an introduction of the finite element modelling process will be 
presented and common errors and pitfalls when establishing a FE-model will be 
disclosed. The chapter will also present different modelling techniques of the case 
study bridge and discuss the advantages and disadvantages of these. 

 

3.1 Modelling process 

FE-modelling is an iterative process where a FE-model is assigned geometry, 
structural properties and material properties to describe a physical problem 
satisfactorily, see Figure 3.1. It is important to decide what degree of accuracy that is 
needed and adjust the simplifications according to this. How comprehensive a model 
has to be depends on the parameters sought and the mathematical model can in some 
cases be simplified where details and complex geometries preferably are omitted. In 
other cases, a comprehensive mathematical model with a fully three-dimensional 
formulation with complex effects is needed (Bathe, 1996). By increasing the 
complexity gradually and verify the results, the risk of implementing errors in the 
model is minimized. A more complex FE-model describes the real structural 
behaviour more accurate than a less complex FE-model, but the cost of generating the 
FE-model will increase. 

The modelling process starts by formulating the physical structure that is going to be 
analysed into a mathematical problem (Liu & Quek, 2003). The structural engineer 
simplifies the problem and introduces assumptions of the structural complexity so that 
the structural behaviour is idealised. The force pattern can then be easily understood 
and calculated (Rombach, 2011). The engineer needs to be aware of that all choices 
made in FE-modelling affect the governing differential equation and consequently 
also the structural behaviour of the model. 

Liu and Quek (2003) advocate that the general rule of thumb is, that when a structure 
can be assumed within acceptable tolerances to be simplified into a one-dimensional 
or two-dimensional structure, this should always be done. The creation of a one-
dimensional or two-dimensional FE-model is much easier and efficient. 

One step in the selection of structural behaviour of the mathematical model is to 
assign proper element types to the model. Different parts could be assigned different 
structural properties depending on which behaviour they should represent. From this, 
a finite element solution of the mathematical model is made and a governing 
differential equation is formulated by the software. The solution will be approximate 
but with an increasing number of equations, i.e. an increasing number of elements, the 
solution will converge to the correct solution (Liu & Quek, 2003). 

In the interpretation of the results, it could be detected if the model needs to be 
improved or supplemented. If the element types or chosen mesh density do not give 
reasonable structural behaviour, parameters need to be changed or refinements of the 
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mesh need to be made until the model represents the physical problem sufficiently 
well. 

 

 

Figure 3.1 The finite element modelling process, adapted from Bathe (1996).   
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3.2 Misstatements in establishment of a FE-model 

Improved computer capacity and lowered hardware cost has led to a development 
where FE-software have been increasingly used in practical engineering problems. 
The improved FE-software and more user friendly interfaces have led to that the 
calculations in the FE-software are often trusted without a critical approach. This has 
led to a misuse where wrongly established FE-models and associated errors in results 
have been used in design (Rombach, 2011). 

To make use of the software correctly it is important that the user understands the 
theories that are implemented in the FE-software and have good knowledge about 
structural behaviour. If there are gaps in the knowledge, it is difficult to establish a 
reliable FE-model (Blaauwendraad, 2010). 

Blaauwendraad (2010) describes a study made in Netherlands where eighteen 
structural engineers were asked to solve the same structural problem using six 
different FE-codes. The obtained results showed a substantial difference depending on 
modelling technique, even if the same FE-software was used. The presented results 
were so widely spread that it could not be coupled as the results from the same given 
structural problem. Studies like these illustrate the difficulties of FE-modelling and 
demonstrate the importance of having good knowledge of the FE-theory. 

As mentioned before, everywhere the structural engineer chooses input data, 
structural theories and mathematical formulations, simplifications and assumptions 
are introduced to the FE-model. In all choices, possible errors could arise and be 
implemented into the model (Liu & Quek, 2003). Typical sources of errors in result 
are from the simplifications made in the mathematical models and choice of element 
types (Rugarli, 2010). Rugarli (2010) points out that in reality, there are neither any 
Kirchhoff or Mindlin-Reissner plates, only generic solids.  

 

3.3 Modelling techniques for the case study bridge 

The case study bridge to be modelled and analysed in this Master’s project is a two 
girder concrete bridge with an overlaying bridge deck slab. Establishing a FE-model 
of the structure can be made in several ways using different modelling techniques. 
Models established differently have their respective advantages and disadvantages and 
which model that is best suited for the problem depends on the parameters sought in 
the analysis. For that reason, it is good to consider the results of interest in advance. 

The bridge structure can be modelled using only one element type for the whole 
structure or it can be modelled by subdividing the structure and use different element 
types for the different structural parts. Figure 3.2 shows some possible alternatives of 
how to establish the FE-model for the case study bridge. 
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Figure 3.2 Different possible modelling techniques for structural analysis of the 

case study bridge; (a) two-dimensional models where the transversal 

and longitudinal behaviour are studied separately, (b) a beam grillage 

FE-model, (c) three-dimensional FE-model with orthotropic shell 

elements overlapping the flange of the beam elements, (d) three-

dimensional FE-model with isotropic shell elements above the beam 

elements, (e) three-dimensional FE-model with isotropic shell elements 

and beam elements, (f) three-dimensional FE-model with isotropic 

shell elements for both the bridge deck slab and girders, (g) three-

dimensional FE-model with isotropic shell elements for both the bridge 

deck slab and girders and (h) three-dimensional FE-model with 

continuum elements for the entire bridge structure. 

The model in Figure 3.2 (a) is the traditional way of analysing a bridge structure in 
two dimensions, where the transversal and longitudinal effects are studied separately. 
Initially a transversal model is used where the effects from different traffic load 
positions in transversal direction of the bridge are studied and lane factors are 
calculated. The lane factors describe the magnitude of the load acting on the girders 
and are later used in the load definition of the model that describes the longitudinal 
structural behaviour. 

If a structure shows a clear two-dimensional behaviour with simple load positions and 
load combinations this model is relatively simple to use. If a clear three-dimensional 
behaviour may be expected much work is needed to formulate the lane factors for all 
conceivable load positions. 

A disadvantage with this model is that it does not account for the true longitudinal 
load distribution in the slab. The lane factor includes for a load distribution 
longitudinally in the slab, but it is assumed by the engineer. 

In (b), both the girders and the slab are represented by beam elements.  This model is a 
beam grillage model where the transversal beam elements, that represent the bridge 
deck slab, are spanning over the longitudinal girders. 
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The beam grillage model is easy to establish and is good to use if sectional forces 
longitudinally along the girders and transversally in the slab are of interest. However, 
the model is conservative and simplifies the load distribution in the bridge deck slab to 
only transfer load transversally. For that reason it is not possible to use the model 
when designing the bridge deck slab longitudinally.  

In the model in (c), the bridge deck slab is represented by shell elements assigned 
orthotropic properties without any stiffness in longitudinal direction of the bridge. The 
orthotropic properties make the model comparable with model (b).  

The girders are represented by beam elements with equivalent cross-sectional 
properties equal to the girders of the analysed bridge structure. The slab is placed 
within the flange of the girders. 

This model separates the load distribution so that the slab transfers the load 
transversally and the girders longitudinally. In this way of modelling, sectional forces 
to be used in design longitudinally are obtained for the girders, see Figure 3.3. 

                σ  

 

 
Figure 3.3 A bridge deck slab modelled with orthotropic shell elements that only 

have stiffness in transversal direction of the bridge deck slab, and a 

girder modelled with beam elements with a T-cross-section.  

The model in (d) as well as the model in (e) is established by beam and shell elements. 
The shell elements are given isotropic properties and therefore the bridge deck slab 
can be designed, where the longitudinal distribution of load is taken into account. 
However, there will be difficulties in the interpretation of results since the model 
consist of two structural parts which transfer loads in longitudinal direction, modelled 
by two different element types. Both parts will obtain separate resultant sectional 
forces longitudinally, and if they are used directly in design it will lead to a situation 
where both the slab and the girders will be given top and bottom reinforcement, see 
Figure 3.4. In order to get a reasonable reinforcement layout in the bridge cross-
section the output data need to be post-processed before it can be used in design. If 
load combinations are used in design, the post-processing might be very 
comprehensive and may increase the workload so that it will not be practically 
possible. 
 

               σ 

 

 
Figure 3.4 A bridge deck slab modelled with isotropic shell elements and a girder 

modelled with beam elements with rectangular cross-section. The 

reinforcement layout shows the disadvantage of modelling with 

isotropic shell elements.     
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In the model in (f) as well as the model in (g) the entire structure is established by 
shell elements. The difference between the two models is how the girders are 
represented. In (f) the girders are represented by vertical shell elements with 
thickness assigned to represent the width of the girders. The horizontal elements over 
the section of the girders could be stiffened so that no deformations over the girders 
occur, but it is to be aware of how this affects the structural behaviour. In the model 
in (g), the depth of the girders is represented by using an offset. The centre of gravity 
is then placed in the gravity centre of the offset of the shell. 

When using these models, where shell elements are used to represent the whole 
structure, it is important to ensure that the FE-software uses appropriate plate theory. 
By increasing the plate thickness to represent the girders it may be necessary to 
evaluate which plate theory that holds true for the structural behaviour. For 
structures with high and narrow girders, the way of modelling in (f) is more suitable. 
If the girders are low and wide, model (g) is preferable to use to represent the 
girders. 

In both models, the shell elements are assigned isotropic properties. By this, these 
models can be used to design the bridge deck slab where the longitudinal load 
distribution is taken into account. The models can also be used to design the girders 
longitudinally. 

The last model (h) is established entirely of continuum elements where the structural 
geometry can be created without simplifications. The elements are assigned isotropic 
material properties and the model can therefore be used to design the bridge deck 
slab and take the longitudinal load distribution into account. The model can also be 
used to design the girders longitudinally. 
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4 The case study bridge 

The bridge structure, which was modelled with different modelling techniques, was a 
two girder concrete bridge with an overlaying bridge deck slab. The structural 
response of a physical bridge cannot be predicted exactly since all the properties of 
the real bridge cannot be described in the FE-model. Nevertheless, it is important to 
define the FE-models to reflect the sought structural behaviour in the best way. 

Initially, this chapter describes the structure that was chosen to be analysed with its 
geometry and material properties. The different loading conditions that were 
accounted for in the analysis are presented. Thereafter the different FE-models that 
were established are explained. 

 

4.1 Geometry and material properties 

The geometry of the structure was selected with the intention to represent a typical 
modern Swedish road bridge. The bridge was chosen to be 50 meters long with two 
equally long spans, see Figure 4.1. The bridge was continuous over the mid support. 

          25m                                        25m 

 

Figure 4.1 Schematic sketch of the bridge structure longitudinally. 

To obtain a comprehensive structural system and to limit the risk of implementation 
of errors in the FE-models, the geometry of the structure was simplified. The bridge 
was chosen to be straight without curvature or inclination and to be symmetric both in 
longitudinal and transversal direction of the bridge. 

The bridge consisted of two longitudinal girders with an overlaying bridge deck slab 
and the cross-section was chosen to be constant along the bridge. The slab was given 
the width of 12 meters and a height of 300 mm with decreasing height over the 
cantilevering part, see Figure 4.2. The girders were 2.6 meters wide at the bottom, 
with increasing width over the height of the girders.  
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Figure 4.2 Schematic sketch of the cross-section of the bridge structure. 
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The cross-section was homogeneous and consisted of concrete with linear elastic 
material response. However, it is good to keep in mind that reinforced concrete is a 
highly non-linear material in reality, due to cracking of the concrete and yielding of 
reinforcement. 

The Young’s modulus of the concrete was chosen to 34 GPa and the shear modulus to 
17 GPa. Poisson’s ratio was chosen to 0.2. 

To simplify the model, the supports, i.e. columns and bearings, were not included in 
the model. Instead, boundary conditions were applied to prevent translations and 
rotations significant for columns with bearings and transversal beams between the 
longitudinal girders. 

To be able to examine the load effect globally, when different loads were acting on 
the bridge deck slab, the whole bridge structure was modelled without the use of 
symmetry. 

 

4.2 Load conditions 

The structural behaviour of the bridge was examined by subjecting the bridge deck 
slab to two specific load cases of concentrated loads. To study the load distribution 
longitudinally in the bridge deck slab and to investigate the interaction of the girders, 
a concentrated load was subjected to one node on the slab between the girders, see 
Figure 4.3. The loading point was deliberately chosen to be closer to one of the 
girders. 

