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Abstract— We present an integrated heterostructure barrier 

varactor (HBV) frequency tripler on silicon substrate. The 
InGaAs/ InAlAs/ AlAs material structure was transferred onto 
the silicon wafer using low temperature plasma assisted bonding. 
The presented multiplier operates in the W-band (90-110 GHz). 
The module delivers 22.6 dBm, with a conversion loss of 6 dB, 
and 9 % 3-dB bandwidth.  

 

 
Index Terms— Frequency multipliers, heterostructure barrier 

varactors, heterogeneous integration, integrated circuits, 
millimeter-wave diodes, silicon, wafer bonding, III-V 
semiconductors.  
 

I. INTRODUCTION 
HE III-V compound semiconductors are broadly used in 
active devices operating at mm-wave and THz frequencies 

[1]- [2]. III-Vs offer high electron mobility, high bandgap and 
the epitaxial growth allows for fabrication of complex layer 
structures. However, at THz frequencies, monolithic 
integrated circuits require ultra thin substrates and on chip 
antenna probes for signal coupling, which occupy large wafer 
area. This is not easily made on materials like InP or GaAs 
which are fragile, expensive and are limited to small wafer 
sizes.  

Silicon is a mechanically robust material. It is cheap, 
supports large wafer sizes (>8 "), and is suitable for 
micromachining of complex 3 D structures [3]. In addition, it 
has two times higher thermal conductivity than InP or GaAs, 
which is an advantage for power dissipating devices. By 
heterogeneous integration of III-Vs on Si high frequency 
active devices on membranes, integrated in waveguides will 
be possible [4]- [5]. This will provide an additional degree of 
freedom in the circuit design and fabrication.  
Both direct epitaxial growth and epitaxial transfer methods 
have been used for the heterogeneous integration of III-Vs on 
Si [6]. For microwave applications a GaAs MESFET [7], an 
InGaP/ GaAs [8], InGaAs/ InP [9] HBTs, and an AlGaN/ GaN 
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HEMT [10] on Si have been demonstrated. Epitaxial transfer 
methods for THz frequency multipliers onto quartz [11]- [12] 
and AlN have been presented. However, direct integration of 
these integrated circuits onto Si, and the studies of the thermal 
properties and losses have not been shown. 

In this letter, an integrated InGaAs/ InAlAs/ AlAs HBV 
frequency tripler on silicon substrate is presented. Due to 55 % 
thermal expansion coefficient mismatch between InP and Si a 
low temperature plasma assisted bonding was utilized [13]. 
The performance of the reported device is comparable with the 
state-of-the-art devices grown and processed directly on the 
lattice matched InP substrate [14]- [15]. This motivates further 
research, and development of applications operating at THz 
frequencies utilizing heterogeneous integrated III-Vs on 
silicon.  

II. DESIGN AND FABRICATION 

A. HBV Devices 
The HBV is a semiconductor device, which under an applied 
voltage exhibits a nonlinear and symmetric capacitance [16]. 
The capacitance modulation is possible by combination of 
low/ high/ low bandgap material Fig.1. The barrier thickness is 
optimized for minimum leakage current and maximum 
breakdown voltage [17]. The device area and the number of 
barriers are designed to handle ca 1W of the input power [18]. 
The HBV material structure was grown on 3 " InP substrate by 
molecular beam epitaxy. The HBV material was then 
transferred onto high resistivity silicon (>10 kΩ cm) using LT 
plasma assisted wafer bonding [19]. In Fig. 2, a TEM image of 
the transferred material and the amorphous oxide layer at the 
bonded interface are shown.  

 
Fig.1.  Left: SEM image of an integrated HBV diode with total 6 barriers, 
on the silicon substrate with the air bridge connections to the embedding 
circuit.  
Right: depicted epitaxial layers of the HBV device. The mesa contact area is 
7 × 100 μm2
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Fig. 2. TEM image presenting the III-V HBV on silicon, and the InGaAs-
Si interface, with 5 nm thick oxide layer. 

 
Fig. 3. Image of a silicon integrated HBV frequency tripler assambled in the 
waveguide channel. The chip dimensions are: 4.7 mm × 0.8 mm× 0.08mm 
(length× width× thickness).  
 

Subsequently, the wafers were diced into 20 × 20 mm2 
chips, cleaned, and the integrated diodes and circuits were 
fabricated. This process consists of standard III-Vs fabrication 
steps. In addition, a 100 nm thick SiO2 layer was sputtered on 
the silicon surface. The SiO2

B. Circuit 

 passivation had no influence on 
the circuits RF performance, but reduced the substrate DC 
conductance, allowing for accurate I-V characterization of the 
active devices.  

The tripler circuit design is described in [15], [20]. An image 
of the silicon integrated frequency tripler assembled in the 
waveguide channel is shown in Fig. 3. The input signal is 
coupled to the circuit with a waveguide probe. The matching 
is realized in microstrip technology. The output waveguide 
will effectively block the fundamental harmonic (ω0). The 
generated signal at 3 ω0

III. RESULTS 

, is coupled to the output waveguide 
(WR- 10) with a waveguide probe. 

The input signal was generated with an Agilent E8257D 
signal generator. This signal was amplified with a Spacek 
Labs Ka-band power amplifier. A 10 dB directional coupler 
and an Agilent E4418B power sensor were used for accurate 
control of the available pump power. The output power at the 
third harmonic was measured with an Erickson PM4 power 
meter. The characterization was performed for an input 
frequency sweep from 30 – 34 GHz with a 0.2 GHz step. The 
input power drive level was in the 20 − 29 dBm range. 

 
Fig. 4.  Measured output power versus output frequency as a function of the 
available input power from 20 − 29 dBm in steps of 1 dBm.  

 
Fig. 5.  Output power and conversion loss as a function of input power at 
103 GHz output frequency.  
 
The RF performance of the demonstrated × 3 frequency 
multiplier is shown in Fig. 4. The maximum output power for 
29 dBm of the input power measured at 103 GHz was 
22.6 dBm (184 mW). The 3-dB bandwidth for the presented 
device was approximately 9 %. In Fig. 5. the output power and 
conversion loss collected at the center frequency are 
presented. The conversion loss for this device is about 6 dB, 
and corresponds to 23 % efficiency. 

Due to the limited saturated output power of the power 
amplifier (29 dBm), the tripler circuit could not be driven into 
saturation and therefore the maximum output power and 
efficiency were not reached.  

IV. CONCLUSION 
We have demonstrated a silicon integrated HBV frequency 

tripler. The performance of the presented device is comparable 
with the state-of-the-art hybrid and monolithically integrated 
InP-based frequency tripler devices [15]. The 
InGaAs/ InAlAs/ AlAs material structure was transferred onto 
silicon using LT plasma assisted bonding. By use of alloyed 
ohmic contact is a reason improved RF performance in 
comparison with the devices reported in [21].  

The presented results motivate further research and 
development of III-V HBV devices integrated on silicon for 
THz frequencies. Silicon micromachining can be utilized to 
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form membranes, waveguides, and antennas for more 
advanced integration schemes.  
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