
A Model-Based Approach to Computer Vision and

Automatic Control using Matlab Simulink for an

Autonomous Indoor Multirotor UAV

Master of Science Thesis

Niklas Ohlsson
Martin St̊ahl

Department of Signals and Systems
Division of Automatic Control, Automation and Mechatronics
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2013
Report No. EX014/2013

THESIS FOR THE DEGREE OF MASTER IN SCIENCE

A Model-Based Approach to Computer Vision and
Automatic Control using Matlab Simulink for an

Autonomous Indoor Multirotor UAV

Niklas Ohlsson
Martin St̊ahl

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2013

A Model-Based Approach to Computer Vision and Automatic Control using Matlab Simulink
for an Autonomous Indoor Multirotor UAV

Niklas Ohlsson
Martin St̊ahl

c©Niklas Ohlsson, Martin St̊ahl, 2013

Master of Science Thesis in collaboration with Combine Control Systems and MathWorks
Report No. EX014/2013
Department of Signals and Systems
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: + 46 (0)31-772 1000

Cover:
The prototype multirotor with the letter B attached to its back, enabling tracking of its true
position during flight using a ceiling mounted camera

Chalmers Reproservice
Göteborg, Sweden 2013

A Model-Based Approach to Computer Vision and Automatic Control using Matlab Simulink
for an Autonomous Indoor Multirotor UAV

Niklas Ohlsson and Martin St̊ahl
Department of Signals and Systems
Chalmers University of Technology

Abstract

A prototype autonomous UAV platform featuring computer vision based navigation for use
in GPS denied environments is presented. The UAV is based on a hexacopter platform from
3DR Robotics which has been equipped with a PandaBoard ES single-board computer and
a downward facing webcam. Position estimation is performed using template and feature
point matching image analysis techniques and object recognition has been implemented using
invariant moment descriptors. Position control has been achieved using cascaded PD control,
generating attitude setpoints sent to the hexacopter on-board computer over Ethernet.

Image analysis, control and decision making algorithms have been developed using model-
based design techniques with automatic code generation in Matlab Simulink. A multirotor
model has been obtained with system identification methods and a camera model and emula-
tor have been developed and used to emulate a camera video feed for image analysis algorithms
development and verification. A 3D-visualization environment has been developed and used
for assessment of the simulated system performance and behavior. Model accuracy is consid-
ered high, image analysis and control algorithm parameters tuned in simulation give similar
flight behavior during actual test flights.

The UAV prototype is capable of limited time hovering above a play mat floor surface.
Insufficient hexacopter altitude and yaw control performance achieved by the hexacopter
computer does, however, affect position estimation in a negative way and arguably making
it perform unsatisfactory. The template matching position estimation technique is functional
but image feature point matching methods should be considered in future development for
improved position estimation robustness to hexacopter yaw and altitude change.

Keywords: Autonomous, Multirotor, UAV, Quadcopter, Hexacopter, Image Analysis, Posi-
tion Estimation, Template Matching, Feature Point Matching, Model-Based Design, Matlab,
Simulink, Automatic Control, Computer Vision, Object Recognition, System Identification,
Code Generation, PandaBoard, ArduCopter, Camera Model, GNC, Guidance, Navigation,
Control, Simulation

, Signals and Systems, Master of Science Thesis 2013:06 i

Sammanfattning

En autonom UAV-prototyp med bildanalysbaserad navigering för användning i miljöer utan
GPS-täckning presenteras. UAV:n baseras p̊a en hexakopterplattform fr̊an 3DR Robotics
som har utrustas med en PandaBoard ES enkortsdator och en ned̊atriktad webbkamera.
Positionsestimering görs med hjälp av template matching och feature point matching bild-
analysmetoder och objektigenkänning har implementerats med hjälp av invarianta moment-
deskriptorer. Positionsreglering har uppn̊atts med hjälp av kaskadkopplade PD-regulatorer
vilka genererar vinkelbörvärden som skickas till hexakopterns dator med hjälp av Ethernet.

Bildanalys-, reglering- och autonomialgoritmer har utvecklats med hjälp av modellbaser-
ade utvecklingsmetoder och automatisk kodgenerering i Matlab Simulink. En multirotor-
modell har tagits fram med hjälp av systemidentifieringsmetoder och en kameramodell och
simulator har utvecklats och använts för att emulera en kameravy för användning vid utveck-
ling och verifiering av bildanalysalgoritmer. En 3D-visualiseringsmiljö har utvecklats och
använts för utvärdering av systemprestanda och beteende under simulering. Modellens nog-
grannhet anses vara hög, bilanalys- och reglerparametrar kalibrerade i simulering ger snarlikt
beteende under provflygning och simulering.

UAV-prototypen är kapabel till tidsbegränsad hovring ovanför en lekmatta. Otillräcklig
bäring- och höjdreglering, utförd av hexakopterns dator, p̊averkar dock positionsestimeringen
negativt och bidrar till dess ringa prestanda. Template matching är en funktionell metod
för positionsestimering men feature point matchingmetoder bör tas i beaktning vid framtida
vidareutveckling för förbättrad robusthet och t̊alighet mot ändring av bäring och höjd.

, Signals and Systems, Master of Science Thesis 2013:06 ii

Preface

This master’s thesis was conducted during the winter and spring of 2012–2013 at Combine
Control Systems AB in Lund and Gothenburg, Sweden in conjunction with Chalmers Uni-
versity of Technology, department of Signals and Systems, division of Automatic Control,
Automation and Mechatronics in Gothenburg, Sweden.

We would like to send thanks to our supervisors Erik Silfverberg and Simon Yngve at
Combine Control Systems for their enthusiastic support and shown interest throughout the
project. We would also like to thank our examiner at Chalmers, docent Torsten Wik, for
his guidance and help. Special thanks goes out to Daniel Aronsson at Mathworks for weekly
project meetings, support and help with software trial licenses throughout the duration of
the project.

It has been a privilege for us to work with a startup project such as this and we would
like to wish our successors good luck with their improvements and further development.

Watch us present this thesis at Chalmers here:
http://www.youtube.com/watch?v=ofLQw3X9-MU.

Niklas and Martin
Gothenburg, June 2013

, Signals and Systems, Master of Science Thesis 2013:06 iii

http://www.youtube.com/watch?v=ofLQw3X9-MU

Contents

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Background . 1
1.2 Scope . 1
1.3 Purpose . 1

2 Model-Based Design Method 2
2.1 Basic Concept . 2
2.2 Simulink and Code Generation . 2

3 System Description 3
3.1 APM Autopilot . 3
3.2 ArduCopter Software . 4
3.3 PandaBoard Hardware . 5
3.4 PandaBoard Simulink Model . 5
3.5 Andon Light . 6

4 Modeling and Simulation 7
4.1 Multirotor Position Model . 7
4.2 Multirotor Attitude Model . 9
4.3 Camera Model . 11
4.4 Simulation Environment . 14

5 Computer Vision 15
5.1 Object Recognition . 15

5.1.1 Segmentation . 17
5.1.2 Description . 18
5.1.3 Feature Selection . 20
5.1.4 Recognition . 21

5.2 Position Estimation . 23
5.2.1 Feature Point Matching . 23
5.2.2 Template Matching . 23
5.2.3 Algorithm Evaluation . 24