In the second study, the load was applied on an area of 0.5x0.25 m2 on the edge of the 
cantilever, see Figure 4.4. This loading point was chosen to examine if there would be 
an interaction between the girders. Both loads had a magnitude of 360 kN, which was 
intended to represent an typical vehicle load for road bridges. 

25 25 

3.25 5.
38

 

[m] 

 

Figure 4.3 Position of the concentrated load applied on the bridge deck slab 

between the girders.  
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Figure 4.4 Position of the load applied on the edge of the cantilever. 

To compare sectional forces to be used in design, traffic loads adopted from Eurocode 
were also studied. In Brigade/Plus different design codes from Eurocode 1-2 chapter 
4.3.2 (CEN, 2003) that takes vehicle loads into account, are implemented and can be 
used together with the Swedish national parameters defined in TRVFS 2011:12, 
(Scanscot Technology AB, 2013). With the function of live loads, in Brigade/Plus, it 
is possible to subject the structure with traffic loads to examine the structural 
response. From this, sectional forces determined with the different modelling 
techniques, can be compared. 

For the live load function in Brigade/Plus a traffic area needs to be defined where the 
traffic load can be imposed. The whole bridge deck was chosen as the live load area 
and longitudinal traffic loading lines were created, see Figure 4.5. The traffic lines 
represent the centre of the vehicles. 

1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

[m] 

Traffic 
loading lines 

 

Figure 4.5  The bridge with chosen traffic area (shaded grey area) and traffic 

loading lines. The spacing between the lines was 1 meter.  

The design code defines a traffic lane width to be 3 meters and, consequently, the first 
traffic loading line shall be created 1.5 meters from the edge of the cantilever 
(Scanscot Technology AB, 2013). The spacing between the traffic lines was chosen to 
1 meter, see Figure 4.5. Brigade/Plus automatically controls the load positions in 
order to avoid overlapping of vehicles.  

Choosing a step length for the traffic loading lines defines the distance for the 
vehicles to move between each calculation. A smaller step gives more possible load 
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positions longitudinally for the traffic but does also influence the computational time. 
In this Master’s project it was chosen to have a step length of 1.2 meters, which also is 
defined as the distance between two wheel axles. 

Eurocode defines four different load models, LM1-4, which contains different types 
of vehicles. In addition to these, the Swedish transport Administration defines national 
load models and all of these are possible to import in Brigade/Plus. In this Master’s 
project only LM1 was imported in the FE-analyses. LM1 often governs the design 
values and gives comprehensive and adequate results where design values for traffic 
loads can be compared. This load model consists of lane surface loads with, general 
moving surface load and vehicle loads according to Figure 4.6. 

 

General moving surface load 
2.5 kN/m²  

Lane surface load 
6.3 kN/m² 
2.5 kN/m  

Vehicle load 
bogie pressure 270 kN 
bogie pressure 180 kN  

 

 

 

 

Figure 4.6 Example of one load combination of load model 1 acting on the   

  bridge. 

 

4.3  Bridge model 1 – Beam/Shell model 

Bridge model 1 was established by structural elements, where beam elements were 
used to represent the girders and orthotropic shell elements without any stiffness in 
longitudinal direction of the bridge were used to represent the bridge deck slab, see 
Figure 4.7. The advantages and disadvantages with this model were explained in 
Section 3.3 with corresponding Figure 3.2 (c). This model was chosen in this Master’s 
project in order to represent a FE-model established by structural elements with 
simplified load distribution. The model is similar to the beam grillage model, see 
Figure 3.2 (b), but the bridge deck slab is easier to model with a shell compared to 
transversal beams.  

 

 

Figure 4.7 Three-dimensional model with orthotropic shell elements overlapping 

the flange of the beam elements.  
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As mentioned in Section 2.3.1, Euler-Bernoulli beam theory is implemented in the 
beam elements available in Brigade/Plus. Since the girders were slender in the chosen 
bridge structure, beam elements could advantageously be used in the FE-model.    

The bridge deck slab was dominated by its in-plane dimensions and was subjected 
with load normal to its plane. Therefore, shell elements were a good approximation in 
the FE-model and represented the transversal distribution of load sufficiently well. 
Depending on the thickness of the slab, in relation to its length and width, 
Brigade/Plus uses the favourable plate theory, see Section 2.3.2. 

In Brigade/Plus it is possible to choose among different standard cross-sectional 
shapes for the beam elements and the cross-sectional properties will be represented as 
properties of the element in the gravity centre of the cross-section. The girder cross-
section of the case study bridge had varying width over the girders which meant that 
none of the predefined cross-sections in Brigade/Plus matched perfectly. In order to 
assign the cross-sectional properties of the girders to the beam elements in a correct 
way, an equivalent T-cross-section was used, see Figure 4.9 (a). The properties of the 
equivalent cross-section that were chosen to fit the cross-sectional properties of the 
case study bridge, were the gravity centre in vertical direction and the moment of 
inertia for bending longitudinally. In addition, the cross-sectional height was kept. 
The beam elements were placed in the gravity centre of the girders. 

The overlaying slab was modelled with a shell having the same geometry as the 
bridge deck slab of the case study bridge, see Figure 4.9 (b). In Brigade/Plus the 
orthotropic elasticity properties were defined in a stiffness matrix, see Figure 4.8. The 
intention with the FE-model was to separate the longitudinal and transversal 
distribution of load for the different structural parts. Therefore, the stiffness 
parameters which account for the stiffness in transversal direction of the bridge were 
assigned to the stiffness matrix only. Due to no contraction or elongation of the slab, 
perpendicular to the load, Poisson’s ratio was set to zero.  

 

 

�1�1−ν23 ν32�ϒ �1�ν21 +ν31 ν23 �ϒ = �2�ν12 +ν32 ν13 �ϒ �1�ν31 +ν21ν32 �ϒ = �3�ν13 +ν12 ν23 �ϒ 0 0 0 

0 �2�1−ν13 ν31�ϒ �2�ν32 +ν12ν31 �ϒ = �3�ν23 +ν21 ν13 �ϒ 0 0 0 

0 0 �3�1−ν12 ν21 �ϒ 0 0 0 

0 0 0  12  0 0 

0 0 0 0  13  0 

0 0 0 0 0  23  

where, ϒ =
$

$%-.�-�.%-�)-)�%-).-.)%�-�.-)�-.)
 

 

Figure 4.8  Stiffness matrix defining the orthotropic material properties in 

Brigade/Plus, adapted from (Simulia, 2009). 
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Figure 4.9 Beam elements with equivalent T-cross-section and a slab of shell 

elements overlapping the flange of the girders; (a) the moment of 

inertia for bending longitudinally of the case study bridge was 

represented by beam elements and (b) the stiffness in the transversal 

direction of the bridge deck slab for the case study bridge was 

represented by the shell elements assigned transversal stiffness only.  

To represent the real structural behaviour, the beam elements were coupled with stiff 
tie constraints to the nodes in the shell that were located above the girders, see  
Figure 4.10. The beam elements were chosen as the master surface and the surface 
was chosen as node-based. Consequently the node-to-node formulation was used, see 
Section 2.4. The position tolerance of the tied region was chosen so that the width of 
the shell that was constrained was 2.6 meters. The width of the girders was relatively 
big compared to the length of the span and therefore the constrained width does have 
significant influence of the load effect. In order to understand the effect of the tie 
constraints an additional investigation was made, see Appendix A. 

 

Master surface-beam elements 

Position tolerance 

Slave surface-shell elements 

Tie constraint 

2600 mm 2600 mm 

 

Figure 4.10 Stiff couplings between the beam elements and shell elements by tie 

constraints. A width of 2600 mm in the shell was constrained.   

When choosing boundary conditions it is important to consider which structural 
behaviour the model should represent. The boundary conditions were applied to single 
nodes of the beam elements. This was a good way of representing the boundary 
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conditions since the area supported by the bearings was relatively small compared to 
the length of the span. The rotation about the longitudinal axis and translation in 
vertical direction were constrained at all nodes that represented the supports. In 
addition to this, translations in the longitudinal and transversal direction were 
prevented at the mid supports, see Figure 4.11. 

 

Figure 4.11  Boundary conditions in model 1.  

The element type that was used to represent the girders was a three dimensional first 
order beam element. In each element there was one integration point and the size of 
the mesh was chosen 0.5 meter. For the bridge deck slab, a first order shell element 
with reduced integration was used. In each shell element there was one integration 
point in the centre of the element. The shape of the shell was quadratic and the 
element sides were 0.0625 meter. 

The model was verified and a convergence study was made to confirm that the FE-
model showed the expected structural behaviour, see Appendix A. 

 

4.4 Bridge model 2 – Shell model   

Bridge model 2 was established by isotropic shell elements, see Figure 4.12. The 
advantages and disadvantages with the model were explained in Section 3.3 with 
corresponding Figure 3.2 (g). This model was chosen to represent one of the three  
FE-models to be compared in this Mater’s project since the model is established by 
structural elements where both the longitudinal and transversal load distribution in the 
bridge deck slab is taken into account. 

As explained in Section 4.3 the bridge deck slab can advantageously be modelled by 
shell elements since shell elements represent the structural behaviour of the slab in a 
good way. The shell elements, in model 2, were chosen to have a rectangular shape 
and the mesh was regular.  

A certain width of the shell in the region of the girders was given a thickness by offset 
of the shell elements. The height of the girders in the model was the same as in the 
case study bridge; hence the width was adjusted to simulate an equivalent stiffness of 
the girders for bending longitudinally. As mentioned in Section 3.3 it is important to 
be aware of that the plate theory implemented in the FE-software holds true for both 
the shell elements that represent the bridge deck slab and the girders. In Brigade/Plus 
the thickness is taken into account so that the analysis is carried out by the correct 
plate theory (Simulia, 2009). 
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Figure 4.12  Three-dimensional model with isotropic shell elements for both the

   bridge deck slab and the girders 

The boundary conditions were applied in the position of the bearings along one edge 
of the elements in transversal direction of the girders. Similar to the boundary 
conditions in model 1 the supported length of the bearings was relatively small 
compared to the length of the longitudinal span. For that reason it could be seen as a 
good approximation to only constrain one edge intead of a bigger area. The boundary 
conditions were chosen to prevent translation in vertical and transversal direction of 
the bridge at all supports. At the mid support the translation in the longitudinal 
direction of the bridge was prevented as well, see Figure 4.13.  

 

 

Figure 4.13  Boundary conditions in model 2. 

The element type that was used to represent the girders as well as the bridge deck slab 
was a first order shell element with reduced integration. In each element there was one 
integration point in the centre of the element. The shape of the shell was quadratic and 
the size of the mesh was 0.125 meter.    

To verify the model for the bridge deck slab, the same verification and convergence 
study as for model 1 was used, see Appendix A. For the girders, to verify that the 
plate theory implemented in the model gives good results, a complemented study was 
made, see Appendix B. 

   

4.5 Bridge model 3 – Continuum model  

Bridge model 3 was established by continuum elements, see Figure 4.14. The model 
was shortly explained in Section 3.3 with corresponding Figure 3.2 (h). The shape of 
the structure could be modelled in its entirety since simplifications regarding 
geometry, which was needed when structural elements were used, were not necessary 
when continuum elements were used. The model was chosen as one of the three FE-
models to be compared in this Master’s project because continuum elements are based 
on continuum mechanics and represents a fully three-dimensional structural 
behaviour. 
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Figure 4.14 Three-dimensional model with continuum elements for the entire 

bridge structure. 

Continuum elements represent a volume and hence the mesh was needed to be 
adjusted in three directions. Avoiding distortion was especially important when 
continuum elements were used since Free Body Cut was needed in order to get 
sectional forces, see Section 2.5. In the Free Body Cut surfaces, created to get the 
variation of the sectional forces transversally in the plate, it was important to include a 
sufficient number of elements in the surfaces. Otherwise, depending on the loading 
situation, the results could become mesh dependent. 

In the element library in Brigade/Plus there are many available types of continuum 
element and it can be difficult to choose the most suitable one for the particular 
application. The Abaqus Analysis User’s Manual (Simulia, 2009) gives 
recommendations of when different element shapes and mathematical models should 
be used or avoided.  Following the recommendations from the Abaqus Analysis 
User’s manual, the shape of the elements was chosen to be hexahedral. Hexahedral 
elements give the best result for the minimum computational cost when the geometry 
of the structure is simple and complex details are excluded. 

