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ABSTRACT

In a previous publication the author reported on an experimental study of the
transport of sediment in a part-full pipe with a permanent deposit. Relationships to
estimate both flow resistance and bedload transport were then proposed and
further experimental work was recommended, specially to cover those cases when
the water depth exceeds the half-full condition. A new experimental series has
been carried out for the cases when both water discharge and sediment transport
rates are considerably larger than in previous experimental studies. It was found
that the trajectories of the original curves remain practically unchanged and that
both of the aformentioned relationships do not change significantly after adding
the new experimental points. The new relationships can be applied even for the

increased discharge-transport values.

KEYWORDS

Bedforms; Bedload; Flow resistance; Pipe channels; Sediment transport; Storm

sewers; Stream traction.



PREFACE

In the Fall 1991, I presented the defense of my doctoral thesis whose title is:
"Bedload Transport in Storm Sewers". The project was finansed by The Swedish
Council for Building Research and Chalmers University of Technology supported

me through a graduate research assistanship.

In my doctoral thesis, I proposed relationships for flow resistance and bedload
transport computation in sewers with a sediment bed under steady flow conditions.
I also emphasized the need for further experimental work, specially to cover those
cases when the water depth exceeds the half-full condition, i.e. when the hydraulic
section is not "trapezoidal” but adopts a "concave" form. In order to improve the
aforementioned relationships to be applicable for a wider validity range, I carried
out a new series of experiments during the spring 1992. Funds have been provided
by The Swedish Council for Building Research and I gratefully acknowledge its
support.

The analysis of sediment transport in sewer networks demands a dynamic
approach similar to that used in flow analysis. MOUSE is a program system for
the computation and analysis of sewer and drainage systems. It was developed by
the Danish Hydraulic Institute and is widely used in Sweden. However, it does not
have a sediment transport model to describe the effects of sediment in sewers. It is
therefore desirable to implement a computer model that takes into account
fluctuations in both flow and sediment conditions. A new project has been started
at the Department of Civil Engineering at the University of Aalborg in Denmark,
to develop such a model. I participate in the project and one of my tasks is to do
the experimental work for the verification of the model. The results from the
present study are to be used for that purpose, in addition to the objective

mentioned above regarding the improvement of my own relationships.

The measurements at the laboratory could not have been possible without the help
from my colleagues Bengt Carlsson, Karl-Oskar Djdrv and Lars-Ove Sérman.
Professor Lars Bergdahl and Dr. Sven Lyngfelt have given me invaluable support

for the continuation of my research activities.

Goteborg, September 1992 Gustavo Perrusquia
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1 INTRODUCTION

The erosion and sedimentation of sediment in sewers, though a relatively new
subject, has been widely studied in both the field and the laboratory, mainly in
Western Europe. Field studies are quite useful since they provide a real-world
picture of what actually happens underground. However, the information that
comes out of such studies becomes too complicated to handle in a simulation
model since the variety of data is only good for the records but not for a detailed
description of the process.

It is then we discover that laboratory studies are still necessary to identify the
different elements that are involved in the process. A partial list of the activity in
the laboratory that is currently going on in this area at universities and research

institutes is presented in Table 1.

TABLE 1 Research on Sediment in Sewers in the laboratory. (Partial list)

Country and Institution Type of Research
Belgium
State University of Gent Cohesive and non-cohesive

sediments in a cylindrical flume

University of Liege Behaviour of sediments in manholes

Catholique Univ. of Leuven Cohesive and non-cohesive sediment
transport in unsteady flow

Denmark
Aalborg University Cohesive sediment transport
Holland
Delft Univ. of Technology Sediment transport in circular sewers with
non-cohesive deposits
Sweden
Chalmers Univ. of Technol. Bedload transport in storm sewers

United Kingdom

University of Newcastle The influence of cohesion on sediment
movement in pipe channels

Hydraulics Research Ltd. Non-cohesive flume traction in sewers




In previous publications, the author has reported on experimental studies of: 1)
flow capacity of sewers with plane, stable sediment beds (Perrusquia et al., 1987),
2) flow resistance in sewers with erodible sediment beds (Perrusquia, 1990A) and
3) sediment transport in sewers with a permanent deposit (Perrusquia, 1991). The
resultg fio/ this work was the first known relationship for sediment transport for an
alluvial bed in a sewer. However, most of the experiments were done for water
levels up to the half-full condition ("trapezoidal" hydraulic section). To verify the
validity of this relationship for higher water levels ("concave” hydraulic section),
a new series of experiments was carried out. Both the water discharge and the
sediment transport rates were considerably larger than in previous experimental

studies.