6 Guidance, Navigation and Control 26
6.1 Navigation . 26
6.2 Guidance . 26
6.3 Control . 27

7 Autonomy 30

, Signals and Systems, Master of Science Thesis 2013:06 iv

8 Communication 31
8.1 User Datagram Protocol . 31
8.2 ArduCopter Modifications . 32

9 System Verification and Validation 33
9.1 Simulation . 33
9.2 Test Flight . 34
9.3 Simulating Disturbances . 37

10 Discussion 39
10.1 Model-Based Design . 39
10.2 Position Estimation . 39
10.3 Control . 40

11 Conclusion 41

Bibliography 42

A System Identification Parameters I

B Control Parameters II

, Signals and Systems, Master of Science Thesis 2013:06 v

List of Figures

1 System Overview . 3
2 APM 2.5+ and PandaBoard ES . 4
3 ArduCopter Software Layout . 4
4 ArduCopter Attitude Controller Layout . 5
5 PandaBoard Software Layout . 6
6 Multirotor Position and Angles . 7
7 Multirotor Angles . 8
8 Multirotor Acceleration . 9
9 Roll/Pitch Input And Output . 10
10 Roll/Pitch Model Verification . 11
11 Attitude Model Step Response . 11
12 Camera Model . 12
13 Camera Position Attitude Compensation . 13
14 Camera Emulator and 3D Visualization of Simulation 14
15 Computer Vision Layout . 15
16 Typical Stages of Object Recognition . 16
17 Object Recognition Stages and Results . 17
18 Hue, Saturation, Value Color Space . 18
19 Letter Training Set . 20
20 Features Selected and Classification Map . 22
21 kNN Algorithm Visualization . 22
22 Floor Textures for Algorithm Evaluation . 24
23 Position Estimate above Marble Floor . 25
24 Position Estimate above Play Mat . 25
25 Template Matching with Re-Acquisition . 25
26 Guidance, Navigation and Control Layout . 26
27 Position Control PD Layout . 27
28 Hrp(s) Step and Pole-Zero Plot . 28
29 Latitude Step and Corresponding Roll Angle 29
30 Latitude Step and Corresponding Roll Angle with Noise 29
31 Autonomy State Machine . 30
32 Communication Overview . 31
33 UDP and IP Protocol Structure . 31
34 Position Step Simulation . 33
35 Position Step Simulation with Disturbance . 34
36 Hover Simulation with Noise . 34
37 Hexacopter Ready for System Evaluation . 35
38 View of Ceiling Camera . 35
39 Altitude and Yaw, True and Estimate During Flight 36
40 Latitude and Longitude, True and Estimate During Flight 36
41 Altitude and Yaw Disturbance . 37
42 Hover Simulation with Yaw Disturbance . 37
43 Hover Simulation with Altitude Disturbance 38
44 Hover Simulation with Yaw and Altitude Disturbance 38

, Signals and Systems, Master of Science Thesis 2013:06 vi

List of Tables

1 List of Autonomous Behaviors . 30
2 Roll Model Fit Percentage . I
3 Pitch Model Fit Percentage . I
4 Roll Model Parameters . I
5 Pitch Model Parameters . I
6 Continuous Velocity PD Parameters . II
7 Discrete Velocity PD Parameters . II
8 Continuous Attitude P Parameters . II
9 Discrete Attitude P Parameters . II

, Signals and Systems, Master of Science Thesis 2013:06 vii

1 Introduction

Model-based control systems design is a concept where mathematical process models are
used to simulate and verify system performance before building physical prototypes. Model-
based software design simplifies conventional development using an intuitive block diagram
environment and automatic code generation. It can be argued that this method reduces
coding errors and the need for programming skills, thus enabling the engineer to focus on his
or her area of expertise. It is also said to reduce development time (Fleischer et al., 2009).
Model-based development with code generation is claimed to be a promising approach when
developing image analysis algorithms towards embedded platforms (Doblander et al., 2005).

MathWorks recently added native support for code generation in Simulink for small single-
board computers powerful enough to perform advanced image analysis algorithms. These
platforms are available at consumer price levels and no extra code generating Matlab tool-
boxes are required.

1.1 Background

We are becoming used to seeing autonomous vehicles operate on land, at sea and in the air.
Search and rescue operations are examples of new applications for unmanned aerial vehicles
(UAV) where they help to, for example, locate missing people (Waharte and Trigoni, 2010).
Operating outdoors, these UAV rely on GPS for positioning. However, research is being
conducted on alternative positioning methods (Leishman et al., 2012; Lange et al., 2009) to
enable the use of these vehicles in GPS-denied environments, such as close to buildings or
indoors.

An alternative way for positioning without GPS is the use of computer vision where
image analysis algorithms estimate the UAV position using on-board cameras. Velocity can
be estimated using optical flow algorithms and specialized sensors (Horn and Schunck, 1981)
and this is attempted with success by Kim and Brambley (2007). Relative position can be
estimated using standard camera equipment and object recognition, or using image feature
point tracking algorithms as examined by Lange et al. (2009).

1.2 Scope

This thesis employs model-based design using Matlab Simulink in the development of an
indoor autonomous multi-rotor prototype UAV, featuring computer vision based navigation
and object recognition to be run on a PandaBoard ES single-board computer. The tasks
include development of computer vision based position estimation and position control algo-
rithms, implemented using automatic code generation. Autonomous flight behaviors include
takeoff, hover and land.

1.3 Purpose

The UAV prototype is to be used for technology demonstration as well as to show the potential
of model-based design methods. The purpose also includes exploration of position estimation
techniques using computer vision and the study of algorithms for object recognition.

, Signals and Systems, Master of Science Thesis 2013:06 1

2 Model-Based Design Method

In a competitive market, actors in technology and engineering industries seek to reduce cost
and time consumption for their development processes (Ahmed, 2010). Engineers and man-
agers are thus seeking new methods to improve in these respects. Model-based design strate-
gies have been used through the design phase of development projects for some time. However,
the method is now becoming used even beyond the design phase, all the way to production.

2.1 Basic Concept

The idea of model-based design is to reduce development time and cost by eliminating the
need for early product prototypes and by narrowing down possible design alternatives early
in the process (West, 2009; Fleischer et al., 2009). For instance, consider a mechatronic
embedded control system: A model of the plant is developed where physical parameters,
such as electric motor windings or gear ratios, can be evaluated and optimized. An existing
system can be modelled using system identification tools. Controllers can then be designed
and tested in the simulated environment and the complete system can thus be verified and
validated before a physical prototype is built.

Modern model-based design methods often incorporate automatic code generation, re-
ducing the gap between controller design and actual software implementation. Also, human
coding errors are said to be reduced and MathWorks recently claimed that the expected de-
velopment time for a hybrid powertrain was reduced by more than 70 % using model-based
design methods at General Motors (GreenCarCongress, 2009).

2.2 Simulink and Code Generation

The concept of model-based design in Matlab Simulink was used throughout this project.
The multirotor platform was modelled using physical modeling and system identification
methods. Computer vision, autonomy and control algorithms were designed in the Simulink
environment and were tested using a plant model. A camera simulator, emulating the image
captured by the actual camera equipment, was also developed and used.

The algorithms mentioned above were implemented with Simulink blocksets. The code
was automatically generated and downloaded to a PandaBoard ES single-board computer
where it was compiled and run. A Simulink-native debugging mode called External Mode
was used to monitor signals, variables and camera video feed in real-time using a wireless
network connection.

, Signals and Systems, Master of Science Thesis 2013:06 2

3 System Description

A hexacopter platform from 3DR Robotics was selected because of its hardware availability,
ready-to-fly delivery and open source software. Included were motors, speed controllers and
the ArduPilot Mega 2.5+ (APM) control unit running the ArduCopter software. An RC-
radio was used for manual flight control and a radio telemetry kit was used for data logging
as well as ArduCopter configuration using the Windows software APM Mission Planner.

The hexacopter can be flown in different modes using manual control. In the standard
mode, hexacopter attitude (roll and pitch), yaw rate and thrust is manipulated with a stan-
dard flight RC-radio unit. The APM estimates attitude, altitude and yaw using on-board
sensors.

To enable autonomous flight, the hexacopter platform was enhanced with a second on-
board computer, the PandaBoard ES. In order to send and receive measurements and con-
trol setpoints between this computer and the APM, Ethernet communications hardware was
added. Also, a downwards facing Logitech C310 USB camera was mounted on the hexacopter
and connected to the PandaBoard. Computer vision and position control algorithms are exe-
cuted on the PandaBoard using measurements from the APM and attitude setpoints are sent
back to the APM. A complete system overview can be seen in Figure 1.

Figure 1: Flowchart of the complete system.

3.1 APM Autopilot

The ArduPilot Mega 2.5+ autopilot features an ATmega2560 microprocessor along with power
electronics, flash data storage and programming logics. The onboard inertial measurement
unit (IMU) features a three-axis accelerometer, a gyroscope and a magnetometer. These
sensors are used for attitude and yaw estimation. A barometer and an external sonar sensor
enables altitude measurements and an external GPS receiver is used for outdoor position
measurements. The APM hardware is seen in Figure 2(a).

, Signals and Systems, Master of Science Thesis 2013:06 3

(a) APM (b) PandaBoard

Figure 2: APM 2.5+1 and PandaBoard ES2.

3.2 ArduCopter Software

The ArduCopter is an autopilot open source software project for helicopter and multi-rotor
platforms (DIY Drones, 2013). It shares parts of its code base with the parent project
ArduPilot, made for motorized airplanes and gliders. Both the ArduCopter and ArduPilot
softwares are meant to run on the ArduPilotMega hardware series.

The basic functionality of the ArduCopter software includes reading sensors, receiving
RC radio input and stabilizing the hexacopter during flight using PID control (Figure 3).
Attitude angles are estimated using complementary filtering.

Figure 3: ArduCopter software layout.

1http://www.sgdrone.com/
2http://www.ixbt.com/

, Signals and Systems, Master of Science Thesis 2013:06 4

Several control loops are used to stabilize the hexacopter during flight. For basic flight
stabilization, two cascaded PID controllers per axis are used to control attitude (seen in
Figure 4). A similar approach is used for altitude and yaw control.

