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ABSTRACT

Cracking in reinforced concrete beams is a normal process. It occurs for a small portion of the
ultimate load, already in the service state. This kind of local failure in concrete is quantified
mainly via crack widths and crack spacing in the tensile zone. Durability, functionality and
aesthetics are the main reasons why the aforementioned characteristics should be limited to
predefined values. Due to cracking, stiffness redistribution takes place in the flexural member
and the reinforced concrete section can no longer be considered to act as a linear elastic,
homogeneous material. In addition, the connection between the reinforcement bars and the
surrounding concrete is not perfect. A certain slip in the interface between the two materials
needs to be considered. Thus, the non-linear constitutive response of concrete and the bond-slip
relation need to be incorporated in an accurate model of a reinforced concrete beam under
fracture.

This thesis aims to develop a finite element model of a beam that is able to describe the
interaction between the reinforcement bars and the cracked concrete. Emphasis is given to the
parameter of the two predominant length scales in reinforced concrete structures: the local
damage in concrete, which comprises the small scale, and the finite length of the reinforcement
bars, which accounts for the large scale. For the development of such a 1D model, advanced
beam elements were employed, where the effects of the reinforcement bars were homogenized
over the concrete cross-section. The implementation and a non-linear FE analysis of the
model were performed in a Matlab code. Outputs from that analysis were compared to (i)
experimental results from literature, (ii) analytical calculations of a reinforced concrete beam
accounting for tension stiffening, (iii) a 1D beam-type model where fracture of concrete was
taken into consideration by the stiffness adaptation method, and, (iv) a FE beam-type model
considering perfect bond between the constitutive materials developed in the Diana software.
The results from the developed model were found to correspond well to the aforementioned
methods and the experimental curves. However, further parametric studies are proposed in
order to improve the performance of the model.
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1 Introduction

Reinforced concrete beams are flexural members which, in the ultimate limit state, are designed
allowing for a certain local damage to take place, assuming all tensile forces to be carried
by the steel bars. The limit of that damage in a cross-sectional design process is governed
by the ultimate compressive strain of concrete so as to avoid crushing when yielding of the
reinforcement bars occurs. Hence, the occurrence of cracking in concrete is a rather expected
phenomenon for relatively high loads. It should be noted however, that cracks, in cases where
no prestressing is applied, are expected to form even for a small portion of the ultimate load,
i.e. already in the service state. In addition to the ultimate limit considerations, flexural cracks
in reinforced concrete beams, according to a sound design, should be controlled with respect to
width and well distributed over the length of the member.

Cracking in concrete is accompanied by overall stiffness reduction, larger deflections, lack
of homogeneity of the cross-section, and it is also aesthetically undesired. Furthermore, wide
cracks contribute to an increased permeability of the structural member, which under severe
environmental conditions could enhance corrosion in the reinforcement, spalling of the concrete
cover and local bond deterioration at the interface between the constitutive materials.

Thus, fracture in reinforced concrete beams might be harmful, but on the other hand in most
structural engineering applications it cannot be avoided. These considerations highlight the
importance for an accurate estimation of the crack widths and the crack pattern in structural
engineering.

During the present thesis, a one-dimensional finite element model of a reinforced concrete
beam was developed, that is able to describe the interaction between the cracked concrete
and the reinforcement bars, while accounting also for the relative slip between the constitutive
materials and the different length scales involved in the model. Namely, the microscopic scale
induced by fracture of concrete and the finite length of the reinforcement bars. Crack widths
and crack pattern were the outputs that the thesis focused mostly on.

After a short literature survey on the existing techniques to model fracture in reinforced
concrete beams in Chapter 2, the ’construction’ of the model is outlined in Chapter 3. For that
purpose, an advanced beam element was applied as it is shown in Section 3.1, accompanied
by the derivation of the governing equations of the continuous, as well as, the discrete system
in Section 3.2. The concluding FE formulation was a non-linear system of equations, where
the factors of non-linearity were induced by the non-linear constitutive models that were
employed, so as to account for cracking in concrete, yielding in the steel bars and the bond-slip
at the steel/concrete interface. A detailed discussion on the specific constitutive material
laws that were used is presented in Section 3.4. The linearization of the non-linear system of
equations is described in Section 3.3. The iterative/incremental methods that were used to
solve the non-linear system of equations for each load or displacements increment are outlined
in Section 3.5, followed by the numerical integration schemes that were employed in order to
obtain solutions for the integrals involved in the FE equations. Then, a remedy to the issue of
mesh-dependency that sourced from the use of a softening law to take cracking of concrete into
consideration is given in Section 3.6. The FE formulation derived in Section 3.2, was applied
in a computer program in Matlab environment. The flowchart and a description of the basic
steps that were followed in the developed program is presented in Section 3.7.

In Chapter 4, the specific application of a reinforced concrete beam subjected to 'four-
point bending’ is examined. A comparison is provided in Section 4.4 on the load-displacement



diagrams, the maximum crack-widths and the crack-pattern obtained from the developed model
and from (i) experimental results from literature, (ii) analytical calculations of a reinforced
concrete beam accounting for tension stiffening, (iii) a 1D beam-type model where fracture
of concrete was taken into consideration by the stiffness adaptation method, and, (iv) a FE
beam-type model considering perfect bond between the constitutive materials developed in the
Diana software. The general conclusion that was drawn was that the curves obtained from the
developed model fitted well with the ones obtained from the other methods. Details on the
experimental set up are given in Section 4.1. The beam theory that was used for the analytical
solution of a reinforced concrete beam is outlined in Section 4.2, while the in-data that were
provided in the developed model are given in Section 4.3. The present thesis sums up with a
discussion on the conclusions from the modelling process in Chapter 5. At the end of the same
chapter, proposals for future work are also given.



2 Modelling techniques

2.1 Modelling of the behaviour of reinforced concrete
beams

Reinforced concrete beams are flexural members employed in a vast majority of civil engi-
neering applications. For the prediction of their response, various methods are being used,
either analytical or numerical. Analytical calculations of an externally statically determinate
homogeneous beam with a rather simple geometry may be considered as a very familiar and
easy-to-implement process, especially, as long as the concrete remains uncracked. However, if
the 'problem’ is to be fully defined, sources of heterogeneity in the cross-section, such as the
effect of the reinforcement, material non-linearities induced by cracking of concrete and the
relative slip between the constitutive materials need to be accounted for. In such cases, the
problem is no longer statically determinate, nor linear elastic, thus equilibrium and compatibil-
ity conditions, as well as constitutive material laws need to occupied in a non-linear analysis
for the determination of the beam characteristic figures. It can be understood that facing
situations as the aforementioned analytically is restricted to very fundamental applications,
due to the complexity of the nature of the problem, usually for verification of other solution
strategies chosen at beforehand.

On the other hand, the difficulties in obtaining a predictive solution for cumbersome struc-
tural cases like the one just described, together with the development of very powerful computers
and sophisticated non-linear numerical analysis software have promoted the implementation of
numerical methods for most of the engineering applications. Among others, the finite element
method is, nowadays, the most widely used numerical procedure. If it is applied correctly, it
provides fast, efficient solution schemes, of accuracy specified by the user, depending on the
specific case.

The finite element method that needs to be employed in a specific investigation depends on
several factors, namely:

1. The scale of the structure (single member or entire structure)
2. The complexity of the problem (1D, 2D or 3D)

3. The outputs sought for (features on the global or local scale)
4. The level of accuracy

5. The limitations of the model (material or geometric non-linearities, computational tools
available)

In general, when a finite element analysis is to be performed, the main issue the analyst has
to face is that of the balance between the accuracy and the computational cost. For the global
analysis of a relatively large structure, a detailed model would probably be computationally
‘expensive’ or even unnecessary. On the other hand, in the examination of structural members
or simple geometries, the development of a refined model that is able to describe more complex
phenomena is, often, feasible and essential. Such complex phenomena may include various



kinds of non-linearities, arising either from the material behaviour or the specimen’s geometry,
as well as local scale effects.

As regards to cracking in reinforced concrete structures, it belongs to local damage effects.
Together with another phenomenon, that of the relative slip between concrete and reinforcing
steel, they form two main sources of non-linearity in the composite material. For the aforemen-
tioned characteristics to be captured, advanced computational methods need to be developed.
The term, advanced, may stand for more sophisticated constitutive models for the materials,
or for special elements that need to be implemented apart from the structural elements out of
which the main part of the model is comprised of.

2.1.1 3D modelling

Beams are usually not modelled with 3D solid elements since it requires more computational
effort than 1D structural elements or 2D continuum elements. There are some advantages of
using 3D elements. They can capture failure modes that are not available with other type
of elements e.g. spalling and anchorage failure in support regions. The reinforcement in 3D
solid elements can be modelled in different ways. As a 3D solid element, where each bar
is modelled with separate 3D solid elements with different constitutive relations. With this
analysis it is possible to insert an interface layer between the concrete and steel or to model
the reinforcement as embedded, i.e. full interaction between the two materials. The interface
layer can prescribe the bond-slip action between the two materials and needs to be predefined
with a constitutive model. The reinforcement can also be modelled as 2D plane, assigning
an equivalent thickness of the reinforcement layer, or as 1D truss, with the cross section of
each bar defined within the 3D solid. In both cases, it is available in commercial software to
model the bond-slip relation with special interface elements , line-solid interface for 1D and
plane-solid interface for 2D, or as embedded reinforcement. Smeared crack model is often used
to model the cracking phenomena in the concrete (Lykidis et al., 2008 [22]). It is convenient
to use the smeared crack approach since it does not require special elements to describe the
cracks, like e.g. discrete crack approach.[31]

This type of modelling is not appropriate when predicting crack widths and crack patterns
because of the unnecessary complexity and additional computational effort needed.

Figure 2.1: 3D modelling of a reinforced concrete beam



2.1.2 2D modelling

Like with 3D modelling, 2D modelling of beams is usually not carried out when looking at
a global behavior of a beam. However when looking at cracking, i.e. crack widths and crack
patterns, the 2D analysis can be feasible.

Since the beam is relatively long compared to its width plane stress elements are commonly
used to model beams in 2D analysis. The reinforcement can be modelled with 2D and 1D
elements as embedded reinforcement or with slip, with line-plane interface for 2D reinforcement
and line for bar reinforcement [5]. Like with 3D models, the smeared crack approach is often
used to account for cracking.



2.2 Beam models

In general, an one-dimensional element is represented by a line, in which a certain cross-
sectional area is assigned. It can be comprised either of only one material, a fact that would
characterize it as homogeneous, or of many additional ones, which are then homogenized over
the cross-section. The simplest FE model that can be implemented is made of two-node bar,
or else, truss elements, having one or two translational degrees of freedom per node (Figure
2.2). Higher order 1D elements are used as well when more complicate phenomena are to be
captured, which then contain more than two nodes and approximating functions of higher
order. A special place in the family’ of 1D elements is held by the so-called beam or structural
elements.

A N\~

Figure 2.2: Simplest possible finite elements

In their simplest form, as shown in Figure 2.3, they are met as two-node elements, with
a vertical translational and a rotational degree of freedom per node. It is probably the most
widely known and used finite element, mainly due to the simplifications that usually lie
behind its constitutive theories and the low computational cost, factors that are making it
very user-friendly. Substantial realm of such theories is covered by the principle that 'plane
sections remain plane and perpendicular to the reference axis of the beam’, known also as
the Fuler-Bernoulli beam theory (Ottosen and Petersson, 1992 [29]). Examples of their use
are when the global response of a whole structure is sought for, or, when structural cases of
profound bending are examined.

oy

X

Figure 2.3: Fuler-Bernoulli beam theory



Another popular theory, that plane sections remain plane but not necessarily perpendicular
to the reference axis’, or else, the Timoshenko beam theory is often employed (Hjelmstad, 2005
[14]). Models comprised of Timoshenko beam elements are also used for the global structural
analysis, they have similar advantages as the Euler-Bernoulli elements, but their main use is
in cases where shear action is considered to be important for the prediction of the response of
the member under consideration (Figure 2.4).

)

X

Figure 2.4: Timoshenko beam theory

The next one-dimensional element to be described is also known as plane-frame element.
It can be combined with both beam theories mentioned before, while it also accounts for the
axial displacement of the reference axis of the element (Figure 2.5). The pertinent element is
used in simulations of plane frame structures and, in general, in applications where the axial
motion of the system is of importance. As it will be shown in Section 2.2.1, the consideration
of the axial displacement degree of freedom is very useful for modelling effects and geometries
that take place and exist, respectively, in the axial direction of the model, as is the effect of
the reinforcement and the bold-slip in reinforced concrete members.

T i

Figure 2.5: Plane-frame element

Furthermore, apart from the aforementioned fundamental structural elements, more advanced
1D beam-type models have been developed. These are usually comprised of more than one
material, homogenized over the cross-section and they employ more specialized modelling
techniques. The construction of such models was motivated from the need to cover in a
simplified, but nevertheless, representative manner more complicated tasks, which may involve
several localized phenomena that would not be feasible to capture by using the Euler-Bernoulli

or the Timoshenko beam theory alone. Examples of such elements are outlined in Section
2.2.1.



2.2.1 Multi-fibre beam model

As mentioned earlier, the simulation of large civil engineering structures, might prove to be a
cumbersome process. For that reason, a simplified method has been introduced (Spacone et al.,
1996 [36], Mazars et al., 2004 [23], Kotronis and Mazars, 2005 [19]). Namely, the assembly into
consideration is discretized into beam elements that comply with the Euler-Bernoulli or the
Timoshenko beam theory. Usually, flexural members, such as beams, are analysed according
to the Fuler-Bernoulli beam theory. In cases where shear phenomena are more pronounced,
the Timoshenko theory for beams is employed. What is new in the pertinent method is the
division of the cross-section into fibers (Figure 2.6). Each fiber, represents a finite area of the
cross-section, as well as, it is made of one of the constitutive materials, concrete and steel.

concrete
/ —

\_ steel | ? | T o> fibers

a

| I I I

% A\ N v

(& & &
o1 o1 oG] o1
(c)
element 1 element 2 element n

(b)

Figure 2.6: Multi-fiber beam model (a) Reinforced concrete specimen (b) Discretization into
elements, nodes, degrees of freedom (c) Separation of the cross-section into fibers

In the implementation scheme of the proposed method, the main assumption that plain
sections remain plane holds. Based on that assumption, the well-known beam theories mentioned
in the previous paragraph are applicable. The calculation of the model is realized in three
levels, a) the element, b) the sectional and ¢) the fiber level. Through the fundamental beam
theories, the nodal displacements of the simulated member are related to the normal strains
(in the case of the Euler-Bernoulli beam theory) via a relationship of the form

ou’ N 0w
Exx = A
ox 0x?