For bending induced linear problems, second order elements with reduced integration 
should be used instead of first order elements (Simulia, 2009). However, when this 
Master’s project was conducted it was not possible to use second order elements in a 
Free Body Cut calculation and instead incompatible mode elements were used. 
Incompatible mode elements are a type of first order elements using first order 
integration. In addition to the ordinary displacement degrees of freedom internal 
incompatible degrees of freedom are added, hence the elements are good to use in 
problems dominated by bending. Incompatible mode elements are more expensive to 
use in terms of computational cost compared to first order elements but less expensive 
than second order elements. For a convergence study of different types of continuum 
elements see Appendix C.  

As in model 2 the boundary conditions in model 3 was assigned at the position of the 
bearings along one edge of the elements in transversal direction of the girders. The 
same translations was prevented as in model 2, see Figure 4.15.  

 

 

Figure 4.15  Boundary conditions in model 3. 

The element type that was used to represent the girders as well as the bridge deck slab 
was a three-dimensional continuum element type with incompatible modes, which 
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uses linear integration. In this type of continuum elements there is eight integration 
points in each element. The shape of the element was hexahedral with equal element 
sides of 0.125 meter.  

For model 3 a convergence study and verification of the results was made to confirm 
the reliability of the FE-model, see Appendix C. 
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5 Results and interpretation of results 

The bridge deck slab was subjected to two specific load cases, one consisting of a 
concentrated load and one of a distributed load on a small area, see Section 4.2. In the 
first load case, the concentrated load was applied on a node between the girders, 
slightly offset from the symmetry line in both longitudinal and transversal direction. 
In the second case, the same magnitude of load was applied at the edge of the 
cantilever at the same distance from the mid support as in the first load case. In 
addition to these specific load cases, moving vehicle loads were subjected to the 
bridge deck slab. 

In the examination of the structural response for the two specific load cases, shear 
forces and bending moments in the transversal direction of the bridge deck slab and 
along the girders were of interest. The main purpose was to compare the load 
distribution longitudinally in the slab and to investigate the structural response and 
interaction between the girders. To do a comprehensive examination, both transversal 
and longitudinal sections were studied in the bridge deck slab. The transversal 
sections were intended to show the transversal variation of sectional forces and the 
longitudinal sections were intended to show the longitudinal distribution of the 
transversal shear forces and bending moments. In addition to these sections, the 
variation of shear forces and bending moments in the longitudinal direction of the 
bridge were studied along each girder. The load effect from moving vehicle loads was 
also studied along the girders. 

The same notation of the coordinate system was used throughout the analysis, where 
the right hand orientation was used and the x-axis was defined along the bridge. The 
bending moment in the slab and along the girders was about the x-axis and y-axis 
respectively. All graphs that show shear forces and bending moments along the 
transversal sections in the slab were defined in positive y-direction. The graphs that 
show the sectional forces along the longitudinal sections in the slab were created in 
positive x-direction. Also the graphs that present the total load effect along the girders 
were created in positive x-direction. 

When output data was created to examine sectional forces in the slab, the feature path 
was used for both transversal and longitudinal sections in model 1. In model 2, path 
was used for longitudinal sections and Free Body Cut for transversal sections.  
Model 3 required that Free Body Cut was used to create output data, both for 
transversal and longitudinal sections. 

When the transversal sections were created by Free Body Cut in model 2 and 3, a Free 
Body Cut surface was created over a width of 0.5 meter. The surface was then swept 
in transversal direction to examine the averaged variation of sectional forces in the 
slab over 0.5 meter. In this Master’s project, the distribution width was chosen 
without adopting the requirements of distribution of loads in TRVR Bro 11 (2011). It 
should be noted that sectional forces obtained in the results only are valid over the 
width where the Free Body Cut surfaces are created. 

The output data in intersections of the longitudinal and transversal sections can in 
model 1 be compared because the same feature in Brigade/Plus was used to create 
output data along all sections. However, in model 2 and 3 the output data in the 
intersections of the longitudinal and transversal sections cannot directly be compared. 
This depends on that different features were used to create output data in the different 
sections in model 2, and that Free Body Cut surfaces were created over different 
widths in the longitudinal and transversal sections in model 3.  
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When examine sectional forces along the girders, the feature path was used along the 
beam elements in model 1. In model 2 and 3, Free Body Cut surfaces were created 
over half of the cross-section of the bridge along the girders. The total load effect 
along the girders was thereby presented for all three FE-models and the results could 
directly be compared. 

In the diagrams showing the transversal variation of shear force and bending moment 
in the bridge deck slab, a schematic figure of the position of the load application and 
the supports are shown above the graphs. Because the FE-models were established 
differently, the length of the span between the girders became unequally long. For that 
reason, the vertical lines representing the position of the girders are not in the same 
position transversally in the slab for the different FE-models.   

 

5.1 Load case 1 - Concentrated Load between the girders 

To examine the load effect for the load case of a concentrated load applied between 
the girders, several sections were studied, see Figure 5.1. The transversal section in 
the bridge deck slab, going through the loading point, was studied to show the 
variation of shear force and bending moment between the two girders. To study the 
longitudinal distribution of the transversal sectional forces, three sections in the bridge 
deck slab were studied. One longitudinal section was going through the loading point 
and the other two were on each side of the loading point, closer to the girders. Also, 
sectional forces along the girders were studied to examine the load effect and 
interaction between the girders. 
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Figure 5.1 Sections in the bridge deck slab where the variation and distribution of 

shear forces and bending moments were studied. Also the total load 

effect on the girders was studied. A concentrated load of 360 kN was 

applied on the slab between the girders. 

 

5.1.1 Variation and distribution of shear force in the slab 

In Figure 5.3 and Figure 5.4, the transversal shear force in the slab is shown for model 
1, 2 and 3, respectively. The results in model 1 differed from the results in model 2 
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and 3 to that extent that they were not comparable to be presented in the same graphs 
and for that reason the results in model 1 are presented separately. 

In model 1, see Figure 5.3 (a), the variation of shear force transversally in the bridge 
deck slab was almost constant between the applied load and the girders. This was due 
to that the bridge deck slab in model 1 was assigned stiffness in transversal direction 
of the bridge only. At the point where the load was applied, the shear force changed 
sign from a magnitude of approximately 1100 kN/m to -2800 kN/m. 

The total shear force at the point where the load was applied was much greater than 
the applied load of 360 kN. This depends on that the magnitude of the shear force in 
the elements adjacent to the point where the load was applied will go to infinity when 
the mesh density increases. In model 1, a path was created along the transversal 
section and the impact of the element size was significant. Because the load was 
transferred transversally in the bridge deck slab only, the size of the mesh was 
influencing the sectional forces along the entire section where path was used. The 
total load was transferred over the width of approximately two elements. 

The longitudinal distribution of the shear force showed that the applied load affected 
the bridge deck slab on a width of ten elements. At the section where the load was 
applied a peak value of the shear force was seen, see Figure 5.3 (b) and (c). It should 
be noted that the shear force changed sign more than once in the longitudinal 
direction. This may depend on that there were difficulties to describe the structural 
behaviour of the slab when the shell elements were assigned stiffness in transversal 
direction of the bridge only. The reason that a longitudinal shear force distribution 
occur in the bridge deck slab may depend on torsion and deflection of the girders, 
which affect the slab. Also the deformed shape of model 1 was such that it was clear 
that the structural behaviour of the slab could not be described correctly. Figure 5.2 
shows the deflection of the bridge deck slab along the longitudinal section that was 
going through the loading point. It was seen that the deflection of the bridge deck slab 
was not continuous in the studied section. However, the integration and summation of 
the shear force along the two longitudinal sections in Figure 5.3 (b) and (c), that were 
presenting the shear force distribution in the slab, gave a resulting force of 360 kN 
which was equal to the applied load. 
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Figure 5.2 Deflection along a longitudinal section in model 1, when the bridge deck 

slab was subjected to a concentrated load of 360 kN. 
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The variation of shear force in the transversal sections, in model 2 and 3, was not 
constant between the girders and the section where the load was applied, see  
Figure 5.4 (a). Instead, the shear force decreased towards the girders. This was due to 
that the bridge deck slab was assigned isotropic material properties in model 2 and 
that model 3 was established by continuum elements. The sectional forces were 
therefore distributed in longitudinal direction of the bridge deck slab. However, the 
most pronounced change of the shear force, transversally in the slab, was found at the 
section where the load was applied. The impact of the size of the mesh, which was 
seen in model 1, decreased substantially when Free Body Cut surfaces were created 
over 0.5 meter. The output data from Free Body Cut was then calculated as average 
values of the shear forces in each element in the Free Body Cut surface. The output 
data from Free Body Cut is valid at the width were the Free Body Cut surfaces were 
created only. The maximum positive and negative shear force was approximately  
280 kN/m and -340 kN/m, respectively, for both model 2 and 3. The positive and 
negative shear force closer to the girders in model 2 and 3 was about 50 kN/m and  
-150 kN/m, respectively.  

Furthermore, the reaction force at the girders and under the load were not as 
distinguished in model 2 and 3 as in model 1. This was a consequence of how path 
and Free Body Cut presented the output data, see Section 2.6. With infinitesimally 
elements in model 2 and 3, the reaction force would become more distinguished. 

Looking at Figure 5.4 (b) and (c) it was seen that the transversal shear force was 
distributed longitudinally in the bridge deck slab, for both model 2 and 3. The highest 
magnitude of the shear force was at the section where the load was applied but there 
were not a distinguished peak value, as in the graph from model 1. The integration 
and summation of the shear force in the longitudinal sections gave a resulting shear 
force of 360 kN. 

In model 2 and 3, no singularities of the shear forces were seen in the graphs that were 
presenting the distribution of load. This was because the bridge deck slab could 
distribute load both transversally and longitudinally in the bridge deck slab. 
Therefore, in a longitudinal section further away from the loading point the 
transversal sectional forces, given by path and by Free Body Cut, were equal in  
model 2 and 3. 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:65 
39 

-4000

-2000

0

2000

0 1 2 3

Shear force [kN/m]

Length [m]

x

y

(a)

 

-2000

-1000

0

1000

2000

3000

0 1 2 3 4 5

Shear force [kN/m]

Length [m]

x

y

(b)

 

-3000

-2000

-1000

0

1000

2000

0 1 2 3 4 5

Shear force [kN/m]

Length [m]

x

y

(c)

 
 

Figure 5.3 Variation and distribution of transversal shear force in model 1, when a 

concentrated load of 360 kN was applied to the bridge; (a) transversal 

section between the girders going through the point where the load was 

applied, (b) longitudinal section close to the girder where the 

transversal shear force was positive and (c) longitudinal section close to 

the girder where the transversal shear force was negative. 

  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:65 
40

-400

-200

0

200

400

0 1 2 3

Model 2

Model 3

Shear force [kN/m]

Length [m]

x

y

(a)

 

0

50

100

150

200

0 1 2 3 4 5

Model 2

Model 3

Shear force [kN/m]

Length [m]

x

y

(b)

 

-200

-150

-100

-50

0

0 1 2 3 4 5

Model 2

Model 3

Shear force [kN/m]

Length [m]

x

y

(c)

 

 

Figure 5.4 Variation and distribution of transversal shear force in model 2 and 3, 

when a concentrated load of 360 kN was applied to the bridge; (a) 

transversal section between the girders going through the point where 

the load was applied, (b) longitudinal section close to the girder where 

the transversal shear force was positive and (c) longitudinal section 

close to the girder where the transversal shear force was negative.    

As mentioned earlier, results in the intersections of the transversal and longitudinal 
sections cannot directly be compared in model 2 and 3. To be able to compare the 
output data from the longitudinal sections with the transversal section in model 2 and 
3, see Figure 5.4, the longitudinal sections need to be integrated over the same width 
as the width of the Free Body Cut surfaces in the transversal sections, and calculating 
an average value of the force. Figure 5.5 show a principal sketch of how this was done 
for the graph in Figure 5.4 (c). The mean value of the shear force between point a and 
b in Figure 5.5 then become equal to the shear force in the same point in the 
transversal section, close to the girder that was closest to the applied load, see  
Figure 5.4 (a). 
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Figure 5.5 Schematic sketch of how the shear forces in the transversal sections  

  were obtained by integrating the graphs of the longitudinal sections.   

 

5.1.2 Variation and distribution of bending moment in the slab 

When examined the bending moment from the transversal sections in model 1, it was 
seen that the concentrated load gave rise to an almost linear moment variation 
between the girders, see Figure 5.6 (a). The maximum field moment was about  
500 kNm/m and the support moments were around 700 kNm/m and 320 kNm/m. 