Figure 4: ArduCopter attitude controller layout.

3.3 PandaBoard Hardware

The computer platform used to execute image analysis and position control algorithms is the
PandaBoard ES, seen in Figure 2(b). It was selected because of native Simulink code genera-
tion support (MathWorks, 2013), its small form factor supporting hexacopter mounting and
its USB camera connectivity capabilities. It features a Dual-core ARM Cortex-A9 processor
(Pandaboard.org, 2013) and a Linux distribution supplied by MathWorks is run from an SD
memory card. A wireless network connection is used for programming and data logging using
Simulink. Power is supplied from the hexacopter 12.6V LiPo battery and an external 5V
switching regulator.

3.4 PandaBoard Simulink Model

The software run on the PandaBoard was designed in a Simulink model and an overview
can be seen in Figure 5. The Vision block performs image analysis algorithms, measuring
hexacopter movement over ground and recognizing pre-defined objects. This data is fed to
the Autonomy block where a state machine is used to decide what flight behavior to activate.
Behavior and Vision measurements are routed to the GNC block (Guidance, Navigation and
Control) where the current hexacopter position is estimated, position error is calculated and
attitude control setpoints are generated using PD controllers. These are sent to the APM
autopilot through the Communication block.

, Signals and Systems, Master of Science Thesis 2013:06 5

Figure 5: PandaBoard software layout.

3.5 Andon Light

Andon is Japanese for paper lantern and in lean production theory, an Andon signal is a light
indicating the state of a workstation, for example working, waiting for parts or broken down
(Slack et al., 2010).

An Andon light was designed, built and mounted on the hexacopter in order to indicate
the state of the software and communication. Three colored LED lights indicate the current
level of autonomy and status of the Ethernet communication. A bleeper is used to warn the
user of critical errors in software or communication, requiring user intervention by manual
RC control.

, Signals and Systems, Master of Science Thesis 2013:06 6

4 Modeling and Simulation

For image analysis development and position controller design, a model of the complete
UAV system was developed in Simulink. This included an attitude model of the hexacopter
platform, obtained using system identification. This was extended with yaw and position
models and a virtual camera, used to emulate the image sent from the camera. The models
put together, referred to as the hexacopter model, enabled system verification and validation
prior to actual flight testing.

4.1 Multirotor Position Model

Work has previously been done on developing mathematical models of multirotor platforms
(Andersson et al., 2010; Luukkonen, 2011). Since the ArduCopter software already imple-
ments attitude control for flight stabilisation, a dynamic model featuring motor dynamics,
body inertias and propeller aerodynamics was omitted here. Instead, a position model was
derived using physical modeling and an attitude model was obtained using system identifica-
tion. For illustration and simplification purposes, a quadrotor platform is shown here. This
model, however, is compatible with a hexacopter configuration.

Figure 6: Multirotor position and angles.3

3Andersson et al. (2010)

, Signals and Systems, Master of Science Thesis 2013:06 7

Figure 7: Multirotor angles θ.4

The multirotor position P (Figure 6, Equation (1)) is defined in the world inertial frame
(x, y, z). The multirotor orientation can be described in this frame using angles θ (Figure 7)
or in the body-fixed frame (xB, yB, zB) as θB (Equation (2)). The body fixed angles θB are
referred to as pitch, roll and yaw. Also, the pitch and roll angles are together named attitude.

P =

pxpy
pz

 =

 latitude
longitude
altitude

 (1)

θ =

θxθy
θz

 θB =

 roll
pitch
yaw

 =

θBx

θBy

θBz

 (2)

An xy position model was derived by double integration of Newton’s second law of motion,
using multirotor thrust vector F (t), mass m and the gravitational acceleration vector g.

P̈ (t) =
F (t)

m
+ g (3)

P (t) =

∫∫ (
F (t)

m
+ g

)
dt2 (4)

Figure 8 illustrates how different values of θx affect multirotor velocity vy. Assuming constant
motor thrust F1 = F2 and F3 = F4, a resulting total thrust Fhover = gm can be used. This
assumes that a constant total thrust is required to keep the multirotor hovering at a constant
altitude. Using this simplification and the assumption that the x and y axis models are
independent of one another, a simplified position model is expressed as

px,y(t) =

∫∫
Fhover

m
sin (θy,x(t)) dt2. (5)

4Andersson et al. (2010)

, Signals and Systems, Master of Science Thesis 2013:06 8

Figure 8: Multirotor angle θx affect acceleration and thus velocity in the y direction.5

Equation (5) is now expressed in the Laplace domain by first linearising using sinx ≈ x for
small x and a final position model Gp(s) is thus achieved.

px,y(s) =
Fhover

s2m
θy,x(s) (6)

Gp(s) =
px,y(s)

θy,x(s)
=
Fhover

s2m
(7)

In order to set pitch and roll angles according to world frame angles θy, θx, a rotation of these
angles by θz is required (see Figure 7). This was done using rotational matrix Rz as[

pitch
roll

]
=

[
θx
θy

]
Rz (8)

where

Rz =

[
cos θz − sin θz
sin θz cos θz

]
. (9)

4.2 Multirotor Attitude Model

The model describing the roll and pitch angles was derived using system identification. This
method is a process of identifying mathematical models of physical systems (Ljung, 1988).
Non-parametric or parametric identification methods can be used. The former method in-
cludes transient and frequency analysis, while parametric identification involves testing de-
fined model structures and finding their parameters.

Black box modelling refers to the case where little or no information of the system is
available (Falcone, 2010). Grey box modelling, on the other hand, refers to the case where a
system model structure is known, but some parameters are unknown or uncertain.

As the multirotor is controlled using angular setpoints sent to the ArduCopter software, a
model describing the dynamics of both the physical system and the PID attitude controllers
was used for simulation and position controller design purposes.

In the case of modeling the hexacopter attitude from setpoint to actual angle, it was
known that two cascaded PID controllers were embedded (seen in Figure 4) (DIY Drones,

5Andersson et al. (2010)

, Signals and Systems, Master of Science Thesis 2013:06 9

2013). The model achieved through system identification is thus a representation of this
closed loop system including electric, mechanical and aerodynamic properties.

The general process model

Ga(s) = Kp
1 + sTz

(1 + sTp1)(1 + sTp2)
e−sTd (10)

was used for the identification with a static gain Kp, a zero at −1/Tz, two poles at −1/Tp
and a time delay of Td. This second order system was assumed to be sufficient to describe
the process dynamics. The excitation signal, sent as input to the system using RC-radio,
was manually created to mimic a piecewise constant telegraph signal. Input and output data
logged from test flights (see Figure 9) show a nearly static relationship between input and
output. This is expected since the system has feedback control. However, it can be observed
that the step response is decreasing for constant nonzero input, motivating the identification
of a dynamic system model since a static gain model could have problems representing the
actual plant behaviour with accuracy sufficient for simulation and position control design.

(a) Roll (b) Pitch

Figure 9: Roll/Pitch input and output.

Using Matlab System Identification Toolbox, a process model was obtained. Model output
fit percentage for different number of poles, zeros and delay is presented in Table 2 and 3 in
Appendix A. The best fit was obtained using two poles, one zero and a delay, as presented
in Equation (10). The identified roll and pitch models were tested against validation input
and output data (Figure 10). The model step responses are seen in Figure 11. The model
parameters can be seen in Table 4 and 5 in Appendix A.

, Signals and Systems, Master of Science Thesis 2013:06 10

(a) Roll (b) Pitch

Figure 10: Roll/Pitch model output with verification data.

Figure 11: Identified roll and pitch model step responses.

4.3 Camera Model

A model of the Logitech camera was developed in order to emulate its image capturing be-
haviour and to test image analysis algorithms. The model describes the relationship between
pixel values and world coordinates. Figure 12 illustrates a camera positioned above ground,
pointing downwards.

, Signals and Systems, Master of Science Thesis 2013:06 11

Figure 12: Camera model.

The relationship between the ground and sensor distances dg and ds can be found using
camera height h, focal length f and similarity of triangles.

ds
dg

=
f

h
(11)

Then, a relationship between ds and the corresponding number of pixels ps is found using
sensor width ws and corresponding pixel resolution r.

ds =
psws

r
(12)

Sensor width ws can be found using known camera parameters angle of view ψ and the focal
length f .

ws/2

f
= tan

(
ψ

2

)
(13)

Combining Equation (12) and (13) with (11), a final expression for ground distance is obtained
as

dg =
2hps
r

tan

(
ψ

2

)
. (14)

, Signals and Systems, Master of Science Thesis 2013:06 12

The camera mounted on the hexacopter will always point downwards along the zB axis (Figure
6). Position measurements from image analysis algorithms would thus have to be compensated
for the current hexacopter attitude. As illustrated in Figure 13, an object positioned directly
underneath the camera will not always appear in the center of the acquired image.