(2.1)

where, Ju®/0x, accounts for the axial deformation of the reference axis of the beam, 8%w/0x?,
is the curvature, and, z, denotes the position of the fiber along the cross-section of the beam.
As a next step, the sectional strain of each fiber obtained from (2.1) is inserted into the
constitutive law that is assigned for the material of the fiber, in order to derive the stress at
the point where the fiber lies along the cross-sectional height.



2.2.2 Applications accounting for the damaged concrete

Early stage applications of the simplified method are attributed to Spacone et al., 1996 [36],
Mazars et al., 2004 [23], Kotronis and Mazars, 2005 [19]. Common characteristic of the cited
works is that they do not include any relevant slip between the steel and the concrete fibers.
Thus, full bond conditions are considered between the constitutive materials. The fibers in this
case, depending on their position along the cross-sectional height, represent either concrete in
tension/compression or the steel bars. In that sense, two material laws are implemented.

In their article on simplified dynamic analysis of reinforced concrete walls, Kotronis and
Mazars [19] depict two examples of the multi-fiber approach on reinforced concrete walls. In
these applications, beam elements complying with either the Fuler-Bernoulli or the Timoshenko
beam theory were used for the discretization of the member in the global scale. Non-linearities
resulting from fracture and cyclic loading were inserted into the analysis via the material
constitutive models in the fibers scale. Uni-axial continuum damage mechanics stress-strain
relation was employed for concrete. Two damage variables, one for tension and one for
compression (dynamic loading conditions are accompanied by sign reversal of the load) were
introduced in the concrete material law, ranging from one to zero. By means of these two
variables, the stiffness properties of concrete, namely Young’s modulus, E, and Poisson’s ratio,
v, were degrading through each load cycle. As regards to steel, a uni-axial plasticity law
including non-linear kinematic hardening was applied (Armstrong and Frederick, 1966 [10]).

A general conclusion that was drawn by the use of the aforementioned model for concrete
is the difficulty to obtain results in extensively damaged regions, for instance crack spacing
and crack-widths, outputs that were of major interest in the present thesis. It would take
an advanced 3D constitutive law to capture localized fracture more accurately. Another
disadvantage that should be noted is the mesh-dependency of the results due to the strain
softening law in tension that was used in the concrete model. One solution to that problem
is obtained by the use of non-local constitutive models, as described by Pijaudier-Cabot and
Bazant, 1987 [30]. The theory recommends to separate the total strain into an elastic part,
which would follow a local material law, and an inelastic part, that would be attributed to
cracking and the variables associated to that part of the strain, they would be treated by
non-local damage model. Another way to get rid of the obstacle of mesh-dependency is provided
in Kotronis et al., 2005 [20] by local second gradient theory. However, as it was also applied
by the authors in the present thesis, an efficient way to 'tackle’ mesh-dependency upon mesh
refinement is to scale the stress-strain softening law expressed in terms of the crack width, w,
with the area where each crack is expected to localize, as explained in Section 3.6.

In Mazars et al., 2004 [23] the benefits of using two simplified approaches are exposed on
two reinforced concrete wall specimens under seismic excitation. The first model is comprised
of Fuler-Bernoulli beam elements on the global scale and each cross-section is divided into
fibers. La Borderie uni-axial model [21] is employed for concrete, so as to account for all the
non-linear effects arising from dynamic loading such as earthquake. The same plasticity law as
in Kotronis and Mazars, 2005 [19] is used for steel (Armstrong and Frederick, 1966 [10]). Next,
the second model is realized via Timoshenko beam elements. The Pontiroli-Rouquand-Mazars
(PRM [34]) constitutive relation is applied for concrete, whereas the elasto-plastic material law
available in Abaqus CAE is implemented for steel.



The two simplified models presented in the latter article are computationally efficient and
they are able to represent global phenomena, as well as some fundamental local ones, in a
satisfactory way. However, more advanced 3D modelling, as stated by the authors, would be
necessary in order to describe localized fracture in more accurate manner.

2.2.3 Applications accounting for cracking and bond-slip

As it has already been outlined, the inclusion of the properties of the steel /concrete interface
is important for an appropriate description of the response of reinforced concrete structures,
together with the consideration of local scale effects, like fracture of concrete. Towards this
necessity, significant contribution has been the work by Monti and Spacone, 2000 [26]. The
basic formulation at the element and the sectional scale is similar to the one described in
Section 2.2.1.

However, in Monti and Spacone, 2000 [26], in order to account for the relative slip, the
perfect bond assumption is no longer valid. Instead, in the fibers scale, the total strain of
the steel fiber is divided into a part which accounts for the deformation of the reinforcing bar
and a second part that considers the relative slip between the constitutive materials. So, the
deformations compatibility condition is stated this time between the surrounding concrete
strain and the total steel fiber strain.

For the purpose of such an analysis, a multi-fiber finite element model has been developed.
Timoshenko beam elements have been used for the discretization of the members, so as to
account for shear phenomena. Following the same procedure with the fiber-models presented
in the previous sections, the cross-section of the beam elements was subdivided into fibers.
Depending on the position of the fibers along the cross-section, the appropriate constitutive
laws have been implemented for the materials. Namely, the Hognestad model [15] was occupied
for concrete (Figure 2.7.a), while the Menegotto-Pinto model was applied for steel [25] (Figure
2.7.b). Eligehausen’s bond-slip law was used to describe the behavior of the model at the
interface, as it was introduced in [6] and proposed in [3] (Figure 2.7.c).

Stress o Stress ¢
geo m
Opt
Strain ¢ Strain ¢
a) b)
Stress
Tmas ;
A
]
f I
]
| I
T i 0
I / 1
/ Slip s

Si S2 S3

©)

Figure 2.7: Constitutive material models (a) Hognestad law for concrete (b) Menegotto-Pinto
law for steel (c¢) Eligehausen law for bond-slip
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3 A model for reinforced concrete beams

To develop a simplified one-dimensional reinforced concrete beam model, that should be able to
describe the interaction between the cracked concrete and the rebars, a standard procedure was
followed regarding the establishment of the finite element model. According to that process, a
derivation took place first, which started from stating the strong form for the 'problem’ of a
reinforced concrete beam subjected to transverse and longitudinal distributed loading. Then,
the weak form of the differential equations that cover the pertinent problem was obtained.
Later on, the finite element formulation of the non-linear problem was derived, together with
the linearization of the non-linear relationships. Finally, appropriate iterative/incremental
procedures and integration schemes were employed for the numerical solution of the non-linear
finite element form.

The theoretical foundations of the derivation mentioned in the previous paragraph was the
basis for the finite element code constructed at the next step. The outputs from the developed
computer program were then used for comparison with relevant tests from literature, figures
obtained from analytical calculations, the finite element stiffness adaptation method, as well as
with a perfect bond” model performed using the Diana software.

Furthermore, the fundamental problem solved in the present thesis was that of a reinforced
concrete beam with vertical distributed load. The definition of the beam and the loading
conditions can be seen in Figure 3.1.

HLHHTHHHH
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L steel L concrete L= T
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Figure 3.1: Ezample of a simply supported reinforced concrete beam
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3.1 Derivation of the non-linear continuous formulation

3.1.1 Cross sectional forces

At the cross-section scale, by definition, the following equations hold for the internal forces M,
V, N and N;, whereas, the contribution of the steel bars is taken into account in (3.1) and

(3.3), apart from the concrete contribution for a typical homogeneous cross-section.
The axial force N is defined by

N = / o dA+ S Aoy 3.1
: Z (3.1)

conc
T )

where o is the axial concrete stress across the cross-section A. The shear force V' is given

by
V= / Opr dA (3.2)
A

where, 0,., is the shear stress across the concrete cross-section. The bending moment M is
calculated as

M= / 2.0 dA+ Y A zioy (3.3)
A i
and, for each layer of n-reinforcement bars, the axial force of each layer is returned by

where, A;, denotes the total area of the np,.s within the i-st layer of reinforcement, np,;s
accounts for the number of bars contained in the i-st layer, and, oy;, is the axial steel stress of
the i-st layer. Finally, the definition of the bond force between the i-st layer of reinforcement
and the surrounding concrete is introduced here, according to the relationship

fi=T0 s (3.5)

xrx

bond

where, 7,9"¢ is the longitudinal bond stress between the constitutive materials and, s;, is the

sum of the circumference of the ny,,.s that comprise the i-st steel layer.

3.1.2 Equilibrium conditions

As a next step, the equilibrium conditions that are applicable for the beam under consideration
are outlined. First, consider an infinitesimal part of the beam, as shown in Figure 3.2.

From equilibrium in the vertical direction (over the height of the cross-section), it can be
stated

Y F=0=-V4+V+0V+q -0r=0

ov

A bending moment equation around the left-most point of the reference axis of the beam
can be written as

12
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Figure 3.2: Internal forces of an infinitely small part of a reinforced concrete beam

ZMleft=0=>(M+8H)—(V+8V)8x+qz-8a:-%—M:()

M -
:>a——V—8V+qz-%:O
ox 2

——
infinitesimal

Equilibrium between the forces in the horizontal (longitudinal) direction requires
> F,b=0=N+0N-N=0
ON
= —=0 3.8
e (3.8)

Now, from equilibrium between the longitudinal stress of the i-st layer of reinforcement and

the relevant bond stress coming from the surrounding concrete, it can be derived (lower part
of Figure 3.2)

ZF;’“T:0:>NZ+(9N,—N1—]‘}8$:0

= —6Ni +fi:O
ox

(3.9)
Next, inserting (3.6) into (3.7) it is obtained
O*M
oM 3.10
5z — 4 (3.10)
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3.1.3 Kinematic relations

The basic principle of Bernoulli’s theory, namely that plane sections remain plane and perpen-
dicular to the reference axis of the beam is considered. From that assumption, fundamental
kinematic relations can be derived for the small deformations of the flexural member in the x-

and z- axis (Figure 3.3).

|
|
y X __ _Reference axis 1 Q N _

Figure 3.3: Deformation of an Euler-Bernoulli beam (adopted from Ottesen and Petersson

[29])

To begin with, exploiting Bernoulli’s principle, the axial displacement u, of a point P, which
is situated below the reference axis of the beam, as it can be seen from Figure 3.3, is described
by (3.11.a). Moreover, the assumptions of no Poisson’s effect in the transverse y-y direction
across the width of the cross-section (3.11.b), as well as the hypothesis that u® and w are
functions of z (3.11.c) and (3.11.d), limit the problem into an one-dimensional formulation
with dependency only on the axial direction (longitudinal stresses). In the mathematical fields
that are to follow, the notation used in [29] is employed.

ow
a) u, = u’ — Yo b) uy, =0, ¢)u’ =u’(x), d)w=w) (3.11)
Having defined the displacements field, then it is straightforward to derive the strains field,

by using the very well-known equations

. _ Ou, _ Ou, %
w= gy 0 T T oy oz

(9um 8”1 auz
- =4

614?/_ ay s Yoz = 82 81‘ (312)

_ Ou, B % ou,
~ 9, T oy

E:ZZ
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Combining (3.11) and (3.12), the normal strain of the concrete beam and the i-st layer of
steel can be determined, as

cone ou’ 0w
Errx (l’, Z) = o — Z@ (313)
ou? Pw  OA;
bar _ o i
gzz,i(x) - 8&7 Zi d$2 + 617 (314)

where wu°

is the axial displacement at the reference axis
A; is the bond-slip between the i-st layer of reinforcement and

the surrounding concrete

As it can be seen from (3.13), the axial strain of any point at the concrete beam is a function
of the horizontal translation, u°(z), of the reference axis at the section where the point belongs,
and the curvature, k = 9*w/dx?. As for the axial strain of the i-st layer of reinforcement (3.14),
the deformation of the steel layer equals to the deformation of concrete at the height of the
reinforcement layer, plus the contribution from the relative slip, A;, between the constitutive
materials.

In other words, the compatibility condition that holds between the i-st layer of reinforce-
ment and the surrounding concrete can be expressed in a more appropriate manner, in the
displacements field, as

ow(x)

Ai(z) = ui(z) — u’(x) + iy (3.15)

where, u;(z), denotes the axial displacement of the i-st steel layer.

15



3.2 FE formulation

3.2.1 Differential equations and boundary conditions

Equations (3.8), (3.9) and (3.10) are the equilibrium equations which along with the boundary
conditions (Table 3.1) make up the strong form of the problem. In these equations, there are
(2n + 2) unknown sectional forces (N, M, N, f,), while only (n + 2) equilibrium equations
exist. Thus, compatibility conditions and constitutive relations are needed for the solution of
such an internally statically indeterminate member.

ON o o<e<L 3.16
ox
52
oz =% 0<z<L (3.17)
aN

<z <l 3.18
ox

where, L, is the length of the beam, and, a;, b;, are the starting and the ending points,
respectively, of the i-st layer of reinforcement in the longitudinal direction of the beam.

3.2.2 Weak form

After 'constructing’ the strong form of the problem (Section 3.2.1), and, in order to ’get rid’
of the derivatives accompanying the internal variables, the weak, or variational, form of the
equations needs to be employed.

