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Abstract— A learning environment based on Microsoft Excel 
spreadsheets is presented allowing for fast and systematic 
exploration of different implementations of integer adder 
designs. The spreadsheet properties are exploited to illustrate 
both layout and timing properties of an adder design. The 
usefulness of the learning environment is demonstrated by 
several different examples. We also describe how the spread-
sheet representation can aid the designer at the VHDL level. 
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I.  INTRODUCTION  

In this paper we will demonstrate a learning sequence where 
Microsoft Excel is used as the learning environment for 
facilitating student understanding of basic concepts in 
integer adder design. There are two reasons why spread-
sheets were adopted as the exploration tool for adder design: 
First, spreadsheets is a widely available software tool that 
integrates simple computation with spatial visualizations 
and, second, the structure of spreadsheets is similar to the 
computing structure of adders, where spreadsheet columns 
correspond to adder bit significance levels.  

The main purpose of the presented learning sequence is 
to overcome the difficulties in understanding tree adder PG 
networks as they appear in text books [1]. One such example 
of a PG network representing the Brent-Kung prefix-tree 
adder is shown in Figure 1. Other examples of spreadsheet 
use as a learning tool can be found in [2-4]. 
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Figure 1. Brent-Kung tree adder PG network. From [1].  

II. EXPLORING RIPPLE-CARRY ADDER STRUCTURES 

The sequence of learning starts in the Introduction to 
Integrated Circuit Design course that runs September-
October, with an exercise on designing an 8-bit ripple-carry 
adder. The exercise initially asks the students to use eight 
instances of the same bit-cell in an iterative logic array. 
Hence, the design task is nailed down into designing the 
carry and sum bit-cells. A bit-cell takes as inputs the two bits 
ai and bi and the carry-in, and delivers the carry-out and the 

bit sum. The SUM logic is quite easy to define using two 2-
input XOR stages, while the carry-in>>carry-out logic 
requires more detailed considerations. At this stage, it is 
quite easy to check that the Boolean expressions are correct 
for the four different input combinations and the two 
different carry-in possibilities.  

The carry logic expression can be written in Excel as 

=OR(AND(a;b);AND(cin;OR(a;b))) 

a logic expression corresponding to two AND-OR and OR-
AND logic gates as shown in Figure 2, a figure that also 
shows the SUM XOR logic. 

 
 
 

Once the bit-cell has been designed, the reuse of the same 
adder cell at several instances is easily demonstrated using 
the Excel click-and-drag facilities. Now, a ripple-carry adder 
has been designed and a possible layout structure is obvious 
as shown in the spreadsheet representation of Figure 3. 

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 cin

1 0 0 0 1 0 0 0 0 <cin

0 1 1 0 0 1 1 0 PROP

0 1 1 1 0 1 1 0 SUM
 

Figure 3. Ripple-carry adder as iterative logic array. 

Already now the student will be able to make a relatively 
good estimation of the area of the adder. This is because 
each row in the Excel graph could be seen as a row of 
standard cells from a standard-cell library. For a 65-nm 
CMOS process, the cell height (pitch) would be 
approximately 2.5 m. The width of the AND-OR and OR-
AND cells are approximately 1.5 m, making the Excel 
column width corresponding to 3.0 m in the adder layout. 

From the sum logic expression in the ripple-carry adder, 
we can see that we need to perform the intermediate P=a∆b 
operation as a preparation for calculating the sum. This 
operation need not wait for the rippling carry-in, but can be 
performed as a setup operation while waiting for the rippling 
carry to arrive, as shown in Figure 4. This design 
modification may not appear to be a big difference; however, 
as we will see in the following paragraphs, it will. 
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Figure 2. SUM and CARRY logic. 



a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

0 1 1 0 0 1 1 0 P

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 <cin

0 1 1 1 0 1 1 0 SUM  
Figure 4. Ripple-carry adder with propagate setup. 

A closer study of the Boolean truth table for the ADD 
operation reveals that P is a signal indicating whether a 
previously generated carry should be propagated to the next 
bit or not. Hence, the carry logic can be simplified as shown 
in Figure 5. 