Figure 13: Camera attitude affects position measurements.

Assuming that a measurement compensation can be done with respect to the roll θBx and
pitch θBy angles independently, an approximation of the relationship between attitude and
camera pixel x and y coordinate ps was formulated using camera angle of view ψ (Equation
(15) and (16)). This approximation is valid for small attitude angles and is based on the
measure of pixels per angle of view in the center of the image.

∆ps,x =
r θBy

ψ
(15)

∆ps,y =
r θBx

ψ
(16)

, Signals and Systems, Master of Science Thesis 2013:06 13

4.4 Simulation Environment

For simulation purposes, an algorithm emulating the camera view was developed. It produces
a cutout of a floor image which is translated, scaled and rotated according to the hexacopter
model output. It also features motion blur derived from current velocity and shutter speed.
The emulated image was used for simulation of the PandaBoard software and the image was
presented using a video window, seen in Figure 14(a). Here, information such as position and
attitude setpoints was overlayed. The floor was assumed to be a play mat.

In order to visualize the simulated hexacopter movement and behavior, a 3D visualization
was developed and this can be seen in Figure 14(b). A floor image is displayed together
with a hexacopter representation, animated to display position, altitude, attitude and yaw
calculated by the hexacopter model.

(a) Emulated camera view (b) 3D visualization of simulation

Figure 14: Emulated camera view and 3D visualization of simulation.

, Signals and Systems, Master of Science Thesis 2013:06 14

5 Computer Vision

The Vision block (Figure 15) was designed to measure hexacopter movement over ground and
to recognize objects. The active algorithm is selected using current behavior (Section 7) and
the output is a pixel offset relative to the center of the image.

Figure 15: Vision block layout.

5.1 Object Recognition

The hexacopter was equipped with the capability to recognize letters. This enables it to
trigger certain predefined behaviors, such as landing and following of objects, when different
letters are recognized. To limit the scope of this task, only red capital letters A and B are
detected using a classifier with two features. However, most of the theory presented here
applies to an infinite amount of objects. The object recognition algorithms were implemented
without using Matlab Computer Vision Toolbox.

A general layout for a computer vision system aimed at object recognition can be seen
Figure 16. The process can be divided into three stages: low-level, intermediate and high-level
processing (Mehnert, 2012). Preprocessing can be image sharpening, color space conversion
and scaling while segmentation is the process of extracting areas or objects of interest in
the image. Representation and description extract metrics from the segmented objects, no
longer describing them as images. Recognition and interpretation match the detected object
metrics to those of known objects. All processing stages use information of the object to be
recognized, here denoted knowledge base.

, Signals and Systems, Master of Science Thesis 2013:06 15

Figure 16: Typical stages of object recognition.6

The acquired image in Figure 17(a) is converted to HSV color space and is segmented by
the color red to yield the binary image shown in Figure 17(b). It was noted that an inaccu-
rate object segmentation due to e.g. illumination affects the recognition process negatively.
Assuming the texture of the floor does not have large areas of red, object detection is done
by selecting the largest connected red regions. These are then passed on to feature extraction
and classification. In Figure 17(c), the two largest regions are highlighted for display purposes
and their bounding boxes are drawn. The regions are classified and the results are displayed
in Figure 17(d).

6Mehnert (2012)

, Signals and Systems, Master of Science Thesis 2013:06 16

(a) Aquired Image (b) Segmented Image

(c) Objects Detected with Bounding Boxes (d) Objects Recognized

Figure 17: Different stages and results of object recognition.

5.1.1 Segmentation

The image acquired from the camera is obtained in the RGB color space where a color
is defined in three chromaticities (channels). Red, green and blue additive primaries are
combined to form different colors (Gonzalez and Woods, 2006). Even though it is possible to
define the range of RGB primaries making up a specific color, this is somewhat non-intuitive
(Chen et al., 2008).

The HSV color space is an alternative to RGB. Instead of red, green and blue channels,
color in HSV is represented with hue, saturation and value. Here, definitions of specific colors
are closer to human perception since the intensity information is decoupled from color (Sonka
et al., 2008), see Figure 18. Red can, for example, be roughly defined as {hue; saturation;
value} = {[330◦,30◦]; [0.4,1]; [0.3, 1]}. For segmentation, HSV has been shown to give better
results and it has an easily invertible transform to RGB (Chen et al., 2008).

, Signals and Systems, Master of Science Thesis 2013:06 17

Figure 18: HSV Color Space 7

5.1.2 Description

Moments are a type of regional descriptors and it is a statistical property of a normalized grey-
level image seen as a probability density function of a 2D random variable. The binary image
from segmentation is used where the non-zero values are assumed to be regions (objects). A
raw moment in its general form of order (p + q) is not invariant to translation, scaling or
rotation (Sonka et al., 2008). For an image, it is given by

Mpq =
∑
x

∑
y

xpyqI(x, y) (17)

where x and y are the regional pixel coordinates and I(x, y) is the intensity value of the image
at position (x, y). In binary images, I(x, y) is either zero or one.

Moments can be written as central moments

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qI(x, y) (18)

taken about the mean of the distributions, instead of about zero, in order to achieve translation
invariance (Weisstein, 2013). Here, (x̄, ȳ) is the center of gravity coordinate for the region
and can be obtained using

x̄ =
M10

M00
and ȳ =

M01

M00
(19)

where M00 corresponds to the area of the object, as seen in Equation (17).

7http : //en.wikipedia.org/wiki/HSL and HSV

, Signals and Systems, Master of Science Thesis 2013:06 18

To reduce calculation time and complexity, the central moments are expressed with the
raw moments using the binomial transform, as shown in one dimension by Weisstein (2013).
Equation (20) is expanded up to the third order.

µpq =

p∑
m

q∑
n

(
p
m

)(
q
n

)
(−x̄)(p−m)(−ȳ)(q−n)Mmn (20)

µ00 = M00

µ10 = 0

µ01 = 0

µ11 = M11 − x̄M01 = M11 − ȳM10

µ20 = M20 − x̄M10

µ02 = M02 − x̄M01

µ21 = M21 − 2x̄M11 − ȳM20 + 2x̄2M01

µ12 = M12 − 2ȳM11 − x̄M02 + 2ȳ2M10

µ30 = M30 − 3x̄M20 + 2x̄2M10

µ30 = M03 − 3ȳM02 + 2ȳ2M01

(21)

Scale invariance can be achieved using the normalized unscaled central moments (Sonka et al.,
2008) as

ηpq =
µpq

µ
(1+ p+q

2
)

00

. (22)

A set of seven moments that are invariant to rotation mirroring (except for a minus sign),
scaling and translation is derived from the second and third order normalized unscaled central
moments (Gonzalez and Woods, 2006), originally shown by Hu (1962).

φ1 = η20 + η02 (23)

φ2 = (η20 − η02)2 + 4η211 (24)

φ3 = (η30 − 3η12)
2 + (3η21 − η03)2 (25)

φ4 = (η30 + η12)
2 + (η21 + η03)

2 (26)

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] + (27)

(3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (28)

φ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03) (29)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2)] − (30)

(η30 − 3η12)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (31)

, Signals and Systems, Master of Science Thesis 2013:06 19

In order to reduce the dynamic range and simplify interpretation (Gonzalez and Woods, 2006),
the Hu set of moments (Equation (23) through (31)) is transformed using

φn = sgn(φn) log10(|φn|) (32)

where sgn(φn) is used to retain the sign of the moment in order to determine whether the
region is mirrored or not. For recognition purposes, this is not relevant and instead,

φn = | log10(|φn|)| (33)

is used to further reduce the dynamic range and make classification more straightforward.

5.1.3 Feature Selection

Features φ1 to φ7 from Equation (23) through (31) were extracted for every letter in class A
and B in the full training set shown in Figure 19 to form the feature space Φ = [φ1 φ2 . . . φ7]

T.
To make every feature equally important, the mean and variance were removed, neutralizing
dominating features that would otherwise give a non-optimal classifier (Mehnert, 2012).

(a) Class A (b) Class B

Figure 19: Training set for letters A and B.

Given the scope of a two dimensional classifier, two features from the feature space needed
to be selected to form a space x in Euclidean R2. These features should preferably separate
class A from B with the largest possible distance between them. Visually inspecting every
combination of features in the feature space would not only be inaccurate but it would also
require looking at a number of graphs, equal to

(
dimΦ

dimx

)
=

7!

