
Exploring Prefix-Tree Adders using Excel Spreadsheets

Setting up an explorative learning environment

Kjell Jeppson
Department of Microtechnology and Nanoscience

Chalmers University of Technology
Gothenburg, Sweden

e-mail: jeppson@chalmers.se

Per Larsson-Edefors
Department of Computer Science and Engineering

Chalmers University of Technology
Gothenburg, Sweden

e-mail: perla@chalmers.se

Abstract— A learning environment based on Microsoft Excel
spreadsheets is presented allowing for fast and systematic
exploration of different implementations of integer adder
designs. The spreadsheet properties are exploited to illustrate
both layout and timing properties of an adder design. The
usefulness of the learning environment is demonstrated by
several different examples. We also describe how the spread-
sheet representation can aid the designer at the VHDL level.

Keywords-student learning environment, prefix-tree adders,
EDA tools, spreadsheets

I. INTRODUCTION

In this paper we will demonstrate a learning sequence where
Microsoft Excel is used as the learning environment for
facilitating student understanding of basic concepts in
integer adder design. There are two reasons why spread-
sheets were adopted as the exploration tool for adder design:
First, spreadsheets is a widely available software tool that
integrates simple computation with spatial visualizations
and, second, the structure of spreadsheets is similar to the
computing structure of adders, where spreadsheet columns
correspond to adder bit significance levels.

The main purpose of the presented learning sequence is
to overcome the difficulties in understanding tree adder PG
networks as they appear in text books [1]. One such example
of a PG network representing the Brent-Kung prefix-tree
adder is shown in Figure 1. Other examples of spreadsheet
use as a learning tool can be found in [2-4].

1:
0

3:
2

5:
4

7:
6

9:
8

11:1
0

13:1
2

15:1
4

3:
0

7:
4

11:
8

15:1
2

7:
0

15:
8

11:
0

5:
0

9:
0

13:
0

0123456789101112131415

15:014:013:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0
Figure 1. Brent-Kung tree adder PG network. From [1].

II. EXPLORING RIPPLE-CARRY ADDER STRUCTURES

The sequence of learning starts in the Introduction to
Integrated Circuit Design course that runs September-
October, with an exercise on designing an 8-bit ripple-carry
adder. The exercise initially asks the students to use eight
instances of the same bit-cell in an iterative logic array.
Hence, the design task is nailed down into designing the
carry and sum bit-cells. A bit-cell takes as inputs the two bits
ai and bi and the carry-in, and delivers the carry-out and the

bit sum. The SUM logic is quite easy to define using two 2-
input XOR stages, while the carry-in>>carry-out logic
requires more detailed considerations. At this stage, it is
quite easy to check that the Boolean expressions are correct
for the four different input combinations and the two
different carry-in possibilities.

The carry logic expression can be written in Excel as

=OR(AND(a;b);AND(cin;OR(a;b)))

a logic expression corresponding to two AND-OR and OR-
AND logic gates as shown in Figure 2, a figure that also
shows the SUM XOR logic.

Once the bit-cell has been designed, the reuse of the same
adder cell at several instances is easily demonstrated using
the Excel click-and-drag facilities. Now, a ripple-carry adder
has been designed and a possible layout structure is obvious
as shown in the spreadsheet representation of Figure 3.

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 cin

1 0 0 0 1 0 0 0 0 <cin

0 1 1 0 0 1 1 0 PROP

0 1 1 1 0 1 1 0 SUM

Figure 3. Ripple-carry adder as iterative logic array.

Already now the student will be able to make a relatively
good estimation of the area of the adder. This is because
each row in the Excel graph could be seen as a row of
standard cells from a standard-cell library. For a 65-nm
CMOS process, the cell height (pitch) would be
approximately 2.5 m. The width of the AND-OR and OR-
AND cells are approximately 1.5 m, making the Excel
column width corresponding to 3.0 m in the adder layout.

From the sum logic expression in the ripple-carry adder,
we can see that we need to perform the intermediate P=a∆b
operation as a preparation for calculating the sum. This
operation need not wait for the rippling carry-in, but can be
performed as a setup operation while waiting for the rippling
carry to arrive, as shown in Figure 4. This design
modification may not appear to be a big difference; however,
as we will see in the following paragraphs, it will.

AND(cin;OR(a;b))

cin
&

≥1
a

b

cout
&

≥1

OR(Z;AND(a;b))

Z

cin

a

b

SUM logic: SUM=P∆cincarry logic

=1

=1
P=a∆b

a

b

Figure 2. SUM and CARRY logic.

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

0 1 1 0 0 1 1 0 P

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 <cin

0 1 1 1 0 1 1 0 SUM
Figure 4. Ripple-carry adder with propagate setup.