The longitudinal distribution of the bending moment in the sections where the load 
was applied and where the maximum support moments were found is presented in 
Figure 5.6 (b), (c), and (d). It could be noted that the bending moment was distributed 
over a small width and showed distinguished peak values at the section where the load 
was applied, in the same way as the graphs that show the shear force in model 1. 

In model 2 and 3, the variation of the bending moment along the transversal section 
was close to linear, except close to the load, with a maximum field moment of  
100 kN/m for both FE-models, see Figure 5.7 (a). The increased stiffness due to the 
change of cross-sectional height at the girders gave rise to support moments of about  
65 kNm/m and 45 kNm/m  in model 2 and support moments of about 50 kNm/m and  
35 kNm/m in model 3, at the girder closest to the loading point and the girder farthest 
from the loading point, respectively. The reason that the support moments in model 2 
and 3 were not equal depended on that the theoretical length of the span between the 
girders was not the same in the FE-models due to different ways of representing the 
girders.   

The distribution of the bending moment in the bridge deck slab was studied close to 
the girders and in the section where the load was applied. It could be noted that the 
bending moment was distributed over a certain width for both model 2 and 3, see 
Figure 5.7 (b) and (d). The maximum bending moment appeared at the section where 
the load was applied and decreased symmetrically in the longitudinal direction. In the 
section that was going through the loading point, also a smooth curve of the bending 
moment could be seen in model 2 but in model 3 a peak appeared over a small width 
at the loading point, see Figure 5.7 (c). 

To verify the support conditions for the slab when the girders act as supports the 
moment distribution in the slab for the different FE-models was compared to 
analytical two-dimensional models, see Appendix D. 
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Figure 5.6 Variation and distribution of bending moment about x-axis in model 1, 

when a concentrated load of 360 kN was applied to the bridge; (a) 

transversal section between the girders going through the point where 

the load was applied, (b) longitudinal section close to one girder (c) 

longitudinal section through the point where the load was applied and 

(d) longitudinal section close to the other girder. 
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Figure 5.7 Variation and distribution of bending moment about x-axis in model 2 

and 3, when a concentrated load of 360 kN was applied to the bridge;  

(a) transversal section between the girders going through the point 

where the load was applied, (b) longitudinal section close to one 

girder (c) longitudinal section through the point where the load was 

applied and (d) longitudinal section close to the other girder. 
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Similar to the shear force in the bridge deck slab in model 2 and 3, bending moment 
presented in longitudinal and transversal sections cannot directly be compared. 
Figure 5.8 presents a principal sketch of the integration of the longitudinal section in 
model 3, see Figure 5.7 (c). The same bending moment as the maximum field moment 
in Figure 5.7 (a) was then obtained.  
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= 100 kNm/m a 
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Figure 5.8 Schematic sketch of how the shear forces in the transversal sections   

  were obtained by integrating the graphs of the longitudinal sections.   

In Figure 5.7 (c) it was seen that the bending moment distribution in model 2 and 3 
differed significantly. To investigate the reason for this, the features path and Free 

Body Cut were studied. Both path and Free Body Cut were then used in model 2 to 
examine the variation of bending moment in the longitudinal section that was going 
through the loading point. From this it was clear that path and Free Body Cut 
presented the bending moment differently, see Figure 5.9. 

 

Figure 5.9 Transversal bending moment in a longitudinal section in the bridge 

deck slab in model 2, when a concentrated load was applied between 

the girders. The sections were created by the feature path and by the 

feature Free Body Cut. 

To further investigate the reason why path and Free Body Cut gave different 
magnitudes of the bending moment close to the loading point, the values of the 
integration points of the elements transversally in the bridge deck slab were plotted in 
a graph, see Figure 5.10. By extrapolating the curves from each side of the loading 
point, an approximation of the bending moment at the section where the load was 
applied could be obtained. The values obtained from path and Free Body Cut in the 
longitudinal section where the load was applied is also presented in Figure 5.10. 
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Figure 5.10 A graph showing the bending moment in the integration points of the 

elements transversally of the bridge deck slab. 

From this it was seen that the bending moment under the loading point in the 
longitudinal section that was created by Free Body Cut, see Figure 5.9, was equal to 
the extrapolated value from the integration points, see Figure 5.10. Path on other 
hand, gave the bending moment in the loading point as a mean value of the closest 
integration points. This explained why the distribution of bending moment was 
different in model 2 and 3 along this section. In a design situation of a bridge deck 
slab there are no concentrated loads, only distributed loads. The differences that were 
seen between path and Free Body Cut when one node was loaded only, are for that 
reason not relevant in design.      

 

5.1.3 Variation of sectional forces along the girders 

In Figure 5.11 and Figure 5.12 the shear forces and bending moments along the 
girders are presented. For all FE-models, it was seen that the girder closest to the 
applied load attracted more load than the girder farthest away. It was seen that the 
reaction force over the mid support, of the girder closest to the loading point, was 
greater for the model 1 compared to model 2 and 3, 250 kN, and 225 kN, respectively, 
see Figure 5.11 (b). The opposite was seen at the mid support of the girder farthest 
away from the load, where model 1 showed a support reaction of 100 kN and the 
other two models showed a support reaction of 120 kN, Figure 5.11 (a). 

The reaction force at the right end support of the girder farthest away from the loading 
point was positive with a magnitude of about 15 kN for all FE-models. The shear 
force decreased towards the section of the loading point and even changed sign before 
this section. At the right end support of the girder, closest the loading point, the 
support reaction was approximately 15 kN for all FE-models. The shear force 
increased closer to the section where the load was applied and a distinguished reaction 
force could then be seen there. Model 2 and 3 showed a peak of the shear force at the 
section where the concentrated load was applied.  

The reason that a peak of the shear force appeared in model 2 and 3 can be explained 
by that Free Body Cut surfaces were created on half of the cross-section of the bridge 
along the girders. The load was thereby directly included in the Free Body Cut surface 
in the section where the load was applied. For that reason, it looks like the total load 
was carried by the girder closest to the load in that section.  
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The bending moment for the girder closest to the applied load showed that model 2 
and 3 got slightly lower bending moment than model 1, see Figure 5.12 (b). The 
opposite was seen in the graph showing the bending moment along the other girder. 
The reason to this will be discussed in Chapter 6.  

Summation of the load effect from both girders showed that all FE-models gave 
almost the same total load effects, see Figure 5.13. These load effects were compared 
to an analytical two-dimensional model and the results agreed well. 
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Figure 5.11 Variation of shear force along the girders in model 1, 2 and 3, when a 

concentrated load of 360 kN was applied on the slab between the 

girders; (a) total load effect on the girder that was farthest from the 

applied load and (b) total load effect on the girder that was closest to 

the applied load. 
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Figure 5.12 Variation of bending moment along the girders in model 1, 2 and 3, 

when a concentrated load of 360 kN was applied on the slab between 

the girders; (a) total load effect on the girder that was farthest from the 

applied load and (b) total load effect on the girder that was closest to 

the applied load. 
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Figure 5.13 Summation of the load effect on both girders in model 1, 2 and 3 when 

a concentrated load of 360 kN was applied on the slab between the 

girders; (a) total shear force and (b) total bending moment. 

 

5.2 Load case 2 – Distributed load on a small area of the 

cantilever  

For load case 2, where a distributed load was applied to a small area at the edge of the 
cantilever, output data along four sections was created, see Figure 5.14. To show the 
variation of the shear force and bending moment a transversal section in the bridge 
deck slab, going through the loading point, was studied. To show the longitudinal 
distribution of the transversal shear force and bending moment, a longitudinal section 
was studied in the slab close to the girder. Also for this load case, it was of interest to 
examine the load effect on both girders and the interaction between them.  
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Figure 5.14 Sections in the bridge deck slab where the variation and distribution of 

shear force and bending moment were studied. Also the total load effect 

on the girders was studied. A distributed load with a magnitude of  

360 kN was applied on the edge of the cantilever.    

 

5.2.1 Variation and distribution of shear force in the slab 

In Figure 5.15 and Figure 5.16, the shear force in the slab is presented in model 1, 2 
and 3, respectively, when a small area of the cantilever was subjected to a load of  
360 kN. 

Figure 5.15 (a) presents the shear force variation in model 1 along the transversal 
section, from the applied load to the closest girder. The shear force was build up 
successively over the elements where the load was applied to a magnitude of about 
640 kN/m. Thereafter, the shear force was slightly increased towards the girder where 
a support reaction of about 750 kN/m appeared. However, due to the assigned 
stiffness to model 1, a constant magnitude of the shear force was expected. When 
transversal sections on each side of the examined section were studied it was seen that 
the magnitude of the shear force decreased closer to the girder. It can therefore be 
assumed that the shear force variation over a certain width would be constant.  

The reason that the shear force in model 1 was greater than the applied load depended 
on that the bridge deck slab could transfer load in transversal direction of the bridge 
only, see the explanation in Section 5.1.1 for load case 1. This was also the reason 
why a peak value of the shear force appeared at the section where the load was 
applied, see Figure 5.15 (b). As for the shear force diagram for load case 1, the shear 
force changed sign more than once in the longitudinal direction. Integrating the shear 
force over the longitudinal section gave a resulting force of 360 kN.  

The graph that present the shear force variation in model 2 and 3, showed that the 
shear force builds up over the area where the cantilever was loaded, see  
Figure 5.16 (a). It could also be noticed that the shear force continued to increase even 
after the area with applied load. The maximum shear force in model 2 and 3 was 
about 260 kN/m and 270 kN/m, respectively. The shear force was thereafter slightly 
decreasing towards the girder, to a magnitude around 150 kN/m in both FE-models. 
The reason that the shear force continued to increase even after the area with applied 
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load was a consequence of how Free Body Cut presents the output data. In 
Brigade/Plus a distributed load is represented by nodal forces and the integration point 
in the element outside the loaded area is thereby affected by the total load. Due to how 
output data was presented from Free Body Cut, see Section 2.6, the magnitude of the 
shear force was calculated from the applied load in a correct way, but the result was 
presented in the wrong point in the slab. 

In Figure 5.16 (b), the distribution of the shear force in model 2 and 3 along the 
longitudinal sections is shown. It was seen that the maximum value appeared at the 
section where the load was applied and decreased in longitudinal direction. The shear 
force was distributed over a certain width and did not show a distinguished peak. 
Integrating the graphs that were presenting the shear force distribution, gave a 
resulting shear force of 360 kN for both FE-models. 
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Figure 5.15 Variation and distribution of transversal shear force in model 1, when 

a distributed load of 360 kN was applied to a small area on the edge of 

the cantilever; (a) transversal section between the loading point and 

the closest girder, (b) longitudinal section close to the girder. 
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Figure 5.16 Variation and distribution of transversal shear force in model 2 and 3, 

when a distributed load of 360 kN was applied to a small area on the 

edge of the cantilever; (a) transversal section between the loading 

point and the closest girder, (b) longitudinal section close to the 

girder. 

 

5.2.2 Variation and distribution of bending moment in the slab 

Figure 5.17 and Figure 5.18 show the variation and distribution of the bending 
moment in model 1, 2 and 3, respectively. All graphs presented a more or less linear 
increase of the bending moment towards the girder, from a bending moment of zero at 
the end of the cantilever.  

The support moment for the different FE-models differed extensively. Model 1 
showed a support moment of 1100 kNm/m, see Figure 5.17 (a). The graph presenting 
the variation of bending moment in model 2 and 3 showed a support moment of about 
170 kNm/m and 160 kNm/m, respectively, see Figure 5.18 (a). The reason that model 
1 showed much greater bending moment compared to model 2 and 3 depends on the 
impact of mesh density due to the orthotropic material properties assigned to the slab.   

As for the distribution of shear force, the bending moment in model 1 was distributed 
over a small width close to the girder and showed a peak value in the section where 
the load was applied, see Figure 5.17 (b). The graphs that were showing the 
distribution of bending moment in model 2 and 3 were smoother and distributed the 
moment over a larger width, see Figure 5.18 (b). 
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To verify the support conditions for the slab, when the girders act as supports, the 
moment distribution in the slab for the different FE-models was compared to an 
analytical two-dimensional model, see Appendix D. 
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Figure 5.17 Variation and distribution of bending moment about x-axis in model 1, 

when a distributed load of 360 kN was applied to a small area on the 

edge of the cantilever; (a) transversal section between the loading 

point and the closest girder and (b) longitudinal section close to the 

girder. 
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Figure 5.18 Variation and distribution of bending moment about x-axis in model 2 

and 3, when a distributed load of 360 kN was applied to a small area 

on the edge of the cantilever; (a) transversal section between the 

loading point and the closest girder and (b) longitudinal section close 

to the girder. 