2!(7− 2)!
= 21. (34)

, Signals and Systems, Master of Science Thesis 2013:06 20

The Bhattacharyya distance can be used as a measure of class separability (Choi and Lee,
2000) and it is defined as

DB =
1

8
(µ1 − µ2)TΣ−1(µ1 − µ2) +

1

2
ln

(
det Σ√

det Σ1 det Σ2

)
(35)

where µi and Σi are the mean vector and covariance matrix, respectively, for class i and

Σ =
Σ1 + Σ2

2
(36)

The Bhattacharyya distance was measured for every combination of features in Φ and the
greatest class separation of DB = 0.3 (seen in Figure 20(a)) was achieved using feature space
x = [φ1 φ3]

T. Choi and Lee (2000) states that knowing the Bhattacharyya distance gives an
estimate classification error of

ε̂ = 40.219− 70.019DB + 63.578D2
B − 32.766D3

B + 8.7172D4
B − 0.91875D5

B, (37)

here equal to 24%.

5.1.4 Recognition

Recognition based on matching uses a trained prototype feature space for each class. An
unknown object to be classified should be matched to the class to which it has the closest
metric. The minimum distance classifier is the most basic approach to this problem (Gonzalez
and Woods, 2006). It works by temporarily placing the unknown sample in the feature space
and classifying it to the class of which has the smallest combined (Euclidean) distance to the
sample. This approach works well when the distance between means is large compared to the
spread of each class. In practice however, this is uncommon except if the system designer has
control over the nature of input to the system.

Here, as can be seen in Figure 20(a), the distance between means was in the same order as
the spread of the classes. Regarding input control, the scope did allow for choosing a suitable
font for the selected feature space.

, Signals and Systems, Master of Science Thesis 2013:06 21

(a) Selected feature space is x = [φ1 φ3]T. The
squares are the letter B and the circles the letter A.

(b) Precalculated classification map. The top re-
gion is letter B and the bottom region is letter A.

Figure 20: Features selected and classification map.

Like the minimum distance classifier, the k-Nearest Neighbors algorithm (kNN) places the
unknown sample in the prototype feature space and then computes the distance to every
sample in that space. Unlike the minimum distance classifier, kNN makes its decision based
solely on the k-nearest samples and not the entire set. It can be argued that this reduces the
effect of the spread of the classes compared to the difference in mean.

The kNN algorithm is explained using Figure 21. The unknown sample, here in the form
of a triangle, is temporarily placed in the feature space. Figure 21(a) shows the classification
when looking at k = 3 nearest neighbors, two circles and one square, resulting in the sample
being classified as a member of the class represented by a circular markers. When k = 5, the
same unknown sample is classified as the square class. This changes once again when k = 7
when the sample is deemed to be a member of the circles.

(a) k = 3 (b) k = 5 (c) k = 7

Figure 21: kNN algorithm visualization.

Here, the impact of k on the final classification map (Figure 20(b)) was reduced by discard-
ing one neighbor and picking another if the distance between the unknown sample and the
neighbor was greater than d. This distance was selected small so as not to have overlap

, Signals and Systems, Master of Science Thesis 2013:06 22

between classes, causing a potential misclassification and thus making the hexacopter behave
erratically. Classification robustness was improved by requiring the object to be recognized
n times as the same class before being classified or discarded.

The classification map was pre-calculated in order to reduce the algorithm computation
time on the PandaBoard. The map can be seen in Figure 20(b). If an unknown sample is
within the red region, it is classified as a letter A and if it is within the blue region, it is
classified as a B. A sample outside the colored regions is discarded, classifying this object as
neither an A nor B.

5.2 Position Estimation

Here, different methods for hexacopter position estimation using image analysis algorithms,
implemented with Matlab Computer Vision Toolbox, are presented. The approach is mo-
tivated by the fact that GPS measurements most of the time are unavailable indoors. Also,
relaying on inertial measurements (i.e. gyro and accelerometers) alone will accumulate a drift
in the position estimate (Huster and Rock, 2001).

5.2.1 Feature Point Matching

One way of estimating relative motion between two images is the use of feature points. These
are obtained in the two images and are then matched to each other. A geometric translational
and/or rotational transformation describing the relation between the two sets of points is then
estimated.

The feature points can be found using corner detection (Rosten and Drummond, 2006) or
SURF (Speeded-Up Robust Features) (Bay et al., 2006). The first method involves finding
corners in the image, assuming the same set of corners will be found in the next image frame.
SURF is designed to find feature points invariant to image scaling and rotation. The two
sets of points are matched with each other using correlation and a geometric transform is
estimated.

The geometric transformation assumes a non-reflective similarity transform, thus detect-
ing point translation, scaling and rotation. This makes the method somewhat robust to
hexacopter yaw and altitude change. The fact that the point matching method implemented
here uses correlation to match the points did however limit the rotation and scaling robust-
ness. If these effects are known and their magnitude can be measured, however, they can be
compensated for.

5.2.2 Template Matching

One method for finding the relative translational motion between two images is the use of
template matching. Here, a small part of the current image is matched with a reference
image, representing a known position. The best match location represents the distance that
the image has been translated, or in other words, the hexacopter has moved. A region of
interest is selected around the previous match location, assuming a maximum hexacopter
velocity. This reduces the number of match metric calculations required. The template
match metric is calculated using a sum of absolute differences.

Tests showed that the algorithm is sensitive to image rotation and scaling, reducing the
likelihood of finding a valid template match. Thus, an algorithm triggering re-acquisition of
the template image was developed. Re-acquisition is performed when a change in hexacopter

, Signals and Systems, Master of Science Thesis 2013:06 23

yaw or altitude larger than a threshold is detected since these changes reduce the probability
of finding a good template match. Re-acquisition is also performed when a large position
change is measured, indicating a bad template match location, and when the template is
moving outside the current image field of view.

5.2.3 Algorithm Evaluation

The different approaches to motion estimation mentioned above were evaluated using two
different floor textures, marble floor tiles and a play mat from IKEA (Figure 22). A sample
video featuring translational movement captured at an altitude of 1 meter was used and the
estimated pixel translation obtained from the image analysis algorithms was recalculated to
a position in meters using the camera model derived in Section 4.3. The video was captured
so that a small center part of the image is always in frame.

(a) Marble floor (b) Play mat

Figure 22: The two floor textures used for algorithm evaluation.

Figures 23 and 24 show the position estimated using the three different motion estimation
algorithms. For comparison reasons, none of the algorithms are enhanced with the afore-
mentioned image re-acquisition methods. By visual inspection, one can conclude that the
SURF method outperformed both alternative algorithms even though true camera position
is not measured. However, the Matlab implementation of SURF does currently not support
automatic code generation and was therefore rejected. One alternative way of implement-
ing SURF is the use of the open source computer vision library OpenCV (Itseez, 2013) in
combination with Matlab S-functions.

The remaining two algorithms both had problems using the play mat. Template match-
ing, however, performed better than Corner detection on the marble floor and was therefore
selected for further development. Using template re-acquisition, template matching was made
capable of adequate position estimation using the play mat (Figure 25).

, Signals and Systems, Master of Science Thesis 2013:06 24

(a) SURF (b) Corner detection (c) Template matching

Figure 23: Position estimate 1 meter above marble floor.

(a) SURF (b) Corner detection (c) Template matching

Figure 24: Position estimate 1 meter above play mat.

Figure 25: Position estimate 1 meter above play mat using template matching and template
re-acquisition algorithms.

, Signals and Systems, Master of Science Thesis 2013:06 25

6 Guidance, Navigation and Control

It is in aerospace engineering common to group on-board flight control systems into three
subsystems: guidance, navigation and control (GNC) (Kim et al., 2006). Each one of these
systems can feature more or less complex functionality and can be developed independent of
each other as long as their interfaces are well defined. The structure also enables future exten-
sion and enhancement of functionality and performance. A GNC subsystem block structure
was implemented in Simulink for use on the hexacopter (see Figure 26).

Figure 26: Guidance, Navigation and Control layout

6.1 Navigation

The Navigation block is responsible for the position estimation. To do this, vision measure-
ments are recalculated to world coordinates using camera model equations (Section 4.3) and
attitude, heading and altitude measurements sent from the APM. Position offset measure-
ments from the Vision block are stored in order to keep track of the hexacopter’s absolute
position.

6.2 Guidance

The Guidance block calculates a position error based on coordinates set by the user or by the
Autonomy block which is described in Section 7.

, Signals and Systems, Master of Science Thesis 2013:06 26

6.3 Control

The Control block calculates attitude control signals based on the current position error
received from the Guidance block. The control output is sent to the ArduCopter and is
calculated using cascaded PD and P controllers, one for velocity and the other for attitude
(see Figure 27). It can be argued that this control structure provides more straightforward
tuning than a single PD controller.