A closer study of the Boolean truth table for the ADD
operation reveals that P is a signal indicating whether a
previously generated carry should be propagated to the next
bit or not. Hence, the carry logic can be simplified as shown
in Figure 5.

The next step in developing an understanding of the ripple-
carry design options, and preparing for an exploration of the
prefix-tree adder design options, is to include also the
generate logic, G=ab, into the setup logic. This is shown in
Figure 6, and the corresponding simplified carry logic is
shown in Figure 7. This redesign of the carry logic opts for a
reduced footprint and for a shorter propagation delay through
the ripple-carry logic as we will discuss in the next section.

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 <cin

0 1 1 1 0 1 1 0 SUM
Figure 6. Ripple-carry adder with G and P setup logic.

The ripple-carry logic shown in Figure 7 has many names;
the dot operator or the prefix operator. The dot operator logic
can be written,

: : : 1:

: : 1:

.
i j i k i k k j

i j i k k j

G G P G

P P P




 
 

At this stage is appropriate to discuss with the students the
associative properties of the dot operator. Once this property
is understood by the student the carry-increment adder could
be discussed. Since the dot operator is associative it does not
matter in which order the dot operations are performed. This
means that the carry-in need not be introduced in the
beginning of a ripple chain, but could equally well be
introduced at the end as shown in the carry-increment adder
shown in Figure 8.

III. INTRODUCING THE TIME AXIS

The next performance parameter to study is the propagation
delay from the clock edge enabling the carry-in until the

correct carry-out is available. At this stage of the
Introduction to Integrated Circuit Design course very simple
models for delay estimations are used. With short wires
between cells, the propagation delay of any 2+1 AND-OR or
OR-AND cell is dominated by the intrinsic delay, which is
typically on the order of 50 ps per gate, i.e. 0.8 ns for the 8-
bit carry-ripple chain.

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P

G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

G70 P70G60 P60G50 P50G40 P40G30 P30G20 P20G10 P10 G0 P0

1 0 0 0 1 0 0 0 0 <cin

0 1 1 1 0 1 1 0 SUM
Figure 8. Carry-increment adder.

The inherent propagation delay of the adder can be made
more visible by including a time axis in the Excel chart as
shown in Figure 9. Each row in the Excel work sheet now
corresponds to a unit delay of t(AO)=50 ps.

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0
1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0
1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P
G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0

G20 P20 0 0 t(AO)
0 0 G10 P10 2t(AO)

1 0 3t(AO)
0 0 G30 P30 4t(AO)

0 0 G40 P40 5t(AO)
G70 P70 0 0 G50 P50 6t(AO)
1 0 G60 P60 7t(AO)
1 0 0 0 1 0 0 0 0 <cin

0 1 1 1 0 1 1 0 SUM
Figure 9. Ripple-carry adder with delay information.

Any number of 8-bit ripple-carry blocks like the ones
discussed in the previous section can now be used to build
wide adders, like using four blocks for building a 32-bit
adder. As an example, a 32-bit carry-skip adder can be
organized as proposed in Figure 10 using the 8-bit ripple-
carry propagate setup block from Figure 4 as the basic
building block. In this adder structure, the skip multiplexer
between the blocks lets the carry-in skip a block as soon as
the block propagate is true.

The worst delay of this adder is obtained when a carry is
generated in bit 0, i.e. the first bit of the least significant
block. The carry then has to ripple through the first 8-bit
block to reach the multiplexer, pass the multiplexer, skip the
next two blocks via two more multiplexers, before arriving
as a carry-in to the last block. Here, it must ripple through
the block until it reaches the most significant bit where it
serves as the carry-in. The 32-bit worst case propagation
delay is then given by

 7 7 3 ,skip P ripple MUX SUMt t t t t    

where tripple is the ripple cell delay, tMUX the multiplexer delay
and tSUM the delay of the final sum calculation. The general
delay formula for an m-bit carry skip adder consisting of k n-
bit blocks is then given by

    2 1 1 .skip P ripple MUX SUMt t n t k t t     

Even more delay efficient is the 32-bit carry-lookahead
adder (CLA) shown in Figure 11, an adder using the 8-bit
block with G and P setup from Figure 6 as building block.

a
b

P
cin

cout

OR(AND(P;cin);AND(a;b))

≥1

&

&

Figure 5. ANDOR22 ripple-carry logic.

Gj

Pj

Gj‐1,0

Gj,0

OR(AND(Pj;Gj‐1,0);Gj)

≥1

&
&

Pj

Pj‐1,0
Pj,0

AND(Pj;Pj‐1,0)

Figure 7. G=AND-OR12 and P=AND2 ripple-carry logic.