The purpose of this report is to present the results of the experiments and to
investigate whether the transition from "trapezoidal" to "concave" hydraulic
section produces shape effects that may modify the form of the original

relationship.
2 DESCRIPTION OF THE EXPERIMENTAL STUDIES

The experiments were carried out at the Department of Hydraulics, Chalmers
University of Technology, Goteborg, Sweden, during the spring 1992. They were
conducted in a concrete pipe 225 mm in diameter and 23 m long. Two sand sizes,
0.9 mm and 2.5 mm, were used. Two sediment bed thicknesses, 45 mm and 90
mm, were tested. Pipe slopes ranged from 0.002 to 0.006. The sediment bed was
permanently deposited (not fixed) and the type of transport observed and
measured was bedload transport exclusively. A complete description of the
apparatus, the instruments and the experimental procedures is published elsewhere
(Perrusqufa, 1991). The experiments were run under uniform flow conditions.
Flow depths, flow discharge rates, flow velocities, sediment supply rates, sediment
transport rates and bedform dimensions were measured. The reproducibility of the

runs was tested in a few cases and was found satisfactory.
3 ANALYSIS OF THE EXPERIMENTAL RESULTS

The majority of studies on sediment transport have been done in alluvial channels.
However, the hydraulic principles upon which they are based can still be applied
to the case of part-full pipes with a sediment bed subject to stream traction. Two
basic concepts are treated in this report: 1) flow resistance and sediment transport.

Both are discussed below together with the main results from the present study.



3.1 New Results Compared With Previous Studies
The experimental data range is summarized in Table 1. A more detailed
description is included in Appendix I. The parameters used in the computations

were found from the expressions listed in Appendix II.

TABLE 1 Range of the Experimental Data

Run  Pipe Sand Sand Bed Flow  Flow + Sediment Depth

No.  Slope Size  Thickness Depth Pipe Diameter

S D5 t Y (Y+t)/D#
(mm)  (mm) (mm)
1 2x10-3  0.90 45 67.5 0.50
2 " " " 113 0.70
3 3x10-3 " " 75.0 0.53
4 " " " 85.5 0.58
5 " 2.50 ! 90.0 0.60
6 ! " " 111 0.70
7 " ! " 132.5 0.79
8 4x10-3 ! ! 90.0 0.60
9 " ! ! 106 0.67
10 " ! ! 122 0.74

tPipe Diameter, D = 225 mm

The experiments carried out between January 1989 and June 1990 are referred to
as PhD Thesis series while those carried out during the spring 1992 are referred to
as Postdoctoral series. The experiments corresponding to the latter series were
identified, except for run 1, in the hydraulically rough flow regime. This is

illustrated in Fig. 1 where the former series was also included.

To compare the new findings with the results from previous studies, the bed
mobility number, ©y, was plotted against the transport parameter, ®y. This type of
representation (0, vs. @) was chosen because it is well known that shear stress
(the bed mobility number is a dimensionless shear stress parameter) plays an
important role in the mechanics of sediment transport. The plots of ® vs. @y, are
shown in Figs. 2 to 9 and are classified according to pipe slope, sand size,

sediment thickness as well as hydraulic section.