The first step on the way to extract the weak form is to multiply (3.16), (3.17) and (3.18)
by arbitrary test-functions Ju’, dw and §A;, respectively, and integrate over the appropriate
for each variable domain

ON
u’— dx = 1
/Lu 5 = 0 (3.19)
02
= . 2
/(5w 52 dx = /L(Sw q. dx (3.20)
/ 6A L dx +/ ON; - fide =0 (3.21)

and, secondly, to perform integration by parts once for (3.19) and (3.21), and twice for (3.20).
In that sense, (3.19) becomes

0ou’ — L
= °N .22
. ox [&L To (3.22)
while, (3.20) takes the form
D?ow— dow L
-] B M dx —/5w q. do — {8—]\40 [ow - V] (3.23)
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and, similarly, (3.21) reforms to

b; JAVE — b
/ (agxﬁvi + 00 - fi) do = [6A; - NZ-]’; (3.24)

At this point, as a by-product of the integration by parts, the boundary terms of the load
vector have appeared at the RHS of (3.22), (3.23) and (3.24). These terms lie upon the
points of the domain, where either the forces and the moments are prescribed as 'natural’
boundary conditions or the displacements are prescribed as ’essential’ boundary conditions.
Thus, where the matural’ boundary vector is known, the relevant boundary terms can be
determined, while at the points where the essential boundary conditions are defined, the
respective boundary terms vanish simply by setting the pertinent test-function to zero. The
equations (3.22), (3.23) and (3.24) along with the boundary conditions comprise the weak form
of the differential equations. Examples of possible boundary conditions, as well as, the specific
boundary conditions that need to applied in order to avoid rigid body motion of the reinforced
concrete beam under consideration are given in Section 3.2.3.

3.2.3 Boundary conditions

A beam element accounting for bond-slip has 4 degrees of freedom in each node, horizontal
translation (x-direction), vertical translation (z-direction), rotation around y-axis and slip in
the interface between concrete and steel. That means for the simplest case a straight beam
supported in two nodes at the ends needs 8 boundary conditions essential, natural or convective.
Convective boundary conditions are a combination of essential and natural.

Table 3.1: Possible essential (Dirichlet) and natural (Neumann) boundary conditions for the
reinforced beam element accounting for bond-slip

Degree of freedom Essential Natural

Horizontal translation u° Normal force N

Vertical translation w Shear force V

Rotation 0, Moment M

Slip A, Normal (anchoring) force N;

In Table 3.1 the possible boundary conditions are listed. However there are certain limitations
to what boundary conditions combinations give unique solutions. To avoid rigid body motion
both the criteria below need to be fulfilled:

e at least one degree of freedom in the horizontal direction has to be prescribed.

e one vertical translational degree of freedom and one rotational or two vertical translational
degrees of freedom need to be prescribed

17



3.2.4 Constitutive equations

So far, the internal variables (N, M, N, f,)) in the strong form were inserted in the relevant
equations as forces. In the subsequent chapters, the pertinent forces are restated, using the
definitions of (3.1), (3.3), (3.4) and (3.5), thus introducing the relevant constitutive operators,
that represent the constitutive models of the materials. Symbolically, the substitutions just
described take the form

oo = oo (, 2))

o = o5y (€4 (v))

T{i)gnd — 7_boncl(Ai (.T))

rx

In that manner, the force-displacement relations of the strong form of (3.16), (3.17) and
(3.18) are to be turned into stress-deformation relations in the sections that come next. As it
will be shown, with the strains already defined in a typical step of the chosen solution scheme,
the stresses are then obtained through the constitutive law set for each material. The material
laws just mentioned, can be chosen, so far, arbitrarily by the programmer, due to the general
form that is kept for the derivation of the finite element equations outlined in the present
chapter.

3.2.5 Introduce the constitutive relations into the weak form

At the current section, the semi-linear a(u;v) form and the load vector L(v) of the problem are
to be defined, a notation that is adopted here in order to facilitate the rest of the derivation
process. For that purpose, the equations of the weak form, (3.22), (3.23) and (3.24) can be
restated as

ayo(u®, w, Ay; 6u®) = Lyo(du®) (3.25)
Ay (U, w, Aj; 0w) = Ly (dw) (3.26)
an, (U’ w, Ay 0A;) = La, (04;) (3.27)

respectively, where, a0, Lo are defined as

L

el Ssbu) = [ 8 [ [ o) dA+ZAi-asi<ei?>] de —
X A ;

9du’ cone [ Ou w ou° w0,

and,

Luo(8u%) = [6u’N]; (3.29)
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while, a,,, L,, stand for

2
aw(uo,w, Az, (Sw) — / aaizu {_ [/ 5. U;(;nc (ggoxnt:) dA + ZAl - Zi O (51;(;7’>] } dr =
L A i

D*ow cone [(OU° O%w
—/L 02 {‘[/0 (%‘Z%)M*

5’u0 82’(1) 8Az

} dx (3.30)

and,
osw—1" L
Ly(bw)= [ bw-q, do— |—M| + [ow 'Wo (3.31)
L ox 0
whereas, aa,, La, account for
o h adAZ bar bond
and,
La,(64) = [6A;- N, (3.33)

where, s;, is the sum of the circumference of the reinforcement bars used at the i-st steel layer.

3.2.6 Discretization of the continuous displacements field

Until this point, the equations used in the strong form (3.16), (3.17) and (3.18), as well as,
in the weak form of the problem (3.22), (3.23) and (3.24), are continuous over the respective
domain of each internal variable. In order to transmit the aforementioned relations into finite
element equations, they need to be discretized. For that purpose, the approximations on u°, w
and A; have to be introduced, according to

w = ud(r) = Nyo(x)- Qye
w o~ W) = Ny(x)- ay
A; = Aijn(r) =Na,(z)- aa,

where, Nyo, Ny, and INa, are shape functions, while a0, a,, and aa, contain the nodal values
of u°,w and A,.
Then, the axial displacement of the reference axis of the beam can be written as

Ou®  ONyo (m)a

U/O(x) ~ Nuo(x)auo = ax ax

ue — Buo (I)auo (334)

In a finite element, the shape functions that are to be used for the approximation of the
expected deformed shape of the beam in the longitudinal direction take the form

e e e 1 1
Nuo(‘r) = [N17N2] = T Ie (ZE _$2>7E (x _x1>
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Similarly, the continuous field of the deflections of the beam after discretization becomes
Pw _ 0?Ny(z)
ox2 "~ Ox?

The approximating functions that describe the deflected form of the beam in the i-st finite
element are given by

W A Ny (7)Ao = Ay = Bay, (3.35)

Ni(a:) = [Nf7N267N§’sz] =

1 R n 223 1 2x n x? x? 3 21 22 ( x 1)
= _ —. —_ — — — —_ — | — —
Le? LY Le  Le* )7 Le? Le)’ Le \Le
Finally, for the the field of the relative slip between the constitutive materials it is deduced

0A;(z)  ONa,(x)
A; =~ Na.(x)aa, = ~ d
ai(r)aa, ox ox
The shape functions that are to be occupied to describe the anticipated slip relation between
the concrete and the rebars in the finite element have the form

e € (4 1 1
N3, (z) = [N}, N3] = e (z — x9), Te (. — 1)

aa, = BA,;G'A,- (336)

3.2.7 Galerkin’s method

Referring back at Section 3.2.2, the term test-functions was mentioned. This term, or else
the weight-functions, symbolically stated as du°, dw and dA; is used to denote the virtual
displacements of the system in the directions of u°, w and A, respectively. As it has already been
stated, the pertinent functions can be chosen arbitrarily. However, there have been developed
different methods for the choice of the test-functions, and one which is very functional is
Galerkin’s method. It belongs to the 'family’ of weighted residual methods, together with other
ones, as the Point collocation method, the Subdomain collocation method and the Least-squares
method, as described in [29].

In the present thesis, Galerkin’s method is followed for the appropriate choice of the test-
functions. The basic idea behind it is to choose the weight-functions the same as the shape
functions. For instance, the first weight-function du° is taken as

6u’ & Nyo(x)eyo = cL, N5, () (du’ is scalar)

~ o — B o o — B .
= Os gr Cue = Buecur = 0By (3.37)

whereas, dw, is chosen as
Sw ~ Ny(w)ey = cE NT(2) (Sw is scalar)
0w 0*Ny(x)

R Cw
0x? 0x?

and, in the same manner, d4\; is replaced by

= B¢y, = cL B (3.38)

0A; = Na,(x)ca, = CLNL_(:U) (0A; is scalar)
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or ox

In the equations above, ¢y0, ¢,y and ca, are column matrices of arbitrary coefficients.

=

ca, = Ba,ca, = ¢4, By, (3.39)

3.2.8 Formulation of the internal force vector

After defining the approximations on u,, w, A; in (3.34), (3.35) and (3.36) at Section 3.2, and
the weight-functions du,, dw, 04, in (3.37), (3.38) and (3.39) at Section 3.2.7, the internal force
vector, fins, can be deduced, by introducing them into the variational form of the problem
stated in (3.28) to (3.33).

Replacing, first, the approximated displacement fields and test-functions into (3.25), (3.28)
and (3.29), it is derived

czo {/ BZ:O |:/ O—;gﬂ<Buoau0 - ZBwaw)dA+
L A

+ ZAi - 0gi(ByoQyo — 2;By@yy + BA,GA,-)] dx} = czo { [Ngomg}
= czofint,uo(auov Qo a/Ai) == czofuo (340)

Similarly, upon introduction of the discretized displacements and weight-functions into (3.26),
(3.30) and (3.31), it is obtained

ck / BT {— l/ 2+ 0 (Byoyo — 2By, )dA+
L A

+ ZAZ' - 2+ Ogi(ByoQyo — 2; By + BAiaAi)] } dr =

NT_1*
T {/Nngdx— P “’M} + [ng}
L Ox 0

= cz;fint,w(a'uoa Aoy a'Ai) - Cz:,fw (341)

Following the same procedure for (3.27), (3.32) and (3.33), results in

b;
CL / [Bz,- cA; - 0 (ByoQyo — 2; By + Ba,ana,) +

b;
_|_N§l -8 Tbond (NAZG’AL):| dxr = Czi |:N§NZ:|

TT i

= Cii.fint,Ai (auoa Aoy a'Ai) - C’ZifA,; (342)

Assembling the components fint uo, fintw, and fint,a, determined in (3.40), (3.41) and (3.42),
respectively, into the total internal force vector fins, it can be written

c’ fine(a) = ' f (3.43)
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where

fint,u" (a) Qo .fuo Cyo
fint(a) = fint,w(a) , @ = (77} ) .f = fw , C= Cw
fint,a,(a) aa, fa, ca,

3.2.9 Involve essential boundary conditions

In order to obtain a solution for the displacements, a, that satisfies (3.43), it is convenient to
discretize the full vector, a, into free and constrained degrees of freedom, according to

a1 aNf'reeJrl
ar a2 ANfpee+2
a= ., Wwhere ap = . , ac = e (3.44)
ac .
6L]\/Yfree aNdof

where, ac, is a vector containing the prescribed degrees of freedom, while, ap, are the
unknown ones.
Similarly, the same categorization can be done for the shape functions, as well

N=|[ Ny Nc¢ | (3.45)

The approximated non-linear system is fully defined at this stage, and, it can be stated as
the problem of finding uj, € V;,, w, € Wy, and A, , € Dy, such that

a(uy; ouy) = L(6uyp) (3.46)
a(wp; dwy) = L(dwy,) (3.47)
a(Qin; 08 p) = L(0A; ) (3.48)

where, the trial spaces are set as follows

o . o __ Nyo free
VvV, = {Uh U= Nuo,Fauo,F + Nuo,cauo,c for any Qyo,F € R™we.f }

. pa— Nw ree
W, = {wh DW= Nw,Fa/w,F -+ Nw,caw,c for any Qo F € RYw.f }

. — N ; ree
D, = {Ai,h : Az = NAi,FafAi,F + NAi,Ca'Ai,C for any aa, r < R&YAS }

while, the FE test spaces are defined as

b= {uz : U’ = Nyo pCyo,r for any cyo r € RN“"J”@}

?L = {wh W= N’lU,Fc’u),F fOI' any c'w,F E RNw,f’ree}

Z = {Ai,h : AZ = NAi,FCAi,F for any ca,,r € RNAi’free}
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Referring back to the non-linear system of equations in (3.43), after the separation accom-
plished in (3.44) and (3.45), the unknown displacements ar can be determined via the solution
of a reduced system of equations, which takes into account only the free degrees of freedom.
The pertinent approach is realized by setting all the arbitrary coefficients contained in ¢
equal to zero in (3.43). Thus, the system takes the form

[k o[ frer | =g 0] I ] (3.49
while,
fc = fic+ fo.c = fint,c(a) (3.50)

In (3.50), fi.c, denotes the external force vector and, fpc, accounts for the boundary load
vector. The reduced system of equations becomes

fint,F(a) = fr

= g(ar) =0 (3.51)

where, g, is known as the out-of-balance force vector, numerically defines the residual of the
finite element equations and is given by

g(ar) = fintr <{ Zg D — fr (3.52)

After solving (3.51) for a, it is possible to define f;nt,c in (3.50) and, thereafter, to solve
(3.50) for the boundary vector fy c. The latter column matrix represents the 'reaction forces’
that arise from the application of the constraints at the relevant degrees of freedom.
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3.3 Linearization of the non-linear problem

The system of equations (3.51) is a system of Ny,.. non-linear equations. The factor of non-
linearity originates directly from the constitutive laws that are to be implemented for the
materials. Thus, in order to obtain a solution for the unknown displacements in the iterative
solution scheme that is to be used later on, a linearization of the system should be performed
first, as described in the following derivation.

For that purpose, the residuals of the continuous system in question, namely (3.25), (3.26)
and (3.27) are defined, as

Ryo = Lyo(0u’) — ayo(u’, w, A; Ju°) (3.53)
Ry = Ly(dw) — ay(u’,w, Aj; dw) (3.54)
RA, = La,(0A;) — an, (u®, w, A;; 6A;) (3.55)

At this point, a function a* reasonably close to the true solution of the system of (3.53),
(3.54) and (3.55) is assumed. Then, for the latter equations it can be written

R(a*;v) = L(v) — a(a*,v) (3.56)

Employing the linearization of (3.25), (3.26) and (3.27), which comprise the semi-linear
form, the residual in (3.56) is linearized according to
R(a* + Aa;v) = R(a*;v) — d'(a*;v, Aa) (3.57)

where, R(a*;v), is given by (3.56) and, a’(a*;v, Aa), is the directional derivative of a(a*;v) in
the direction of Aa.