The next step in developing an understanding of the ripple-
carry design options, and preparing for an exploration of  the 
prefix-tree adder design options, is to include also the 
generate logic, G=ab, into the setup logic. This is shown in 
Figure 6, and the corresponding simplified carry logic is 
shown in Figure 7. This redesign of the carry logic opts for a 
reduced footprint and for a shorter propagation delay through 
the ripple-carry logic as we will discuss in the next section. 

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 <cin

0 1 1 1 0 1 1 0 SUM  
Figure 6. Ripple-carry adder with G and P setup logic. 

 

The ripple-carry logic shown in Figure 7 has many names; 
the dot operator or the prefix operator. The dot operator logic 
can be written, 

: : : 1:

: : 1:

.
i j i k i k k j

i j i k k j

G G P G

P P P




 
 

 

At this stage is appropriate to discuss with the students the 
associative properties of the dot operator. Once this property 
is understood by the student the carry-increment adder could 
be discussed. Since the dot operator is associative it does not 
matter in which order the dot operations are performed. This 
means that the carry-in need not be introduced in the 
beginning of a ripple chain, but could equally well be 
introduced at the end as shown in the carry-increment adder 
shown in Figure 8.  

III. INTRODUCING THE TIME AXIS 

The next performance parameter to study is the propagation 
delay from the clock edge enabling the carry-in until the 

correct carry-out is available. At this stage of the 
Introduction to Integrated Circuit Design course very simple 
models for delay estimations are used. With short wires 
between cells, the propagation delay of any 2+1 AND-OR or 
OR-AND cell is dominated by the intrinsic delay, which is 
typically on the order of 50 ps per gate, i.e. 0.8 ns for the 8-
bit carry-ripple chain. 

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P

G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

G70 P70G60 P60G50 P50G40 P40G30 P30G20 P20G10 P10 G0 P0

1 0 0 0 1 0 0 0 0 <cin

0 1 1 1 0 1 1 0 SUM  
Figure 8. Carry-increment adder. 

The inherent propagation delay of the adder can be made 
more visible by including a time axis in the Excel chart as 
shown in Figure 9. Each row in the Excel work sheet now 
corresponds to a unit delay of t(AO)=50 ps. 

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0
1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0
1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P
G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0

G20 P20 0 0 t(AO)
0 0 G10 P10 2t(AO)

1 0 3t(AO)
0 0 G30 P30 4t(AO)

0 0 G40 P40 5t(AO)
G70 P70 0 0 G50 P50 6t(AO)
1 0 G60 P60 7t(AO)
1 0 0 0 1 0 0 0 0 <cin

0 1 1 1 0 1 1 0 SUM  
Figure 9. Ripple-carry adder with delay information. 

Any number of 8-bit ripple-carry blocks like the ones 
discussed in the previous section can now be used to build 
wide adders, like using four blocks for building a 32-bit 
adder. As an example, a 32-bit carry-skip adder can be 
organized as proposed in Figure 10 using the 8-bit ripple-
carry propagate setup block from Figure 4 as the basic 
building block. In this adder structure, the skip multiplexer 
between the blocks lets the carry-in skip a block as soon as 
the block propagate is true.  

The worst delay of this adder is obtained when a carry is 
generated in bit 0, i.e. the first bit of the least significant 
block. The carry then has to ripple through the first 8-bit 
block to reach the multiplexer, pass the multiplexer, skip the 
next two blocks via two more multiplexers, before arriving 
as a carry-in to the last block. Here, it must ripple through 
the block until it reaches the most significant bit where it 
serves as the carry-in. The 32-bit worst case propagation 
delay is then given by 

 7 7 3 ,skip P ripple MUX SUMt t t t t      

where tripple is the ripple cell delay, tMUX the multiplexer delay 
and tSUM the delay of the final sum calculation. The general 
delay formula for an m-bit carry skip adder consisting of k n-
bit blocks is then given by 

    2 1 1 .skip P ripple MUX SUMt t n t k t t       

Even more delay efficient is the 32-bit carry-lookahead 
adder (CLA) shown in Figure 11, an adder using the 8-bit 
block with G and P setup from Figure 6 as building block. 
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Figure 5. ANDOR22 ripple-carry logic. 
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Figure 7. G=AND-OR12 and P=AND2 ripple-carry logic. 