 

5.2.3 Variation of sectional forces along the girders 

In the graphs below, the shear forces and bending moments along both girders are 
presented, see Figure 5.19  and Figure 5.20, respectively.  

When examined the shear force variation along the girder that was closest to the 
applied load, it was seen that model 1 and 2 showed the same variation but model 2 
showed a slightly higher reaction force at the mid support compared to model 1, see  
Figure 5.19 (b). Model 3, showed a support reaction that was lower than the reaction 
force in the other FE-models, and in the section where the load was applied the graph 
showed a peak of the shear force. Similar to load case 1, the peak of the shear force 
depended on that the total load was included in the Free Body Cut surface in that 
section. 

The shear force along the girder farthest away from the load was small in model 1 and 
2. In model 3 a support reaction appeared at the mid support. 

When examined the variation of bending moment along the girders it was seen that all 
models showed similarities in the moment variation. At the girder close to the load, 
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model 2 showed the highest magnitude of the bending moment, see Figure 5.20 (b). 
The bending moment in model 1 was slightly less than the bending moment in model 
2, and model 3 showed the lowest bending moment. 

For the girder farthest away from the applied load the magnitude of the bending 
moment along the girder was much smaller compared to the girder close to the load, 
see Figure 5.20 (a). Comparing the magnitude of the bending moment it was noted 
that model 3 showed the highest bending moment and model 2 showed the lowest 
bending moment, for the girder farthest away from the applied load. The bending 
moment in model 1 was somewhere in between. 

In load case 2, compared to load case 1, the differences of the interaction between the 
girders were seen more clearly in model 1, 2 and 3. Again, the summation of the load 
effect from both girders showed that all FE-models gave almost the same total load 
effects, see Figure 5.21. 
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Figure 5.19 Variation of shear force along the girders in model 1, 2 and 3, when a 

load of 360 kN was applied to a small area of the cantilever; (a) total 

load effect on the girder farthest from the applied load and (b) total load 

effect on the girder closest to the applied load. 
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Figure 5.20 Variation of bending moment along the girders in model 1, 2 and 3, 

when a load of 360 kN was applied to a small area of the cantilever; (a) 

total load effect on the girder farthest from the applied load and (b) total 

load effect on the girder closest to the applied load. 
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Figure 5.21 Summation of the load effect on both girders in model 1, 2 and 3 when a 

load of 360kN was applied to a small area of the cantilever; (a) total 

shear force and (b) total bending moment. 

 

5.3 Load case with moving vehicle loads 

As described in Section 4.2, four different load models can be imported in 
Brigade/Plus and in this Master’s project the vehicle loads from load model 1 were 
studied. The vehicle loads consist of two vehicles with a bogie pressure of 270 kN and 
180 kN, respectively.   

In Figure 5.22 and Figure 5.23, the variation of maximum and minimum shear force 
and bending moment along the girders for all examined load positions are presented. 
The vehicle lines were created symmetrically on the bridge deck slab and for that 
reason both girders showed the same variation of the sectional forces.  

In Figure 5.22 it was seen that the variation of shear force was almost the same in all 
FE-models. In some regions, the shear force in model 1 was slightly lower than the 
shear force in model 2 and 3. In Figure 5.23 on other hand, there was a significant 
lower bending moment in model 1, compared to the other two FE-models. The biggest 
difference was seen in the field where the maximum bending moment was about  
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2500 kNm, 2800 kNm and 2800 kNm in model 1, 2 and 3, respectively. The bending 
moment in model 1 was about 10 percent lower than in model 2 and 3. 
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Figure 5.22 Variation of shear force along the girders for the three FE-models. The 

bridge deck slab was subjected to moving vehicle loads from load 

model 1. 
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Figure 5.23 Variation of bending moment along the girders for the three FE-

models. The bridge deck slab was subjected to moving vehicle loads 

from load model 1. 

To examine the reason why model 1 showed lower sectional forces compared to 
model 2 and 3, the model was recreated and the tied width of the slab was decreased. 
Instead of constraining a width of 2.6 meters of the slab above the girders, the nodes 
straight above the gravity centre of the girders were constrained only. If the area 
where the slab was constrained to the girders in model 1 was decreased, the shear 
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force and bending moment along the girders increased, see Figure 5.24 and  
Figure 5.25. The bending moment in field then became about 4.3 percent higher in 
model 1 compared to model 2 and 3. 
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Figure 5.24 Variation of shear force along the girders in model 1, if all nodes in 

the slab above the girders were constrained and if only one node in the 

slab was constrained. The bridge deck slab was subjected to the 

moving vehicle loads from load model 1. 
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Figure 5.25 Variation of bending moment along the girders in model 1, if all nodes 

in the slab above the girders were constrained and if only one node in 

the slab was constrained. The bridge deck slab was subjected to the 

moving vehicle loads from load model 1. 
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6 Discussion  

The FE-models that represented the case study bridge were created in different ways, 
which was expected to influence the results from the FE-simulation. Model 1 was 
intended to transfer the load transversally in the bridge deck slab only, without any 
longitudinal load distribution. Model 2 and 3 were given structural properties where 
the longitudinal distribution of load in the bridge deck slab was taken into account. 
Therefore, sectional forces in model 1 are not comparable to sectional forces in model 
2 and 3. 

Many differences of the sectional forces in the bridge deck slab between model 2 and 
3 can be explained by how the feature path and the feature Free Body Cut in 
Brigade/Plus calculate and present the output data, see Chapter 5. However, to explain 
the differences in the three FE-models which were seen in the analysis of the load 
effect on the girders, further studies were needed, which are discussed in this chapter. 
The chapter also contains a discussion of the advantages and disadvantages with the 
different FE-modelling techniques.  

 

6.1 Interpretation of the results concerning the girders  

When the three FE-models were established in Brigade/Plus the geometry of the case 
study bridge was modelled in different ways so that all FE-models simulated an 
equivalent longitudinal bending stiffness. This resulted in that the bridge deck slab, 
for the different FE-models, became unequally stiff in transversal direction of the 
bridge.  

Model 1 and 2 are established by structural elements where beam theory and plate 
theory simplifies the structural response of the structural members included in the FE-
models. Model 3 is established by continuum elements, based on continuum 
mechanics. Therefore, model 3 can be expected to describe the elastic response of the 
structural parts included in the FE-model similar to the structural response of the case 
study bridge.  

The bridge can in transversal direction conceptually be replaced by a theoretical 
model where the slab is supported on vertical and rotational springs, see Figure 6.1. 
These springs represent the vertical and rotational restraint that the girders provide to 
the slab, through their flexural and torsional stiffness. In case the rotational springs are 
infinitely weak, the slab can be seen as simply supported in transversal direction of 
the bridge and the system would be statically determinate. The different ways of 
defining boundary conditions for the three FE-models do however affect the torsional 
restraint of the girders differently and, consequently, the rotational restraint of the 
slab. The boundary conditions will therefore have an impact on the results, and the 
slab cannot be seen as simply supported on the girders. 

P 

 

Figure 6.1 Theoretical model of a slab supported on vertical and rotational 

springs. 
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Rotations around the longitudinal axis of the girders were prevented by the boundary 
conditions at the supports, see Chapter 4. In model 1, one node of the beam elements 
at each support were constrained and in model 2, one edge of the shell elements at 
each support were constrained. This means that the boundary conditions were 
constraining the entire cross-section of the girders over the supports from deforming. 
This corresponds to that both the vertical and rotational springs in the theoretical 
model are infinitely stiff in the support sections. In model 3, the boundary conditions 
were applied to constrain the edge of the continuum elements at the bottom of the 
girders only. The cross-section of the girders was thereby allowed for some 
deformation and the section where the slab connected to the girders was allowed for 
some rotation. This corresponds to that both the vertical and, in particular, the 
rotational springs in the theoretical model provide some flexibility in the support 
sections.  

The differences that was seen in the graphs that presented the variation of shear force 
and bending moment along the girders for the different FE-models, see  
Figure 5.11-5.12 and Figure 5.19-5.20, depend on four parameters: the stiffness of the 
slab in transversal direction, how the connection between the slab and the girders was 
modelled, the vertical stiffness provided by the girders and the rotational stiffness 
provided by the girders. The relation between these parameters for the case study 
bridge demands for further investigations, and it is not possible to state a correct 
relation between these depending parameters that holds for all bridge structures. 

 

6.1.1 Load case 1 

The results for load case 1, when the bridge deck slab was loaded between the girders, 
depend on the four parameters stated above. The relation between the parameters 
implied that the shear force in the region between the loading point and the mid-
support was higher at the girder closest to the applied load in model 1 compared to 
model 2 and 3, besides the section where the load was applied, see Figure 5.11 (b). 
Also the bending moment in model 1 was the highest in this girder, see  
Figure 5.12 (b). The opposite was seen at the girder farthest away from the load. 

The only conclusion that can be given from load case 1 is that the current rigidities 
and dimensions means that model 1 gives higher shear force and bending moment 
compared to model 2 and 3 at the girder closest to the load. For other rigidities and 
dimensions of the case study bridge, the FE-models would not necessary show the 
same results. 

 

6.1.2 Load case 2 

Examining the diagrams of shear forces and bending moments for load case 2, when 
the cantilever was loaded, there were big differences between the FE-models. The 
magnitude of the shear force between the load and the mid support was much lower at 
the girder close to the loading point in model 3 compared to model 1 and 2, see  
Figure 5.19 (b). The opposite was seen at the girder farthest away from the load. This 
means that there was a greater interaction between the girders in model 3 compared to 
model 1 and 2. 

To investigate the differences which were seen in Figure 5.19 (a) and (b), the 
boundary conditions in model 3 were studied. Instead of applying the boundary 
conditions to the bottom edge of the girders the entire cross-section of the girders was 
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constrained to prevent vertical translation and rotation over the supports. The analysis 
showed that the variation of shear force and bending moment then became the same 
as in model 1 and 2. It can therefore be argued that the differences of the variation of 
shear force and bending moment along the girders that were seen in the FE-models for 
load case 2 depend on the possibility for the cross-section to deform.  

When the entire cross-section over the supports was constrained, as it was in model 1 
and 2, it led to that no interaction between the girders, at the sections where the 
boundary conditions were applied, could take place. In the section where the load was 
applied the girders were allowed for some deflection and rotation and therefore there 
was some interaction between the girders. This was reflected in the shear force and 
moment diagrams for model 1 and 2, where some shear force and bending moment 
was taken by the girder farthest away from the load.  

 

6.1.3 Case of moving vehicle loads 

For the case of moving vehicle loads, it was seen that the variation of maximum 
sectional forces for all load positions along the girders was almost the same in all FE-
models but model 1 showed slightly lower shear force and bending moment compared 
to model 2 and 3, see Figure 5.22 and Figure 5.23. 

From the investigation of the load position that gave the design values along the 
girders, it was seen that both vehicles were positioned in the same transversal section 
of the bridge. The heaviest vehicle was placed at the vehicle line on the cantilever and 
the lighter vehicle was placed at the vehicle line created 4.5 meters from the 
cantilever.  

At a first examination it appeared that the FE-models were explaining the load effect 
on the girders in a correct way for moving vehicle loads. However, when analysing 
what was seen in load case 1 and 2 for the different FE-models more in detail, the 
conclusion could be drawn that the similarity of the shear force in the FE-models 
rather was a consequence of the geometric symmetry, choice of the positions of the 
vehicle lines and how output data was presented. 

In Chapter 5, it was explained how Free Body Cut presents output data if loads are 
included in the Free Body Cut surfaces. If a Free Body Cut surface is created in the 
same section where a load is applied to the bridge deck slab, the total shear force from 
that load is given in the weighted gravity centre of that Free Body Cut surface. In the 
case of moving vehicle loads, Free Body Cuts were created in all sections along the 
girders and the vehicle loads were therefore always included in a Free Body Cut 
surface, when consider axle loads. This means that the transversal distribution of 
vehicle loads to the girders was not taken into account in a correct way. The case 
study bridge was chosen to represent a modern Swedish bridge and the dimensions of 
the bridge cross-section can be seen as general. In Swedish bridge design, two axle 
loads from vehicles are defined. For one and two girder bridges, the load positions 
that govern the design values of shear forces along the girders is such that each girder 
will be designed to have enough capacity to carry the total load from both vehicles; 
the distribution to the second girder for a typical two-girder bridge will be negligible. 
For this reason, Free Body Cut can in practice be used even if the total shear force 
from the axle loads is included in the Free Body Cut surfaces. For that reason, all 
three FE-models can be used to describe sectional forces along the girders when 
designing with moving vehicle loads. However, because the output data was 
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calculated and presented by Free Body Cut, the interaction between the girders in 
model 3 became ignored in the results of shear forces. 