3.3.1 Linearization of the FE-equations

As it was described for the continuous system in the previous section, a similar linearization
scheme is performed for the discrete equations (3.51). Namely, a 'good’ guess a* of the
approximate solution a is assumed. In matrix form it can be stated as

O*

u u

adf'~a=a"=| w |ra=| w
*

Al A;

In (3.52), the out-of-balance force vector was defined as

g(a) = fint(a) — f

Considering then a small change Aar in a*, then, expanding g(a}, + Aar) in Taylor series, it
is obtained

dg
da}

g(ay + Aar) = g(ay) + ——(ap)Aarp (3.58)
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where, g(a}.), is the value of function g evaluated at a}, and dg/da}, is the derivative of g in
terms of a},, or else, the tangent stiffness matrix.

Finally, comparing the linearized residual of the continuous equations (3.57) and the
linearized out-of-balance force vector in (3.58), it can be observed by term-wise identification
the correspondence between R(a*;v) and g(a}.), as well as, between, —a'(a*;v,Aa), and
dg/day.(a})Aap. Next, the directional derivatives of the semi-linear form of (3.25), (3.26) and
(3.27) in the direction of Au°®, Aw and AA; are to be derived. Thus, having three equations
and three directions each, results in nine equations for the derivatives, which after introducing
the approximations on u°, w and A;, the nine components-submatrices of the tangent stiffness
matrix will be defined.

To begin with, the directional derivative of (3.25) in the direction of Au° is given by

e=0

. dou® won (O +eAu°) 0w
_g{/L oz [/AU” ( Oox Z@x2>dA+

O(u®* 4 eAu®) OPw*  OAX
*;Ai"sf< gr o e ) dx}
0Au°

oou° (opait 0o
_/L ox [/A Oe dA+ZA Oe ox

Introducing the approximations on %, w*, A¥ and du®, Au® into (3.59) leads to

0
— Qo (U 4 eAu’, w*, AL du’)

@} oo (U, W* AT 6u®, Au®) = 5
3

u°u®

e=0

dx (3.59)

uo d$Aauo -

uouo(Na/ Nuocuo Nqua/uo = Cuo / B [/ Tuz dA ZA 80-81

= L, Kyoyo Aayo (3.60)
where

Buodz (3.61)

uouo_/B [ Ooss dA+ZAa"“
A

Similarly, the derivative of (3.25) in the direction of Aw becomes

0

/ O* E3 * o _
Ao, (U, W AT 0u’, Aw) = %

Ayo (U™, W* + eAw, AT; 6u®)

e=0

0 dou° ou® O*(w* + eAw)
_ con _ A
Oe {/L Ox {/A oz \ "y ~ ¢ Ox? ) A+

Ou’* 0 (w* + eAw)  OA!
+;Ai08i ( or Ox? * Ox )

oou° dolor 0o
= - A Az
/L oz { [ /A Oe A+ Z e
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Introducing the approximations on v, w*, A} and du°, Aw into (3.62) results in

ool do
Lo (Na*; NyoCyo, NpwAay,) =ct, | BE, { — / A Ajzi—=| b BydrAa,, =
Ao, (N @™, Cyo, ay) cu/Lu{ [A 85d+2 85]} dxAa

= cZoKuowAaw (3.63)

Kuow:/LBfo{— [/ ;Z’ndA ZAzz ”B dx (3.64)

Furthermore, the derivative of (3.25) in the direction of AA; is determined by

where

afu"Ai (uo*’ U)*, A:a (SUO, AA@) = %auo (U/O*, U)*, A: + €AA“ 5@60) =
e=0
0 Aou° ou*  *w*
— con _ dA
85{/L Ox [/Aam (89: Z@ﬂ) *
Ou’* O*w* O (AF +eAA;))
+zi:Ai0'si ( ax — Z; axQ + 6;1: ) dx . =
dou° Jog | OAA;
= A== ‘d 3.65
/L Bz [Z 9c | “or (3.65)
Introducing the approximations on u*, w*, A} and du®, AA; gives
(Na*; Nyocyo, Na,Aa /B ZAO"“ Ba,dtAan, =
uOA u°Cuyo, LVA; A i ) Oe A; A —
=, Kyon,Nan, (3.66)
where
Kyon, = / BT, ZAi% Ba,dx (3.67)
K2 I u - 85 7

To continue with the derivation process, for the derivative of (3.26) in the direction of Au?,
it can written

0
Lo (U W AY; ow, Au®) = a—aw(uo* + eAu®, w*, Al dw)
5

e=0

. D? 0w con [0 +eAu®)  O*w*
‘8_{/ 522 {_U“ ( o _Zaﬂ)d“
I(u’ + eAu®) O*w*  OAX
*ZA"( o o T oa ) }d@“} .
} 08 (3.68)

925w doeon 0.,
_/L = {_[/A > dA+ZAH — —~
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Replacing the approximations on v, w*, A¥ and dw, Au® into (3.68) gives

aho (NG™; NopCoyy, Nyo Alyo) = € /BT{ [/ et dA+ZAl 2 ]} BodxAay. =
L

= ! KyuoAyo (3.69)

dorcon O
. T . St ° .
Kwuo_/LBw{ [/A o dA+§:Azl ag]}Bud:c (3.70)

At this point, it is useful to observe the symmetry that holds between the relevant components
of the tangent stiffness matrix. For instance, from (3.64) and (3.70) it is straightforward to
observe that

where

Kuyow = K 0 (3.71)
In the same manner, the concept of symmetry can be exploited in the derivation process of the
rest components of the stiffness matrix K.

Likewise, the derivative of (3.26) in the direction of Aw is determined by
, 0

ay,, (U w* AL dw, Aw) = a—aw(uo*,w* + eAw, Al dw)
e

e=0

0 /82510 B /z con [ OU* _282(w*+5Aw) dAL
- 0e | ), Ox? A %\ "oz 0x?

Ou’* 0 (w* + eAw) ~ OA}
0?Aw

06w 5 00 do
— TT A A 2 st
/L 0x? [ /A Oe e AT Z Oe | Ox?

Introducing the approximations on v, w*, A} and dw, Aw into (3.72) results in

e=0

dx (3.72)

al o (Na*; NyCoy, NypAay,) = cﬁ/BZ
L

Oe i

/ 20047 dA+ZA 26”“] BydrAay, —
A

= cf}waAaw (3.73)

where

Koy /BT [/ T dA+ZAZ 33(,;’“] By dzx (3.74)
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To continue with the derivative of (3.26) in the direction of AA;, it can be stated

0
U, (U™, W, AT 6w, AD;) = gaw(uo*,w*,A;k + eAA;; dw)

0 /82(511) B / con [(OUT OPw* JA+
- 0e | ), Ox? Azom o  ° 0x?

u  Pwr 9(Ar +eAA,)
+ EZ Aiziasi ( ax — Z; axQ + 8[E ) }dl’}
dx (3.75)

9%Sw 004
- /% [‘ 2 Al

Introducing the approximations on v, w*, A¥ and dw, AA,; into (3.75), it is obtained

e=0

e=0

JAVAY
ox

§ : 8 8%

=cl Kya,Naa, (3.76)

where,
KwA.:/BT —ZAZ-Z,.% By, dz (3.77)
k2 I w - 85 (3

As it was the case for the previous relevant components of the stiffness matrix, accounting
for symmetry, the following hold
Kauo = Kjop, (3.78)
and,
Ka,w= K;Ai (3.79)

where, Kyoa, and Ky, a, are determined in (3.67) and (3.77), respectively.
The last component to be calculated is Ka,a,, according to

A p, (U W AT 0N AA;) = %aAi(uo*, w*, AT + eAA;;A;)

e=0

_ 0 b 96N, . ou 210211)* N 0 (A + eAA;) ot
 Oe o Oz U\ Oz " Oz2 ox

rx

b;
+/ 5Az © S Tbond (AZ + €AAZ) d$:|

e=0
" 00A I ey +/bi5A» 3 I | AN de —
A e B A =
b oA Do, | DAA, Prond
A; A s T | AN, .
/ { or |24 | Tar N | ’}dw (3:80)
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Introducing the approximations on v, w*, A¥ and §A;, AA; into (3.80) gives

dp ., (Na*; Nasca,, Na,Aaa,) = ch. / b {Bzi Z Ai% Ba,+
T Oy T
+Nj4, [Z SZT] NAi} drAaa; = cp Kaa,Man, (3.81)
where
Kan, = / b {Bgi ;Aiaaij Ba, + Ny, [Z siag?d] NAi}dx (3.82)
In conclusion, the resulting linearized equation (3.58) can be written
c’ fint(a* + Aa) = T fini(a*) + " K(a*)Aa (3.83)
or, in terms of the reduced out-of-balance force vector
crg(ay + Aap) ~ chg(at) + cLK(a})Aap (3.84)

In the latter equations, the internal and external force vectors, fin: and f, are defined by (3.40),
(3.41) and (3.42), while the tangent stiffness matrix, denoted as K is assembled employing
(3.61)-(3.82), into the global stiffness matrix, schematically shown as

Ku°u° Kuow Kqui
K=| Kpwo Kuw Kuoa, (3.85)
KAi'u,o KAZ'LU KAIA,L
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3.4 Constitutive models

The aim of the project, as it has already been described in the introduction of Chapter 3, was
to develop a simplified FE model that should be able to describe the interaction between the
cracked concrete and the reinforcement bars, accounting for the relative slip at the steel/concrete
interface, as well as, the different length scales involved in the model. Significant contribution
into the accomplishment of the goals just outlined was the implementation of the appropriate
non-linear material laws.

3.4.1 Concrete

The post-cracking behaviour of concrete was taken into consideration by a smeared-crack model,
following a purely linear law for strains lower than the cracking strain. The main idea in the
smeared-crack approach is to assume one crack to exist within the finite domain A pertaining
to, e.g., a finite element. We thus divide the total strain, £, into an elastic, ¢, and an inelastic
part, according to (3.86).

. W

e=¢e"+ N (3.86)
where, ¢, is used to denote the deformation of the uncracked regions of the continuum (Figure
3.4), which are been loaded and unloaded elastically, and, w/h, accounts for the part of the
total strain that is attributed to cracking. In (3.86), w, is the crack-width, while, h, is the part
of the loaded body over which the pertinent crack is smeared.

intact material / crack e=c/E
c o c
< >
A~W—7
(1+¢e)h

Figure 3.4: Division of the total strain

The uni-axial softening law employed was the Hordjik curve (Figure 3.5), which in terms of
local coordinates is given by

C wC

o= fu(w) Eft{

1+ (Clwﬂ exp(—20) — e (14 %) ﬂ} (3.87)

where o is the stress component normal to the crack plane
f is the tensile strength of concrete
w is the crack-width
We is the critical crack opening

c1, o are material constants

The constants are usually given the default values of ¢; = 3.0 and ¢y = 6.93. The critical
crack opening, which is the value of the crack-width for which the stress vanishes, is calculated
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 5.136Gp

We f
t

where, G, is the fracture energy of concrete. As it can be seen, (3.87) is expressed in terms
of the crack-width, w. In order to state the aforementioned relation in terms of strains, the
crack-width, w, must be divided by an appropriate length, h, as it was also shown in (3.86).
Concerning the choice of h, or else, the crack band-width, and the fracture energy, Gr, as it will
be shown in Section 3.6, they are related to issues of mesh-dependency and strain localization.

(3.88)

351

0 02 04 06 08 1 12 14
w, [107* m]

Figure 3.5: Hordjik softening law

Another issue met during the modelling process was unloading. Although, only monotonic
loading conditions were considered, unloading was also induced due to opening and closure
of existing cracks. For that reason, an appropriate history variable was introduced, in which
the maximum previously converged strain state reached in any cracked point was 'recorded’.
In that sense, in case of unloading of a cracked section, the decrease in stress would follow
the secant stiffness curve from the maximum strain state point to the origin of the coordinate
system. If reloading takes place, then the stress increase would follow the secant stiffness line,
until 'meeting’ the basic softening curve at the maximum previously converged strain state.
The discussion just outlined, expressed in total strain, is shown schematically in Figure 3.6.

Stress

Strain

Figure 3.6: Damage model
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In more detail, in the iterative scheme within each load increment, the crack-width, w,
in a cracked integration point was compared to the relevant maximum previously converged
crack-width stored in the history variable, w,, at the same point. The appropriate value for
the concrete tensile stress, o., and the tangent stiffness, do./0w, at the current iterative step
were then determined by (3.89) and (3.90), as

o (wp)
Oelwan) = w, L S (3.89)
OH (wn+1) ; Wpgl >= Wp
do OH(wp) ;o Wngr < Wp
. Wp (3.90)
3111 80H .
%(wnﬂ) y Wpy1 >= Wp

where, oy, was determined by the Hordjik curve defined by (3.87) and shown in Figure 3.5,
and, the subscript, n 4+ 1, denotes the current iterative step.

Next, the history variable in any cracked point was updated with the condition (3.91).
Namely, the maximum value of the crack-width, w, between the converged value of w in the
current iterative step and the one previously stored in the pertinent position’ of the history
variable.

Wpnt1 = Mz (Wpi1, Wpp) (3.91)

Regarding the response of concrete in compression, the fully non-linear law described in [3]
was adopted (Figure 3.7), until the compressive strain where the curve exhibits a peak. The
curve is given by

O-C k.rn_ng
U+ k-2 ¢ c 3.92
fem <1+(k—2).77) for |lec| < lleall (3.92)
where, 7 = c./cu
k = E,/E,

o. 18 the uni-axial concrete stress

fem 1s the mean compressive strength

€. is the strain at the mean compressive strength
E, is the secant modulus at ¢, =0

E.; is the mean modulus of elasticity

k is the plasticity number
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Stress, [MPa]

0 . . . . . . .
0 -0.0005 -0.001 -0.0015 -0.002 —0.0025 —0.003 -0.0035
Strain

Figure 3.7: Constitutive law of concrete in compression

After the peak, at the compressive softening region, as is the case for the tension softening,
the area under the curve, or else, the fracture energy in compression should be scaled in order to
avoid objectivity and mesh-dependence of the results upon mesh refinement. For that purpose,
the method described in [28] was adopted. The principle for such a procedure can be seen in
Figure 3.8. The parameter, h, accounts for the element length, while the fracture energy in
compression was taken as G, = 250G .