The propagation delay of the CLA is similar to that of the 
carry-skip adder, but with tMUX and triple replaced by the 
shorter tAO, the propagation delay of an AND-OR12 gate: 

   2 1 1 .CLA PG AO SUMt t n k t t          

In the CLA design, a less complex AO gate can be used as 
multiplexer. Since P and G cannot both be true at the same 
time, the Boolean expression of the multiplexer can be 
simplified to  

.MUX in inZ PG PC G PC     

The instantiation of the simplified AND-OR multiplexer is 
shown marked in red in the previous Figures 6, 8, and 9. 

The delay of an m-bit CLA built from k n-bit carry-
increment block as shown in Figure 8 is now given by 

 1 .CLA PG AO SUMt t n k t t    
 

The difference between the two propagation delay formulas 
is illustrated in Figure 12. 
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Figure 12. Reducing propagation delay by carry-increment. 

IV. EXPLORING PREFIX-TREE ADDERS 

The block generate and propagate signals can be generated 
much more efficiently than by using ripple chains. Binary-
tree structures can be used to reduce the block P and G delay 
considerably, especially for wide n-bit adder blocks. Outputs 
from a binary-tree structure are available at the block output 
already after log2(n) unit delays. The spreadsheet representa-

tion of a CLA with a binary-tree P and G look-ahead design 
is shown in Figure 13. This CLA distributes the block P and 
G signals much faster to the subsequent 8-bit blocks, but it 
does not speed up the sum calculation within the different 
blocks. We will still have to wait for the carry to ripple to the 
most significant bit before all sums are calculated. 

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0
1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0
1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P
G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0
1 0 0 0 1 0 G20 P20 0 0 t(AO)
1 0 1 0 0 0 G10 P10 2t(AO)
1 0 1 0 3t(AO)

0 0 G30 P30 4t(AO)
0 0 G40 P40 5t(AO)

G70 P70 0 0 G50 P50 6t(AO)
1 0 G60 P60 7t(AO)
1 0 0 0 1 0 0 0 0 <cin

0 1 1 1 0 1 1 0 SUM  

Figure 13. Binary-tree carry-lookahead adder. 

Now is the time for the students to start exploring the prefix-
tree adder structures available in most text books. The 
knowledge acquired from designing ripple-carry adders 
using the logic functionality offered by Excel spreadsheets 
now serves as an excellent platform for exploring different 
prefix-tree adder structures. The spreadsheet learning 
environment gives instant feedback to the student whether 
the functionality of an adder design is correct or not. 

A number of prefix-tree adder architectures have been 
published during the years; all with different trade-offs 
between propagation delay, wiring complexity, and number 
of prefix-tree dot operator cells needed. The most well-
known prefix-tree adders are the Kogge-Stone, Han-Carlson, 
Sklansky, Ladner-Fischer, and Brent-Kung architectures. 
Already in the binary tree generating the block P and G 
outputs, the carries necessary for calculating half of the sums 
are available. The missing carries, and the corresponding 
missing sums, are shown by question marks in Figure 14. 
The problem facing the students now nails down to 
understanding how the binary tree can be extended to a 
complete prefix-tree supplying all necessary carries. 

Sklansky used a brute-force carry-increment type of 
structure for obtaining the missing carries as illustrated in 
Figure 15. He solved the problem by adding a number of dot 
operator cells for distributing the missing carry in a way 
reminding of the previous carry-increment solution, but at 
many levels. The cells added are marked in blue. The logical 
depth of the tree is given by log2(n)+1, but there is a 
capacitive loading problem hidden in this structure for the 
student to identify and solve by inserting buffers. 
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Figure 11. 32-bit carry-skip adder. 
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Figure 10. 32-bit carry-lookahead adder (CLA). 



a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P

G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0

1 0 0 0 1 0 0 0

1 0 1 0

1 0 0 <cin

1 ? ? ? 1 ? 0 0 0

? ? ? 1 ? 1 1 0 SUM  
Figure 14. Missing carries in the P and G binary tree. 