1.0

Ph.D. Thesis series 4 Postdoctoral series

5 rFully vrvough flow regime

Lo HY
Transitional \

Friction coefficient of the bed, fy
<

0.01 | 2 | | ;
10E+03 10E+04 10E+05 10E+06

Reynolds number of the flow, Re

Fig. 1 Location of experiments according to flow regime

The total experimental range was 0.2% < S < 0.6%, for pipe slope; 0.9 mm < Ds,
< 2.5 mm, for sand size; and 45 mm < t < 90 mm, for sediment thickness. A
summary (for the total experimental range) of both the PhD and Postdoctoral
series is shown in Fig. 2a, while in Fig. 2b the runs were classified in groups
according to their hydraulic section being trapezoidal [(Y+t) < D/2] or concave
[(Y+t) > D/2]. The runs were separated into trapezoidal and concave hydraulic
sections in Figs. 3a and 3b respectively, to better appreciate whether different
paths could be detected depending on the shape of the hydraulic section. The
sediment thickness, t = 45 mm was chosen as a common parameter in Figs. 4a
and 4b, where the runs were classified according to sand size and pipe slope. In
Fig. 5a the runs were divided according to the shape of the hydraulic section,
while in Fig. 5b they were grouped using a common symbol. No figures for t = 90
mm are shown since the Postdoctoral series did not include experiments with that
sediment thickness. Fig. 2a was redrawn as Fig. 6a using a common symbol and
the results from the Newcastle studies (Perrusquia, 1990B) were included in Fig.

6b for comparison.

In summary, no apparent path or trend in the ©y vs. @y, plots was detected as far
as the shape of the hydraulic section is concerned. However, these plots form the

basis for the transport formula which is presented later in this report.
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3.2 Flow Resistance Estimation

A design method for flow resistance estimation was proposed by the author in a
previous report (Perrusquia, 1991). The results from the present report were
included in the analysis and it was found that the original expression does not

change significantly. This is shown in Fig. 7 where Eq. (1) has the form:

©,/0. = 1.5 + 3.58 Ln (6,/6,) (1)

in which ®,' is the grain mobility number and @, is the critical mobility number.

Both parameters are thoroughly defined in Appendix II.

Seventy-seven percent of the observed ©,/0O, ratios are within £ 25% of the
estimated ©,'/O, ratios which shows that this is a fairly good way of estimating

the grain mobility number, ©y,".

Bed mobility ratio ©,/0,
8 -
+ 26%
=Y
0
57 Bq. (1) ®
So
- 28 %
47T e
&
8 B
o A N
44
ol s
Experimental Series
4 y &)
2 - -
PhD Thesis
L5 postdoctoral
[  Newcastle
0 f f %
[¢] 2 4

6
Grain mobility ratio eb’/eu

Fig. 7 Grain mobility as a function of bed mobility

3.3 Sediment Transport Formula

Likewise, the sediment transport formula, which was proposed by the author in a
previous report (Perrusquia, 1991), was updated by including the results from the
Postdoctoral series. Dimensional analysis was used to find functional relationships
for bedload transport in pipe channels with a deposited bed. The experimental

results were fitted to those relationships by using regression analysis.
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Fig. 8 Agreement of sediment transport formula

The new formula for the prediction of sediment transport has the form:

@y = 3.4x10° ©,26 p,"0:96 7047 y 0.66  0.70 )

in which the dimensionless variables are: Z = Ds/Y, relative flow depth, Y, =

Y/D, relative bed thickness, t, = t/D, and D, is a particle number (Appendix II).

The value of the adjusted coefficient of determination was 0.85, which gives an
idea of the accuracy in the prediction of sediment transport rates. This is

illustrated in Fig. 8 where almost ninety percent of the predictions are within +
50% of the observed values.

4 DISCUSSION AND CONCLUSIONS

The complementary series of experiments presented in this report was intended

to check whether a "concave" hydraulic section, i.e. (Y+t)/D, affects the flow
conditions so drastically that both the original flow resistance estimation and
sediment transport formula need major changes. The significance of individual

parameters such as sediment thickness, t, sand size, Dsq, and pipe slope, S, was
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also investigated. Looking at Figs. 2 to 6, one can see that there is no apparent

indication that any of these parameters have a decisive influence on transport.

Likewise, the bed mobility number, ®,, was selected as an appropriate parameter

to describe the sediment transport process. This means that ®y is very significant

but not sufficient even though several authors have used it (exclusively) in their

equations to predict sediment transport rates.