GOc

fomp--oqomoe
. k
I

Figure 3.8: Mesh-independent softening

The complete uni-axial constitutive model used for concrete can be seen in Figure 3.9.

Stress, [MPa]

-6 -5 -4 -3 -2 -1 0
Strain, [10’3]

Figure 3.9: Constitutive law of concrete
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3.4.2 Reinforcement steel

As regards the steel bars, a 'simple’ elasto-plastic law was occupied, as shown in Figure 3.10.
The curve is fully defined by the Young’s modulus Es = 200G Pa, which is a rather standard
value for reinforcement steel, and the tensile yield strength of f, = 500G Pa .

550
500
450
400

= 350+

o

=, 300f

g

g 2501

9 200+
150}
100+
50t

0 . . . . . . )
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Strain

Figure 3.10: Elasto-plastic constitutive law of reinforcement steel

3.4.3 Bond-slip

Much discussion took place during the modelling phase regarding the bond-slip law that should

be inserted in the analysis. The ’classic’ Eligehausen’s law was considered to be the most

suitable, as it is also recommended in [3]. The graph of the model is drawn in Figure 3.11.
Four distinct regions can be recognized in the graph, which are described by (3.93).

(0%
S
Tmaz (S_) ) 0 S S S S1
1
T(s)=q " o seEe (3.93)
S~ maz T s + [Tf——f mam} , 89 <8< s3
S3 — S9 53 — S2
\ Tf 9 S Z 53

where,  Tpazr = 2.5V fem [M Pal] (fem in M Pa)
Ty = 0.47‘maz

s; = 0.00lm
so = 0.00bm
s3 = 0.009m
a=04
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Stress, [MPa]
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Figure 3.11: Constitutive law of bond-slip between the concrete and reinforcement

Details on the values of Tynaz, Tf,51, S2, S3 and a can be found in [3]. According to (3.93),
Eligehausen’s law exhibits infinite initial stiffness, which comprised a source of computational
difficulties upon using the inverse tangent stiffness matrix at the first step of the incremen-
tal/iterative procedure (see also Section 3.5). For that reason, the actual initial exponential
part of the model was approximated by a linear segment. The influence of the stiffness of the
initial linear segment on the crack widths and the crack pattern is proposed as a parametric
study for further work by the authors.
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3.5 Numerical schemes

3.5.1 Newton’s method

The reduced system of Ng,.. non-linear equations described symbolically in (3.51) can be
solved iteratively, employing numerous methods. In the present, the widely used Newton’s
method was chosen. A schematic description of the iterative process within each load step is
given in Figure 3.12, where, )\, is used to denote the applied load, and, a, accounts for the
displacements vector.

As a start, for a certain load step (for convenience, the initial step, n,, can be assumed
here), an appropriate guess, ago), of the displacements field is made. Note that, a choice of the
initial guess not close enough to the expected true solution, might lead to difficult or even lack

of convergence. Considering a small change in, a(o), namely, Aagfr)l, and setting the linearized

residual at, a,§°) + Aaz(-i)l, equal to zero in (3.84), a closer value towards the desired solution is
most probably captured, after updating the displacements vector, a§°), by the change, Aaz(.i)l.
The solution is assumed that has been reached when the 'norm’ of the residual evaluated from

(3.51) tends to 'zero’. In matrix form, it can be written
K(a;p)Aaif) p = —g(ai) (3.94)

where, the subscript, 4, or, i+1, denote the number of the iterative step, the superscript, (o),
accounts for the number of the incremental step and, F, symbolizes the free/unconstrained
degrees of freedom. According to the Newton’s method , the next iterative step, i+1, is taken
as the displacements vector from the previous step, agf’}, plus the change, Aagfr)l’ F, calculated

from the previous step, 4, from (3.94) , namely

agi)LF = ag)} + Aagfr)l’F (3.95)

g(a,h)

Figure 3.12: Newton iterative procedure
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3.5.2 Incremental methods

The iterative procedure described at Section 3.5.1 is repeated until convergence at the current
iterative step is reached. The convergence criterion used was that ||g|| should be less than
a predefined tolerance. So, for a certain load step, the solution vector has been obtained
following Newton’s method. What comes next, is the incremental process. In other words,
to calculate the new displacements vector when adding one load step, ni, to the previous

converged load step, n,. For that purpose, the starting 'guessed’ displacements vector, ag},

would be the converged solution of the previous step, afﬂ,, where, n, denotes the number of
iterations needed for the desired tolerance to be met in the previous step, n,.

It can be stated that three major categories of incremental methods exist, the load-control,
the displacement-control and the arc-length-control method. All of them were applied in the
present thesis, in order for the numerical issues that arose to be 'tackled’. As an example,
for the displacement-control method to be realized at a three-point bending problem, it is
enough to prescribe, apart from the appropriate simple support essential and natural boundary
conditions, also the deflection at the position where the point load is applied (Figure 3.13).
That would generate a reaction force at this point, which would account for the applied point
load.

Figure 3.13: Displacement-control method

And if most analysts are more familiar with the load-control and the displacement-control
method, then it is interesting to follow the arc-length-control method within one incremental
step, as shown in principle in Figure 3.14, where, A, is a load multiplier and, a, denotes the
displacements vector. Details on the application of the latter method are given in [4]. In short,
the arc-length-control method, in a usual Newton iterative step, makes use of a constraint
equation that is employed so as by defining an arc-length, to be able to control both the load
and the displacements increment. The method assumes that the external force vector is applied
in increments, which are defined by a load multiplier, A, according to

femt()‘) = fo + )\f (396)

where, f, is a reference load vector, )\, is the load parameter and, f,, is a constant external
load. Thus, the out-of-balance force vector can be written as

gla,\) = fine(a) — fo — \f (3.97)

At this point, as was shown for a typical Newton’s iterative step at Section 3.5.2, the k-st
incremental step, (agk), )\l(»k)), can be assumed. Then, considering a small change in, (agk), )\Ek)),
namely, (5a§f_)1, 5)\Ei)i), and evaluating the residual from (3.97) at that point employing Taylor
series, it is obtained

g(a@® +5aP AP 1A = fine(@?) — fo — AP F+ K(a)sa® — AP (3.98)

7
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Setting (3.98) equal to 'zero’ the following relationship is derived
K(a{")sa®) = — fine (@) + fo + AP F 1+ 008 (3.99)

In (3.98) and (3.99), as well as, in the equations that are to follow, the subscripts, i, or, i + 1,
are used to denote the number of the iterative step, while the superscript, (k), symbolizes the
number of the incremental step. Furthermore, a separation of, 50,5?1, takes place as

K<a§k))5§’v?+1 = —fit(@P) 4 fo 2O f (3.100)
k k .
K(a’z( ))5T,1?+1 = f
where (k) (k) (k) (k)
k
0a; "y = 0411 + 0N 0710 (3.101)

Through the additional/constraint equation, the solution for the incremental step, k, can be
found as the point where the arc defined by (3.101) intersects the out-of-balance force vector,
g, and, simultaneously, the norm of the out-of-balance force vector becomes lower than the
predefined tolerance. The pertinent equation has the form

Geon(Aa, AN) = AaTCAa + AN fTf — AI? (3.102)

where
Aa®) = a® — gk-1 (3.103)
AN = \®) _ A=) (3.104)

while, C, and, ¢, are scaling factors, and, Al, is the prescribed arc-length. Employing the same
procedure as in (3.98), (3.102) becomes

geon(Da® + 50 AP+ 6AY,) = (28a €)X, | + (22ANP FT£)5AY, +

T 2
+Aa® cAal® + AANPTFTE — AP (3.105)
Then, substituting (3.101) into (3.105) and setting the latter equation equal to 'zero’, results in

—28a®" 6., — Aa CAa® — AN FTE 1 AP

A, =
1 )T ~ (k) (k) pT
20Aa;”" Copyyy + 220N fT f

(3.106)

38



constraint equation

ga,A)

g(a)
gn(an,)m)
(%)

gi(aphy)

Zo(ag,ho)

Figure 3.14: Arc-length-control method

3.5.3 Numerical integration

From (3.40), (3.41) and (3.42), it can be observed that evaluation of integrals of the form

/
I, /f o(z,z)dA =10 " f(z)o(x, z)dz= (3.107)
—h/2
b
Lo = /pf 9 (2, 2)dA = b sz()ga( 2)dz (3.108)

is needed along the height, where, h, is the height, and, b, is the width of the cross-section, z
and x, are the axes along the height and the length of the elements, respectively. Also, from
(3.61)-(3.82) it can be observed that evaluation of integrals of the form

= /LBT(x)a(x, 2)B(z)dx (3.109)

L — /L BT(x)g—Z(x,z)B(x)da; (3.110)

is needed over the length of the finite elements, where the B-matrices were defined in the FE-

formulation of the problem, and, €, denotes the normal strains of the beam. For the evaluation

of the pertinent integrals, where, usually, it is difficult to obtain closed-form analytical solutions,

suitable numerical methods need to be employed. After performing the transformation from
€ [=h/2,h/2] to £ € [-1,1], (3.107) and (3.108) reform to

bh (1 h bh — h
I=— ,=&)dE = — Lig(x, =& 3.111
7 | 9w 58dE =3 ;w,gm 5&) (3.111)
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while, from the transformation from z € [0, L] to n € [—1, 1], (3.109) and (3.110) are restated

as
L ! n+1 L& ;i + 1

I, =— h| —— dn = — h 112

S TRIC DR IS BT

-1

In (3.111) and (3.112), w,;, w,;, are the integration weights and, &;, n;, are the integration
points.

In the present, it is understood that due to the non-linear response of the outer-most fibers
of concrete in tension and compression (see Section 3.4 for further details), there was a necessity
of an appropriate quadrature over the height of the cross-section, so as to capture satisfactorily
as many non-linearities included in the model as possible. A Gauss-Lobatto, a Gauss-Legendre
and a simple trapezoidal scheme were the methods this study focused mostly in. The advantage
with the Lobatto quadrature is the fact that it accounts also for the outer-most points of the
cross-section, where most of the non-linearities of the model exist. However, the drawback
comparing to the Gauss scheme, is that the latter can integrate with n integration points, a
polynomial of 2n — 1 degree exactly, while the relevant Lobatto number is 2n — 3. Thus, the
Gauss scheme requires, in general, less integration points, a fact that makes it computationally
more efficient. The pertinent integration points and the respective weights are depicted in
Figure 3.15.

Pertaining to the selected integration schemes along the length of the i-st element, a Newton-
Cotes, a Gauss-Legendre and the user friendly trapezoidal quadrature were employed. The
number of integration points was chosen as the least possible, so as to describe bending, which
uses third order polynomial shape functions. However, due to other parameters, such as the
material non-linearities and the bond-slip effect, it was not that straightforward to decide upon
the number of integration points that would be enough in that direction, just by considering
the bending criterion. The general 'trend’” was, though, to choose the least possible integration
points, while increasing the number of elements in order to achieve convergence and the desired
level of accuracy.

0.2r O Trapezoidal
*  Lobatto
Gauss

*—Oo—L* I I I

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Figure 3.15: Integration weights and points
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3.5.4 Step control

The appropriate choice of step size was crucial in order to achieve representative results. A
factor that influenced the step size was the stiffness of the bond-slip constitutive model. Like
discussed in Section 3.4.3 for Eligehausen’s law, shown in Figure 3.11, a linear branch had to
be taken for the first part of the curve from zero slip to a prescribed value, a percentage of
s1 for example. The lower this percentage was taken the stiffer the slip-stress relation and
consequently the step length had to be reduced, see Figure 3.16.

=
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n 4r ,
p
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1
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0 0.1 0.2 0.3 0.4
Slip, [mm]

Figure 3.16: Initial stiffness change when larger portion of the bond-slip law is taken as linear
branch

Other influence on the step size was the scaling of the Hordjik curve. The critical crack
opening given by (3.88) is influenced by the tensile strength, f;, and the fracture energy, Gp.
The tensile strength is relatively easy to measure and often predefined for concrete mixtures.
The fracture energy on the other hand has a wider range, from around 50 N/m [33] to 140
N/m [9] for concrete with a mean compressive strength of 36 MPa. The value taken for the
fracture energy had significant influence on the Hordjik curve, as the lower the fracture energy
the steeper the branch of the tensile softening curve. It was observed that when the curve was
less brittle, i.e. the change in stiffness not as abrupt after the cracking strain was reached,
the cracks had a tendency to distribute rather than localizing. This could be avoided to some
extent by reducing the step size.

The third large influence on the step size was the number of elements. A crack is considered
to localize in one element. To make the problem mesh independent the descending branch
was scaled with element length so that the area under the tensile part of the stress-strain
constitutive model is always G;/h, with h being the element length. This had the same
influence as discussed in the previous paragraph for the fracture energy, i.e. if the number of
elements was increased the step had to be reduced.

The consequences of taking a too large step were mainly that too many Gauss-points would
go from being uncracked to cracked especially when the solution converged easily. It was
observed that this fact produced problems later on, resulting in non-converging displacement
steps. There was also another drawback related to the damage model; as mentioned in Section
3.4 a damage model was applied to the tensile constitutive model. The damage strain variable
would take larger value than the one returned for a smaller step, giving lower secant stiffness
when the strain would be reduced in the i-st Gauss-point.
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3.6 Strain localization and mesh dependency

At Section 3.4, the tensile softening law was depicted for concrete (Figure 3.18). As it is
described, among numerous sources, in [17] and [1], in order to avoid ill-posedeness of the
results upon mesh refinement, the softening law expressed in (3.87) in terms of the crack width,
w,, should be divided by the area where the cracks are expected to localize. In that way, it is
accomplished that the same amount of energy is dissipated by a crack that is formed /smeared
over the element length of a coarse mesh and another crack that is localizing over the element
length of a finer mesh. Then, exploiting the fact that the real, imperfect specimen would crack
in a finite region where the section is weaker, it is said that the pertinent region in the model
would be the length of one element of an adequately fine mesh.

