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Vibration reduction in soil through the use of buildings at the synchrotron radiation facility MAX-IV
Master’s thesis in Architecture and Engineering
VEDAD ALIC
Department of Applied Mechanics
Division of Dynamics
Chalmers University of Technology

Abstract

MAX-lab is a synchrotron facility operated jointly by the Swedish Research Council (VR) and Lund University.
Currently the project consists of three storage rings, MAX I-III, and construction has begun on a fourth. The
new facility, MAX-IV will be located northeast of Lund, at the outskirt of a new area called Brunnshög, roughly
100 meters southeast of the highway E-22. The instruments that are operating on nano-level scale at MAX-IV
are extremely sensitive to vibrations. With the facility located closely to the highway and on top of very soft
soil measures have had to be taken to ensure good operation of the facility. The measures include stabilization
of the soil underneath the facility (stiffening), and the shaping of the ground around the facility in a way that
will mitigate vibrations.

The aim of this master’s thesis is to investigate if placing out masses/buildings in between the vibration
source and MAX-lab can decrease ground vibrations. The idea is based on a previous master thesis in
Architecture where part of the objective was to find out in an early design stage what sort of organization of
buildings/masses that can work to mitigate vibrations. The work has been carried out using finite element
analysis in two (axisymmetric), and three dimensions. Steady state models in the frequency range 5-30Hz
have been established with main evaluation points 100 meters from the load, with masses placed in between.
Soil as a material is generally treated as highly non-linear and inhomogeneous, however, with the present low
magnitude loading and short wavelengths in comparison to soil particles, it is here reasonable to treat soil as a
homogeneous linear viscoelastic material.

Two-dimensional results indicate that masses on the ground can be used as a means to mitigate ground
vibration, but in order for them to be effective they need to be very heavy. However, due to the nature of
being effective around the mass-soil systems resonance frequency they can instead lead to larger vibrations
in the soil, if they are excited at frequencies close to their resonant frequencies. With insight from the 2D
simulations the 3D simulations attempt to find spatial organizations for masses between vibration source and
the facility. In order to carry out parameter tests in the 3D-model an effective reduction method was designed
and implemented. The reduction method is based on Guyan reduction and domain decomposition. After having
reduced the model from about 2.5 million degrees of freedom to about 12 thousand, different organizations of
masses were assembled on top of the reduced ground model and steady state analysis was performed in the
frequency range between 5-29Hz. Three-dimensional results show that locating masses in a careful manner can
work for vibration mitigation, and combining masses of different densities has further effect that reduction in a
wider frequency range can be reached.

Keywords: Soil vibration, Blocking masses and buildings, Vibration reduction, Multi-level dynamic reduction
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Nomenclature

Roman symbols

P Primary(pressure) wave

R Rayleigh wave

S Secondary(shear) wave

m, s Subscripts for master and slave dofs

a = ü Acceleration

c Viscous damping constant

cP P-wave phase velocity

cR R-wave phase velocity

cS S-wave phase velocity

E Young’s modulus

F Force

FD Damping force

FS Spring force

G Shear modulus

g Gravity

hmass Height of mass

L Length

m Mass

p External force

r, z Axisymmetric coordinates

t Time

u Displacement

ust Static displacement

v = u̇ Velocity

wmass Width of mass

x, y, z Cartesian coordinates

Roman bold symbols

C Damping matrix

Cr Reduced damping matrix

D Dynamic stiffness matrix

Dr Reduced dynamic stiffness matrix

f Nodal force vector

K Stiffness matrix

Kr Reduced stiffness matrix

M Mass matrix

Mr Reduced mass matrix

T Transformation matrix

u Nodal displacement vector

Greek symbols

α, β Rayleigh damping parameters
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γ Structural damping factor

λ Wavelength

ν Poisson’s ratio

Ω Excitation frequency

ω Angular frequency

ωn Natural frequency

ρ Density

ζ Damping ratio

ζeq Equivalent viscous damping ratio
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1 Introduction

1.1 Background

MAX-lab (Mictrotron Accelerator for X-rays) is a national laboratory in Lund, which is operated jointly by the
Swedish Research Council (VR) and Lund University. Currently the project consists of three storage rings,
MAX I-III, and a fourth ring being built, MAX-IV. [10]

The principle of operation for a synchrotron is such that synchrotrons are unable to accelerate particles from
zero kinetic energy and instead rely on pre-accelerated particles from another source, like a linear accelerator
(linac) which accelerates the particles to near-light speed. Once the particles enter the synchrotron they are
forced into a circular course by strong magnets. When the particles are accelerated they send out synchrotron
light. The synchrotron light that is emitted is then used in research in beam lines which are installed tangentially
to the synchrotron storage ring. For good results it is important to have a very intense and well-focused
synchrotron light with a small radiation size, which is achieved by making sure that the beam in the storage
ring has a small size and low angular proliferation, which, in turn, is achieved by making sure that the storage
ring has low emittance.

Max-II is the largest of the current storage rings, with a circumference of 90 meters. Max-III was added in
2007 with the purpose to unburden Max-II for synchrotron light research in the ultraviolet area.

Figure 1.1: Draft of Max-IV [10]

There is now a need to upgrade the research abilities at MAX-lab, and a new facility, Max-IV is being built.
With an electron pre-accelerator, a 250 meter long linac, two storage rings of 96 and 528 meters circumference,
as seen in Figure 1.1. Max-IV will be able of a 3-GeV energy level in the largest storage ring with low emittance
for the production of soft and hard x-rays as well as an expansion into the free electron laser field. It is being
built at Brunnshög, part of Lund North-East, a new development area for which MAXLAB together with ESS
(European Spallation Source, another material research facility planned for around 2020) act as development
catalysts.

Amongst the disciplines that will benefit from research at Max-IV are material sciences, energy research,
biogeochemistry, atmospheric chemistry, corrosion chemistry, nanotechnology, catalysis research, environmental
sciences, cultural heritage, and basic physics and chemistry.

The location of MAX-IV is about 100 meters south-east of the highway E22, and about 100 meters north-
west of Odarslövsvägen running parallel to the E22, see Figure 1.2 (a). The placement is intentional as it is
both close to the new part of town as well as being able to give a good image of Lund to passers by. The
highway and Odarslövsvägen might lead to vibration issues for which MAX-IV is very sensitive to (vertical
displacements limit of 26nm RMS during one second, for frequencies above 5 Hz and below 100 Hz). Further
on the municipality plans to build a tramway another hundred meters south-east of Odarslövsvägen, that also
may increase the vibrations in the facility.

1



1.1.1 Architectural thesis

Prior experience has shown us that separation of functions in urban planning may not be such a great idea.
Mixed use zoning has once again become popular due to benefits such as reduced distances between housing,
workplaces and retail, more compact development, and a more lively urban fabric, as the office sleeps the living
room is awake meaning the mixed used zone has more potential as an active place. This thesis, or set of theses
consider two aspects of that idea. The first thesis was done during the spring 2012 at Chalmers University of
Technology, at the department of Architecture [1]. In that thesis the area around the new research facility
Max-IV, part of MAXLAB was studied and a proposal was done with the ambition to try to incorporate
Max-IV closer into the city of Lund. Building a bit on the mixed use idea the citizens of Lund living nearby
MAX-IV would be exposed to a pool of knowledge, but in what way could MAX-IV benefit from the proximity?
One thought during the Architectural thesis was that the buildings could potentially help Max-IV perform
better if they could reduce the incoming vibrations from surrounding traffic.

E2
2

Od
ars
löv
svä
gen

(a) (b) (c)

Figure 1.2: Vibrations from roads, reduced by buildings

The architectural thesis built up an urban design (see Figure 1.3 (c)) from solutions that worked well in
a digital Ripple Tank Simulator [12] as well as some physical experiments with scale models using JELL-O
as soil and placing out masses on top as buildings. Although working for its intended use the Ripple Tank
experiments are not entirely true to the wave propagation trough a solid medium. This thesis will investigate if
the proposed solutions from the architectural thesis might work, and if there are some solutions which work
better than others, in essence create a Ripple Tank Simulator, but for waves in elastic media, and try out a set
of different solutions.

(a) (b) (c)

Figure 1.3: Building closer to MAX-IV

1.1.2 Methods for mitigating vibrations

Issues with ground vibrations are expected to rise due to predicted increases in urban populations and the
following increases in traffic necessary for transportation. As cities become denser, vibrations from trains and
road vehicles will have to be dealt with. Mitigation of ground vibrations is traditionally done by methods
such as digging a trench between the vibration source and the facility which should be protected, or by adding
barriers in the soil such as sheet piles/buried walls or some sort of stiffening of the soil, or wave impeding
blocks. Other options exist, such as shaping the ground terrain, which has been done at Max-IV. There is
ongoing theoretical research about mechanical invisibility cloaks [7], which may potentially be used to guide

2



surface waves around sensitive objects.

Resonant mass scatterers, though at the time not referred as such, have been considered as a viable
method of mitigation both theoretically [8] [13] [4], and numerically [5]. Petyt and Jones [5] consider at an
evaluation point 25 meters from the load, in between which they place different sets of heavy masses and come
to the conclusion that the effectiveness varies critically on the location of the masses relative to the load and
evaluation points, on the size of the masses and on the most sensitive frequency range of the system. In general
a heavy mass close to the load works best for their situation. Krylov [8] shows (for a 2D model) analytically
that only 10% of the incoming wave energy is transmitted past a lumped mass around its resonant frequency,
the rest of it is either reflected back or propagated as body waves trough the half-space medium. The solution
should be taken as a very rough estimate as it is derived for a lumped mass and does not take into account the
mass moment of inertia. Most importantly for the MAX-lab site is, that it needs a mass - soil - infinite bedrock
model and not just mass - infinite soil model, where in the former reflections may occur between different soil
layers or between the soil and bedrock layer, drastically complicating the solution.

1.2 Objective and method

The objective of this thesis is to study the effects of placing masses or buildings in between a vibration source
and an evaluation point at which the vibration levels were evaluated.

The study has been performed numerically using the finite element method (FEM) both in 2D and in 3D.
Specifics for material data and distances have been based on values from the Max-IV site. The 2D studies have
focused primarily on the effects of a few parameters such as the density, size, and position of the mass/building.
The 3D studies have based the material parameters on the results of the 2D studies, and further looked into the
effect of different spatial organizations of masses/buildings. Focus has been on studying relative improvements
instead of absolute values. Parts of the architectural thesis plan were evaluated in the study as well.

Physical models were investigated as an option to 3D FEM simulations, but were disregarded due to inability
to find suitable scale materials.

In essence, advanced simulation and physical experiments were used as sketching tools for preliminary
architectural design, where architecture and engineering inform each other.

1.3 Outline of the report

• The first chapter is an introduction to the report. It covers MAXLAB as a site for investigation, the
architectural master thesis that was done in a previous study, some previous work about the potential
use of masses as Rayleigh wave scatterers and other methods of wave mitigation.

• Chapter 2 briefly covers vibration theory, the finite element method, wave propagation in semi-infinite
spaces, and soil materials.

• Chapter 3 describes the 2D-axisymmetric and 3D finite element models, as well as the physical scale
model.

• Chapter 4 presents the results of the different studies.

• Chapter 5 covers discussion, final conclusions and suggestions for further work.