Figure 27: Position control layout. During simulation, the Hexacopter block is represented
by attitude and position models Ga(s) and Gp(s)

Continuous controllers were designed, tuned and analysed for stability using the hexacopter
model derived in Section 4. Using position p and setpoint rp, controllers Fv(s) and Fa(s) and
the hexacopter attitude and position models Ga(s) and Gp(s), a closed-loop transfer function
Hrp(s) was derived from the control layout in Figure 27 as

p(s) = ((rp(s)− p(s)Fv(s)− sp(s))Fa(s)Ga(s)Gp (38)

Hrp(s) =
p(s)

rp(s)
=

Fv(s)Fa(s)Ga(s)Gp(s)

1 + Fv(s)Fa(s)Ga(s)Gp(s) + sFa(s)Ga(s)Gp(s)
(39)

The PD controller transfer function is described as

F (s) = Kp + sKd (40)

where the velocity controller static gain Kp was tuned to produce a 1 m/s velocity for every
meter of position error. Kd was tuned to reduce position overshoot. The attitude controller
was designed as a simple P-controller, tuned to produce an attitude angle of 10 degrees for
a velocity setpoint of 1 m/s. The step response of Hrp(s) and a plot of the system poles
and zeros can be seen in Figure 28. As seen here, all poles are found in the left half plane,
indicating a stable system.

, Signals and Systems, Master of Science Thesis 2013:06 27

(a) Step response (b) Pole-zero plot

Figure 28: Hrp(s) step response and pole-zero plot.

In order to implement the aforementioned continuous PD and P controller structure in the
Simulink model running in discrete time on the PandaBoard, a discrete transfer function F (z)
was formulated. The derivative is obtained using Backward Euler and a derivative filter with
coefficient N .

F (z) = Kp +Kd
N

1 +NTs
z

z − 1

(41)

The discrete controllers were simulated using the hexacopter plant model and the resulting
position step response and roll angle can be seen in Figure 29. Using a sample time of 50
ms, determined by image analysis execution time on the PandaBoard, the stability margin
was decreased, producing large position overshoot. This was handled by increasing Kd. A
comparison of the continuous and discrete time controller parameters is presented in Appendix
B.

, Signals and Systems, Master of Science Thesis 2013:06 28

(a) Latitude (b) Roll

Figure 29: Latitude step and corresponding roll angle.

In order to simulate process noise, the hexacopter roll angle model was subjected to additive
zero-mean Gaussian noise with a 2 degree standard deviation. The resulting step response
and roll angle is presented in Figure 30.

(a) Latitude (b) Roll

Figure 30: Latitude step and corresponding roll angle subjected to noise.

, Signals and Systems, Master of Science Thesis 2013:06 29

7 Autonomy

Autonomous flight and behavior requires a method for decision making. Numerous approaches
to machine learning and artificial intelligence has been attempted in robotics (Wahde, 2011).
Here, a simple brain process was developed using select behaviors (Table 1).

Table 1: List of autonomous behaviors.

Behaviour Description

Hover Maintain current position and altitude
Manouver Fly to location set by user
Search Maintain position, run object recognition
Follow Follow detected object
Takeoff Start from ground, take off to user selected altitude
Land Descend, land and stop motors
Idle Stay on ground

The activation of these behaviors (i.e. decision making) is governed by a state machine (Figure
31) implemented using Matlab Stateflow. The transitions between different behaviors are
activated using data such as altitude, battery level, object recognition status and user input.

Figure 31: Autonomy state machine.

, Signals and Systems, Master of Science Thesis 2013:06 30

8 Communication

The PandaBoard native support in Simulink for communication is currently limited to User
Datagram Protocol (UDP) over IP-networks (MathWorks, 2013) even though the PandaBoard
has both I2C and UART pins available (Pandaboard.org, 2013). With no documented success
of implementing these in Simulink found, the ArduCopter software and hardware was modified
to support UDP over Ethernet.

Figure 32: Communication overview.

8.1 User Datagram Protocol

UDP is used as a way for applications to communicate using a small set of protocol mecha-
nisms. It does not guarantee delivery or packet order as the Transmission Control Protocol
(TCP) does. UDP requires the Internet Protocol (IP) to be used as the underlying protocol
(Postel, 1980).

An UDP packet consists of a source port, destination port, length, checksum and the data
(see Figure 33(a)). The last part of the IP packet contains the source address, destination
address, UDP protocol flag, the length of the UDP header and data (see Figure 33(b)).

(a) User Datagram Header Format (b) Part of the IP protocol

Figure 33: UDP and IP protocol structure.8

8http://tools.ietf.org/html/rfc768

, Signals and Systems, Master of Science Thesis 2013:06 31

8.2 ArduCopter Modifications

The APM hardware was extended with a Ethernet ENC28J60 controller from Microchip. It
is a 10Base-T stand-alone controller with a Serial Peripheral Interface bus (SPI) (Microchip
Technology Inc., 2012). EtherCard, a driver written i C++ specifically for the Microchip
controller and compatible with the Arduino platform (JeeLabs, 2012) was modified and im-
plemented in the ArduCopter code base. The documentation of the code is unsatisfactory,
requiring extensive efforts when extending the software. A state machine was developed to
be called at 50Hz to send and receive data over UDP, do sanity checks, propagate setpoints
and update the status of communication and autonomy to the Andon light.

, Signals and Systems, Master of Science Thesis 2013:06 32

9 System Verification and Validation

The hexacopter autonomous hovering capability was evaluated by simulating the complete
system and by performing test flights using the same vision and controller software param-
eters. Disturbances observed during test flights were introduced in simulation to assess the
accuracy of the hexacopter model.

9.1 Simulation

The UAV system performance was assessed in Simulink simulation using the hexacopter
model, the camera simulator and the actual vision and control algorithms to be run on the
PandaBoard. The system hover and maneuvering capabilities were tested using a latitude
step setpoint and a play mat floor image. Hexacopter yaw and altitude were assumed con-
stant, being controlled by the ArduCopter’s internal controller. The position, estimated using
template matching, was compared with the hexacopter model position output.

The result of a 0.2 and 0.5 meter position step setpoint is seen in Figure 34. The 0.5
meter step causes the template to move outside the image frame, forcing the Vision block to
acquire a new template. The algorithm currently used to do this has the consequence of bad
position estimation during the samples required to determine a new template. This explains
the notches seen in the estimated position curve and the error in position steady state value.

Additive zero-mean Gaussian noise with a 2 degree standard deviation was applied to the
roll and pitch angles to evaluate step position control with process disturbances (see Figure
35).

(a) 0.2 meter step (b) 0.5 meter step

Figure 34: Latitude position step simulation, estimated position and model output.

, Signals and Systems, Master of Science Thesis 2013:06 33

(a) 0.2 meter step (b) 0.5 meter step

Figure 35: Latitude position step simulation, estimated position and model output. White
noise disturbance on roll, pitch, altitude and yaw.

To test hover performance, the hexacopter model was subjected to additive zero-mean Gaus-
sian noise with a 2 degree standard deviation on the roll and pitch angles. The position
setpoint was set to zero. Figure 36 shows estimated and actual position deviation during
hover.

(a) Latitude (b) Longitude

Figure 36: Position from hover simulation with roll and pitch angles subjected to additive
white noise.

9.2 Test Flight

The position estimation and hovering capabilities of the hexacopter were verified using a
camera mounted in the ceiling pointing straight down (see a cutout of the camera view in
Figure 38). In the test, the hexacopter took off and hovered autonomously. The letter B
was mounted to the back of the hexacopter to enable tracking of its true position. This

, Signals and Systems, Master of Science Thesis 2013:06 34

was achieved using video acquired from the ceiling camera, object recognition theory from
Section 5.1 and the camera model from Section 4.3. Maneuvering capability assessment, using
a position step setpoint, was omitted in favour of hovering tests.

Figure 37: Hexacopter ready for system evaluation with letter B mounted on its back to
enable tracking using ceiling camera.

Figure 38: Cutout of the view from ceiling mounted camera. The marker X represents the
hexacopter estimated position and the small B its true position.

In every image frame of the video, the letter B was recognized and its bounding box (BBox)
was used to estimate the hexacopter’s true position and yaw. These values were compared to
the hexacopter’s own onboard position estimate and yaw measurement.

The altitude of the hexacopter from ground (Figure 39(a)) was estimated using the known
dimensions of the letter B, its BBox and Equation (14) solved for h.

Latitude and longitude position (Figure 40) were estimated using the coordinate of the
BBox, the distance from the camera and the camera model equations presented in Section
4.3. The coordinate system was rotated to compensate for the ceiling camera’s orientation
offset from north.

, Signals and Systems, Master of Science Thesis 2013:06 35

The yaw was estimated in Figure 39(b) using the orientation of the BBox, the offset angle
of the letter about zB on the hexacopter and the orientation of the ceiling camera angle offset
from north.

(a) Altitude, 0.6 m setpoint (b) Yaw, 0 degrees setpoint

Figure 39: Altitude and yaw estimates together with true values obtained using data from
ceiling mounted camera. The gaps in data is caused by the hexacopter flying outside the
camera view.