Schematically (Figure 3.17), starting from the softening law of the form, oy = f(w), the
pertinent diagram is divided by the crack band-width, A. Doing so, two goals are accomplished.
Firstly, a stress-strain softening law is obtained, as well as, the desired mesh-independence is
realized. Then, it can be understood that by that division, the softening diagram is attributed
to the area specified by h, namely the part of the continuum where the crack is expected to
localize, so local damage was the expected response of the developed model. Next, employing
the separation of the total strain into an elastic, ¢, and an inelastic, ¢, part (that accounts for
fracture), according to the smeared crack approach, the concluding stress-strain law of Figure
3.17 is at hand.

Oy Oy
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e e e @
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fif— fi fof
+ — g &
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€ F/ Ec e
WC/h Wc/h

Figure 3.17: Mesh-independent stress-strain law (inspired by [17])

After scaling the softening law with the crack band-width, then the form of the curve in the
post-cracking region acquires a certain dependence on that parameter. Since, h, was chosen as
the element length, it is straight forward to deduce that the finer the mesh, the lower the crack
band-width, h. In Figure 3.18 the aforementioned relation is depicted. During the modelling
phase, it was observed that the expected localization of fracture in concrete was obtained more
difficult as the chosen mesh was finer. In particular, in order to accomplish the goal of localized
cracking with a finer mesh, the incremental step size should be decreased significantly.
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Figure 3.18: Constitutive law of concrete

A similar effect on the stress softening law and in the modelling process, as it was described
for the crack band-width, h, was observed by the value of the fracture energy, G, that should
be inserted in the model. Many sources and methods are proposed in literature for the proper
selection of that parameter, as the pertinent choice is related to many issues of material
uncertainties and specimens’ size effects. The reader is referred to [27] and [37] for more
information. The actual number selected in the present thesis was that of Gp = 76, [N/m].

The actual shape of the stress-strain law for concrete after scaling it with the element length,
for varying fracture energy can be seen in Figure 3.19. As it was noted for the crack band-width
for finer meshes, a higher value of fracture energy changes significantly the overall shape of the
concrete tensile softening law. Namely, for Gr = 76, [N/m], the change in stress in the softening
region does not take place as abruptly as is the case for example when G = 15, [N/m]. This
is the reason why it was more difficult to obtain the expected localized fracture of concrete for
the higher value of fracture energy. Instead, in order to capture local damage, the incremental
step had to be reduced to very small values.
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Figure 3.19: Tensile law for varying fracture energy, [N = 100 elements]

Furthermore, a bifurcation analysis was performed using the developed model on a reinforced
concrete beam subjected to "four-point bending’, with higher fracture energy (Gg = 76, [N/m)),
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which if an adequately small incremental step was not chosen, the resulting load-deflection
curve would exhibit distributed, rather than localized cracking. If a bifurcation point would
exist at the point on the load-deflection diagram where the first localized crack should appear,
then one could conclude that the system is following an unstable equilibrium path, since
from ’reality’ it is known for the specific four-point bending’ problem that the path which
results in localization is the one which releases more energy, the stable one. Then, via the
arc-length-control method and an appropriate guess, it would be possible to enforce the solution
towards the 'real’ response which involves localization. However, after checking the lowest
eigenvalues of the tangent stiffness matrix right before the possible critical points and after
those, no change of sign was observed. Thus, the existence of bifurcation points was excluded,
a fact that led to the conclusion that it was most probably the value of the fracture energy
and the crack band-width, which governed the difficulty of localized cracking to take place.

The aforementioned difficulties in obtaining the expected localized fracture in concrete were
overcome, mainly, by using a weaker middle element (i.e. the most stressed one upon adding
the self-weight in the applications examined in Chapter 4). That was accomplished by inserting
lower tensile strength and fracture energy for the middle element, which was the one where the
first localized crack was expected to form. Another way to trigger’ localization was by updating
the history variable (see also Section 3.4.1 for more details on the history variable) using values
for the crack width that resulted from ’controlled” non-converged Newton’s iterative steps, only
in critical points, i.e. when cracks were about to form. The term ’controlled’ refers to the
fact that out of all the non-converged Newton’s iterative steps that appeared within a critical
incremental step, only the values for the crack width from the iterative step with the least
divergence were stored in the history variable. That measure had a perturbation effect on the
stiffness of the most stressed part of the beam, where the first crack was to form, contributing
in obtaining the first localized crack, using less integration points than it would be necessary
to use if the history variable was updated only by converged Newton’s iterative steps.
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3.7 Description and flowchart of the program
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Figure 3.20: Flowchart showing the algorithm for the reinforced concrete model accounting for
the bond-slip

Figure 3.20 shows in schematic way the basic steps of the developed beam model. After the
indata, the geometry and material parameters of the concrete and steel were defined and a
topology matrix was established. The topology matrix contains the information on the degrees
of freedom belonging to each element. This is used to assemble the global vectors and matrices.

The method used in the model is displacement control. This method is easy to use when
dealing with point loads. For that case nodes are locked under the loads and displaced with
a predefined step. The solution is then iterated for the displacement vector, u, where the
converged vector from the previous step taken as an input for the new iteration and the nodes
under the point loads displaced with the predefined step. The tangent stiffness matrix, internal,
external (only if distributed load is also applied) and out of balance force vector are calculated.
If the error, which is the norm of the out of balance force vector, is smaller than the tolerance
set in the beginning, next iteration is performed. Otherwise the free degrees of freedom in the
displacement vector are updated according to the Newton iteration scheme but if and only if
the error is smaller than the previous error from the same step. If this criterion is not met
the step is halved. The load corresponding to each converged solution is taken as the reaction
forces in the internal force vector.
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The program has also a feature, in which if convergence is not obtained after halving the
step for a predefined number of times the program is forced to try the next step with the latest
converged displacement vector.
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4 FEvaluation and comparison with experiments
and Eurocode

4.1 Experiments from literature

In the present chapter, methods that will be presented in Section 4.2 are used to calculate beams
of the same length, cross-section and material properties as beams tested in the laboratory
by Gilbert et al. [12]. In the pertinent study, twelve specimens were cast (six beams and six
slabs). With regard to the beams, three different cross-sections were used.

For each cross-section, two identical specimens were made and tested at different concrete
ages. The dimensions and the cross-sections of the beams are given in Figure 4.1 and Table
4.1. The material data for the three different configurations of the beams are shown in Table
4.2. Since the values for the steel properties were not given in the experimental results, they
were assumed; the characteristic tensile strength, f,; = 500 M Pa, and the elastic modulus,
E, =200 GPa. The concrete properties were interpolated from measured values for appropriate
ages. This is reasonable since the change in properties is small. The uniaxial tensile strength
was obtained from tensile splitting tests, the used relation is given in Section 4.2.2.

1167 P 1167 P 1167 250
v ¥
250 - o
/ 2 3 4 5 6 7 //9 10 l \/ R =
T (o]
3500 L
nd16

Figure 4.1: Beams test configuration with dimensions, varying parameters and cross section
layout. Test setup from Gilbert et al. [12]

Table 4.1: Values of varying parameters of the beams

h [mm] ¢ [mm] n [bars]
B1 348 40 2
B2 333 25 2

Table 4.2: Material properties of the tested beams, the numbers in bold represent measured
values, the other are interpolated values.

Age [days] 27 28 42 45 48 93 54 25 63 68

fem [MPa]  36.0 36.3 36.5 36.6 36.6 37.1 37.2 37.3 39.1 40.1
fem [MPa]  3.05 3.06 3.19 322 3.25 330 331 331 3.39 3.44
E., |GPa] 26.9 270 277 278 280 282 282 283 287 28.9

47



4.2 Analytical calculations

To verify the developed FEM beam model simple analytical calculations were conducted. They
were then compared to experimental results. Furthermore experimental results were used for
comparison.

4.2.1 Mid span deflection

Euler-Bernoulli beam theory was used to calculate the moment and deflection resulting from
bending.
2
dw_ M (4.1)
dz? EIl
The beams were all statically determinate and symmetric, see Figure 4.1. Therefore the
sectional forces can be determined by equilibrium equations. This means that globally there is
only one solution that fulfills equilibrium, so when the beam cracks there will only be force
redistribution locally within the beam cross section. When the beam cracks it looses stiffness

gradually until fully cracked|7].
M.,
1= (1- (57¢5)) -

El(z) = ((x)EI; + (1 = ((z)) Ely (4.3)

where ( is a distribution coefficient
EI;  is stiffness of the uncracked section
El;; s stiffness of the fully cracked section

The mid point deflection is given by the following equation [7].
12 12
f(l/2) = l/2/ k(z)dr — / k(z)(l/2 — x)dx (4.4)
0 0

where K is the curvature given by Equation (4.1)
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4.2.2 Tensile strength

When calculating the crack widths the uniaxial tensile strength, f.., is needed. In Section
4.1 test results are compared to the EC2 model for crack widths. In the experimental results
presented in Gilbert et al.[12] the concrete has been tested by using tensile splitting test. The
FIB model code from 2010 [9] recommends that the uniaxial tensile strength is determined
from splitting test as

fctm - Asp : fct,sp (45)

where A,, is a conversion factor, FIB Model code suggests 1.0
fet.sp 18 the mean splitting tensile strength

4.2.3 Steel stress

The steel stress o, in a beam in state II, fully cracked was calculated using Naviers formula for
bending stress

M

Iy

(d — ZEH) Qe (46)

Os

where M is the moment in the section

d s the distance from the top edge down to the gravity center
of reinforcement

xy is the depth of compressive zone in the reinforced concrete
beam in state II

I;; is the second moment of area of the fully cracked cross section
in state II

o, is the ratio E,/FE.

The second moment of area was calculated as

I[[ = — —|—ASC¥C (d—CL’]])Q

and the depth of the concrete compressive zone in state II, z;, without compressive
reinforcement and linear stress-strain relation can be solved from the following second order
polynomial
b2

T—As'ac(d—.x]])zo
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4.2.4 Crack widths

The characteristic crack width was calculated according to the Eurocode standard
Wy = Sr,maw(esm - 5cm) (47)

where S, 4, 1S the maximum crack spacing
Esm is the mean strain in the reinforcement
Eem is the mean strain in the concrete between cracks

EC 2 gives an empirical expression to calculate the difference between the mean reinforcement
and concrete strain.

fC m
Os — ktp tff (1 + Qeppesy) o
P,€ S
Eem — Eem = > 0.6— 4.8
B, E. (4.8)
where oy is the tensile stress in the cracked section

fetm  1s the mean uniaxial tensile strength
Qe is the ratio Fy/E,

A
p b
P Ay
Acepp  1s the effective tension concrete area
ky is a load duration factor, 0.6 is used for short term

For a beam in pure bending and with high bond bars the maximum crack spacing can be
assumed from EC2

0.17¢
Ppeff

Srmaz = 3.4¢ + (4.9)

where ¢ is the concrete cover
¢ the reinforcement bar diameter
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4.3 Analysis with the developed beam model

In the analysis with the developed model the dead weight of the beam was applied first, in one
step using load control. After that the developed model runs with displacement control of the
two nodes under the point loads, as seen in Figure 4.1. Since the nodes have to be positioned
directly under the loads and an element in the middle is wanted the choice of number of
elements is restricted to 6n+3. This is a simply supported beam and the boundary conditions
are the following

Essential or Dirichlet boundary conditions :
i) wu=0 at =0

ii) w=0 at x=0 and z=1L
Natural or Neumann boundary conditions :
i) M=0 at x=0 and z=1

ii) N=0 at x=1L

iii) N;=0 at x=0 and =1

The input values are shown in Table 4.3

Table 4.3: Input values for the reinforced concrete model

Concrete B1 and B2
Height of section 348 and 333 mm
Width of section 250 mm

28 and 27.7 GPa
36.6 and 37.5 MPa
3.25 and 3.3 MPa

Young’s Modulus
Compressive strength
Tensile strength

Tension softening Hordjik
Compressive law Figure 3.7
Fracture energy 76 N/m
Crack approach Smeared crack
Crack band width Ly

Steel

Effective depth 300 mm
Yield strength 500 MPa
Young’s modulus 200 GPa
Total steel area 400 mm?
Model specification

Number of elements 75

Height integration scheme Lobatto
Number of Lobatto points 15

Length integration scheme Gauss
Number of Gauss points 3
Maximum step length 2-107"m
Selfweight 1.5 kN/m
Part of bond-slip linear 20%
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In the bond-slip relation, presented in Section 3.4, the stiffness in the beginning is extremely
high and does not work with the developed model. The stiffness has to be adapted so that the
first 20% of s; are taken as a linear branch and the rest of the curve is unchanged.

Since the four point bending case has a large constant moment area, a uniformly distributed
load, representing the selfweight, was added to the beam in order to initiate the cracking in
the middle element.

A weaker middle element was used in order to initiate the cracking. The parameters that
were different in that element were that the tensile strength was 2.75 MPa instead of 3.25 MPa,
and the fracture energy was 15 N/m instead of 76 N/m. These values were chosen as the ones
that gave cracking and localization in the middle element for the four point bending case.
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4.4 Comparison of results

In section 4.2.4 the Eurocode method for calculating crack widths was presented. Equation
(4.7) gives the upper characteristic crack width that means that 95% of cracks should be
smaller than the values given by the equation. In the experiments, Gilbert et al. [12], all the
cracks were measured. The maximum crack opening was compared to the Eurocode model, see
Figures 4.2 and 4.4.

4.4.1 Stiffness adaptation method

The stiffness adaptation method was adopted to compare with the load-deflection diagram
retrieved from the developed model. Stiffness adaptation is a Finite Element method where the
stiffness is changed if a element cracks, i.e. when a element cracks it goes from being uncracked,
in state I, to being fully cracked, in state II. The element is determined to be cracked or not
from the average moment in each element and if that is higher than the cracking moment. It
is obvious that when using this method, the tension stiffening or the influence of the bond slip
are not considered in the development of crack and crack positions.