3



2 Theory

2.1 Vibration theory

2.1.1 Introduction

The analysis and design of structures subject to time dependent forces constitute the field of structural dynamics.
For example a bridge oscillating to forces from the wind or passing traffic, or as another case a building being
disturbed by an earthquake are examples of where one must consider the dynamics. Many phenomena associated

m
c

(a) (b) (c)

k
ku
cu.p(t)

u

m p(t)

mg

mg

ku
cu. ..mu p(t)

mg

mg

Figure 2.1: Single degree of freedom (SDOF) model

with complicated systems can be understood by studying more simple systems. The simplest of such systems is
a single degree of freedom (SDOF) model, meaning that only one independent quantity must be specified in
order to uniquely define the position of the system, this quantity may be a Cartesian co-ordinate (x, y, z). The
model consists of a single lumped mass m, a spring with stiffness k, and a dashpot with damping c. Consider
the system shown in Figure 2.1, Newton’s second law for a constant mass system states that∑

F = ma = mü (2.1)

In the considered case from the free-body diagram three forces are identified which are acting on the mass,
the external force p(t), the spring force FS positive towards the static equilibrium position (where the spring is
neither extended nor compressed) and the damping force FD acting opposite the direction of movement.∑

F = p(t)− FS − FD (2.2)

using Hooke’s law for the spring
FS = k∆L (2.3)

and for the dashpot with damping proportional to the velocity

FD = c∆L̇ (2.4)

where
∆L = u2 − u1 (2.5)

using
u1 = 0, u2 = u (2.6)

and Newton’s second law in Equation 2.2 we finally get the second order ordinary differential equation

mü(t) + cu̇(t) + ku(t) = p(t) (2.7)

which is known as the equation of motion for a single degree of freedom system, describing the vibrations of
the mass-dashpot-spring system around its equilibrium position under the load p(t).

2.1.2 MDOF systems

In order to describe more complicated systems and additional phenomena it is necessary to extend the theory to
multiple degree of freedom (MDOF) systems. The simplest of such systems is one with two degrees of freedom,
seen in Figure 2.2 with degree of freedom u1 and u2. Using Newton’s second law for each mass we get a system

4



m
k

p(t)
1

u1

1
k3

1 m

p(t)
2

u2
2

k2

Figure 2.2: Two degree of freedom (2DOF) model

with two coupled equations of motion

m1ü1 = p1(t) + FS1−1 + FS3−1

m2ü2 = p2(t) + FS2−2 + FS3−2
(2.8)

in which the spring forces first index denotes the spring and the second index denotes the mass which the
spring-force is imposed on. Using Hooke’s law and substituting into 2.8 we get

m1ü1 + k1u1 + k3(u1 − u2) = p1

m2ü2 + k2u2 + k3(u2 − u1) = p2
(2.9)

which may be written in matrix form
Mü + Ku = F (2.10)

where u = (u1, u2)T and F = (p1, p2)T are the displacement and force vectors and

M =

[
m1 0
0 m2

]
,K =

[
k1 + k3 −k3

−k3 k2 + k3

]
(2.11)

are the mass and stiffness matrix. If damping is present the C matrix is derived in a similar way and Equation
2.10 would get a Cu̇ term on the left hand side, becoming

Mü + Cu̇ + Ku = F (2.12)

The derivation of more than two degrees of freedom system is analogous, but setting up the equations for all
parts and keeping track of positive directions can easily lead to human induced errors. Instead it is preferable
to use Lagrange’s equations with generalized coordinates, see [3].

2.1.3 Resonance

Consider the undamped version of the equation of motion for a single degree of freedom model, as in Equation
2.7, subject to forced motion. The total response of a linear system consists of a forced motion and a natural
motion, and in the case of harmonic excitations the forced motion is referred to as the steady-state response.
The equation of motion is

mü+ ku = p0 cos Ωt (2.13)

From the fact that only even-order derivatives appear on the left hand side of Equation 2.13 it is possible to
assume a solution of the following form for the steady state response

up = U cos Ωt (2.14)

substituting Equation 2.14 into 2.13 and solving for the amplitude U of the steady state response we get

U =
p0

k −mΩ2
(2.15)

using the static displacement

U0 =
p0

k
(2.16)

one may write Equation 2.15 as the nondimensionalized frequency-response function

U

U0
=

1

1− ( Ω
ωn

)2
(2.17)
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where ωn =
√

k
m is the natural frequency of the SDOF system and Equation 2.15 holds as long as k −mΩ 6= 0,

or when Ω 6= ωn in Equation 2.17. As can be seen in Figure 2.3 when the excitation frequency Ω is close to the
natural frequency ωn the frequency-response magnitude tends to infinity for the undamped mechanical system.
The phenomena is known as resonance and is a condition which one usually strives to avoid, as it leads to
large-amplitude motions. For further information the reader is referred to [3]
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Figure 2.3: Magnification factor of an undamped SDOF system, Ω is the excitation frequency and ωn is the
natural frequency.

2.1.4 Steady-state dynamics
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Figure 2.4: Total and steady state response of a mechanical system under harmonic loading

When a mechanical system is subject to a harmonic force it will typically reach a steady state after some
transient behaviour has been dampened out. Assuming steady state harmonic behaviour with common time
factor eiωt, the equation of motion for a discretized MDOF system can be written using complex arithmetic

M¨̄u + C ˙̄u + Kū = p̄ = p0e
iωt; ū(t) = Ūeiωt (2.18)

with the complex response
ū = u< + u= (2.19)

where it is understood that the actual steady-state motion is given by either the real or imaginary part
depending on the nature of the excitation (i.e. sin or cos). Differentiating Equation 2.18 with respect to time
and omitting the common time factor we get

(−ω2M + iωC + K)Ū = p0 (2.20)

or
D(ω)Ū = p0 (2.21)
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where D(ω) is the dynamic stiffness matrix, dependent on the angular frequency ω

D(ω) = −ω2M + iωC + K (2.22)

which may be used to calculate the complex amplitude Ū, which in turn can be used to determine the amplitude
and phase of the steady-state response. Note that in later chapters the overbar and uppercase are dropped and
the complex amplitude is simply referred to as u. For more information the reader is referred to [3].

2.1.5 Damping
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Figure 2.5: Magnification factor of damped SDOF system, Ω is the excitation frequency and ωn is the natural
frequency.

Where as the stiffness and mass properties of a system are well understood and can be calculated the exact
nature of the damping in a structure is many times impossible to determine. Damping is usually measured on
site (or similar structure) and afterwards mathematically modelled. There have been many different damping
models proposed, and two which are often used are Rayleigh damping, and structural damping. Structural
damping lends itself well to, and can only be used for the complex-frequency-response steady state dynamics.
For a single degree of freedom system it is usually introduced as

m¨̄u+ k(1 + iγ)ū = p0e
iωt (2.23)

where γ is the structural damping factor. In [3] it is shown that structural damping under harmonic excitation
conditions at resonance for a SDOF system relates to viscous damping as

ζeq = γ/2 (2.24)

Rayleigh damping, also known as proportional damping is proportional to a combination of the mass and
stiffness matrices. It is defined by

C = αM + βK (2.25)

where the constants α and β can be chosen to specify modal damping factors for two select angular frequencies

ζr =
1

2

(
α

ωr
+ βωr

)
(2.26)

where the mass contribution to ζr is inversely proportional to ωr and the stiffness term increases linearly with
ωr.

2.1.6 Root Mean Square

Since the scope of the project work is to compare a large number of dynamic responses a method for comparing
them to each other is necessary, as presenting hundreds of them can be time consuming and difficult to read.
An efficient way is by looking at the Root Mean Square (RMS) value, as it provides an efficient average value.

RMS(u) =

√
1

n

∑
n

u2 (2.27)
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2.2 The Finite Element Method

The finite element method is a technique to find approximate solutions to boundary value problems (BVP), that
is, a set of differential equations with additional boundary conditions which are known a priori. It is applicable
to many fields of engineering, physics and mathematics, since many of the underlying physical problems may
be expressed as differential equations.

The method is based on dividing a region governed by a physical phenomena into a set of of smaller regions,
or finite elements. Simpler approximations are assumed over the elements which approximate the original
complex equations, the solutions are usually allowed to vary linearly or quadratically over the element, even
though the physical phenomena may vary in a highly non-linear fashion over the whole region the linear or
quadratic approximation may hold over the element, provided the element is small enough. The approximations
are some kind of interpolation over the element where it is assumed that the values are known at some certain
nodal points, which are usually located at the boundary of each element. The second step consists of generating
a global set of equations from the local by a co-ordinate transformation from the sub-domains local co-ordinate
system and nodes to the domains global co-ordinate system and nodes.

The finite element method is numerically stable, meaning that errors from input and intermediate calculations
do not grow and cause inaccuracies which make the results meaningless. To minimize the errors from the
approximations (or increase precision) a finer mesh with smaller elements or elements with a higher order
of basis functions (e.g. going from linear to quadratic elements) may be used, at of course the expense of
computational cost.

2.2.1 FE formulation in 3D

The finite element discretization technique reduces the soil modelling problem to a system of second order,
linear, ordinary differential equations:

Mü + Cu̇ + Ku = f ∀t ∈ (0, T ) (2.28)

with u(t = 0) = u0 and u̇(t = 0) = u̇0, where M is the mass matrix, C is the damping matrix, K is the stiffness
matrix, u is the nodal displacements vector and f is the force vector. M, C, and K are sparse, symmetric and
positive-definite matrices.

For a full derivation of the FE formulation the reader is referred to [11].

2.2.2 Dynamic model reduction with damping

Model reduction methods within engineering are used to lessen computational costs of an analysis. One of
the most common reduction method is referred to as Guyan reduction. A set of active ”master” coordinates,
and a set of dependent ”slave” coordinates which may be reduced are chosen. The K and M matrices are
then re-ordered and partitioned into separate parts relating to the master and slave degrees of freedom. If no
forces are applied to the slave degrees of freedom and the damping is neglectable the equation of motion for the
system can be written as (with subscripts m and s for master and slave degrees of freedom)[

Mmm Mms

Msm Mss

]{
üm

üs

}
+

[
Kmm Kms

Ksm Kss

]{
um

us

}
=

{
fm
0

}
(2.29)

by neglecting the inertia terms in Equation 2.29 the transformation matrix T may be written as{
um

us

}
=

[
I

−K−1
ss Ksm

]
um = Tum (2.30)

the reduced mass and stiffness matrices can then be given as

Kr = TTKT
Mr = TTMT

(2.31)

The method is exact at frequency zero and approximate at all other frequencies as the inertia terms have
been neglected. Guyan reduction may be extended to Dynamic reduction at steady state harmonic conditions
by using the dynamic stiffness matrix

(K− ω2M)u = f (2.32)
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or expressed in terms of re-ordered master and slave degrees of freedom[
Kmm − ω2Mmm Kms − ω2Kms

Ksm − ω2Msm Kss − ω2Kss

]{
um

us

}
=

{
fm
0

}
(2.33)

from which we get the transformation matrix T{
um

us

}
=

[
I

−(Kss − ω2Mss)
−1(Ksm − ω2Msm)

]
um = Tum (2.34)

which can once again be used in Equation 2.31 to get the reduced system matrices. This method is exact
at frequency ω for undamped systems and works well for systems with low damping. If there is significant
damping in the system one needs to use the full dynamic matrix

(K + iωC− ω2M)u = f (2.35)

and using Equation 2.35 one gets the transformation matrix{
um

us

}
=

[
I

−(Kss + iωCss − ω2Mss)
−1(Ksm + iωCsm − ω2Msm)

]
um = Tum (2.36)

which once again can be used in Equation 2.31 to get the reduced system matrices, where Cr follows in the
same procedure. As no error is introduced in the transformation matrix this method is exact at frequency
ω but the resulting reduced system matrices Mr, Cr and Kr are complex [14]. It should be noted that the
reduced system matrices produced by these methods are no longer sparse and require a rather large reduction
of degrees of freedom in order to be of computational benefit.