The reason why model 1 showed slightly lower design values of shear forces, 
compared to model 2 and 3, depends partly on the position of the lightest vehicle. 
Two of the wheels were placed on the slab slightly outside the constrained part of the 
slab and the wheel pressure from these wheels was therefore distributed to both 
girders. If vehicle lines would have been created on the bridge deck slab between the 
girders only, for the case study bridge, the load effect on the girders would not have 
been similar in the three FE-models. In model 1, the load would be distributed 
transversally between the girders in a correct way. In model 2 and 3, the creation of 
Free Body Cut surfaces would result in that the girder where loads are included in a 
Free Body Cut surface would appear to carry the total load, regarding shear force. 

Another reason why model 1 showed slightly lower design values of shear forces and 
also bending moments, compared to model 2 and 3, depends on the width of the part 
of the slab that was tied to the beam elements. To analyse this, model 1 was recreated 
and only the nodes in the slab centrically above the beam elements were constrained. 
Both the shear force and the bending moment along the girders did increase with this 
FE-model. This can be explained by that the rigidity of the slab in transversal 
direction of the bridge decreased when the constrained width of the slab decreased. 

 

6.2 Advantages and disadvantages with the different  

FE-modelling techniques  

6.2.1 Model 1 

Model 1 was established with equivalent cross-sections of the girders, where the 
moment of inertia for the entire bridge cross-section was included. The calculations of 
equivalent cross-sectional properties required some work and if the geometry of the 
structure would have been complex the workload would have increased. 

It can be argued how well the supports need to be modelled for the case study bridge. 
In model 1, the boundary conditions were applied to one node of the beam elements. 
It would have been more correct to offset the boundary conditions vertically, to the 
position of the bearings and add rotational springs to allow for some rotation of the 
girders. Another way to account for the rotation of the girders would have been to 
include the substructure in the FE-model. 

Concerning the mesh, it was easy to generate a mesh in model 1 without distortions. A 
relatively coarse mesh of the beam elements converged for bending. To get an 
interaction between the girders and the bridge deck slab, the different element types 
were coupled by tie constraints. For sectional forces to be used in design for the 
girders it may be on the safe side to only constrain the nodes of the slab straight above 
the gravity centre of the girders. 

Model 1 can be used to design the girders longitudinally but a supplemented analysis 
for the design of the bridge deck slab is needed. In model 1 the shell elements were 
given orthotropic properties without any stiffness in longitudinal direction of the 
bridge. Loads applied on the bridge deck slab were for that reason transferred directly 
to the girders, without any longitudinal distribution. The magnitude of the sectional 
forces in the bridge deck slab became mesh dependent but the integration of the 
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transversal sectional forces along the bridge proved that the slab gave a correct load 
effect on the girders. 

Model 1 was established in three dimensions but the use of beam elements and 
orthotropic shell elements, without stiffness in longitudinal direction of the bridge, 
implied that a two-dimensional behaviour for the bridge deck slab and for the girders 
were considered separately. Because the shell elements were constrained to the beam 
elements, there was an interaction between the slab and the girders. 

To perform the analysis of model 1, not much computational time was needed. The 
output data was easy to get with path. However, it was only the output data for the 
girders that was of interest for this bridge model. Furthermore, contour plots of 
sectional forces and displacements could be visualised, which was a good help for 
understanding the structural behaviour of the FE-model. 

 

6.2.2 Model 2 

In model 2 the girders were represented by shell elements that were given an offset at 
the position of the girders. The girders were modelled with equivalent cross-sections, 
but equivalent sectional properties were easy to find for the case study bridge and the 
geometry was easy to create.  

The boundary conditions were applied along an edge of the shell. The boundary 
conditions were constraining the entire cross-section with the centre of gravity of that 
cross-section as rotational centre. In the same way as for model 1 it can be argued that 
rotational springs or the substructure should be included in the model, to allow for 
some rotation of the girders.  

The mesh was easy to generate and there were only two directions to adjust the mesh 
for. An advantage with model 2 was that both Free Body Cut and path could be used 
to analyse the variation and distribution of sectional forces in the bridge deck slab and 
along the girders. Additionally, contour plots of the sectional forces and deformations 
could be used to visualise the results. 

Model 2 described the structural behaviour in a correct way where the variation and 
distribution of loads could be analysed in its entirety in the bridge deck slab. To 
obtain sectional forces to be used in design of the bridge deck slab, the structural 
engineer can directly distribute the sectional forces in the slab by creating Free Body 
Cut surfaces over a chosen width. The post-processing of obtaining design values for 
the bridge deck slab then decreases substantially. However, Free Body Cuts need to 
be created in the mesh of the model before the FE-analysis is performed and therefore 
it needs to be known in advance in which sections sectional forces are of interest. 

To get the total load effect along the girders, Free Body Cut surfaces were needed to 
be created over half the bridge cross-section along the girders. However, if loads were 
applied to the bridge deck slab, at sections where Free Body Cut surfaces were 
defined, the total loads were included in the calculation of sectional forces for those 
surfaces. Therefore, it was not possible to get sectional forces to be used in design in 
those sections of the girders. In sections without applied load, the load distribution 
was reflected in the results in a correct way. The interaction between the girders was 
not taken into account in a correct way since the girders in model 2 could not deform 
over the cross-section due to the use of shell elements. 
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6.2.3 Model 3 

In model 3 the geometry of the case study bridge could be modelled without 
simplifications. All structural parts of the FE-model were assigned correct sectional 
properties.  

The boundary conditions in model 3 were advantageously applied along an edge of 
the continuum elements in the bottom of the girders. The rotational stiffness of the 
girders became for that reason more similar to the stiffness of the case study bridge. 
Because model 3 was established by continuum elements, the boundary conditions 
constrained the bottom of the cross-section only and the cross-section was therefore 
able to deform in three directions. 

It was time consuming to generate the mesh in model 3. This was because there were 
three directions to adjust the mesh for. If a dense mesh along one edge was preferred, 
but a coarse mesh was acceptable along another edge, it was very difficult to generate 
a structured mesh with regular shapes. Because model 3 was needed to be analysed 
with Free Body Cut to get sectional forces, it was important to get a structured mesh 
without distortions. 

Continuum elements, used in model 3, are based on a strain-displacement relation. 
Contour plots of sectional forces could therefore not be visualised. In addition to this, 
the Free Body Cut surfaces was needed to be created before the FE-simulation, hence 
the most critical sections can mistakenly be ignored. 

When continuum elements were used, simplifications of the structural behaviour were 
not needed. Model 3 was therefore describing the interaction between the girders in a 
correct way since the cross-section could deform in three dimensions. The slab could 
be designed in its entirety where the load distribution in longitudinal direction of the 
bridge was taken into account. The sectional forces in the bridge deck slab can be 
calculated over a distribution width directly by creating the Free Body Cut surfaces 
with widths equal to the distribution width. However, in the same way as in model 2, 
it is to be aware of that the shear forces in sections where loads are applied and 
included in a Free Body Cut surface is not calculated and presented in a correct way.  
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7 Conclusion  

From the investigation of the specific load cases with concentrated loads, the 
conclusion can be stated that model 1 can be used to design the girders of the case 
study bridge for both shear forces and bending moments. The bridge deck slab 
distributes the load transversally between the girders in a correct way and the total 
load effect on the girders was proven to be correct. Despite this, the structural 
behaviour of the slab of the case study bridge cannot be described by model 1 due to 
the assigned orthotropic material properties. However, the slab is contributing to the 
interaction of the girders.   

Model 2 and 3 can be used to design the girders as well as the bridge deck slab of the 
case study bridge for both shear forces and bending moments when specific load cases 
are of interest. Both FE-models have similar distribution of the load longitudinally in 
the bridge deck slab. However, it is to be aware of that the output data do not describe 
shear forces in the sections where loads are included in Free Body Cut surfaces in a 
correct way. In sections where no loads are included in Free Body Cut surfaces, the 
shear forces are correctly described. In design of the bridge deck slab, regarding shear 
forces, a section where load is applied is not governing the design values of the shear 
forces. For that reason Free Body Cut can be used to design the bridge deck slab 
regarding shear forces.  

An advantage with model 3 compared to model 2 is that the interaction between the 
girders is much greater, due to the possibility for the cross-section in model 3 to 
deform. 

For design with moving vehicle loads all FE-models can be used to describe sectional 
forces along the girders for the case study bridge. However, the advantage of the 
interaction of the girders regarding shear forces, which was seen in model 3 for the 
specific load cases, cannot be seen in the results from analysis of moving vehicle 
loads. 
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8 Further investigations 

In this Master’s project, the structural behaviour of three different FE-models was 
examined for a case study bridge. The purpose was to compare shear forces and 
bending moments and to study how longitudinal load distribution in the bridge deck 
slab and the interaction between the girders influenced these results, when the bridge 
deck slab was subjected to specific load cases. In addition to this, sectional forces for 
moving vehicle loads were compared to study the effect of the different modelling 
techniques on the design of the girders. 

In TRVR Bro 11 (2011), there are two methods to determine distribution widths of 
shear forces in the bridge deck slab. The most common method is based on the 
relation between span length and slab thickness and the second method is based on the 
longitudinal load distribution obtained from FE-simulation. To do a comprehensive 
comparison of the structural behaviour for the different FE-models, design values of 
sectional forces in the bridge deck slab is still to be investigated. The most favourable 
way of determine distribution widths in the bridge deck slab according to TRVR Bro 
11 (2011) could then be evaluated. 

To be able to state general conclusions of the different modelling techniques in a 
design situation, supplementary analyses are needed. A further investigation to this 
Master’s project could be to study other dimensions of the bridge structure, with cases 
of asymmetric geometries and horizontal curvature of the bridge. Also, the influence 
of boundary conditions compared to including the substructure in the FE-model could 
be examined. In addition to shear forces and bending moments also torsion could be 
studied. 

When the case study bridge was represented by a FE-model established by continuum 
elements, it was seen that there was an interaction between the girders when the 
bridge deck slab was subjected to specific load cases of concentrated loads. However, 
when moving vehicle loads were studied, the interaction between the girders was not 
accounted for in the result due to how output data was calculated and presented. It 
could be further investigated if the interaction that was seen for specific load cases in 
model 3 could be utilized in a design situation by a reduction of the sectional forces 
along the girders. If a relation between the interaction of the girders and e.g. cross-
sectional geometry, support conditions and material properties could be found, the 
advantages from continuum mechanics could be included in design of the girders. 
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Appendix A. Model 1 

In appendix A, additional investigations for model 1 are presented. The appendix 
addresses the convergence study and verification of model 1, that ensures the 
reliability of the established FE-model. How the coupling between the beam and shell 
elements was made and how this influenced the structural behaviour is also presented. 

 

A.1 Convergence study of model 1 

In the convergence study, the bridge deck slab was subjected to two different load 
cases, one consisting of a uniformly distributed load of 25 kN/m2 applied to the entire 
bride deck slab and one of a line load of 15 kN/m applied at the edge of the cantilever. 
The self-weight was excluded in the convergence study. In the convergence study, 
only the nodes in the shell above the gravity centre of the girders were constrained to 
the beam elements. 

To verify the mesh density two sections were studied. The first section was along one 
of the girders and the second section was transversally in the slab, at one end of the 
bridge.  

The convergence study for the girders was studied when the bridge deck slab was 
subjected to the distributed load. The study showed a rapid convergence for bending 
moment and deflection with mesh refinement, see Figure 1 and Figure 2. For the 
girders it could be concluded that an element size of 2 meters was good enough to 
describe deflection, and 0.5 meter when bending moment was of interest. 
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Figure 1 Deflection for the girder with mesh refinement. The bridge deck slab 

was subjected to a uniformly distributed load of 25 kN/m
2
. 
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Figure 2 Moment variation along the girder with mesh refinement. The bridge 

deck slab was subjected to a uniformly distributed load of 25 kN/m
2
. 