The propagation delay of the CLA is similar to that of the
carry-skip adder, but with tMUX and triple replaced by the
shorter tAO, the propagation delay of an AND-OR12 gate:

   2 1 1 .CLA PG AO SUMt t n k t t        

In the CLA design, a less complex AO gate can be used as
multiplexer. Since P and G cannot both be true at the same
time, the Boolean expression of the multiplexer can be
simplified to

.MUX in inZ PG PC G PC   

The instantiation of the simplified AND-OR multiplexer is
shown marked in red in the previous Figures 6, 8, and 9.

The delay of an m-bit CLA built from k n-bit carry-
increment block as shown in Figure 8 is now given by

 1 .CLA PG AO SUMt t n k t t    

The difference between the two propagation delay formulas
is illustrated in Figure 12.

bits 31:24 bits 23:16 bits 15:8 bits 7:0

t(MUX)

t(MUX)

t(MUX)

7 t(ripple)

t(SUM) propagation delay

7‐bit G & P ripple delay=7t(ripple)

t(PG) setup delay

bits 31:24 bits 23:16 bits 15:8 bits 7:0

t(AO)

t(AO)

t(AO)

 t(AO)

t(SUM) propagation delay

7‐bit G & P ripple delay=7t(AO)

t(PG) setup delay

Figure 12. Reducing propagation delay by carry-increment.

IV. EXPLORING PREFIX-TREE ADDERS

The block generate and propagate signals can be generated
much more efficiently than by using ripple chains. Binary-
tree structures can be used to reduce the block P and G delay
considerably, especially for wide n-bit adder blocks. Outputs
from a binary-tree structure are available at the block output
already after log2(n) unit delays. The spreadsheet representa-

tion of a CLA with a binary-tree P and G look-ahead design
is shown in Figure 13. This CLA distributes the block P and
G signals much faster to the subsequent 8-bit blocks, but it
does not speed up the sum calculation within the different
blocks. We will still have to wait for the carry to ripple to the
most significant bit before all sums are calculated.

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0
1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0
1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P
G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0
1 0 0 0 1 0 G20 P20 0 0 t(AO)
1 0 1 0 0 0 G10 P10 2t(AO)
1 0 1 0 3t(AO)

0 0 G30 P30 4t(AO)
0 0 G40 P40 5t(AO)

G70 P70 0 0 G50 P50 6t(AO)
1 0 G60 P60 7t(AO)
1 0 0 0 1 0 0 0 0 <cin

0 1 1 1 0 1 1 0 SUM

Figure 13. Binary-tree carry-lookahead adder.

Now is the time for the students to start exploring the prefix-
tree adder structures available in most text books. The
knowledge acquired from designing ripple-carry adders
using the logic functionality offered by Excel spreadsheets
now serves as an excellent platform for exploring different
prefix-tree adder structures. The spreadsheet learning
environment gives instant feedback to the student whether
the functionality of an adder design is correct or not.

A number of prefix-tree adder architectures have been
published during the years; all with different trade-offs
between propagation delay, wiring complexity, and number
of prefix-tree dot operator cells needed. The most well-
known prefix-tree adders are the Kogge-Stone, Han-Carlson,
Sklansky, Ladner-Fischer, and Brent-Kung architectures.
Already in the binary tree generating the block P and G
outputs, the carries necessary for calculating half of the sums
are available. The missing carries, and the corresponding
missing sums, are shown by question marks in Figure 14.
The problem facing the students now nails down to
understanding how the binary tree can be extended to a
complete prefix-tree supplying all necessary carries.

Sklansky used a brute-force carry-increment type of
structure for obtaining the missing carries as illustrated in
Figure 15. He solved the problem by adding a number of dot
operator cells for distributing the missing carry in a way
reminding of the previous carry-increment solution, but at
many levels. The cells added are marked in blue. The logical
depth of the tree is given by log2(n)+1, but there is a
capacitive loading problem hidden in this structure for the
student to identify and solve by inserting buffers.

+

P7:0

1

0 +

P15:8

1

0 +

P23:16

1

0 +

P31:17

1

0

Figure 11. 32-bit carry-skip adder.

+

0

1

G7:0

+

0

1

G15:8

+

0

1

G23:16

+

0

1

G31:24

P23:16 P31:24 P7:0P15:8

Figure 10. 32-bit carry-lookahead adder (CLA).

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P

G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0

1 0 0 0 1 0 0 0

1 0 1 0

1 0 0 <cin

1 ? ? ? 1 ? 0 0 0

? ? ? 1 ? 1 1 0 SUM
Figure 14. Missing carries in the P and G binary tree.