2.2.3 Multi-level Sub-structuring

Substructuring methods, or domain decomposition methods solve a BVP by dividing it up in smaller BVPs on
subdomains. The methods work well for parallel computing, as the problems on the subdomains are independent
of each other and can be solved independently. The continuity of the solution over the subdomains is ensured
by representing the values of the neighbouring interfaces (where the subdomain boundaries meet) by the same
unknowns. Finite element analysis with models of large size (millions of degrees of freedom) typically require
hours to solve for each time-step (or frequency), making parallel calculations invaluable for minimizing the
calculation time.

(a)

1 2 5

3 4 6

7

(c) (d)(b)

1

5

7

2 3

6

4

Figure 2.6: (a) bottom level substructures and internal dofs. (b) higher level substructures and interface dofs
for the bottom level substructures (dashed area). (c) highest level substructure with interface dofs between
substructures 5 and 6. (d) substructure tree

To illustrate a method of sub-structuring Figure 2.6 is showing a domain divided into four sub-domains. Each
domain has a set of internal degrees of freedom (Figure 2.6 (a)), and interface degrees of freedom (Figure 2.6
(b)) which are used to connect it to the next substructure level, which again has sets of internal and interface
degrees of freedom used to connect it to the final level seen in Figure 2.6 (c).

In this study the substructuring method has been used to decrease the computational cost and time of the
dynamic reduction, where the dynamic reduction has been applied to each substructure level starting at the
bottom of the substructure tree (Figure 2.6 (d)) and only keeping the interface and master degrees of freedom.
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2.3 Wave propagation in semi-infinite spaces

2.3.1 Wave types in semi-infinite spaces

Wave propagation in viscoelastic mediums usually consists of three types of waves, Rayleigh-wave (R-wave)
which propagates close to the surface of the semi-infinite space, also known as a surface wave. The other two
waves are body waves propagating trough the semi-infinite space, one is a pressure wave (P-wave) and the
other is a shear wave (S-wave). Measuring at a point a distance away from the source one can see that the
pressure wave arrives first, then the shear wave and a little bit later the Rayleigh wave, as illustrated in Figure
2.7. The figure also shows that the Rayleigh wave usually has a larger amplitude than the body waves.

P S R

t

Figure 2.7: Amplitude and time of arrival of the three different wave types at an observation point some distance
away from the vibration source
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cRrR

Figure 2.8: Illustrating the particle motion of (a) pressure waves with phase speed cP, (b) shear waves with
phase speed cS and (c) Rayleigh waves with phase speed cR

Unlike P- and S- waves the Rayleigh wave consists of both pressure and shear. The particle motion from a
Rayleigh wave follows an elliptical path, as illustrated by Figure 2.8 (c). Rayleigh waves typically move at a
phase speed of around cR ≈ 0.9cS. A Rayleigh waves penetration depth is dependent on its wavelength.
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2.3.2 Geometrical attenuation

As pressure and shear waves spread trough the volume they form spherical wave fronts spreading the wave
energy over a larger area than the Rayleigh waves which are bound to the surface and spread in a similar fashion
to rings on water, as illustrated in Figure 2.9. The effect is sometimes improperly denoted as geometrical
damping (improper as there is no energy loss related to the effect), and somewhat explains why Rayleigh waves
are observed to have larger magnitudes than body waves far from the vibration source. Another explanation is
that vibrations caused by sources on the ground primarily lead to the generation of Rayleigh waves.

z f

(a) (b)

f

surface wave front

x

y

body wave front

Figure 2.9: Illustrating the wave fronts of (a) body waves, and (b) surface waves
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2.4 Materials

2.4.1 Soil

It is claimed that Lund has the largest height difference of all the cities in Sweden, but it is not true. The
whole city lays on a slope though, with the lowest point of 8 meters above sea level in the south of Lund, and
the highest point of 86 meters above sea level in the north-east part, where MAX-ab is located. Most of the
bedrock consisting of shale, limestone and sandstone is at the location for MAX-lab covered by 14-16 meters of
clay.

The clay layers are glacial sediments from the from the moraines of the retreating ice from the last ice age.
There are two layers, the upper one is Low Baltic clay till and the lower one is North-east clay till. Boulder
clays are usually water saturated, since water is incompressible this leads to the clay having a poisson’s ratio
which is close to 0.5. The density of boulder clay is usually close to 2000kg/m3. The damping ratio is strain
dependent and varies between 1% to 20%.

The pressure from the ice of the last ice age has lead to over-consolidation of the soil, meaning that
the response is assumed to be elastic in shearing when exposed to loads with amplitude smaller than the
pre-consolidation pressure.

2.4.2 Soil as a homogeneous and visco-elastic material

The stresses from dynamic loads due to human activity (e.g. traffic) are often within the linear range of the
soil material, and as such a visco-elastic material model may be used for the soil. The inclusion of damping in
the model complicates the computations of the response for dynamic analysis but usually provides a much
better description.

Soil is a inhomogeneous material with large variations of size, shape and density to the particles which it
consists of. The Rayleigh wave-speed for most soils is usually above 100 m/s, and for a frequency of 100 Hz
the wavelength is 1 meter, which is significantly larger than the soil grains which are around 1 mm in size.
Because of this the soil may be treated as a homogeneous material when it is used for dynamic analysis of
low frequencies which are the case for most human induced loads. One does need to consider the different soil
depth layers which may have different properties in relation to each other.

The elastic properties of deeper layers are usually stiffer due to pre-stressing from layers above. It is usually
sufficient with three layers to get a good description of the wave propagation in soil [2].
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3 Experimental Models

The finite element software ABAQUS [18] was used for the FE calculations. Work was mainly within the CAE
(Complete Abaqus Environment), but a few things were done manually as ABAQUS/CAE lacks support for
infinite elements. These have to be added manually to the input (.inp) file before the job is submitted to the
solver.

A 2D axisymmetric model was used to study the effects of a single mass, and the effects of two masses.
Afterwards a 3D model was set up to study the effects of different organizations of masses. Eventually the
3D-model was exported into MATLAB (Matrix Laboratory) where a dynamic model reduction was performed
in order to speed up the steady-state simulations.

Some tests with physical scale models were attempted, but in the end disregarded as no suitable materials
were found.

3.1 2D Axisymmetric FE-Model

An axisymmetric model was used for preliminary analysis. The computational cost for an axisymmetric model
is much lower then for a full 3D model, while it can still take geometric attenuation into account. Figure 3.1
shows the axisymmetric model.

Lower clay 12m

Upper clay   2m

f(t)

rmass wmass

hmassm
r

z

Bedrock  semi-infinite

Figure 3.1: Axisymmetric model

3.1.1 Materials

Due to the strict requirements for vibrations at MAXLAB the site has been subject to many geotechnical
studies by LTH, Tyréns, NGI and PEAB (amongst others) [15]. The material properties for the part of the site
between the synchrotron and town can be seen in Figure 3.1 and Table 3.1. The soil is highly water saturated
and as such has a Poisson’s ratio close to 0.5. Damping is given as a loss factor, and is 0.14 for the soil, and
0.04 for the bedrock.

The largest amplitudes occur in the frequency range 5-30 Hz, for which the smallest wavelength in the soil
can be found:

λUpperclay = cS/f = 185/30 = 6.16m (3.1)

and the largest wavelength in the bedrock:

λBedrock = cP/f = 2694/5 = 538.8m (3.2)

Material properties for the mass are explained in each analysis.
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Table 3.1: Soil and bedrock viscoelastic properties by loss factor

Layer cS [m/s] ν ρ [Kg/m3] loss factor γ [%] E [MPa] G [MPa] cP [m/s]
Upper clay 185 0.48 2125 14 215 73 943
Lower clay 425 0.48 2125 14 1136 384 2167
Bedrock 1100 0.40 2600 4 8800 3146 2694

3.1.2 Mesh, element types and boundary conditions

When working with semi-infinite spaces such as soil one is typically interested in the results from a small region
but must model a larger part in order to avoid reflections of waves. The reflections may further be reduced by
incorporating a non-reflective boundary. In ABAQUS [18] that boundary may be done with the use of infinite
elements, which in this case were CINAX5R, 5-noded with quadratic interpolation. Even when these elements
are used at the boundary one still needs to include a large enough part in the FE-model to avoid reflections.
Together with requirements for a dense mesh (in order to accurately model the smallest wavelengths) this can
quickly lead to high computational costs.

1 5
CINAX5Rr

z
2

34

1 5
CAX8R

2

4 7 3

68

Figure 3.2: Axisymmetric elements and node numbering

As most of the boundary conditions are handled with the infinite elements the only constraint necessary in
the model is that of horizontal displacements along the z-axis where r = 0, a condition which must hold for the
axisymmetric model.

In [16], it is concluded that to correctly model a wave using the finite element method it is necessary to use
atleast 10 nodes per wavelength. If using quadratic elements, CAX8R it means that one needs 4.5 elements
per wavelength. The smallest wavelength in the model is about 6.16m (top soil layer) Eq 3.1. Following
the guidelines from [16] that would require a element size of about 1.37 by 1.37 meters, however, from mesh
convergence plots (see Section 4.1.1) it was concluded that a 2x2 meter mesh for the soil layers was accurate
enough for all frequencies in the range 5-30 Hz, computational times for a mesh with 2x2 meter elements
(600x600 meters total dimensions) in an axisymmetric model are not a big issue. For the bedrock which is
stiffer and has a larger smallest wavelength a mesh with longer elements (8.8 meters) in z-direction was used.

Figure 3.3: The complete mesh, 602 meters wide, and 596 meters deep.
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In order for the infinite elements, CINAX5R to be effective and provide a quiet boundary they should be
perpendicular to the direction of the incoming wave [18], as the model is rectangular in design it means that
this is only true for parts of the model straight below, or to the right of the load. Increasing the dimensions of
the model leads to a larger part of the incoming wave front to be closer to a perpendicular direction.

The final soil 2-D mesh consisted of 373 CINAX5R elements and 21900 CAX8R elements for a total of
67570 nodes and 135140 degrees of freedom.

3.1.3 Model with a single mass

For the first test the mass used on the soil had the width wmass = 2m and height hmass = 2m and was located
rmass = 16m from the load. All other properties for the mass were identical to the upper soil layer, except for
the mass density, as it was varied between 0− 4.5 · 104kg/m3. The upper bound for the density is larger than
traditionally used materials, but the idea is to find a functioning mass per unit area, meaning that even if the
mass density is unachievable simply increasing the hight of the mass could have similar effect. Krylov [8] goes
so far as to describe the resonance frequency of the mass-soil system (for a 2-dimensional analytical model)
as a function of stiffness, density, and height, where the resonance frequency is inversely proportional to the
square root of h. Naturally this was another simulation that was performed in the model with a single mass.
The height h was varied between 2-12 meters in steps of 2 meters, while the density was reduced in order to
keep the mass per unit area constant. For this test Young’s modulus was E = 50GPa. Variations of Young’s
modulus (from 215MPa to 210Gpa) and Poisson’s ratio (0.2 - 0.48) were also studied.

Figure 3.4: Part of mesh with a mass on top, longer elements are bedrock.

Petyt and Jones [5] conclude that the position of the mass in relation to the load and response point is
critical for its effectiveness (in general a heavy mass close to the load worked well for their tests), as such it was
necessary to study the effect of the position of the mass in this thesis as well. The mass position from the load
rmass was varied between 0m to 60m in 4m steps. The mass density was initially set to ρmass = 8271kg/m3. All
other properties were the same as for the upper clay described in Table 3.1. For all simulations a a steady-state
analysis in the frequency range 5-30Hz with a unit load and 0.25Hz steps was done.