He solved the problem by adding a number of dot operator 
cells for distributing the missing carry in a way reminding of 
the previous carry-increment solution, but at many levels. 
The cells added are marked in blue. The logical depth of the 
tree is given by log2(n)+1, but there is a capacitive loading 
problem hidden in this structure for the student to identify 
and solve by inserting buffers. 

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P

G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0

1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 1 <cin

1 0 0 0 1 0 0 0 1

0 1 1 1 0 1 1 1 SUM  
Figure 15. Sklansky prefix-tree adder. 

Ladner-Fischer proposed a solution relieving some of the 
loading problem by redistributing the bottom row of dot 
operators into two levels as shown in Figure 16.  

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P

G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0

1 0 0 0 1 0 0 0

1 0 1 0

1 0 0 0

1 0 1 0 0 <cin

0 0 0 0

0 1 1 1 0 1 1 0 SUM  
Figure 16. Ladner-Fischer prefix-tree adder 

Finally, Brent-Kung proposed a solution where they got 
away without adding cells to the prefix tree. Instead they 
reorganized the bottom row of cells into an inverse tree 
distributing the missing carries, see Figure 17. 

V. DESIGN METHODOLOGY 

Now, after a number of exercises where students learn the 
fundamentals of integrated CMOS circuits using the adder as 
the design example, the first learning stage is completed.  

In the second learning stage, student focus is shifted to 
design methodology and EDA tools. In the Methods of 
Electronic System Design and Verification course running 
October-December, the design abstraction level is raised 
from MOSFETs and circuits to the RTL level. In this unique 
methodology-oriented course [5], students are set to learn 
about the capabilities and limitations of EDA tools for 
synthesis, timing closure, place and route, etc.  

The task assigned to the students in this course, is the 
design, implementation and verification of a 32-bit ALU, 
using Cadence RTL Compiler and Encounter for a 65-nm 
low-power technology. 

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P

G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0

1 0 0 0 1 0 0 0

1 0 1 0

1 0 1 0

1 1 0 <cin

0 0

0 0 0 0

0 1 1 1 0 1 1 0 SUM  
Figure 17. Brent-Kung prefix-tree adder. 

Initially, the students implement a ripple-carry adder for the 
ALU, but since the target clock rate is 1 GHz, they run into 
timing problems as the ALU is synthesized. The knowledge 
about prefix-tree adders acquired by students in the previous 
course now comes in handy. By replacing the slow ripple-
carry adder with a faster Sklansky adder, students are able to 
close the timing. 

The dot operator code below is an excerpt of the VHDL 
skeleton that is available to the students. By matching the 
computational structure of the code to the Excel 
representation it becomes relatively straightforward to match 
the indices of the code to the significance levels of the adder. 
row: for i in 1 to INTEGER(CEIL(LOG2(REAL(32)))) generate 
 column: for j in 0 to 31 generate 
  a: if  
  ((INTEGER(FLOOR(REAL(j)/REAL(2**(i-1))))) mod 2)=1  
  generate 
   b: if j < 2**(i) generate 
    Gdotops: Gdot port map ( 
     P1=>P(i-1)(j), 
     G1=>G(i-1)(j), 
     G2=>G(i-1)--!find correct description!, 
     G=>G(i)(j)); 
     -- P does not need to be propagated 
   end generate b; 
 
   c: if j >= 2**(i) generate 
    Dotops: DOTs port map( 
     P1=>P(i-1)(j), 
     G1=>G(i-1)(j), 
      P2=>P(i-1)--!find correct description!, 
     G2=>G(i-1)--!find correct description!, 
     P=>P(i)(j), 
     G=>G(i)(j));        
   end generate c; 
  end generate a; 

VI. SUMMARY AND CONCLUSION 

In this paper we have illustrated the use of Excel spread-
sheets as a student learning tool for understanding digital 
design of integer adder structures. The tool emphasizes 
important concepts such as layout through instantiation of 
identical cells by click-and-drag, timing constraints caused 
by cell propagation delay through introduction of a timing 
axis, and yields a proper understanding of prefix-adder trees. 
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