He solved the problem by adding a number of dot operator
cells for distributing the missing carry in a way reminding of
the previous carry-increment solution, but at many levels.
The cells added are marked in blue. The logical depth of the
tree is given by log2(n)+1, but there is a capacitive loading
problem hidden in this structure for the student to identify
and solve by inserting buffers.

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P

G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0

1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 1 <cin

1 0 0 0 1 0 0 0 1

0 1 1 1 0 1 1 1 SUM
Figure 15. Sklansky prefix-tree adder.

Ladner-Fischer proposed a solution relieving some of the
loading problem by redistributing the bottom row of dot
operators into two levels as shown in Figure 16.

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P

G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0

1 0 0 0 1 0 0 0

1 0 1 0

1 0 0 0

1 0 1 0 0 <cin

0 0 0 0

0 1 1 1 0 1 1 0 SUM
Figure 16. Ladner-Fischer prefix-tree adder

Finally, Brent-Kung proposed a solution where they got
away without adding cells to the prefix tree. Instead they
reorganized the bottom row of cells into an inverse tree
distributing the missing carries, see Figure 17.

V. DESIGN METHODOLOGY

Now, after a number of exercises where students learn the
fundamentals of integrated CMOS circuits using the adder as
the design example, the first learning stage is completed.

In the second learning stage, student focus is shifted to
design methodology and EDA tools. In the Methods of
Electronic System Design and Verification course running
October-December, the design abstraction level is raised
from MOSFETs and circuits to the RTL level. In this unique
methodology-oriented course [5], students are set to learn
about the capabilities and limitations of EDA tools for
synthesis, timing closure, place and route, etc.

The task assigned to the students in this course, is the
design, implementation and verification of a 32-bit ALU,
using Cadence RTL Compiler and Encounter for a 65-nm
low-power technology.

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 G P

G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0

1 0 0 0 1 0 0 0

1 0 1 0

1 0 1 0

1 1 0 <cin

0 0

0 0 0 0

0 1 1 1 0 1 1 0 SUM
Figure 17. Brent-Kung prefix-tree adder.

Initially, the students implement a ripple-carry adder for the
ALU, but since the target clock rate is 1 GHz, they run into
timing problems as the ALU is synthesized. The knowledge
about prefix-tree adders acquired by students in the previous
course now comes in handy. By replacing the slow ripple-
carry adder with a faster Sklansky adder, students are able to
close the timing.

The dot operator code below is an excerpt of the VHDL
skeleton that is available to the students. By matching the
computational structure of the code to the Excel
representation it becomes relatively straightforward to match
the indices of the code to the significance levels of the adder.
row: for i in 1 to INTEGER(CEIL(LOG2(REAL(32)))) generate
 column: for j in 0 to 31 generate
 a: if
 ((INTEGER(FLOOR(REAL(j)/REAL(2**(i-1))))) mod 2)=1
 generate
 b: if j < 2**(i) generate
 Gdotops: Gdot port map (
 P1=>P(i-1)(j),
 G1=>G(i-1)(j),
 G2=>G(i-1)--!find correct description!,
 G=>G(i)(j));
 -- P does not need to be propagated
 end generate b;

 c: if j >= 2**(i) generate
 Dotops: DOTs port map(
 P1=>P(i-1)(j),
 G1=>G(i-1)(j),
 P2=>P(i-1)--!find correct description!,
 G2=>G(i-1)--!find correct description!,
 P=>P(i)(j),
 G=>G(i)(j));
 end generate c;
 end generate a;

VI. SUMMARY AND CONCLUSION

In this paper we have illustrated the use of Excel spread-
sheets as a student learning tool for understanding digital
design of integer adder structures. The tool emphasizes
important concepts such as layout through instantiation of
identical cells by click-and-drag, timing constraints caused
by cell propagation delay through introduction of a timing
axis, and yields a proper understanding of prefix-adder trees.

VII. REFERENCES
[1] N. Weste and D. Harris, Integrated Circuit Design, 4th ed., Boston:

Pearson Education, 2011, ch. 10.2.

[2] I. Levin and H. Rosensweig, Spreadsheet Learning Environment for
Teaching Advanced Topics in Computer Engineering, EWME 2012,
Grenoble, France, pp 45-47

[3] T. Piontek and C. Osterloh, Notion of Time and Parallelism: What
Computer Science Students need to know about Digital Circuit
Design, EWME 2012, Grenoble, France, pp 48-49

[4] I. Levin, Behaviorial Simulation of an Arithmetic Unit using the
Spreadsheet, Int. J. Engineering Education, Vol 31, pp. 334-341.

[5] P. Larsson-Edefors and K. Jeppson, Training Design Methodology
Skills at the Master’s Level, EWME 2012, Grenoble, pp 10-13.