To conclude the parameters that were studied in the model with one mass can be seen in Figure 3.1 and
were:

• Density of the mass, ρmass

• Young’s modulus of the mass, E

• Poisson’s ratio of the mass, ν

• Position of the mass, rmass

• Height of the mass, hmass with modified mass density to keep the total mass constant
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3.1.4 Model with two masses

Lower clay 12m

Upper clay   2m

f(t)

16m rm1-m2
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Bedrock  semi-infinite

r

z

Figure 3.5: Axisymmetric model with two masses

To investigate if there are any benefits of using two or more masses a model with two masses was used.
Having found an effective weight and position for the first mass, it made sense to start with using the same
weight for the second mass, and varying its position relative to the first mass, rm1−m2. Analyses were done
with two masses of same initial density ρ = 8271kg/m3, with the first mass located at 16 meters from load and
the distance between the two masses varied between 0 - 40 meters, in steps of 4 meters.

Once a suitable position was found for the second mass, the density of the second mass was varied between
0kg/m3 to 8271kg/m3.

All other parameters for the masses were taken from those of the upper soil layer in Table 3.1, except the
damping which was neglected.

In conclusion only two parameters were studied in the model with two masses:

• The position of the second mass in relation to the first, rm1−m2

• The density of the second mass, after having found the position for the second mass with best reduction
in RMS(|uz|)
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3.1.5 Model with a simple building

r

Lower clay 12m

Upper clay   2m
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0.3m
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0.3m

Bedrock  semi-infinite

z

Figure 3.6: Axisymmetric model with building

Simple building models according to Figure 3.6 were tested to study if a building might be used as vibration
mitigation. The properties for the building material were taken as ρ = 2400kg/m3 and E = 30GPa, ν = 0.2.
The number of floors was varied between 1-10, and a steady state analysis was done for each model between
5-30Hz.
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3.2 3D FE-Model

A full 3-D model was set up to study the effects of masses in 3-D. Pre-processing was carried out in ABAQUS
and the global system matrices K, C, and M were exported into MATLAB where a dynamic model reduction
was performed in order to reduce the number of degrees of freedom and speed up the analysis. The dynamic
reduction was too computationally intensive on the full 3D model which was solved by dividing the model into
substructures and performing the reduction in several iterations. Having performed the reduction different
organizations of masses were finally assembled on the green area seen in Figure 3.7 and steady state analysis in
the range 5-29Hz with 2Hz steps and unit loading was run.

z

f

x

300m

150m
100m

100m

y

Figure 3.7: 3D model with the parts that were kept in the reduced model marked in green

3.2.1 Materials

For the 3D model Rayleigh damping was used as the system matrices K, C, and M were exported in to
MATLAB in order to perform a model reduction. It would have been possible to use structural damping, but
the way ABAQUS exported the infinite elements was as a set of viscous dampers giving contributions to the
damping matrix C, which if one would use structural damping would mean that 4 matrices instead of 3 would
have to be dealt with which would end up costing more memory. Materials were identical to those in Section
3.1.1. The Rayleigh damping parameters are listed in Table 3.2, they were the ones that gave to closest match
to the response with structural damping. In Figure 3.8 the Rayleigh and equivalent structural damping (ζeq)
ratios are shown.

Table 3.2: Soil and bedrock Rayleigh damping parameters

Layer α (1/s) β (s)
Upper clay 6.8157 6.4585e-4
Lower clay 6.8157 6.4584e-4
Bedrock 1.9473 1.8453e-4

3.2.2 Geometry, mesh, element types and boundary conditions

The 3D mesh used in ABAQUS had the smallest possible dimensions which still gave acceptable values
100m from load application point. The dimensions were selected from 2D-axisymmetric simulations, as doing
convergence tests for 3D model would take far too much computational time. In the end the 3D model results
were compared to those of the axisymmetric one to make sure that the model was accurate enough. To further
reduce computational time a symmetry plane perpendicular to the y-axis at y = 0 was used. The model
dimensions were 300 · 150 · 114 meters (x · y · z), as seen in Figure 3.7. An increase in x and y to 400 and 200
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Figure 3.8: Rayleigh and equivalent structural damping ratios for (left) soil and (right) bedrock.

meters would give slightly more accurate results but would mean an increase of number of elements by around
1.8.

The 3D mesh was made out of C3D20R and CIN3D12R. The elements were 2x2x2m, except for the bedrock
z-direction which was set to 8.8m. C3D20R are 20-node 3D quadratic brick elements with reduced integration.
Reduced integration is used instead of full integration in order to avoid too stiff solutions, and according to the
ABAQUS manual [18] second-order reduced-integration elements generally yield more accurate results than the
corresponding elements with full integration while also having a 3.5 times less costly element assembly (8 vs 27
inegration points for C3D20R). A single C3D20R element has 60 degrees of freedom, with three translational
DOFs per node.

The node-numbering for the CIN3D12R infinite elements is crucial for the elements to work properly. Figure
3.9 shows both C3D20R and CIN3D12R, and as can be seen for the infinite element the face with nodes 1 to
8 is the one that should be connected to the finite elements. As ABAQUS/CAE 6.11-3 lacked support for
infinite elements they were first meshed as C3D20RH and the output was ran trough a MATLAB script which
changed them to CIN3D12R with the correct topology.
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Figure 3.9: 3D elements and node numbering

The final model had 202 500 C3D20R elements, 16 650 CIN3D12R elements and 2 620 860 degrees of
freedom.

Measurements were done as close as possible to the E-22, just on the other side of the shoulder to which a
curve fitting seen in Figure 3.10 was done and the results were regarded as the frequency content of the traffic.
These were used as loading for both the flat 3D model without any masses, and to the 3D models with masses
applied, meaning it could be used to check for relative improvements in results, and not absolute values.

19



6 8 10 12 14 16 18 20 22 24
0

1

2

3

Frequency (Hz)

|
p

0

p
0
,m

a
x
|

Figure 3.10: Load amplitude adjusted to the frequency content of the traffic and normalized to the highest value,
7 worst traffic samples plus curve-fitted load amplitude.

3.2.3 Substructuring and Dynamic reduction of soil model

Figure 3.7 shows the final dimensions of the model and the master degrees of freedom from the soil model
which were the only ones kept after reduction of the system. The reduced system matrices from the dynamic
reduction method are frequency dependent and only give exact solutions at a certain frequency meaning that a
reduced system had to be made for each frequency that was part of the steady state analysis. As the largest
displacements are in the 5-30Hz range and the amount of samples was needed to be kept low the frequencies
ranged from 5-29Hz with steps of 2Hz.
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Figure 3.11: (a) Top view of model with substructures (b) Substructure assembly order

Since the whole model had 2 620 860 degrees of freedom, performing a dynamic reduction directly proved
to be computationally difficult. The structure was then divided into 25 substructures by simply slicing the
model into pieces from the top view as indicated by Figure 3.11 (a). The top view was used because it offered
simplicity to sub-structuring script plus the fact that the bedrock elements were much longer in z-direction
meant that the number of nodes in all three directions of the substructure would be fairly even providing a
favourable ratio between internal and interface degrees of freedom. Each substructure ended up including
around 100 000 degrees of freedom. Out of the 25 substructures nine were identified as unique and the others
simply as copies of those nine but with other co-ordinates, meaning that only nine of the substructures were
needed to build the final model. Figure 3.12 shows the mesh and layers of substructure 1.

For each substructure the degrees of freedom to be kept, to be reduced out and to be used as interfaces
between structures were identified and in the first sub-structuring level shown in the bottom of Figure 3.11
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Figure 3.12: (left) Mesh of substructure 1 (right) Material layers of substructure 1, infinite layers are marked
in yellow

(b), the degrees of freedom the be reduced out were reduced in all nine substructures. In step two the Left,
Middle and Right parts consisting of (1 - 4.1 - 4.2 - 4.3 - 7), (2.2 - 5.2 - 5.5 - 5.8 - 8.2) and (3 - 6.1 - 6.2 - 6.3 -
9) respectively were assembled together using primal assembly and a new sets of degrees of freedom could be
identified to be kept and to be reduced at the next substructure level. Finally the Left, 3 Middle, and Right
parts were connected together and reduced to form the final reduced matrix D(ω)red for each ω.

The reduced system was assembled together with different patterns of masses in the area marked in Figure
3.7. Initially it was planned to use the whole soil area between the load and evaluation point for placement of
masses, but since the reduced soil system consisted of full and complex matrices it was important to keep down
the number of degrees of freedom as much as possible. The final reduced soil model consisted of 11646 degrees
of freedom, taking up about 2.5Gb of memory per matrix. To further keep down the memory use only the
dynamic matrices D(ω) = K + iωC− ω2M were kept as the K, C and M matrices were already frequency
dependent and of no further interest.

3.2.4 Patterns

The possible area to place masses on was between x ∈ [20 : 80], y ∈ [0 : 80], with a mesh size of two by two
meters the total number of possible positions for placing a mass was 30 · 40 = 1200. Built in functions in
MATLAB were used to read gray-scale images of 30x40 pixels, where each pixel was a possible position for a
mass and the value of the pixel was used for the mass density, white meant no density (no mass assembled at
the position) and black meant the largest density, ρ = 8271kg/m3 unless otherwise stated. The same type of
20-node quadratic brick elements C3D20R were used for the masses as for the soil. No material damping was
applied to the masses, and Young’s modulus was set to E = 215MPa, and poissions’ ratio ν = 0.48, that is the
same as the properties for the upper soil layer seen in Table 3.1. In the case of the building patterns, and some
others (mentioned next to the results) a Young’s modulus of E = 30GPa was used.

Initial 3D simulations were done with a mass at the point closest to the load to study the effect of a single
mass, and another test with a line mass, Figure 3.13 (a) was done in order to compare to 2D tests, as it was
deemed the closest possible match to the axisymmetric test with a single mass, the only things different about
them being the geometry (line vs. circle), position from load (16 meters for axisymmetric, 20 meters for 3D)
and damping model(Structural damping in axisymmetrix, Rayleigh damping in 3D).

The model allowed for any configuration of masses to be investigated, and most of the patterns that were
used were classified into the following types:

Walls were made of a line, or a set of lines that were parallel to the y-axis, that is perpendicular to
the main wave-propagation direction from the source to the evaluation points, like a barrier.

Lines were similar to the walls, but did not span the whole distance along the y-axis, and if there
were more rows of them they were allowed to be shifted in relation to each other.

Perpedicular lines were lines that were ordered to go in the main direction of the wave propaga-
tion.
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Dots and checkered patterns were tried out both with individual masses (dots) placed in an
ordered fashion, and also with larger sets of masses order in a checkered pattern.

Diagonals with many masses of varying density were tested.

Free form patterns were painted out in some different manners to see if anything out of the
ordinary might happen.

Buildings. Some organizations of masses that were more in the scale of buildings were also tried
out, for all of these the Young’s modulus was set to E = 30GPa. Some parts of the buildings
of the architectural thesis proposal were also tried as patterns.

Figure 3.13 shows some examples of the different types of patterns.