 

The convergence of the bridge deck slab was done with respect to the uniformly 
distributed load and the line load. The shell element described deflection very well, 
even for a coarse mesh, which can be seen in Figure 3. To capture the bending 
moment, a denser mesh was needed and convergence was reached for an element size 
of 0.5 meters, see Figure 4 and Figure 5.  
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Figure 3 Deflection for the bridge deck slab transversally with mesh refinement. 

The bridge deck slab is subjected to a uniformly distributed load of  

25 kN/m
2
. 
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Figure 4  Transversal moment for the bridge deck slab with mesh refinement. 

The bridge deck slab was subjected to a uniformly distributed load of 

25 kN/m2. 
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Figure 5 Transversal moment for the bridge deck slab with mesh refinement. 

The cantilever of the bridge deck slab was subjected to a line load of 

15 kN/m.  

The convergence study showed that an element size of 0.5 meter for the beam 
elements was good enough to describe moment. For the shell elements a mesh of 0.5 
meter converged and in order to have regular shapes of the shell elements the 
elements were chosen to be quadratic with equal element sides. 
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A.2 Verification of model 1 

To verify model 1, two different load cases were studied and the results from the FE-
model were compared to hand calculations. In the first load case the bridge deck slab 
was subjected to an evenly distributed load of 25 kN/m2 and in the second load case a 
line load of 15 kN/m was applied along the edge of the cantilever of the bridge. The 
data used in the analytical analysis can be seen in Table 1. 

Table 1    Data used in the analytical analysis.  

Length of the bridge span /0123 25 m 

Width of the bridge �0425 12 m 

Moment of inertia  �
 0,685 m4 

Young’s modulus � 34 GPa 

Uniformly distributed load � 25 kN/m2 

Uniformly distributed line load �4637482� 15 kN/m 

 

For the distributed load the analytical result and the result from the FE-model, for the 
maximum field moment and support moment for the girders longitudinally of the 
bridge, were compared. To ensure that the cross-section was given the correct cross-
sectional properties, the maximum deflection was compared as well. The calculations 
and the analytical results for the bending moment over the mid support, the maximum 
field moment and maximum deflection, can be seen in Equation (1), (2) and (3), 
respectively.  
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To ensure that the structural behaviour of the bridge deck slab in transversal direction 
of the bridge was correct, the transversal bending moment close to the girder was 
verified when the cantilever of the bridge was loaded with the line load. When 
subjected the cantilever to a line load, it gave rise to a statically determinate moment 
at the girder, close to the load. Equation (4) shows the calculated bending moment.  
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XYN

N
 (4) 

 

In the table below, see Table 2, the bending moment and deflection that was 
determined analytically are compared to the values given in the FE-model.  It can be 
seen that the bending moments from the FE-model agreed well with the hand 
calculations but that the deflection became 13 percent greater in the FE-model 
compared to the analytical value. It can be concluded that the established model 
explained the bending moment in a good way and the results in further investigations 
can be trusted.  

  

Table 2 Comparison between hand calculations and the  

results from the FE-model. 

 

 

 

 

 

 

 

 

A.3 Coupling of beam and shell element with tie constraints 

When the bridge was modelled it was important to evaluate which structural 
behaviour that was to be achieved. In the transversal direction the width of the 
supporting girders was relatively big compared to the length of the span, hence the 
width of the girders had a significant influence on the load effect.  

Rombach (2011) describes how to model the couplings between a one-way slab and 
supporting walls in the best way. Figure 6 show four different ways of modelling the 
supports where three of the approaches (a), (b) and (c), are recommended to use and 
shows a good correlation between the result in a FE-model and the exact solution. The 
first line support, (a), is a pinned support of one node only. In (b), the pinned support 
is coupled to a number of nodes in the slab to simulate an infinite stiff element that 
can rotate around the centre node and (c) shows a three-dimensional model. The line 
support (d) is a pinned support of all nodes above the support and should not be used.  

 Hand calculations FE-model Ratio 

�09118:(  11	720	EFG 11	440	EFG 0.98 

�H674�  6	592	EFG 6	606	EFG 1.00 

MN2
 13.1	GG 14.8	GG 1.13 

�U23(647V7: 47.25	EFG/G 46.47	EFG/G 0.98 
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a) 

c) 

b) 

d) 

 

Figure 6 Different ways of modelling line supports of slabs; a) pinned support of 

one node, b) pinned support of one node and coupling, c) three-

dimensional model and d) pinned support of all nodes above the 

support. 

  

The bridge deck slab that was modelled with orthotropic shell elements, without any 
stiffness in longitudinal direction of the bridge, was supported on two girders. When 
the tie constraints were used to couple the beam elements and the shell elements, the 
structure could be compared to the theory described by Rombach (2011). It should 
however be noted that the girders could not be seen as rigid supports since they could 
deflect when the slab was loaded. Therefore, there were interdependency between the 
girders and the bridge deck slab in another way than between a slab on supporting 
walls. The theory could for that reason not be compared directly and adopted fully for 
the actual case study bridge in this Master’s project. 

When modelling the bridge with beam and shell elements the coupling between the 
different element types could be made in different ways. In this Master’s project the 
tie constraints were used. It was important to connect different element types in a 
correct way so that the effect from one element was reflected in the neighbouring 
elements (Rugarli, 2010). Because the shell elements and the beam elements had a 
different number of degrees of freedom, the tie constraints transferred the effects from 
the slave elements to the master elements. In this Master’s project the shell elements 
were chosen to be slave elements and the beam elements were chosen to be master 
elements. The coupling with tie constraints was made by a node to surface connection. 
By specifying a position tolerance, all nodes in the slave region that laid within the 
tolerance were constrained to the nodes in the master region. The coupling was stiff 
and did not allow for any deformations. 

When the nodes between the beam elements and shell elements were constrained, an 
assumption that the slab was undeformed above the girders was made, i.e. there was 
no curvature. Due to the high difference in stiffness between the beam and slab 
sections, this assumption could be seen as correct.  

When the deflection and moment diagrams were studied in the transversal direction in 
the bridge deck slab, see Figure 7 and Figure 8, it was obvious that the number of 
constrained nodes in transversal direction affected the structural behaviour. Both the 
bending moment and the deflection were zero over the region that was constrained 
because no deformations of the cross-section of the girders were allowed.    
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Figure 7 Moment diagram in transversal direction where different numbers of 

shell nodes were constrained to the beam nodes. Between 4.4 and 7.6 

meter, there was a critical region in design. A uniformly distributed 

load of 25 kN/m
2
was applied on the bridge deck slab.   
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Figure 8 Deflection diagram in transversal direction in the field, where different 

number of shell nodes were constrained to the beam nodes. A 

uniformly distributed load of 25 kN/m
2
was applied on the bridge deck 

slab.   

In the moment diagram, see Figure 7, different magnitudes of the bending moment in 
the slab over the girders were seen depending on the number of constrained nodes. If 
only one node in the transversal direction in the slab was coupled, namely the node 
above the centre of the girder, the slab was free to rotate in relation to the girder. If 
several nodes were coupled, the transversal stiffness increased.  

Without further thought, it was easy to believe that the case of one coupled node gave 
the design moment, but after further reasoning this must not necessary be true. In 
Figure 9, only the most extreme diagram are shown for the bending moment, i.e. the 
case of one constrained node only and the case when all nodes above the girders were 
constrained. 
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Figure 9 Moment diagram of a section in transversal direction. The curves 

represent the bending moment if one node in the shell was constrained 

to the beam nodes and if all nodes in the shell over the girders were 

constrained to the beam nodes.   

In the region 4.4 - 7.6 meters it was seen that there was small or no need for top 
reinforcement in the slab between the girders, if the graph showing one coupled node 
was believed. Instead, the need for bottom reinforcement was essential. When the 
entire area in the slab above the girders was constrained, the support moment occurred 
in the connection of the slab and the girders. If this way of modelling was believed, 
the support moments between the girders gave a need of top reinforcement in the slab 
that was not taken into account if only one node in the bridge deck slab was 
constrained. In field, the need for bottom reinforcement decreased substantially. In a 
design situation it should be remembered that the inner level arm for the girder section 
is much greater than for the slab. Depending on the difference of level arm and 
difference of maximum bending moment in the top of the section, it is not obvious 
which way of coupling that governing the design values of the sectional forces.  

In model 1, it was decided to constrain a width of 2.6 meters of the shell to the beam 
nodes. This was due to reflect the same structural behaviour of the bridge deck slab as 
in model 2 and 3.  
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Appendix B. Model 2 

In appendix B, additional investigations for model 2 are presented. The appendix 
addresses the convergence study and verification of the model that ensures the 
reliability of the established FE-model.  

 

B.1 Convergence study of model 2 

The mesh in the bridge deck slab in model 2 was chosen considering the convergence 
study made for model 1. An element size of 0.5 meter described the structural 
behaviour satisfactorily.  

To study if the girders described the structural behaviour in a correct way, the bending 
moment and deflection in the girders longitudinally was verified, see the section 
Verification of model 2.  

In model 2, the feature Free Body Cut was used. A Free Body Cut must contain a 
certain amount of elements for the sectional forces to converge. This was studied for 
Free Body Cut surfaces, created over a width of 0.5 meter, in a transversal section in 
the bridge deck slab. Figure 10 and Figure 11 show the variation of shear force and 
bending moment, respectively, along the transversal section. It was seen that an 
element size of 0.25 meter described the structural behaviour satisfactorily.   

To have the same size of the mesh as in model 3, the mesh was chosen to 0.125 meter 
in the bridge deck slab, see Appendix C. This was due to be able to compare the 
results from the FE-models independently of the mesh.   
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Figure 10 Transversal shear force along a transversal section in the bridge deck 

slab, created by the feature Free Body Cut.   
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Figure 11 Transversal bending moment along a transversal section in the bridge 

deck slab, created by the feature Free Body Cut.   

 

B.2 Verification of model 2 

The verification of model 2 was made in the same way as for model 1. For the 
explanation of the verification and input data, see Appendix A.  

The analytical values of the bending moment over the mid support, the maximum 
field moment and maximum deflection, is shown in Equation (5), (6) and (7) 
respectively. The statically determined transversal bending moment close to the girder 
is shown in Equation (8). 
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In the table below, see Table 3, the bending moment and deflection determined 
analytically are compared to the results from the FE-model.  It was seen that the 
bending moments from the FE-model agreed well with the hand calculations. The 
deflection became 8 percent greater in the FE-model compared to the analytical value. 
It was concluded that the established model described bending moment in a good way 
and the results in further investigations can be trusted.  
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Table 3 Comparison between hand calculations and the  

results from the FE-model. 

 

 Hand calculations FE-model Ratio 

�09118:(  11	720	EFG 11	750	EFG 1.00 

�H674�  6	592	EFG 6	580	EFG 1.00 

MN2
 13.1	GG 14.1	GG 1.08 
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Appendix C. Model 3 

Appendix C, presents additional investigations made for model 3. In order to 
understand which continuum element type that was best suited for the investigation,  
convergence studies were made for different element types.  

To ensure the reliability of the model, convergence and verification studies are 
presented. To increase the understanding of how to use the feature Free Body Cut and 
interpret the results correctly an additional investigation of this is also presented. 

 

C.1 Convergence study of model 3 
The convergence study of model 3 was made for the same load cases as for model 1 
and 2. A distributed load of 25 kN/m2 was applied uniformly on the bridge deck slab 
and a line load of 15 kN/m was applied at the edge of the cantilever. 

When examined the bending moment, the feature Free Body Cut was used. For the 
bending moment in the girders, half of the bridge cross-section was included in the 
Free Body Cut surfaces. To study the bending moment transversally in the bridge 
deck slab, the Free Body Cut surfaces were created in the middle of the span, where 
two element edges longitudinally was included. The section where the deflection of 
the girder was studied was created along the lower edge of one of the girders. 

Since the mesh of a continuum can be adjusted in three directions the element size 
longitudinally was kept constant to 0.5 meter while examined the dependency of the 
number of elements over the height of the girders and bridge deck slab. When 
convergence was reached, the element sides were adjusted to not exceed a ratio of 2:1. 

It was found in the convergence study that Free Body Cut did not calculate the 
bending moment correctly when second order elements were used. Therefore it was 
decided to use linear element types. In a bending induced problem it is favourable to 
use the element type C3D8I with incompatible modes instead of C3D8R with reduced 
integration (Simulia, 2009). However, the convergence study was made to compare 
these two element types.  