(a) Latitude (b) Longitude

Figure 40: Hexacopter latitude estimation and true position in flight obtained from ceiling
mounted camera, 0 m position setpoint. The gaps in data is caused by the hexacopter flying
outside the camera view.

During some test flights, the Simulink model running on the PandaBoard locked up or caused
lag in the communication for brief periods of times. This causes the hexacopter to drift in
its estimation and therefore physical position. However, none of these symptoms affected the
results seen in Figure 40.

, Signals and Systems, Master of Science Thesis 2013:06 36

9.3 Simulating Disturbances

During test flight, observations were made to identify what kind of process disturbances were
present. It was noted that the altitude was subjected to sinusoidal and drifting disturbances
and that the yaw angle was decreasing over time. Disturbance signals were created to mimic
this behavior (see Figure 41). In order to examine model accuracy, new hover simulations
were conducted with these disturbances present and the results can be seen in Figure 42-44.

(a) Altitude (b) Yaw

Figure 41: Altitude and yaw disturbance.

(a) Latitude (b) Longitude

Figure 42: Position from hover simulation with roll and pitch angles subjected to additive
white noise, yaw subjected to ramp and white noise disturbances.

, Signals and Systems, Master of Science Thesis 2013:06 37

(a) Latitude (b) Longitude

Figure 43: Position from hover simulation with roll and pitch angles subjected to additive
white noise, altitude subjected to a sinusoidal and white noise disturbance.

(a) Latitude (b) Longitude

Figure 44: Position from hover simulation with roll and pitch angles subjected to additive
white noise, yaw subjected to a ramp and white noise disturbance, altitude subjected to a
sinusoidal and white noise disturbance.

, Signals and Systems, Master of Science Thesis 2013:06 38

10 Discussion

A fully autonomous UAV platform requires the proper operation of several subsystems in-
cluding vision, navigation and control. It can be argued that verification of the complete
system is an extensive task, requiring thorough testing of subsystems as well as the complete
system, both in simulation and in test flight.

The results obtained in this study are somewhat inconclusive. Thorough testing of the
subsystems was put aside in favor of complete system performance. There are however several
findings made that can serve as guidelines for future work in the UAV field of study.

In general, the results point out that an autonomous UAV can indeed navigate in an
indoor environment using computer vision based navigation, provided that the surfaces of the
room are textured. This is in line with the findings of Leishman et al. (2012) and Lange et al.
(2009). Position hold is accomplished over a time period in the order of a half minute but
bad altitude and yaw hold achieved by the ArduCopter software in its current configuration
leads to less than satisfactory position estimation using the template matching image analysis
method.

10.1 Model-Based Design

In general, results obtained in simulation matched the actual test flight results. The camera
simulator, featuring motion blur and attitude dependence, provided imagery similar to that
of the camera mounted underneath the hexacopter during flight and thus, image analysis
algorithm development and testing was simplified. The hexacopter model, derived using
system identification and physical modelling, enabled offline position control tuning and the
parameters obtained here gave actual flight behavior similar to that of the simulation. The
3D-visualization environment provided an intuitive way of assessing actual hexacopter flight
performance.

The position model developed using physical modeling seems to have performed well.
Future work could perhaps improve accuracy by using system identification to develop this
model using position data from the ceiling camera and attitude angles measured by the
ArduCopter.

As mentioned, a UAV system consists of multiple complex subsystems. Complete system
verification and assessment could be considered difficult and time consuming to achieve by
only looking at one subsystem at a time. A holistic approach is a necessity, rendering the
model-based design method helpful in the strive for reduced development time and cost while
maintaining or improving quality.

10.2 Position Estimation

Simulation results indicate that the use of a downward facing camera for position estimation
is arguably a method suited for navigation, providing a floor texture not varying over time
and featuring enough detail and contrast is present. Template matching is an intuitive image
analysis approach to the problem. Using feature point extraction and matching methods,
such as SURF, do however show great promise and should provide a more general solution to
the problem, enabling mapping using algorithms such as SLAM (Lee and Song, 2009).

During test flights, template matching performed poorly at low altitudes but the use of
a wide angle camera could solve this problem. There were also symptoms of bad position

, Signals and Systems, Master of Science Thesis 2013:06 39

estimation when the hexacopter exhibited rapid roll or pitch movements, seen during rapid
descents. This could be caused by motion blur in the image as well as asynchronous sampling
of angles and image, causing bad attitude compensation. A physical camera stabilization rig
or a faster shutter time should reduce the amount of motion blur appearing here, arguably
affecting the image analysis results in a positive way. Template re-acquisition performed
during hexacopter position movement produced an error which could be handled with the use
of a constant velocity model.

A method for velocity estimation that could be evaluated for position measurement pur-
poses in future work is the optical flow algorithm. This approach has been attempted in the
multirotor UAV community (Kim and Brambley, 2007) and specialised sensors, similar to
those present in optical computer mice, can be used to decrease the computational effort.

10.3 Control

Analysis of the control system was complicated by non-deterministic delays introduced by the
Simulink UDP block and by the fact that the Linux kernel run on the PandaBoard is non-
realtime. More deterministic and stable communication could perhaps be achieved by using
low-level protocols such as I2C or UART. The continuous control system stability analysis
presented in Section 6.3 can be improved by instead performing the analysis using the discrete
controller.

The plant model derived using system identification should be considered valid only for
inputs similar to those tested. A white noise signal ought to be applied in order to excite as
many nodes of the system as possible. Here, a telegraph signal was used instead. This input
was, however, similar to control inputs used during manual position step control.

The attitude step response, achieved using system identification, does have a quite un-
expected appearance with a large overshoot. It is however reasonable to think that the
ArduCopter attitude controllers are tuned in a way to produce an intuitive flight behavior,
disregarding the characteristics of the step response. Another factor affecting control per-
formance and system identification procedures is turbulence arising from flight in confined
indoor spaces.

, Signals and Systems, Master of Science Thesis 2013:06 40

11 Conclusion

A hexacopter UAV prototype featuring computer vision based navigation developed using
model-based design methods has been presented. A number of conclusions are drawn:

• Computer vision based navigation is a navigational strategy suited for use in GPS-
denied environments, such as indoors. Using a downward facing camera, floor texture
is a factor to take into account when choosing and tuning image analysis algorithms for
motion estimation.

• The template matching strategy is applicable for position estimation purposes, shown
in simulation and test flights, assuming the floor texture has regions of contrast and
structure and that it is non-varying during flight. Improvements must, however, be
made in order to achieve reliable navigation. Feature based algorithms, such as corner
detection and especially SURF, are promising.

• Object recognition of letters was performed in a satisfactory manner using invariant
moments as regional descriptors and a kNN classifier. A good object segmentation is
important for proper object recognition. A color segmentation approach using HSV was
proven successful.

• Position control was achieved using two cascaded PD controllers, generating a desired
velocity and attitude setpoint respectively. The control structure enabled intuitive tun-
ing of parameters and a simple algorithm implementation.

• The model-based design approach using a plant model, achieved through physical mod-
eling and system identification, enabled early verification and validation of control and
image analysis algorithms. System behaviour and performance was visualized and as-
sessed in 3D. The plant, position and camera models were all proven sufficiently ac-
curate based on test flights successfully conducted with tuning parameters being left
unaltered from simulation. Automatic code generation greatly simplified the process of
implementing algorithms developed in Simulink to the PandaBoard. However, not all
Simulink blocksets and Matlab functions are supported for code generation.

• The PandaBoard ES single-board computer features performance adequate for execu-
tion of image analysis algorithms at sufficient resolution. The PandaBoard Simulink
blocksets does, however, only support Ethernet communications and not low level pro-
tocols, such as I2C and UART.

• The ArduCopter software is open source and can thus be modified according to needs.
However, the code documentation is unsatisfactory, requiring extensive effort to extend
its functionality.

, Signals and Systems, Master of Science Thesis 2013:06 41

Bibliography

Ahmed, S. (2010). Model-Based Design Takes Flight. Electronics Weekly, 1(2439):44.

Andersson, T., Arver, J., Johansson, P., Karlsson, A., Linder, J., and Lindkvist, S. (2010).
Robust Control System for Quadrocopter. Technical report, Chalmers University of Tech-
nology, Gothenburg. SSY-225 Design Project in Systems, Control and Mechatronics.

Bay, H., Tuytelaars, T., and Gool, L. (2006). SURF: Speeded Up Robust Features. In
Leonardis, A., Bischof, H., and Pinz, A., editors, Computer Vision ECCV 2006, volume
3951 of Lecture Notes in Computer Science, pages 404–417. Springer Berlin Heidelberg.