(a) walls (b) lines (c) perpendicular lines

(d) dots (e) checkered (f) diagonals

(g) free form (h) free form (i) buildings

Figure 3.13: Different types of patterns used in 3D simulations.
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3.3 Scale model

The approach to the scale model was to as accurately as possible model the scale of the masses/blocks in
relation to the wavelengths at the excited frequencies in the scale model soil material(JELL-O), and to then
search for mass densities for the blocks/masses which would show a visible reduction of the wave propagation
in the JELL-O. Once working blocks were found the plan was to organize them into different patterns in order
to see the effect. Trying to model a scaled down version of the bedrock as well was deemed far to complicated
and fell outside of the scope of this thesis.

3.3.1 Materials

Two types of gelatin powder was used for the JELL-O, one JELL-O mixture, and the other was pure gelatin
that was tried in different concentrations. Both were also tried with an added concentration of salt as an
attempt to improve the mechanical properties so that the JELL-O wouldn’t break as easily. As an alternative
to JELL-O some very soft mixtures of bentonite-clay were also tried out with the aim to get similar properties
to those of JELL-O.

Figure 3.14: (Left) the two powders. (Right) the physical model.
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4 Results

All of the results in this chapter that are comparing many responses are presented as the amplification
AMPRMS(|uz|) values, which consist the RMS vertical displacement magnitude response for the tested model
with masses normalized to the RMS vertical displacement magnitude response for the model with the soil only
and no masses,

AMPRMS(|uz|) =
RMS(|uz|)testedmodel

RMS(|uz|)soilonlymodel
(4.1)

meaning that a value of over one is a larger value in RMS vertical displacement magnitude response compared
to the soil only model at the same degree of freedom, and a value less than one is smaller.
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4.1 Axisymmetric FE-Model results

4.1.1 Convergence of axisymmetric soil model

Different widths of the model, and depths of the bedrock were tried together with the quiet boundary conditions
in order to minimize the necessary size of the FE-model. As shown in Figure 4.1, with increasing depth of the
bedrock results for the magnitude of vertical displacements converge. Smaller bedrock depths mainly affect
lower frequencies, if the depth is only 100 meters results diverge for frequencies lower than 5 Hz, but provide
similar results as the other tests up until about 100Hz.

100 101 102
10−14

10−13

10−12

Excitation frequency (Hz)

|u
z
|(
m
)

dbedrock = 580 m
dbedrock = 100 m
dbedrock = 200 m
dbedrock = 400 m

Figure 4.1: Vertical displacement magnitude response with different bedrock depths, evaluated at 100 meters
from the load application point.

A mesh convergence was tried with meshes of 4x4, 2x2, 1.5x1.5 and 1x1 meters. A mesh of 4x4 meters
diverges significantly from the finer meshes for frequencies higher than 30Hz. At 50 Hz the 2x2m mesh starts
to diverge from the finer meshes. The largest amplitudes occur in the range 5-30Hz, and for a mesh of 2x2
meters a steady-state analysis in the frequency range 5-50 Hz (0.25Hz steps) takes around 30 minutes on an
Intel E5400 with 4GB of RAM.
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Figure 4.2: Vertical displacement magnitude response with different mesh resolutions, evaluated at 100 meters
from the load application point.

Due to the bedrock being much stiffer than the soil, wavelengths in the bedrock are generally larger, and as
such the mesh may be coarser in the bedrock (but only in z-direction, as r-dimension of elements needs to
match those of the soil). Figure 4.3 shows the influence of increasing the size of the bedrock mesh.

Figure 4.4 shows the impact of the width of the model. The model with 150 meters width shows slight
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Figure 4.3: Vertical displacement magnitude response with different bedrock mesh resolutions, evaluated at 100
meters from the load application point.

deviation from the wider models in the range from 7-15Hz.

100 101 102
10−14

10−13

10−12

Excitation frequency (Hz)

|u
z
|(
m
)

wmodel = 600 m
wmodel = 400 m
wmodel = 200 m
wmodel = 150 m

Figure 4.4: Vertical displacement magnitude response with different model widths, evaluated at 100 meters from
the load application point.
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4.1.2 Soil response

Figure 4.5 shows the magnitude of vertical displacements in the soil at different distances from the load
application point. At 100 meters most of the content above 30Hz has been dampened out. Two broad peaks
can be seen, one between 5-15Hz and one between 17-30Hz. Horizontal displacement response shown in Figure
4.6 is of similar magnitude as the vertical response, 100 meters from the load application point. In Figure 4.7
the vertical displacements from a harmonic load with unit loading at 14Hz is shown. The load is applied at
t = 0s and the snapshot is taken at t = 1s. The largest displacements can be seen close to the surface of the
soil, and at point (a) the interaction between the displacements in the soil and those in the bedrock are clearly
visible. A video is avaliable at https://dl.dropbox.com/u/2091759/2013-04-02_soil14Hz.avi.
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Figure 4.5: Vertical displacement magnitude response for soil model at different distances from the load
application point.
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Figure 4.6: Horizontal displacement magnitude response for soil model at different distances from the load
application point.
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Figure 4.7: Vertical displacement amplitude of soil model, for a prescribed harmonic load with excitation
frequency 14Hz and unit amplitude applied at t = 0. Picture displays a snapshot at t = 1s. Contour cut-off
limits at ±1 · 10−13m.
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4.1.3 Model with a single mass

Figure 4.8 shows the AMPRMS values of the vertical displacement magnitude versus density 100 meters from
the load application point for a model with a single mass placed 16 meters from the load. Somewhere around
8000-9000kg/m3 is a local minima for which the RMS value is at 74% of the RMS value for the case with no
mass, meaning that there is a 26% improvement in RMS value. For reference the mass density of steel ranges
between 7750-8050kg/m3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·104

0.7

0.8

0.9

1

ρ (kg/m3)

A
M
P
R
M

S
(|u

z
|)

Figure 4.8: AMPRMS of vertical displacement magnitude response versus density, evaluated 100m from the load
application point.

Figure 4.9 shows the vertical displacement magnitude response 100 meters from the load application point
for the soil only model, and for a few models with different mass densities. The model with the mass density
ρ = 8271kg/m3 shows the largest decrease in the frequency range 11-15Hz (compared to the model with no
masses), and it doesn’t show a increase compared to the soil only model for any part of the frequency range
5-30Hz, however, for larger masses that is not always the case.
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Figure 4.9: Vertical displacement magnitude response with 3 different densities, evaluated 100m from the load
application point.

Figure 4.10 shows the AMPRMS values of the vertical displacement magnitude along the r-axis for a model
with mass density 8764 kg/m3. The mass position is shown with the vertical dotted lines. In front of the mass
the RMS values show an increase, and for all positions behind the mass are improvements, however for some
higher mass densities RMS values over 1 can be seen for distances greater than 150 meters from the load.
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Figure 4.10: AMPRMS of vertical displacement magnitude response with mass density 8764kg/m3, evaluated
along the distance from the load application point.
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Figures 4.11 and 4.12 are the horizontal counterparts to Figures 4.8 and 4.10. The same mass density
(around 8000-9000 kg/m3) shows a reduction of 25% in RMS of horizontal displacement magnitude-. For
distances over 140 meters and at 60-70 meters an increase in RMS value is shown for a mass with density
8764kg/m3. Further on, very light masses show a increase in the RMS value of the horizontal displacement
magnitude 100 meters from the load.
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Figure 4.11: AMPRMS of horizontal displacement magnitude response with versus density evaluated 100m from
the load application point.
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Figure 4.12: AMPRMS of horizontal displacement magnitude response with mass density 8764kg/m3, evaluated
along the distance from the load application point.

Figure 4.13 shows the vertical displacement amplitudes of the soil-mass system with a mass density
ρ = 8271kg/m3 positioned 16m from the load application point. The model has been loaded with a unit
harmonic load with excitation frequency 14Hz applied at t = 0s, with a snapshot at t = 1s. The limits on the
contour plot are the same as in Figure 4.7 which was for the soil only. Larger displacements can be observed
in the bedrock, as predicted in [8] the mass seems to scatter vibrations down into the bedrock. A video is
avaliable at https://dl.dropbox.com/u/2091759/2013-04-02_mass14Hz.avi.

Figure 4.14 is a close up showing about 150 by 150 meters of both a model with a mass with density
ρ = 8271kg/m3 (left) and a model with no mass (right). In the model with the mass larger vertical displacements
are observed in the bedrock, and another wave is generated in the soil-bedrock boundary a bit further than 100
meters from the load application point. A video of the close up is available at https://dl.dropbox.com/u/
2091759/Closeup.avi.
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Figure 4.13: Vertical displacement amplitude of soil model with mass ρ = 8271kg/m3, for a prescribed harmonic
load with excitation frequency 14Hz and unit amplitude applied at t = 0. Picture displays a snapshot at t = 1s.
Contour cut-off limits at ±1 · 10−13m.

Figure 4.14: Vertical displacement amplitude of (left) soil model with mass ρ = 8271kg/m3 and (right) model
with no mass, for a prescribed harmonic load with excitation frequency 14Hz and unit amplitude applied at
t = 0. Picture displays a snapshot at t = 0.98s. Contour cut-off limits at ±1 · 10−12m. Close up showing
approximately 150 by 150 meters of the models.

31



The Young modulus of the mass was varied between that of the upper soil layer (215MPa) to that of steel
(210GPa) in 15 steps. The largest improvement in RMS vertical displacement magnitude is for a mass with
lowest Young’s modulus, as shown in Figure 4.15. Figure 4.16 shows the vertical displacement magnitude
response for a mass with density ρ = 8271kg/m3, plotted for a few different values of the Young modulus.
Masses with density ρ = 8271kg/m3 and higher values for Young’s modulus show little effect in the frequency
range 17-30Hz.
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Figure 4.15: AMPRMS of vertical displacement magnitude response versus Young’s modulus, evaluated 100m
from the load application point.
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Figure 4.16: Vertical displacement magnitude response for soil only model, for model with one mass ρmass1 =
8271kg/m3, and different Young’s modulus, evaluated 100m from the load application point.

The impact of the Poisson’s ratio is small, as the largest difference is only 0.5% in RMS value of the vertical
displacement magnitude, the AMPRMS of vertical magnitude response is shown in Figure 4.17.
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Figure 4.17: AMPRMS of vertical displacement magnitude response versus Poisson’s ratio, evaluated 100m from
the load application point.
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Figures 4.18 and 4.19 show the AMPRMS values for vertical displacement magnitude versus position of the
mass (rmass), evaluated 100 meters from the load application point and mass density ρ = 8271kg/m3 . The
figures are essentially the same except that in Figure 4.18 all values below 8 meters have been cut off in order
to better show the differences for larger distances from the load. When the mass is to close the the load an
increase in RMS values can be seen, for the case when the mass is right next to the load (rmass = 0m) the
RMS vertical displacement magnitude is almost three times higher. However, further away from the load the
results only show improvements, with ideal locations somewhere between 14-32 meters. Figure 4.20 shows the
vertical displacement magnitude response for a mass placed 0m from the load application point. At 13Hz the
displacements are almost 5 times larger.
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Figure 4.18: AMPRMS of vertical displacement magnitude response with different mass positions, evaluated
100m from the load application point.
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Figure 4.19: AMPRMS of vertical displacement magnitude response with different mass positions, evaluated
100m from the load application point.
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Figure 4.20: Vertical displacement magnitude response for soil only model, for model with one mass ρmass1 =
8271kg/m3, and position rmass = 0m, evaluated 100m from the load application point.
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The height of the mass was increased in steps of two meters, while the density was adjusted to keep the
mass constant, e.g. when the height was doubled from 2m to 4m the density was divided by to going from
ρ = 8271kg/m3 to ρ = 4135.5kg/m3 and so on. Only a variation of 2% can be seen in the normalized RMS of
vertical displacement magnitude.
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Figure 4.21: AMPRMS of vertical displacement magnitude response versus height. Density adjusted to keep
constant mass m ≈ 33084kg, E = 50GPa, evaluated 100m from the load application point.
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4.1.4 Model with two masses

Two identical masses show a reduction of 36% in RMS vertical displacement magnitude compared to RMS
vertical displacement magnitude of the soil only model, if the first is located 16 meters from the load and the
second mass is 36 meters away from the first mass, as shown in Figure 4.22.
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Figure 4.22: AMPRMS of vertical displacement magnitude response with 2 masses both having the density
ρ = 8271kg/m3, evaluated 100m from the load application point.