4.4.2 Diana analysis

Models of the beams were set up using the commercial FE program Diana, where all the
non-linearities of the material were considered. Classic beam elements, LTBEN, were used
where both translational degrees of freedom were locked at the left boundary and on the right
side the vertical translation was locked. The beam consisted of 11 nodes and 10 elements.
Other input values and parameters are specified in Table 4.4. No bond slip was considered, i.e.
the reinforcement was embedded with full interaction between concrete and steel. Therefore
the crack band width was choosen as the expected crack spacing calculated from (4.9).

Table 4.4: Diana input for the non-linear FE-analysis

Concrete B1 and B2
Height of section 348 and 333 mm
Width of section 250 mm

Young’s Modulus 28 and 27.7 GPa
Compressive strength 36.6 and 37.5 MPa
Tensile strength 3.25 and 3.3 MPa
Tension softening Hordjik
Compressive law Thoren

Fracture energy 76 N/m

Crack approach Smeared crack
Crack band width 0.176 m

Steel

Effective depth 300 mm

Yield strength 500 MPa

Young’s modulus 200 GPa

Yield criterion Von Mises

Total steel area 400 mm?
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4.4.3 Global deflection and crack widths
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Figure 4.2: Beam B1, with EC2 crack model Figure 4.3: Load deflection curves with differ-
and experimental results from Gilbert et al. [12]  ent analysis for beam B1
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Figure 4.4: Beam B2, with EC2 crack model Figure 4.5: Load deflection curves with differ-
and experimental results from Gilbert et al. [12]  ent analysis for beam B2

The results from the developed model can be seen in Figures 4.2 to 4.5. Apart from the
regions of the graphs which indicate the occurrence of the first and the subsequent cracks, the
values in the history variable (see Section 3.4.1 for the pertinent discussion) where updated
keeping the values for the crack opening that resulted only from converged Newton’s steps.
However, in those regions where cracking took place, as another means to trigger localization,
also some ’controlled’ values of the crack opening resulted from non-converged Newton’s steps
were used to update the history variable.

In the load deflection relation presented in Figure 4.3 and 4.5, cracking in the test results
curve started for lower applied load than the calculated. The difference can be partly due the
fact that the test results curves, that were taken from Gilbert et al. [12], had to be taken
graphically from the report, which might have created errors. This was especially the case for
low load and deflections.
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For the analytical calculations, stiffness adaptation, and the developed model, failure was
assumed to take place when the stress in the reinforcement reached yielding.

The developed model cracked for a lower load than the analytical curve, the stiffness
adaptation method and the model ’constructed’ in Diana, since a weaker middle element was
used to initiate cracking. After the cracking, the curve shows good correlation with the other
methods. The crack widths from the developed model showed substantially larger crack widths,
seen in Figure 4.2 and 4.4 especially when only one crack had formed, from the cracking load to
roughly 50 kN, like mentioned before this is due to the reduction of fracture energy mentioned
in Section 4.3. This difference reduces as the cracking progresses and the second and third
cracks localize.

4.4.4 Crack pattern
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Figure 4.6: Crack pattern of beam B2 with the load deflection curve on the left

The crack patterns for different loads can be seen in Figure 4.6. Arrows point to what load
level, on the load-deflection curve, each pattern corresponds to. The cracks in the constant
moment region were always well defined in all steps, while under the loads, i.e. where cracks 2
and 3 form, the cracks tended to go from localized to distributed cracks as the load increased.
A second thing worth to note about crack pattern is the cracking sequence, especially that
cracks localized under the concentrated loads rather than in the positions of crack 4 and 5.
It was observed that where cracks 4 and 5 localize, those elements the highest strain of all
the uncracked elements and the next pair of cracks expected there. However due to some
numerical difficulties under the point loads and the fact that some limited values of the crack
opening that resulted from non-converged Newton’s iterative steps were used in the history
variable (see also Section 3.6 for more details on the non-converged Newton’s iterative steps),
the cracking sequence is rather peculiar as presented in Figure 4.6.
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5 Conclusions and suggestions for further work

In the present thesis, a 1D finite element model was developed, that is able to describe the
response of a reinforced concrete beam that undergoes local damage, while accounting also
for the relative slip at the steel/concrete interface. Three non-linear constitutive laws were
implemented for the materials. A softening law was used to account for fracture in concrete; to
obtain objectivity of the results upon mesh refinement, it was scaled with the element length. A
simple elasto-plastic law was inserted for steel and Eligehausen’s law was used for the bond-slip.
Newton’s iterative scheme was chosen for the solution of the non-linear system of equations
obtained from the FE-formulation of the problem. The pertinent equations were developed for
the case of a reinforced concrete beam subjected to transverse distributed loading. Pertaining
to the incremental procedures, load-control, displacement-control, arc-length-control, as well
as combinations between the aforementioned methods were applied in order to obtain results
overcoming numerical problems of various kinds.

The developed model was used in non-linear FE analysis of reinforced concrete beams
subjected to 'four-point bending’. Several observations were made: First, initiation of cracking
was a crucial parameter in the model. It was found that the combination of a higher value of
fracture energy, together with the scaling of the stress softening diagram of concrete with the
element length resulted in a less steep softening curve. Secondly, it was observed that the less
steep the softening curve, the more difficult was for the first localized crack to appear. Only
by ’triggering’ localization, the first concentrated crack would form. Ways for such ’triggering’
were to reduce the tensile strength and the fracture energy of the middle element. In that way,
a more brittle behaviour in that element was forced.

Furthermore, a certain dependence of the results obtained from the developed model on the
chosen incremental step size was observed. This effect was attributed to the influence of the
history variable introduced in order to account for the unloading of the beam upon opening
and closure of existing cracks. A larger step size would lead more integration points to pass
beyond the cracking strain. These points would, then, upon unloading, instead of following the
linear branch of the stress-strain law, unload with the secant stiffness from the point reached
in the softening law towards the origin of the coordinate system.

A rather unexpected phenomenon was captured during the analysis for the ’four-point
bending’ problem. Namely, the first cracking would always tend to appear under the point
loads, instead of forming at the middle element, which was the most stressed one, as the
self-weight was included. Then, depending on where the first crack/cracks would appear, the
sequence of appearance of the next cracks was also affected.

Some comments could also be stated upon the stiffness of the implemented bond-slip
relation, Fligehausen’s law in particular. The first one is related to the initial infinite stiffness
of the pertinent exponential law. Upon using the inverse of the tangent stiffness matrix in
the Newton’s iterative scheme, the infinite stiffness of the initial branch of Eligehausen’s law
resulted in an non-invertible matrix. Even when trespassing the stiffness value evaluated for
'zero’ slip, the stiffness of the constitutive model is so high, that in order to be implemented, a
very low step for the slip should be inserted in the displacements field so as to avoid divergence
of the iterative procedure. In order to overcome these objective obstacles pertaining to the
bond-slip law, it was decided to use a linear approximation of the initial part of the exponential
curve, stiff enough to allow for the expected number of cracks to appear for each specific model
application. However, the extent of such an initial branch has a significant influence on the
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crack widths and the crack spacing.

As exposed in the previous discussion, many parameters affected the resulting scheme,
whether it is the load-deflection response, or the crack widths and crack patterns, as a result
of the material non-linearities considered in the developed model. Therefore further work is
needed in order to improve the performance of the model, as well as, to broaden its applicability,
if possible. A suggestion of profound importance for future work is regarded to be the study
on 'triggering’ cracking consistently, i.e. updating the history variable keeping the values of
the crack width that result only from converged Newton’s iterative steps. Furthermore, a
parametric study on the effect of the value of the fracture energy on the overall response of the
system is considered to be essential.

Also, the influence of the stiffness of the initial linear approximation of the FEligehausen’s
law is a parameter that is worth investigating further, especially the effect that it has on the
crack widths and crack pattern. Referring to Eligehausen’s law, it should be noted that besides
the difficulties in its numerical application, there is very limited guidance in the literature to
overcome the obstacles just described.

Another interesting investigation is regarded the study upon the phenomenon described
earlier regarding the occurrence of the first crack/s under the point loads at the four-point
bending’ problem. It is still not clear why the first crack in the pertinent problem would
always tend to form under the point loads instead of appearing in the middle element where
the stress had a maximum provided that the self-weight was included. The pertinent obstacle
in the analyses performed in the present study was attributed mainly to numerical issues’.
Possible ways to ’tackle’ them, as a proposed future work, are considered to be the study
of half the beam, exploiting symmetry appropriately, as well as, increasing the integration
points especially over the cross-sectional height and, finally, to perform the analyses with an
adequately reduced step size.

Finally, it was observed that the number of integration points along the height of the cross-
section, as well as, over the element length had significant influence on whether convergence
would be achieved and on the overall performance of the model. Therefore, a study on the
number of integration points in both directions is considered of great importance for future
work.
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Appendix

$Main file for the solution of the four—point

[)

$bending problem employing linear constitutive

$models for the materials with displacement control

o oo oP

clear all
close all
clc

Created by: Dimosthenis Floros
Olafur Agust Ingason

%$Concrete cross—section definition

.333;
.25;
.35
.04;

OQ.tl)l"D"

Il
o o o o

$Cross—sectional height [m]
%$Cross—sectional width [m]

%$Distance from top to reinforcement [m]
%$Concrete cover of reinforcement [m]

%$Steel bar cross—section definition

phi=0.016;
n_bars=2;
As_i=pixphi~2/4;
z_i=h/2—d;

s_i=pix*phi;

%$Diameter of the i—st layer of reinforcement [m]
$Number of rebars at i—st layer [#]

$Area of one bar [m~2]

%$Distance of the G.C of the i—st layer of rein—
$forcement from reference axis of the beam [m]
%$Circuference of one rebar [m]

%$Concrete material parameters

f_t=3.3e6;
f_c=36.6e06;
Ec=27.7e9;
e_t=f_t/Ec;
G_f=76;

%$Steel material parameters

Es=200e9;
fy=500e6;

%$Discretization
num_el=33;

L=3.5;
L.el=L/num.el;

% Topology matrix

Edof=zeros (num_el, 9);

$Tensile strength of concrete [Pa]
%$Compressive strength of concrete [Pa]
%$Elastic modulus of concrete [Pa]
%Cracking strain [—]

$Fracture energy [N/m]

%$Steel Youngs modulus [Pa]
%Yield stress [Pa]

$Number of elements
%$Length of the beam
%$Length of the element
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Edof (1,2:end)=1:8;
Edof (2,2:end)=[2 9 5 6 10 11 8 12];
Edof (3,2:end)=[9 13 10 11 14 15 12 16];

Ex=zeros (num_el, 2);

for i=0: (num.el-—1)

Edof (i+1,1)=i+1;

Ex(i+1,1)=L_el*i;
Ex (i+1,2)=L_el* (i+1);

end

for i=4:num_el

Edof (i, 2:end)=Edof (i—1,2:end) +4xones (1, 8) ;

end

$Number of int points, guessed displacements

ne_x=3; $Number of integration points along the element length
u=zeros (max (max (Edof)),1); %$Initial guess for the iterations' scheme
ne_z=15; $Number of integration points over height of cross sec

[z,w]=1lglnodes (ne_z—1); %Possitions and weights of Lobatto integration
z=—z"+h/2;

%Calculate the external force vector
F_ext=f_external (—1.5e3,Edof,L_el, num_el);

%$Properties for the f_internal.m
ep-inter=[(z_i,Es, fy,Ec,e.t,f_t,b,Asi,f c,s_i,nbars,G.f];

dw=—10e—7;
steel_yield=0;
p=0;

e_cr_old=zeros (length(z), ne_x*num_el) ;

while steel_yield==
disp (p)
p=p+l;
u_previous=u;

%Update the constrained degrees of freedom
bc=[1 0; 3 0; Edof(end,6) 0;....
Edof (num_el/3,6) u(Edof (num_el/3,6))+dw;
Edof (2xnum_el/3, 6) u(Edof (2*num_el/3,6))+dw];

bc_total=(1l:max (max (Edof)))"';
Constr=bc(:,1);
Free=setdiff (bc_total,Constr);

u(Constr)=bc(:,2);

61



Error=100; TOL=le—4; counter=0; old.Error=1el00; upp=1l; temp=0;
while Error>TOL || rcond(K_FF)<le—14

counter=counter+l1;

[F.int,K,ec,x_el _out,es,t_di,delta.i,M,N,slip, steel, ...

e_cr_new, s.concrete]=f_internal (num.el,ne_x,ne_z,z,L_el, ...
u,Edof,Ex,ep_inter,e_cr_old,w);

g-F=F_int (Free)—-F_ext (Free); %$Calculate the new out—of—-balance
Error=norm(g_-F); %$Calculate the error
K_FF=K (Free, Free); $Extract the Free dofs of the

%$This loop halfs the step if the criteria is met
while old.-Error<=Error || counter==30

counter=1;
u=u_previous;

bc=[1 0; 3 0; Edof(end,6) 0;....