This last asseveration is based on the fact that the aforementioned equations are

all applicable to wide alluvial channels. Conditions are quite different in sewer

pipes and geometric factors (including both relative flow and sediment depths) are

also important.

The main conclusions can be listed as follows:

1)

2)

4)

The original relationships to estimate flow resistance and sediment
transport do not change significantly after adding the new experiments.
There is no indication that the sediment transport formula should be
adjusted depending on the shape of the hydraulic section. However,
both the flow depth and sediment thickness play an important role

in the configuration of this formula.

The main contribution from these series of experiments is that both

of the aforementioned relationships are the first attempt to provide
engineers with a method that directly applies to the present case,
namely bedload transport in storm sewers with a deposited sediment
bed or "stream traction” in pipe channels.

Experimental data from other sources are needed to further develop the
structure of the equations presented in this report. There is a lot more to
say about this type of sediment motion. It took almost twenty years of
research in the field of "flume traction" in pipes to develop formulas
such as those proposed by Novak and Nalluri (1972 and 1975), based on
a single parameter, May (1982 and 1989), based on a semi-theoretical
approach, and Mayerle (1988), based on multiple regression.
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APPENDIX I

Experimental Data
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APPENDIX II

Calculation of Parameters
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Grain Reynolds number:

u, Dsg
Re, =

Vv

in which u, = /5/p = shear velocity; 7, = shear stress; p = density of water;
Dsq = particle diameter of bed material 50% being finer; and v = kinematic visco-
sity of water.

Average velocity in a vertical profile:

%/_; = 5.75 log [10(B/ 3.75) [2—1;1’12;” transitional flow
X_; =5.75 log [12 IE—E—J rough flow

in which V = mean flow velocity; B = roughness function in terms of Re,, which
has a value of 8.5 for hydraulically rough flow (Re, > 70); Ry, = hydraulic radius
corresponding to the sediment bed; and k;, = equivalent sand roughness of the bed.

Velocity-defect relationship:

Unax-U _ 5.75 log [Ymax J
Uy y

in which u = local flow velocity at a height y above the sediment bed.

Side wall elimination using Manning's equation.
Manning's equation for both side walls and sediment bed:

2 1
V=1 RS2 side wall
R
V= I Ry3 §2 sediment bed

in which A = total hydraulic area; n = Manning's roughness coefficient; P = wet-
ted perimeter; R = hydraulic radius; S = energy slope; and subscripts w and b

denote wall and bed components respectively.

Side wall elimination using Darcy-Weisbach's equation.
Friction factor using the Colebrook-White equation:
1

2
f =-2log ks + 251 v

14.8 R RyI28g RS

in which g = acceleration due to gravity; and k, = equivalent sand roughness.
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Bed shear stress:
Th=pgRy S
Volumetric concentration:

cv=_8_b_x106

in which C, = volumetric concentration in parts per million; Q = water discharge

(the rate of fluid transport in volume per unit time).

Bed mobility number:

- %W/p_ RyS
% = 61D = 5-1)Dsy

in which ©, = dimensionless bed shear stress; and s = Ps /p = relative density of

the sediment; p, being the density of sediment.
Bed mobility number as a total resistance:

@b = @b' + @b"
in which @' and ©," are the dimensionless shear stresses of the grain and bed-

forms respectively.

Grain mobility number o,

(u,')2
(s-1)g Dsg

in which u,' = grain shear velocity.

@b, =
Bedform mobility number:

"o Tb”/p
B = (s-T)g Dsg

in which 5," = bedform shear stress.
Equivalent sand roughness of the bed:

kb = kb. + kb"

in which the superscripts ' and " also relate to grain and bedform respectively.
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Equivalent grain roughness:
k" =2 Dsg
Dimensionless transport parameter:

(Db = ———-ﬂ——————b
{g(s-1)Ds3

in which gy, = sediment transport rate per unit width (Qy/Py).

Particle number:
Del=
D* = DSO [(S;,Q )gJ 3

Relative density:

Relative grain size:

_Dsy
==

Relative flow depth:

Y
Yr=—p-

Relative bed thickness:

_ t
"=

Relative pipe roughness:

_ Dso

w

k,
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