As shown in Figure 4.23, varying the density of the 2nd mass while keeping the first fixed to 8271kg/m3

can bring the RMS of vertical displacement magnitude further down to 59%. The density for the second mass
is ideally in the area between 3000-4000kg/m3. The lower mass affects the 2nd peak in the 18-30Hz range as
seen in Figure 4.24, which shows the vertical displacement magnitude response for a model with one mass
positioned 16 meters from the load with density ρ = 8271kg/m3 and for a model with two masses with the
first mass being the same as in the previous model and the second mass positioned rm1−m2 = 36m and density
ρ = 3333kg/m3.
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Figure 4.23: AMPRMS of vertical displacement magnitude response versus density of second mass, first mass
density ρmass1 = 8271kg/m3, distance between masses rm1−m2 = 36m, evaluated 100m from the load application
point.
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Figure 4.24: Vertical displacement magnitude response for soil only model, for model with one mass ρmass1 =
8271kg/m3, rmass1 = 16m, for model with two masses where the first mass ρmass1 = 8271kg/m3, rmass1 = 16m,
and second mass ρm2

= 3333kg/m3, rm1−m2 = 36m, evaluated 100m from the load application point.
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4.1.5 Model with a simple building

In Figure 4.25 it is shown that a simple building with 5 floors shows the most decrease in AMPRMS of vertical
displacement magnitude. From figures 4.26 and 4.27 one can see that the frequency response shows a large
reduction around 14Hz compared to the model with no building. From the snapshot taken at t = 1s in Figure
4.28 and time history in Figure 4.29 it is seen that the vertical motion of the two sides of the building is out of
phase with each other, the model has in this case been loaded with a harmonic load with excitation frequency
14Hz and unit loading.
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Figure 4.25: AMPRMS of vertical displacement magnitude response versus number of floors, evaluated 100m
from the load application point.
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Figure 4.26: Vertical displacement magnitude response for model with 5 floors, evaluated 100m from the load
application point.
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Figure 4.27: Difference in vertical displacement magnitude response between soil only and model with 5 floors
from Figure 4.26, evaluated 100 m from load.
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Figure 4.28: Vertical displacements of soil model with 5 floor building, for a prescribed harmonic load with
excitation frequency 14Hz and unit amplitude applied at t = 0. Picture displays a snapshot at t = 1s. Contour
cut-off limits at ±1 · 10−12m.
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Figure 4.29: Vertical displacement time history for model with 5 floors, for a prescribed harmonic load with
excitation frequency 14Hz and unit amplitude applied at t = 0s, evaluated at soil contact positions shown in
Figure 4.28.

37



4.1.6 Soil freezing

It was of interest to find out how the freezing of the soil would effect the vibration reduction of the masses.
The frost line in the south of Sweden is at 1.1m, which is how deep the soil freezes due to seasonal variations
in temperature. To model this the first meter (in z-direction) of the upper soil layer Young’s modulus was
doubled to 430MPa. Figure 4.30 shows the vertical displacement magnitude response of the normal and the
frozen soil models, 100 meters from the load application point. The penetration depth of a Rayleigh wave is
dependent on its wavelength [2], and in Figure 4.30 it is seen that change in response is observed at frequencies
over 15Hz, where wavelengths and penetration depths are smaller, allowing the frozen layer to have more effect.
Figure 4.31 shows the vertical magnitude displacement response of the frozen soil, and of the frozen soil with a
mass at distance 16 meters from the load application point and density 8271kg/m3, evaluated 100 meters from
the load application point. AMPRMS(|uz|) for the specific example is 73.1%.
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Figure 4.30: Vertical displacement magnitude response with soil only model, and with frozen soil only model,
evaluated 100m from the load application point.
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Figure 4.31: Vertical displacement magnitude response with frozen soil only model, and with a mass ρ =
8271kg/m3 rmass = 16m, evaluated 100m from the load application point.
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4.2 3D FE-Model results

4.2.1 Comparison of soil-only results to 2D-axisymmetric case

Since 3D models quickly grow in size and computational costs a smallest possible model was based on the
convergence results of the 2D studies. Figure 4.32 shows the vertical displacement magnitude results 100 meters
from the load application point for the 2D, and 3D models with only the soil model and no added masses. The
highest peak in the 3D results is slightly lower than that of the 2D result. The frequency steps of 2Hz don’t
manage to capture the small peak in the 15-17Hz area.
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Figure 4.32: Vertical displacement magnitude response for 2D and 3D models, evaluated 100m from the load
application point.

A few different sets of the Rayleigh damping parameters were considered, Figure 4.33 shows the results
from the best fit. The Rayleigh and structural damping models differed 3.7% in RMS vertical displacement
magnitude response, but the general behaviour was the same and considered good enough for the study.
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Figure 4.33: Vertical displacement magnitude response for 2D model with structural and Rayleigh damping,
evaluated 100 meters from the load application point.

4.2.2 Traffic load

Figure 4.34 shows the results of the 3D soil model with no masses in place and a unit load, and a version with
results with load scaling, which can be seen to mainly have an effect on frequencies lower than 13Hz.
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Figure 4.34: Vertical displacement magnitude response for 3D model with unit load and normalized traffic load,
evaluated 100 meters from the load application point.
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4.2.3 3D Results

The 3D results are presented in Appendix A, and a few figures of particular interest are presented along with
the text. In general most results provide a decrease in RMS-values of the vertical displacement magnitude
100 meters from the load compared to those of the model with soil only, except for in a few cases for the
pattern groups referred to as diagonals and free form. The ones that lead to increases in RMS of vertical
displacement magnitude had the property of being continuous in either 1 or 2 dimensions and all of these lead
to decreases once the free form patterns had been divided into smaller discontinuous masses. Figure 4.35 shows
the categories of the different types of patterns for which the results are presented in this chapter.

(a) walls (b) lines (c) perpendicular lines

(d) dots (e) checkered (f) diagonals

(g) free form (h) free form (i) buildings

Figure 4.35: Different types of patterns used in 3D simulations.

As all of the 3D results are presented in the same manner with a two by three grid a brief explanation
will follow, based on Figure 4.36. The upper left plot shows the configuration of the masses, with 100% black
meaning a mass with density ρmax = 8271kg/m3 and 0% black meaning no mass, with densities varied linearly
between the two values. If two masses are placed next to each other they are assembled together and considered
as one (though their densities may be different). The orientation of the plot is such that x points downwards
and y points to the right, meaning that the load application point is slightly above the plot, and the main
evaluation points at x = 100m are at the bottom. The upper middle plot shows the AMPRMS values for the
vertical displacement magnitude response, and the lower left plot shows the AMPRMS values for the vertical
displacement magnitude response along the x-axis going from the load application point to the main evaluation
point (note that information is missing for x ∈ (0 : 20)(80 : 100)). These two plots have mainly been used
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for verification purposes of the 3D-model. The upper right grid element shows the material properties of the
used masses. The bottom middle plot shows the AMPRMS values of the vertical displacement magnitude
response along the y-axis at x = 100m, which is the main area of interest. The lower right plot is the vertical
displacement magnitude response at x = 100m, y = 0m, the point which is 100 meters away from the load
application point.
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Figure 4.36: 3D results for wall-1, the case which is most similar to the 2D axisymmetric simulations. (Top
left) Organization of masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude.
(Top right) Mass properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis.
(Bottom middle) RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load
application point. (Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.

A model with a line of masses along y-direction placed as close to the load as possible (20 meters away) was
the first test that was done. It is the closest match to the 2D axisymmetric model with a single mass and the
AMPRMS-value of vertical displacement magnitude at x = 100m, y = 0 for the 3D test with no load scaling
is 76.5%, whereas the 2D is 76%, note also that the vertical displacement magnitude response in Figure 4.36
(bottom right) is similar to that of the 2D case in Figure 4.9. The AMPRMS vertical displacement magnitude
plot along the x-axis shows the same sinusoidal behaviour behind the mass as the 2D case in Figure 4.10, and in
the 3D-plot of the AMPRMS vertical displacement magnitude it is visible that the pattern is circular with the
centre located somewhere near where the load is, suggesting that it is a result of how the vertical displacement
magnitude response in the soil only model is changing with the distance from the load, making the applied
masses more effective for some distances and less for others. In Figure 4.36 (bottom middle) we can see that
the improvement in AMPRMS(|uz|) is relatively even along the y-axis, showing only a difference of 0.04.

As the locations of the load and main evaluation point in the model are well known it is possible to reduce
over 20% in RMS of the vertical displacement magnitude at x = 100m, y = 0 by placing a smaller object close
to the load application point, as in Figure A.1, however, going to the extreme by trying out a single two by
two meter mass (Figure A.9) has very little effect, as up to 96% in RMS of vertical displacements remains 100
meters from the load. Both of these attempts with fewer masses are a bit less effective than the model with a
whole line, however, they use a fifth of the material.

Figures A.2 to A.5 are simulations with walls that are four times as thick as the one in Figure 4.36, meaning
a width of eight meters instead of two. They vary in density by 100%, 75%, 50% and 25% of ρmax = 8271kg/m3.
The test with 100% density has slightly less reduction of RMS vertical displacements 100 meters from the load
application point than that of Figure 4.36, even though it is four times as thick. Using slightly lighter masses
(75% of ρmax) the RMS vertical displacement is brought down to 63% of that for the model with soil only.
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Figures A.7 and A.8 show four walls placed 16 meters apart from each other and varying density in the
first case per wall, and in the second as sinusoidal functions. They show similar performance in RMS vertical
displacement 100 meters from the load, and in the vertical displacement magnitude response for most of the
frequency range.
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Figure 4.37: 3D results for perpendicular-3, with linear gradients applied to the masses. (Top left) Organization
of masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass
properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle)
RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.

Figures A.14 to A.16 are of perpendicular walls. Figure A.15 has densities 100%, 66% and 33% of
ρmax = 8271kg/m3 applied, and shows three distinct peaks in the vertical displacement magnitude response
plot (Figure A.15 Bottom right). Figure 4.37, with a smooth gradient applied to each line shows a more even
reduction in the vertical displacement magnitude response at x = 100m, y = 0m and almost 50% reduction in
RMS of vertical displacement magnitude compared to the soil only model, 100 meters from the load application
point. Increasing the stiffness leads to less reduction in RMS and has little or negative effect in vertical
displacement magnitude response for frequencies lower than 17Hz, as shown in Figure A.16.

Lines as seen in Figures A.10 to A.12 almost perform as well as walls for some parts of the RMS of vertical
displacement magnitude along the y-axis 100 meters from the load. The RMS reduction is largest for y < 10m,
and less reduction is seen for increasing distances in y. Comparing Figure A.10 to Figure A.11 is one of the few
cases where the varied density (Figure A.11) does not lead to larger reduction in RMS of vertical displacement
magnitude. The versions with lines are sensitive to the load location, Figure A.13 shows the same pattern as
Figure A.10, but offset eight meters in y-direction so that there are no masses straight in front of the load,
there is only 5% reduction in RMS vertical displacement magnitude at x = 100, y = 0m, unlike figure A.10
which has a reduction of 45% at the same point.