Chen, T.-W., Chen, Y.-L., and Chien, S.-Y. (2008). Fast image segmentation based on K-
Means clustering with histograms in HSV color space. In Multimedia Signal Processing,
2008 IEEE 10th Workshop on, pages 322–325.

Choi, E. and Lee, C. (2000). Feature extraction based on the Bhattacharyya distance. In
Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000
International, volume 5, pages 2146–2148 vol.5.

DIY Drones (2013). ArduCopter. https://code.google.com/p/arducopter/. [Online; ac-
cessed April 16 2013].

Doblander, A., Gösseringer, D., Rinner, B., and Schwabach, H. (2005). An Evaluation of
Model-Based Software Synthesis from Simulink Models for Embedded Video Applications.
International Journal of Software Engineering & Knowledge Engineering, 15(2):343 – 348.

Falcone, P. (2010). Modeling and Simulation. Lecture notes distributed at Chalmers Univer-
sity of Technology.

Fleischer, D., Beine, M., and Eisemann, U. (2009). Applying Model-Based Design and Auto-
matic Production Code Generation to Safety-Critical System Development. SAE Interna-
tional Journal of Passenger Cars - Electronic and Electrical Systems, 2(1):240–248.

Gonzalez, R. C. and Woods, R. E. (2006). Digital Image Processing (3rd Edition). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

GreenCarCongress (2009). General Motors Developed Two-Mode Hybrid Powertrain With
MathWorks Model-Based Design; Cut 24 Months Off Expected Dev Time. http://www.

greencarcongress.com. [Online; accessed April 9 2013].

Horn, B. K. P. and Schunck, B. G. (1981). Determining Optical Flow. Artificial Intelligence,
17:185–203.

Hu, M.-K. (1962). Visual pattern recognition by moment invariants. Information Theory,
IRE Transactions on, 8(2):179–187.

Huster, A. and Rock, S. M. (2001). Relative position estimation for intervention-capable
AUVs by fusing vision and inertial measurements. In Proceedings of the 12th International
Symposium on Unmanned Untethered Submersible Technology.

Itseez (2013). OpenCV. opencv.org. [Online; accessed May 7 2013].

, Signals and Systems, Master of Science Thesis 2013:06 42

https://code.google.com/p/arducopter/
http://www.greencarcongress.com
http://www.greencarcongress.com
opencv.org

JeeLabs (2012). EtherCard Readme on GitHub. https://github.com/jcw/ethercard#

readme. [Online; accessed 2 May 2013].

Kim, J. and Brambley, G. (2007). Dual Optic-flow Integrated Navigation for Small-scale
Flying Robots. In Australasian Conference on Robotics and Automation (ACRA).

Kim, J.-H., Sukkarieh, S., and Wishart, S. (2006). Real-Time Navigation, Guidance, and
Control of a UAV Using Low-Cost Sensors. In Field and Service Robotics. Springer Berlin
Heidelberg.

Lange, S., Sunderhauf, N., and Protzel, P. (2009). A Vision Based Onboard Approach for
Landing and Position Control of an Autonomous Multirotor UAV in GPS-denied Environ-
ments. In International Conference on Advanced Robotics. ICAR 2009., pages 1–6.

Lee, Y.-J. and Song, J.-B. (2009). Visual SLAM in Indoor Environments Using Autonomous
Detection and Registration of Objects. In Multisensor Fusion and Integration for Intelligent
Systems, pages 301–314.

Leishman, R., Macdonald, J., McLain, T., and Beard, R. (2012). Relative navigation and
control of a hexacopter. In IEEE International Conference on Robotics and Automation
(ICRA), pages 4937–4942.

Ljung, L. (1988). System Identification Toolbox For Use with MATLAB. MathWorks, Natick,
MA.

Luukkonen, T. (2011). Modelling and Control of Quadcopter. Technical report, School of
Science, Espoo, Finland.

MathWorks (2013). PandaBoard Support from Simulink. http://www.mathworks.se/

academia/pandaboard/. [Online; accessed April 11 2013].

Mehnert, A. (2012). Image Analysis. Lecture notes in Image Analysis distributed at Chalmers
University of Technology.

Microchip Technology Inc. (2012). ENC28J60 Data Sheet Stand-Alone Ethernet Controller
with SPI Interface. http://ww1.microchip.com/downloads/en/DeviceDoc/39662e.pdf.
[Online; accessed 2 May 2013].

Pandaboard.org (2013). PandaBoard ES. http://pandaboard.org/content/

pandaboard-es. [Online; accessed April 11 2013].

Postel, J. (1980). RFC 768. http://tools.ietf.org/html/rfc768. [Online; accessed 30
April 2013].

Rosten, E. and Drummond, T. (2006). Machine Learning for High-Speed Corner Detection.
In Leonardis, A., Bischof, H., and Pinz, A., editors, ECCV (1), volume 3951 of Lecture
Notes in Computer Science, pages 430–443. Springer.

Slack, N., Chambers, S., and Johnston, R. (2010). Operations management. Financial Times,
Prentice Hall, Harlow.

Sonka, M., Hlavac, V., and Boyle, R. (2008). Image Processing, Analysis, and Machine
Vision. Thomson-Engineering.

, Signals and Systems, Master of Science Thesis 2013:06 43

https://github.com/jcw/ethercard#readme
https://github.com/jcw/ethercard#readme
http://www.mathworks.se/academia/pandaboard/
http://www.mathworks.se/academia/pandaboard/
http://ww1.microchip.com/downloads/en/DeviceDoc/39662e.pdf
http://pandaboard.org/content/pandaboard-es
http://pandaboard.org/content/pandaboard-es
http://tools.ietf.org/html/rfc768

Waharte, S. and Trigoni, N. (2010). Supporting Search and Rescue Operations with UAVs.
In International Symposiom on Robots and Security.

Wahde, M. (2011). Autonomous Agents. Lecture notes in Autonomous Agents distributed at
Chalmers University of Technology.

Weisstein, E. W. (2013). Central Moment, MathWorld–A Wolfram Web Resource. http:

//mathworld.wolfram.com/CentralMoment.html. [Online; accessed 23 April 2013].

West, B. (2009). Model-Based Design. ECN: Electronic Component News, 53(10):26–27.

, Signals and Systems, Master of Science Thesis 2013:06 44

http://mathworld.wolfram.com/CentralMoment.html
http://mathworld.wolfram.com/CentralMoment.html

A System Identification Parameters

Table 2: Roll model output fit percentage for different number of zeros and poles. With and
without delay, left and right table respectively. Best overall fit in bold.

@
@
@

p 0 1 2
z
0 61 51 57
1 - 75 82

@
@
@

p 0 1 2
z
0 61 61 61
1 - 72 61

Table 3: Pitch model output fit percentage for different number of zeros and poles. With and
without delay, left and right table respectively. Best overall fit in bold.

@
@
@

p 0 1 2
z
0 63 41 16
1 - 46 78

@
@
@

p 0 1 2
z
0 63 64 64
1 - 64 57

Table 4: Roll model parameters.

Parameter Value

Kp 0.44
Tz 2.53
Tp1 0.88
Tp2 0.21
Td 0.05

Table 5: Pitch model parameters.

Parameter Value

Kp 0.47
Tz 2.14
Tp1 0.74
Tp2 0.24
Td 0.04

, Signals and Systems, Master of Science Thesis 2013:06 I

B Control Parameters

Table 6: Continuous velocity PD parameters.

Parameter Value

Kp 1
Kd 0.2

Table 7: Discrete velocity PD parameters.

Parameter Value

Kp 1
Kd 1.8

Table 8: Continuous attitude P parameters.

Parameter Value

Kp 10

Table 9: Discrete attitude P parameters.

Parameter Value

Kp 10

, Signals and Systems, Master of Science Thesis 2013:06 II

	List of Figures
	List of Tables
	Introduction
	Background
	Scope
	Purpose

	Model-Based Design Method
	Basic Concept
	Simulink and Code Generation

	System Description
	APM Autopilot
	ArduCopter Software
	PandaBoard Hardware
	PandaBoard Simulink Model
	Andon Light

	Modeling and Simulation
	Multirotor Position Model
	Multirotor Attitude Model
	Camera Model
	Simulation Environment

	Computer Vision
	Object Recognition
	Segmentation
	Description
	Feature Selection
	Recognition

	Position Estimation
	Feature Point Matching
	Template Matching
	Algorithm Evaluation

	Guidance, Navigation and Control
	Navigation
	Guidance
	Control

	Autonomy
	Communication
	User Datagram Protocol
	ArduCopter Modifications

	System Verification and Validation
	Simulation
	Test Flight
	Simulating Disturbances

	Discussion
	Model-Based Design
	Position Estimation
	Control

	Conclusion
	Bibliography
	System Identification Parameters
	Control Parameters