In order to differentiate the notations of the curves in the graphs in the diagram 
legends the first number tells how many elements that were used over the height of 
the girders and the second number tells the number of elements that were used over 
the cantilever and bridge deck slab between the girders. 

Looking at the convergence of the bending moment at the girders it was seen that both 
element types converged for a very coarse mesh with three elements over the height 
of the girders and one element in the slab, see Figure 12. However, when examined 
the deflection it was recognised that the element type C3D8I converged more rapidly 
compared to the element type C3D8R, see Figure 13. It should be noted that the 
bending moment and deflection converged in the opposite way than structural 
elements. A converged bending moment was lower than a moment that had not 
converged.  
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Figure 12  Bending moment along the girders with mesh refinement. The element 

types C3D8R and C3D8I were used. A uniformly distributed load of  

25 kN/m
2
 was applied on the bridge deck slab.   

 

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60

Deflection [mm]

Length [m]

3-1 C3D8R-elements

8-2 C3D8R-elements

8-2 C3D8I-elements

3-1 C3D8I-elements

 

Figure 13  Deflection along the girders with mesh refinement. The element types 

C3D8R and C3D8I were used. A uniformly distributed load of  

25 kN/m
2
 was applied on the bridge deck slab.   

Investigating the bending moment transversally demands for a higher number of 
elements over the height of the girders and bridge deck slab compared to the 
convergence of the bending moment at the girders. This was because the structure was 
not as slender in the transverse span compared to the longitudinal span. The 
convergence for moment transversally for the different element types is presented in 
Figure 14 and Figure 15. When compared the capability for the different element 
types to describe moment transversally, it was clear that the element types 
distinguished more from each other than if the bending moment along the girders was 
studied. The reason why the diagrams in Figure 14 and Figure 15 were assymetric was 
due to the creation of Free Body Cuts. When generating a Free Body Cut, a normal 
vector to the Free Body Cut surfaces was needed to be formulated. The exposed side 
of the cut is dependent on the direction of the normal vector and if the vector was 
given in the direction from the less stiff part to the more stiff part of the structure, the 
bending moment over the support was captured, otherwise it was not.  
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Figure 14 Transverse moment with mesh refinement when the element type 

C3D8R was used. A uniformly distributed load of 25 kN/m
2
 was 

applied to the bridge deck slab.     
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Figure 15 Transverse moment with mesh refinement when the element type 

C3D8I was used. A uniformly distributed load of 25 kN/m
2
 was applied 

to the bridge deck slab.   

The convergence of the deflection transversally, see Figure 16, distinguished the 
incompatible mode elements. It should be noticed that the section where deflection 
was examined was chosen to be in the mid span where the largest deflection was to be 
expected. Since the mesh also influences the deflection of the girders longitudinally, it 
is to be remembered that the chosen mesh does influence the convergence of load 
effects in both longitudinal and transverse direction. 

It was seen that the elements with reduced integration was not good to describe 
bending for the coarse mesh with three elements over the height of the girders and one 
element over the bridge deck slab. To be able to examine the convergence of the 
deflection, the C3D8R elements with the coarsest mesh was excluded, see Figure 16. 

As for the convergence of the girders it was seen that C3D8I did describe bending 
better than C3D8R even in transversal direction of the slab. All the three curves where 
C3D8I was used, described deflection very well while C3D8R did not converge for 
the mesh refinement that was performed. 
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Figure 16  Deflection transversally with mesh refinement and different element 

types. A uniformly distributed load of 25 kN/m
2
 was applied on the 

bridge deck slab.   

 

When the line load was applied at the edge of the cantilever, only the transverse 
moment variation was examined, see Figure 17 and Figure 18. The results showed 
that both element types were able to capture the statically determinate moment even 
for coarse mesh. However, the incompatible mode elements converged more rapidly. 
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Figure 17  Transversal moment for the bridge deck slab with mesh refinement. 

The cantilever of the bridge deck slab was subjected to a line load of 

15 kN/m. The element type C3D8R was used. 
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Figure 18  Transversal moment for the bridge deck slab with mesh refinement. 

The cantilever of the bridge deck slab was subjected to a line load of 

15 kN/m. The element type C3D8I was used.  

The convergence study for the continuum elements showed that more elements over 
the height of the cross-section gave a more accurate way of describing bending. The 
comparison between the element types C3D8R and C3D8I showed that incompatible 
mode elements were preferably used if bending was to be described. The conclusion 
from the convergence study was that the element type C3D8I should be used in the 
analyses and that 8 and 2 elements should be used over the girders and bridge deck 
slab, respectively.  

The convergence was performed with a constant element length of 0.5 meters 
longitudinally and transversally in the bridge deck slab, and in order to stay within the 
recommendations of a ratio of 2:1 between the element sides, the elements were 
adjusted to 0.25 meters. A control was made with the adjusted mesh to be sure that it 
had converged. 

As mentioned earlier, the feature Free Body Cut was used in model 3, to get sectional 
forces. To know how many elements a Free Body Cut must contain to show the 
correct magnitude of the bending moment and shear force, Free Body Cut surfaces 
were created in a transversal section in the bridge deck slab. The Free Body Cut 
surfaces were created with a width of 0.5 meter. 

Figure 19 and Figure 20 present the shear force and bending moment, respectively, 
along the transversal section in the bridge deck slab. It was seen that an element size 
of 0.25 meter has not converged. An element size of 0.125 meter, show the same 
variation of shear force and bending moment as the same graphs in the convergence 
of model 2. An element size of 0.125 meter could for that reason be concluded as 
converged.    
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Figure 19 Transversal shear force along a transversal section in the bridge deck 

slab, created by the feature Free Body Cut.   
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Figure 20 Transversal bending moment along a transversal section in the bridge 

deck slab, created by the feature Free Body Cut.   

 

C.2 Verification of model 3 

The verification of model 3 was made in the same way as model 2 and 3. For the 
explanation of the verification and input data, see Appendix A.  

The analytical values of the bending moment over the mid support, the maximum 
field moment and maximum deflection, are shown in Equation (9), (10) and (11), 
respectively. The statically determined transversal bending moment close to the girder 
is shown in Equation (12). 
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In the table below, see Table 4, the bending moment and deflection determined 
analytically is compared to the results from the FE-model.  It was seen that the 
bending moments from the FE-model agreed well with the hand calculations. The 
deflection became 8 percent greater in the FE-model compared to the analytical result. 
It was concluded that the established model described bending moment in a good way 
and the results in further investigations can be trusted.  

Table 4 Comparison between hand calculations and the results  

from the FE-model.  

 

 

 

 

 

 

 

C.3 Influence of the normal vector for a Free Body Cut 

As mentioned earlier in Appendix C, the sectional forces along sections where Free 

Body Cut is used are dependent on the normal vector to the Free Body Cut surfaces. If 
the normal vector was given in the direction from the less stiff section to the more 
stiff section the support values were captured but otherwise they were not.  

In Figure 21, the variation of bending moment transversally in the bridge deck slab is 
presented along a section with Free Body Cut. The mesh in the bridge deck slab was 
0.25 meter. For the two curves, the normal vectors for the Free Body Cut surfaces 
were defined in different ways and the curves were for that reason not equal. The 
symmetric curve presents the variation of bending moment if the normal vectors were 
defined from the less stiff sections to the more stiff sections when the stiffness where 
the cross-section of the bridge changed. The other curve presents the bending moment 
if the normal vectors were defined in the same direction in all Free Body Cuts. The 
bridge deck slab was subjected to a uniformly distributed load of 25 kN/m2. 

Further investigations showed that for a very dense mesh, the definition of the 
direction of the normal vectors became less important. Along a section, transversally 
in the bridge deck slab, a mesh of 0.02 meters showed a moment variation that was 

 Hand calculations FE-model Ratio 

�09118:(  11	720	EFG 11	750	EFG 1.04 

�H674�  6	592	EFG 6	580	EFG 1.09 

MN2
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symmetric even if the direction of the normal vectors were the same for all Free Body 
Cut surfaces. Because of this, the user of the FE-software has two options when 
defining the Free Body Cuts. The direction of the normal vectors to the Free Body Cut 
surfaces have to be defined from the less stiff sections to the more stiff sections of the 
bridge or the mesh must be dense enough to omit the dependency of the definition of 
the direction of the normal vectors. 
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Figure 21 Variation of bending moment transversally in the bridge deck slab if 

the normal vectors to the Free Body Cut surfaces were defined in 

different ways. A uniformly distributed load of 25 kN/m
2
 was applied 

on the bridge deck slab. 
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Appendix D. A study of the support conditions of the 

slab 

To examine the structural behaviour of the slab close to the girders for the three FE-
models, the transversal bending moment was compared to analytical models, where 
the moment was calculated from beam tables. For load case 1, analytical two-
dimensional models of both simply supported and fully rigid supports were studied 
and for load case 2 the statically determinate bending moment was studied. 

The applied load was known and from the established models the distance between 
the support moments and the section where the load was applied was measured. The 
theoretical span for load case 1 and the length of the cantilever for load case 2 for the 
different FE-models differed slightly, since the girders were represented differently.  

 

D.1 Load case 1 

The different support conditions for the analytical two-dimensional models and the 
FE-models are presented in Figure 22. The transversal moment distribution was 
integrated along three sections in the bridge deck slab along the bridge. Two sections 
were close to the girders and one was through the loading point. The variation of the 
total bending moment in transversal direction of the bridge is presented and compared 
to the results from the analytical models in Figure 23. 
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Figure 22 Support conditions for; (a) model 1, (b) model 2 and (c) model 3. 
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Figure 23 Variation of the bending moment for the FE-models and a case of 

simply supported and fixed supports, when concentrated load of  

360 kN was applied to the bridge deck slab between the girders. The 

variation was shown for; (a) model 1, (b) model 2 and (c) model 3.  

From Figure 23 it was seen that all FE-models gave an interaction that represented 
more closely the condition of fixed supports than simply supports. It was also seen 
that the support moment at the girder closest to the load was smaller than for fixed 
supports, but that the support moment at the girder farthest away from the load was 
slightly higher than for a fixed support condition. The same observations holds for all 
FE-models, but were more significant in model 2 and 3. 
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Since none of the established FE-models corresponded to fixed supports or a simply 
supported condition, the correctness of the models was checked: a straight line 
between the support moments in Figure 23 was created and the total moment between 
the line and the maximum field moment was calculated. The total moment should 
then correspond to the theoretical moment under the load for the corresponding 
simply supported beam, see Figure 24. 
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Figure 24 Schematic moment diagram, showing how the total bending moment 

between the maximum field moment and the drawn line was calculated 

for a simply supported beam.   

Table shows a comparison between the total bending moment from FE-analysis and 
the theoretical bending moment. All models deviated to some extent and gave a total 
moment lower than expected. It was seen that the chosen averaging of nodal forces, 
from the output data, influenced the integrated value due to approximation errors. The 
bending moments shown in Table 5are integrated values from three longitudinal 
sections and therefore the deviation might be significant. 

 

Table 5 Comparison of the total bending moment in the FE-models and the 

analytic model.  

 Model 1 Model 2 Model 3 

Analytically 234.8 kNm 223.5 kNm 219.7 kNm 

FE-model 219.5 kNm 216.0 kNm 215.7 kNm 

Ratio 0.94 0.97 0.98 
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D.2 Load case 2 

The loading situation for load case 2 gave rise to a statically determinate support 
moment at the girder which could be calculated by the load times the lever arm, and 
then be compared to the integrated bending moment from the established FE-models. 

Figure 25 shows the transversal support condition for the different FE-models and a 
case of fixed support. In Table 6, the support moments are compared and it could be 
seen that the moments from the different models agreed well with the two-
dimensional analysis. When the study of the support conditions was made for load 
case 1, the analytical result and the results from the FE-analysis deviated more than 
for load case 2. This might depend on that only one longitudinal section was needed 
to be integrated for load case 2. The approximation errors had then lower impact on 
the results compared to the approximation errors for load case 1.  
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Figure 25 Support conditions for; (a) model 1, (b) model 2 and (c) model 3. 

 

Table 6 Comparison of the total bending moment in the FE-models and the 

analytic model. 

 Model 1 Model 2 Model 3 

Analytically 522.0 kNm 547.5 kNm 568.8 kNm 

FE-Model 521.1 kNm 545.0 kNm 567.6 kNm 

Ratio 1.00 1.00 1.00 

 

 