Figures A.17 to A.19 show the effect of arrays of masses. Any substantial reduction in RMS of vertical
displacement magnitude is first seen when the dimensions are increased from two by two meters to four by four
meters for the individual masses, as shown in Figure A.19. The two by two meter arrays show a reduction of
about 10% 100 meters from the load application point, while the four by four meter arrays show a reduction of
about 30% at that distance.

Figures A.20 to A.22 are for checkered patterns, and depending on density show very high reductions in
RMS of vertical displacement magnitude 100 meters from the load application point. Unless using heavy
masses the performance is similar in RMS of vertical displacement magnitude to other solutions which use
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fewer masses, e.g. Figure A.21 versus Figure 4.37 which use 135 and 600 two by two masses respectively, but
show similar values of reduction in RMS along the y-axis 100 meters from the load.

Some peculiar effects can be seen when all of the masses are connected in either one (when one direction it
has to be different from the y-axis) or both directions, namely that the masses may act in ways which could
potentially amplify the RMS of vertical displacements at some locations. Fig A.24 shows a set of diagonals
consisting of connected masses with different densities which at show an increase in RMS-value at the end of
the AMPRMS along the y-axis, the point which the line-masses are ”pointing” at. Figure A.29 shows almost
a doubling of RMS-value while the same pattern (Figure A.30) divided into smaller masses instead gives
an improvement of 36%. The patterns in these test have a density distribution which effectively guides the
incoming waves towards the evaluation point, as shown in Figure 4.38 which is a snatpshot of the organization
from Figure A.26. For the snapshot a unit harmonic load with excitation frequency 14Hz was applied at t = 0s,
and the snapshot is taken at t = 0.35s.

Figure 4.38: Vertical displacements of soil model with with the mass pattern from Figure A.26, waves are guided
towards evaluation point. Transient analysis with a prescribed harmonic load with excitation frequency 14Hz
and unit amplitude applied at t = 0s, snapshot at t = 0.35s. Contour cut-off limits at ±1 · 10−12m.

Figures A.33 to A.37 are of masses in patterns which are similar in dimensions as the footprint of buildings.
They were run with a higher value for the Young modulus and showed reductions in RMS of vertical displacement
magnitude with lighter masses as well, as seen in Figure A.34. Of note is Figure A.37 where the masses are
organized in a direction along the load application point to the main evaluation point, that is, along the x-axis.
Such an organization shows an increase in RMS of vertical displacement magnitude of 50% at x = 100m y = 0m,
which seems to suggest that the masses in this pattern are guiding the waves along the direction of their long
side, in a similar fashion to Figure A.24.

Figures A.35 to A.36 are simulations with a part of the building plan from the architectural thesis, marked
in Figure 4.39. A few different parts were tried, but the 3D steady-state model was too small to try the whole
plan at once. No parts of those that were tried showed an increase in RMS of vertical displacement magnitude.
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Figure 4.39: Plan from architectural master’s thesis, 80 by 60 meter part that was used in Figure A.35 marked
in red. [1]

4.3 Scale model results

Some preliminary tests with the scale material had good scale on wavelengths, as can be seen in Video 1
https://dl.dropbox.com/u/2091759/VibrationJello.mp4. The problem was that the JELL-O materials
were to weak and could not support any heavier objects on top while being vibrated. Figure 4.40 shows the
sunken masses in the JELL-O. Because of this limitation in the material the scale model was abandoned.
Substitute materials were searched for but they were either to stiff (attempts were done with bentonite-clay),
or as in some very promising dual-network hydrogels contained hazardous ingredients and complicated methods
for preparation [17], and were in the end disregarded.

Figure 4.40: The sunken masses in the physical model
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5 Discussion

5.1 Conclusions and discussion

5.1.1 2D

From the 2D axisymmetric simulations we can reach the following conclusions:

• The density of the mass is the most important factor for its effectiveness in mitigating vibrations. Masses
needed in the case studied in this thesis are very heavy.

• Horizontal vibrations have not been studied in detail, but the included parts show that all masses except
very light ones show an improvement 100 meters from the load.

• The mass seems to increase the amplitude of the vibrations in the bedrock, considering that the bedrock
has much less damping than the soil this could lead to vibrations which can propagate for longer distances,
and is observed in Figure 4.12

• Increasing the Young modulus of the masses/buildings has negative effect on the vibration reduction, a
clear relationship as to why is not explained but it could possibly be a increase in resonant frequencies of
the mass-soil system, removing secondary effects within the 5-30Hz frequency range, as in Figure 4.16.

• The Poisson’s ratio seems to have a small impact.

• The height of the mass has little impact on the performance, meaning that density and height can be
played with to achieve the necessary mass per unit ground area. However, the analysis was taken in steps
of two meters and there may exist possibilities of other vibration modes of the mass being missed in the
analysis. The analysis was carried out for stiffer masses as larger geometries would require a construction
material which is stiffer than the soil.

• The position of the mass can be seen as the second most important factor simply because having it
too close to the load can, in the case of this thesis, increase RMS vibrations by three times. The same
issue may arise if the mass is for some other reason excited at a frequency close to the mass-soil systems
resonant frequency. Ideal position for the mass is somewhere between 14-36 meters, which is still relatively
close to the load.

• Working with two masses can further improve vibration mitigation, with the second mass being lighter
and preferably providing reduction in the 18-30 Hz frequency range.

• When the soil freezes the masses are still able to reduce vibrations. The main change in response is in
higher frequencies where the Rayleigh wave penetration depth is smaller meaning the influence of the
frozen upper layer is larger. The frost depth of one meter can be considered conservative, as measurements
on site have shown that it is only about 0.3 meter, which in effect should leave little to no change in
response. Of more concern would be how the frozen soil would affect the traffic load, but it is not
something that has been treated in this thesis.

• Although the most effective building shows similar response in the vertical displacement magnitude
response as the most effective masses it does not behave in the same manner. While the mass moves
in a rigid body mode the two main walls of the building are moving out of phase of each other, and if
buildings are to be used they need to be studied much more in detail.

In general the results from the 2D simulations show that masses on the ground may be used for vibration
mitigation, as long as they are not in vicinity to the load, and there is no other source of excitation which may
cause the mass-soil system to vibrate. The masses are however very heavy. In the case of using buildings issues
may arise if the building gets excited by the wind in such a way that the excitation may cause vibrations in the
ground. The same care must be taken for the intended use of the building as any kind of heavy machinery with
harmonic motions could induce vibrations in the ground. As some of the studies show even lighter buildings
have some positive effect and could be designed in a way so that their resonant frequencies are not the same as
those for the soil, but this has not been part of the study.
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In the Figure 4.14 it is seen that the masses lead to more vibrations in the bedrock, which together with the
fact that the bedrock has less damping than the soil could be an explanation for why for distances of more
than a 100 meters from the load sometimes show an increase in AMPRMS of vertical displacement magnitude.

Some assumptions have been made in the study to simplify analysis, full contact has been assumed between
the mass and the soil, the soil and bedrock layers have been assumed to be entirely flat, and no damping has
been used in the added masses. As there have been geological measurements on many places at the site which
show similar dimensions to the soil and bedrock the first assumption seems plausible. No attempts have been
made to verify the other two assumptions.

5.1.2 3D

From the 3D simulations it is more difficult to draw general conclusions but the following can be concluded:

• Different organizations of masses have different effectiveness on mitigating vibrations, however all discrete
organizations of masses show improvements in vertical displacement magnitude, but may show increases
in vertical displacement magnitude response for some frequencies and reductions for others.

• A variation in mass densities generally leads to a more even reduction of vertical displacement magnitude
response, however, it is difficult to improve the response for excitations at frequencies lower than 11Hz.

• Since the position of the load and main evaluation points are well known it is possible to reduce vibrations
with very little means, for example Figure A.1 shows 20% reduction 100 meters from the load application
point by using just seven masses. This, however, is of little use in general, since the vibrations may come
from any part of the road, but if the case is such that there is some part of the road which is worse than
the rest it is possible to do something about it locally.

• In the cases where the masses are connected in either one, or two dimensions they may lead to amplifications.
It is possible to focus vibrations to a point by organizing masses as a lens, however discretizing the masses
so that they are not continuous over the whole area leads to solutions which only show improvements in
vibration levels.

• Using lenses which deflect the waves away from the evaluation points has been tested, but is of little
practical value since it works well for a stationary harmonic load, but in reality there is a whole line (the
road) along which vibrations may propagate from.

• In the cases where the masses are only connected in one dimension the vibrations are focused along with
the direction of them masses, meaning a direction for the masses which is perpendicular to the direction
of the load and evaluation point may be used as a solution.

For the tests that were done to compare the 3D model to the 2D model the results were agreeable between
the models. Switching method of damping from structural to Rayleigh was something which could have been
avoided but it simplified the work and the results were still good enough for a comparison study between
different organizations of masses. The same could be concluded about using a smaller model in the 3D case,
and in hindsight it would have been good to seen exactly where a 4x4 meter mesh size diverges from a 2x2
meter as such a change in the model would have made it a much smaller computational load and allowed for
staying within ABAQUS. The benefit from switching to MATLAB was not only the dynamic model reduction,
but the built in routines allowed for a simple way to sketch out masses on a graphical file and simply import it
and use it to assemble masses MATLAB. Similar scripting was later done in ABAQUS but each mass required
own definitions for part, material, section, and so on, which worked but was a bit inconvenient.

What is a bit more of a concern of the 3D model is the 2Hz steps, as can be seen in Figure 4.27 is that
the main area of effect for the mass (building in this specific case) is only 2-3Hz wide, meaning that the
resolution may be a bit too course and potentially miss some peaks. Going to 1Hz would mean a doubling of
computational costs and in most cases the model seemed to work well, atleast for conceptual research.

The simulations with the checkered organizations show remarkably good reduction of RMS values, but are
on the other hand very heavy and would consume a lot of material, which may require some sort of foundation
to rest on if the soil is not strong enough.

The architectural thesis started in an environment where some sort of wave propagation studies could be
done, and this thesis ends at the same place, though with a constraint in size of the model which does not
allow for the testing of the whole architectural plan at once, or for that matter any sophisticated mechanical
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models of the buildings as it is so far limited to variation of stiffness and density of two by two meter masses.
However, with the use of the 3D model, and some insights from the studies in 2D (mainly what to look out for)
we may conclude that the architectural proposal could at the very least be feasible.

5.1.3 Comment on sustainability

Sustainability hasn’t been explicitly treated in this thesis, however, vibration studies from traffic and other
sources which affect buildings and liveable areas are directly linked to questions of sustainability as they effect
the quality of life. As record breaking number of the worlds population is moving to urban areas there is a
need to densify cities in order to sustain this influx of population which in turn brings in more traffic and
creates areas where this type of study can be applied in order to make sure that the city is developed in a way
that creates minimal environmental pollution in terms of disturbances from vibrations (including secondary
effects such as noise created by the vibrations). As an example the same type of method could be applied on
say researching the effects of a new road with heavy traffic next to some older buildings which are sensitive to
vibrations, where placing masses in between could potentially bring the vibrations down to acceptable levels.
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5.2 Further work

The simulations in the project have been concluded for steady-state harmonic conditions, which may not be the
best way to model the load from moving vehicles. Transient analysis with a moving load could maybe bring
more insight into the effectiveness of the method proposed.

The study has mainly been limited to vertical vibrations, but parts of the MAX-lab facility are equally
sensitive to horizontal displacement as they are to vertical. The little which is shown of horizontal vibrations in
the thesis seems to suggest that they have a similar effect on horizontal vibrations (as do some sources, see [4]
[13]), but it is not enough to conclude.

It was planned to develop constraints in the 3D model in MATLAB with the use of Lagrange multipliers
to make it possible to use more sophisticated building models for which the nodes don’t match up perfectly
with those of the soil model, but the dynamic reduction took more time than expected so this part had to be
skipped.

Besides road traffic on both sides of MAX-lab, there exist plans for a tramway going past MAX-lab on a
few hundred meters distance. The vibrations from the trams are at higher frequencies (100-200Hz) and have
not been studied in this thesis. One would have to check for the effectiveness of buildings/masses for these
vibrations as well.

A generalization of the method as a tool for early design studies would be a valuable development to have
for future days when vibrations between different types of vehicles and old and new buildings will due to
densification become larger issues.
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A Plots for 3D results
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Figure A.1: 3D results for wall-3, consisting of only seven masses close to the load. (Top left) Organization
of masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass
properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle)
RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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Figure A.2: 3D results for wall-4, four times thicker than wall-1. (Top left) Organization of masses. (Top
middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom
left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation
of vertical displacement magnitude along y-axis, 100 meters from the load application point. (Bottom right)
Vertical displacement magnitude response at x = 100m, y = 0m.
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Figure A.3: 3D results for wall-5, four times thicker than wall-1, 25% of ρmax. (Top left) Organization of
masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass
properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle)
RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,160 masses
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Figure A.4: 3D results for wall-6, four times thicker than wall-1, 50% of ρmax. (Top left) Organization of
masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass
properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle)
RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,160 masses
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Figure A.5: 3D results for wall-7, four times thicker than wall-1, 75% of ρmax. (Top left) Organization of
masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass
properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle)
RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,40 masses
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Figure A.6: 3D results for wall-10, similar to wall-1, but placed furthest from the load. (Top left) Organization
of masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass
properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle)
RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,160 masses

0 20 40 60 80 100
0

0.5

1

1.5

x (m)

A
M

P
R
M

S
(|u

z
|)

AMPRMS(|uz|), along x-axis

0 20 40 60 80
0.5

0.55

0.6

0.65

0.7

y (m)

A
M

P
R
M

S
(|u

z
|)

AMPRMS(|uz|), at x = 100m, along y-axis

10 20 30
0

0.5

1

1.5

2

Exc. Freq. (Hz)

|u
z
|·

10
−
1
2

(m
)

|uz|, at x = 100m, y = 0m

Mass
Soil

E = 215MPa

ν = 0.48

Material properties

Figure A.7: 3D results for wall-8, four walls, 100%, 75%, 59%, 25% of ρmax respectively. (Top left) Organization
of masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass
properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle)
RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,160 masses
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Figure A.8: 3D results for wall-9, four walls with densities that vary with sinusoidal shapes. (Top left)
Organization of masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top
right) Mass properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis.
(Bottom middle) RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load
application point. (Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,1 masses
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Figure A.9: 3D results for mass-1, a single mass placed at the point closest to the load. (Top left) Organization
of masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass
properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle)
RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,63 masses
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Figure A.10: 3D results for line-1, consisting of 3 rows of lines. (Top left) Organization of masses. (Top middle)
3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left)
RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation
of vertical displacement magnitude along y-axis, 100 meters from the load application point. (Bottom right)
Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,63 masses
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Figure A.11: 3D results for line-2, consisting of 3 rows of lines, with 100%, 66%, 33%, of ρmax respectively. (Top
left) Organization of masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude.
(Top right) Mass properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis.
(Bottom middle) RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load
application point. (Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,59 masses
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Figure A.12: 3D results for line-5,consisting of 3 rows of lines, with second row offset. (Top left) Organization
of masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass
properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle)
RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,60 masses
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Figure A.13: 3D results for line-9, consisting of 3 rows of lines, offset 8m y-direction compared to Figure
A.10. (Top left) Organization of masses. (Top middle) 3D-plot of RMS amplification of vertical displacement
magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation of vertical displacement magnitude
along x-axis. (Bottom middle) RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters
from the load application point. (Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,135 masses
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Figure A.14: 3D results for perpendicular-1, consisting of perpendicular rows of lines, with every other row
offset. (Top left) Organization of masses. (Top middle) 3D-plot of RMS amplification of vertical displacement
magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation of vertical displacement magnitude
along x-axis. (Bottom middle) RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters
from the load application point. (Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,135 masses
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Figure A.15: 3D results for perpendicular-2, with 100%, 66%, 33%, of ρmax respectively. (Top left) Organization
of masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass
properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle)
RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,135 masses
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Figure A.16: 3D results for perpendicular-6, stiff version of perpendicular-3. (Top left) Organization of masses.
(Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass properties.
(Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle) RMS
amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,35 masses
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Figure A.17: 3D results for dots-2, consisting of single masses in arrays, every other row is offset. (Top left)
Organization of masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top
right) Mass properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis.
(Bottom middle) RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load
application point. (Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,21 masses
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Figure A.18: 3D results for dots-3, consisting of single masses in arrays. (Top left) Organization of masses.
(Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass properties.
(Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle) RMS
amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,96 masses
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Figure A.19: 3D results for dots-4, consisting of larger(4 by 4) masses in arrays. (Top left) Organization of
masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass
properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle)
RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,600 masses
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Figure A.20: 3D results for checkered-2. (Top left) Organization of masses. (Top middle) 3D-plot of RMS
amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation
of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement
magnitude along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement
magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,600 masses
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Figure A.21: 3D results for checkered-3. (Top left) Organization of masses. (Top middle) 3D-plot of RMS
amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation
of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement
magnitude along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement
magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,576 masses
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Figure A.22: 3D results for checkered-7. (Top left) Organization of masses. (Top middle) 3D-plot of RMS
amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation
of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement
magnitude along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement
magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,967 masses
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Figure A.23: 3D results for diagonal-1. (Top left) Organization of masses. (Top middle) 3D-plot of RMS
amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation
of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement
magnitude along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement
magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,952 masses
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Figure A.24: 3D results for diagonal-2. (Top left) Organization of masses. (Top middle) 3D-plot of RMS
amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation
of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement
magnitude along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement
magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,926 masses
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Figure A.25: 3D results for diagonal-5. (Top left) Organization of masses. (Top middle) 3D-plot of RMS
amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation
of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement
magnitude along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement
magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,1015 masses
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Figure A.26: 3D results for free-1. (Top left) Organization of masses. (Top middle) 3D-plot of RMS amplification
of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation of vertical
displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement magnitude
along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement magnitude
response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,461 masses
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Figure A.27: 3D results for free-2, version of free-1 with discrete masses. (Top left) Organization of masses.
(Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass properties.
(Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle) RMS
amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,1015 masses
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Figure A.28: 3D results for free-8, mirror along line parallel to x-axis of free-1. (Top left) Organization of
masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass
properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle)
RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,1096 masses
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Figure A.29: 3D results for free-15. (Top left) Organization of masses. (Top middle) 3D-plot of RMS
amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation
of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement
magnitude along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement
magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,494 masses
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Figure A.30: 3D results for free-17, discrete version of free-15. (Top left) Organization of masses. (Top middle)
3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left)
RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation
of vertical displacement magnitude along y-axis, 100 meters from the load application point. (Bottom right)
Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,1096 masses
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Figure A.31: 3D results for free-18, mirror along line parallel to y-axis of free-15. (Top left) Organization of
masses. (Top middle) 3D-plot of RMS amplification of vertical displacement magnitude. (Top right) Mass
properties. (Bottom left) RMS amplificiation of vertical displacement magnitude along x-axis. (Bottom middle)
RMS amplificiation of vertical displacement magnitude along y-axis, 100 meters from the load application point.
(Bottom right) Vertical displacement magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,413 masses
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Figure A.32: 3D results for free-19. (Top left) Organization of masses. (Top middle) 3D-plot of RMS
amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation
of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement
magnitude along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement
magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,346 masses
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Figure A.33: 3D results for building-1. (Top left) Organization of masses. (Top middle) 3D-plot of RMS
amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation
of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement
magnitude along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement
magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,346 masses
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Figure A.34: 3D results for building-2. (Top left) Organization of masses. (Top middle) 3D-plot of RMS
amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation
of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement
magnitude along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement
magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,451 masses
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Figure A.35: 3D results for building-3. (Top left) Organization of masses. (Top middle) 3D-plot of RMS
amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation
of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement
magnitude along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement
magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,448 masses
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Figure A.36: 3D results for building-5. (Top left) Organization of masses. (Top middle) 3D-plot of RMS
amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation
of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement
magnitude along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement
magnitude response at x = 100m, y = 0m.
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3D-plot for AMPRMS(|uz|)Mass configuration,750 masses

0 20 40 60 80 100
0

1

2

3

4

x (m)

A
M

P
R
M

S
(|u

z
|)

AMPRMS(|uz|), along x-axis

0 20 40 60 80
0.8

1

1.2

1.4

1.6

y (m)

A
M

P
R
M

S
(|u

z
|)

AMPRMS(|uz|), at x = 100m, along y-axis

10 20 30
0

1

2

3

Exc. Freq. (Hz)

|u
z
|·

10
−
1
2

(m
)

|uz|, at x = 100m, y = 0m

Mass
Soil

E = 30GPa

ν = 0.48

Material properties

Figure A.37: 3D results for building-7. (Top left) Organization of masses. (Top middle) 3D-plot of RMS
amplification of vertical displacement magnitude. (Top right) Mass properties. (Bottom left) RMS amplificiation
of vertical displacement magnitude along x-axis. (Bottom middle) RMS amplificiation of vertical displacement
magnitude along y-axis, 100 meters from the load application point. (Bottom right) Vertical displacement
magnitude response at x = 100m, y = 0m.

69


	Abstract
	Preface
	Acknowledgements
	Contents
	Introduction
	Background
	Architectural thesis
	Methods for mitigating vibrations

	Objective and method
	Outline of the report

	Theory
	Vibration theory
	Introduction
	MDOF systems
	Resonance
	Steady-state dynamics
	Damping
	Root Mean Square

	The Finite Element Method
	FE formulation in 3D
	Dynamic model reduction with damping
	Multi-level Sub-structuring

	Wave propagation in semi-infinite spaces
	Wave types in semi-infinite spaces
	Geometrical attenuation

	Materials
	Soil
	Soil as a homogeneous and visco-elastic material


	Experimental Models
	2D Axisymmetric FE-Model
	Materials
	Mesh, element types and boundary conditions
	Model with a single mass
	Model with two masses
	Model with a simple building

	3D FE-Model
	Materials
	Geometry, mesh, element types and boundary conditions
	Substructuring and Dynamic reduction of soil model
	Patterns

	Scale model
	Materials


	Results
	Axisymmetric FE-Model results
	Convergence of axisymmetric soil model
	Soil response
	Model with a single mass
	Model with two masses
	Model with a simple building
	Soil freezing

	3D FE-Model results
	Comparison of soil-only results to 2D-axisymmetric case
	Traffic load
	3D Results

	Scale model results

	Discussion
	Conclusions and discussion
	2D
	3D
	Comment on sustainability

	Further work

	References
	Plots for 3D results