Edof (num_el/3,6) u(Edof (num_el/3,6))+dw/upp*2;

Edof (2xnum_el/3,6) u(Edof (2+xnum_el/3,6))+dw/upp*2];
u(Constr)=bc(:,2);
upp=upp+1;

[F_int,K]=f_internal (num_.el, ne_x,ne_z,z,L_el,u,Edof,Ex, ...
ep.-inter,e_cr_old,w);

g.F=F_int (Free)—F_ext (Free); %$Calculate the new out—of—-balance

old_Error=norm(g_F); %$Calculate the error
K_FF=K (Free,Free); $Extract the Free dofs of the

Da.F=—K_FF\g_F;

u(Free)=u(Free)+Da_F;

[F_int,K, ec_out, x_el_out,es,t_di,delta_i,M,N, ...
slip,steel,e_cr_new, s_concrete]=f_internal (numel,ne x,ne_z,z,L.el, ...
u, Edof,Ex,ep-inter,e_cr_old, w);

g.-F=F_int (Free)—F_ext (Free) ;

Error=norm(g.F);

if old.-Error>=Error || upp==

break
end

end

old_Error=Error;
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Da,F=—sparse(K,FF)\g,F; $Solve g(a+Da)=0 for the update Da.F

if Error>TOL
u(Free)=u(Free)+Da.F; %$Update the displacements vector
elseif Error<TOL

break
end
if upp==
u=u.-previous;
u (Edof (num_el/3, 6))=u(Edof (num_el/3, 6)) +dw;
u(Edof (2*num_el/3,6))=u(Edof (2+num_el /3, 6) ) +dw;
disp('break")
break
end

end

for col=l:ne_x*num_el
for row=l:length(z)
if e_cr_old(row,col)<e_cr_new (row,col)
e_cr_old(row,col)=e_cr_new (row,col);
end
end
end

steel_yield=sum(steel>fy);

end
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[F_int,K, ec_out, x_el_out,es,t_di,delta_i,M,N, ...
slip,steel,e_cr_new, s_concrete]=f_internal (numel,ne x,ne_z,z,L.el, ...

u,Edof,Ex,ep,e_cr_old, w)

PURPOSE

Compute the global internal force vector and the global tangent

stiffness matrix

INPUT: num_el
ne_x
ne_z
Z
L.el
u
Edof
Ex

number of elements

number of integration point along each element
number of intergration over the height
coordinates of the integration points

length of one element

displacement vector

topology matrix

global x—coordintes

ep=[(z_.i,Es,fy,Ec,et,f_t,b,As_i,f c,s.i,nbars,G.f];

e_cr_old
W

OUTPUT: F_int
K

ec_out
x_el_out
es

t_di
delta_i
M

N

slip
steel
e_cr_new

s_concrete

z_i: distance from reference axis to
reinforcement

Es: steel stiffness

fy: yield stress of the reinforcement
e_t: cracking strain of concrete

f_t: tensile strength of concrrete

b: breadth of beam cross section

As_i: steel area of the reinforcement bar
f_c: compressive concrete strength

s_i: circumference of the steel bar
n_bars: the number of bars in the layer
G_f: fracture energy of the concrete

the highest cocrete strain in each Gauss point
weights for integration over height

the full internal force vector for the given
displacment vector

tangent stiffness for a given displacement
vector

matrix of concrete strain in integration point
global possition of the integration point in x
vector of steel strain in intergration points
bond stress

bond—slip in interface

moment

normal force

slip force

steel stress in integration points

the cracking strain for the displacement
vector

stress in each integration point

o0 o0 o0 O O° O O O O A A A A A A A AN N N N N N N N A A AN AN AN AN AN N N N N AN AN AN A A A AN AN N N N N N N N A A A A o P

Written by: Dimosthenis Floros and Olafur Agust Ingason
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function [F_int,K,ec_out,x_el_out,es,t_di,delta_i,M,N, ...
slip,steel,e_cr_new, s_concrete]=f_internal (numel,ne_x,ne_z,z,L.el, ...
u,Edof,Ex,ep,e_cr_old,w)

z_i=ep(1);
Es=ep (2)
fy=ep (3)
Ec=ep (4)
e_t=ep (5
f_t=ep (6
b=ep (7) ;
As_i=ep(8);
f_c=ep(9);
s_i=ep(10);
n_bars=ep(1l1l);
G_f=ep(12);

4

4

4

)i
)

[

$Internal vectors and matrices definition

x_el=[—sqgrt (3/5) 0 sqrt(3/5)1xL_el/2+L_el/2; %Gauss points

w_gauss=[5/9 8/9 5/91]; %$Gauss weights
a=extract (Edof,u); $Arrangement of displacement to

%$the pertinent dofs

f_int=zeros(8,1); $Internal force vector

ec=zeros (ne_z,ne_x); %$Concrete strain

es=zeros (l,ne_x); %$Steel strain

delta_i=zeros(l, ne_x); %$S1lip between concrete and rebars
K_uOw=zeros (2,4); %$Block matricies for the tangent stiffness

K_.ww=zeros (4,4);
K_diw=zeros (2,4);
K_didi=zeros (2, 2);

K=zeros (max (max (Edof)),max (max (Edof))); %Global tangent stiffness matrix
F_int=zeros (max (max (Edof)),1); $Internal force vector
ec_out=[];x_el out=[];M=[];N=[];slip=[];steel=[];e_cr_.new=[];s_concrete=[];

for i=l:num_el

)

%Coordinates of int points along the length of element i

ex=Ex (i, :);
X (i, :)=linspace(ex(1l,1),ex(1,2),ne_x);
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a.ul=[la(i,1l);a(i,2)]1; %$Nodal axial displacement at the reference axis

aw=[a(i,3);a(i,4);a(i,5);a(i,06)]; %$Nodal deflections and rotations
%at the nodes

adi=[a(i,7);a(i,8)]1; %$Nodal relative slip

Q

$Shape functions for the approximation of the slip

N_di_l=—1/L_elx*(x(i,:)—ex(2));
N_di_2=1/L_elx*(x(i,:)—ex(1));

)

$B_matrices (Derivative of the shape functions)

Bu0=1/L_elx[—1 1];

B.w_1=—6/L_el " 2+12xx_el/L_el"3;
B.w_2=—4/L_el+6*xx_el/L_el"2;
B.w_3=6/L_el"2—12*«x_el/L_el"3;
B.w_4=6xx_el/L_el"2—-2/L_el;

B.di=1/L_elx[-1 171;

Concrete and steel strains at the network of int points
(ne_x: Integration points along the length of the element)
(ne_z: Integration points along the cross—section height)

o® o° oo o°

for j=l:ne_x

Bw(l,1:4)=[B.w_1(1,3) B.w_2(1,3) B.w_3(1,3) B_w_-4(1,3)1;
N_.delta_i(1,1:2)=[N_di_1(1,3) N_di_2(1,3)]1;
ec(:,J)=B_ul0*xa_ul0—z'xB_wxa_w;
es(l,j)=B_.ul0xa_ul0—z_i*xB_wxa_w+tB_dixa_di;
delta_i(1l,j)=N_delta_ixa_di;

end
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[s.si,D_si]=sigma_.si (es,Es, fy,ne_x);

%$Make the middle element weaker and with lower fracture energy
if i==ceil (num_.el/2)
f_t_ new=f_t—0.5e6;

[s.xx_con,D_con,e_cr_.nytt]=sigma_xx_con (ne_x,ne_z,ec,Ec, f_t_new/Ec, ...

f_t_new,f_c,L_el,15,e_.cr.old(:,3*x1i—2:3%1));

else
[s.xx_con,D_con,e_cr_.nytt]=sigma_xx_con(ne_x,ne_z,ec,Ec,et,f t...
,fc,Lel,G.f,e.cr0ld(:,3x1i—2:3%x1));

end

$Numerical integration along the height of the cross—section
N_con=bxlobatto(z, s_.xx_con,w) ;

N=[N N_con+n_bars*As_ixs_si];

%Numerical ingration across the length of the element

fint(1:2,1)=B_u0'xgaussi(L_el, (N_.contn bars+*As_i*s_si),w_gauss');

o

$Numerical integration along the height of the cross—section
M_con=zeros (l,ne_x); dM_con=zeros (l,ne_x); z_dM_con=zeros(l,ne_x);
for im=l:ne_x

M_con (1, i_m)=b*lobatto(z,s_xx_con(:,i.m).*xz"',w);

dM_con (1, i_m)=bxlobatto(z,D_con(:,i-m).*xz"',w);

z_dM_con (1, i_m)=bxlobatto(z,D_con(:,i.m).*xz'."2,w);
end
%Numerical ingration across the length of the element
f int (3:6,1)=[gaussi(L.el,B_w_1l.x(—(M_con+n_bars*As_ixz_i*s_si)), ...

w_gauss');

gaussi(L_.el,B.w_2.*x(—(M_con+n_bars*As_ixz_i*s_si)), ...
w_gauss');

67



gaussi(L_.el,B.w_3.*x(—(M_con+n_bars*As_ixz_i*s_si)),...
w_gauss');
gaussi(L.el,B.w_4.%(—(M_contn bars*As_i*z_ixs_si)),...
w_gauss ') ];

[t.di,D_-ti]=b_slip(delta-i,ne_x,f_c);

%Numerical ingration across the length of the element

fint (7:8,1)=[gaussi(L.el,B.di(l,1l)*n bars*xAs_i*s_si+N_di_ l.xt_dix*...

s_ixn_bars,w_gauss');

gaussi(L_el,B_di(l,2)*n_barsxAs_i*s_si+N_di_2.xt_dix*...

s_i*n_bars,w_gauss')];

Q

$Tangent stiffness matrix

%$Numerical integration along the height of the cross—section
dN_con=b*trapz (z,D_con);

%Numerical ingration across the length of the element

K_uOu0=B_u0 'xgaussi(L_el, (dN_con+n_ bars+As_ixD_si),w_gauss')*B_u0;
$Numerical ingration across the length of the element

K.uOw (1,1)=gaussi(L_el,B_u0(1l,1)*(—(dM_con+n_bars*As_ixz_i*D_si)) ...
*B_w_1,w_gauss');
K.uOw (1l,2)=gaussi(L_el,B_ul0(l,1)*(—(dM_con+n_bars*«As_ixz_1%D_si)) ...
.*B_w_2,w_gauss');
K.uOw (2,1)=gaussi(L_el,B_u0(1l,2)*(—(dM_contn_-barsxAs_i*z_i*D_si)) ...
.*B_w_1,w_gauss');
K.ulOw (2, 2)=gaussi(L_el,B_u0(1l,2)*(—(dM_con+n_bars*As_ixz_i*D_si)) ...
.x*B_w_2,w_gauss');
K_.uOw (1, 3)=gaussi(L_el,B_u0(1l,1)* (—(dM_con+n_bars*As_ixz_1%D_si)) ...
.*B_w_3,w_gauss');
K_ulOw (2, 3)=gaussi(L_.el,B_u0(1,2)* (—(dM_con+n_bars*As_ixz_i*D_si)) ...
.*B_w_3,w_gauss');
K.uOw (1l,4)=gaussi(L_el,B_ul0(1l,1)*(—(dM_con+n_bars*As_ixz_1i*D_si)) ...
.xB_w_4,w_gauss');
K.uOw (2,4)=gaussi(L_el,B_u0(1,2)*(—(dM_con+tn_-bars+«As_i*z_i*D_si)) ...
.xB_w_4,w_gauss');

%$Numerical ingration across the length of the element
Ku0di=B_u0'xgaussi(L.el,n_bars*«As_ixD_si,w_gauss')«B_di;

K.wu0=K_uOw'; %$Exploit symmetry of the tangent stiffness matrix
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Kww(l,l)=gaussi(L_el,B.w_1

.*B_w_1,w_gauss');

K.ww(l,2)=gaussi(L_el,B_w_1

.*B_w_2,w_gauss');

Kww(l,3)=gaussi(L_el,B.w_1

.xB_w_3,w_gauss');

Kww(l,4)=gaussi(L_el,B.w_1

.*B_w_4 ,w_gauss');

Kww(2,1)=K.ww(1,2);
Kww(2,2)=gaussi(L_.el,B.w_2

.*B_w_2,w_gauss');

Kww(2,3)=gaussi(L_el,B.w_2

.*B_w_3,w_gauss');

Kww(2,4)=gaussi(L_el,B_w_2

.xB_w_4,w_gauss');

K_ww (3,1)=K_ww (1, 3);
K_ww (3,2)=K_ww (2, 3);
Kww(3,3)=gaussi(L_el,B_w_3

.*B_w_3,w_gauss');

Kww(3,4)=gaussi(L_el,B_w_3

.*B_w_4,w_gauss');

Kww(4,1l)=K_ww (1,4);
Kww(4,2)=K_ww (2,4);
Kww(4,3)=K_.ww (3,4);
Kww(4,4

14

)=gaussi(L_el,B_w_4
.*B_w_4 ,w_gauss');

$Numerical ingration across the length of the element
.*(z_dM_con+n_bars+«As_i*xz_1i"2%D_si) ...
.*x(z_dM_con+n_bars*xAs_ixz_1"2*D_si) ...
.*(z_dM_con+n_bars*As_i*xz_1"2%D_si) ...

.*(z_dM_con+n_bars+«As_i*xz_i"2%D_si) ...

.*x(z_dM_con+n_bars*As_i*xz_1"2*D_si) ...
.*(z_dM_con+n_bars+«As_i*xz_i"2%D_si) ...

.*x(z_dM_con+n_bars*xAs_i*xz_1"2*D_si) ...

.*(z_dM_con+n_bars+«As_i*xz_i"2%D_si) ...

.*x(z_dM_con+n_bars*As_i*xz_1"2*D_si) ...

.*x(z_dM_con+n_bars*«As_i*xz_1"2*D_si) ...

%$Numerical integration across the length of the element

K.diw(l,1)=gaussi(L_.el,B_di(l,1)*(—z_i*n_barsxAs_ixD_si) ...

.*B_w_1,w_gauss');

K.diw(1l,2)=gaussi(L.el,B_di(l,1)*(—z_i*n barsxAs_ixD_si)...

.xB_w_2,w_gauss');

K.diw(l,3)=gaussi(L_el,B_di(l,1l)*x(—z_i*n barsxAs_ixD_si)...

.*B_w_3,w_gauss');

K.diw(l,4)=gaussi(L_.el,B_di(l,1)*(—z_i*n_barsxAs_ixD_si) ...

.*B_w_4,w_gauss');

K.diw(2,1)=gaussi(L_el,B_di(1l,2)*x(—z_i*n barsxAs_ixD_si)...

.*B_w_1,w_gauss');

K_.diw (2, 2)=gaussi(L_el,B_di(l,2)*(—z_i*n-barsxAs_ixD_si)...

.*B_w_2,w_gauss');

K_.diw (2, 3)=gaussi(L.el,B_di(1,2)*(—z_i*n_barsxAs_ixD_si)...

.*B_w_3,w_gauss');

K.diw(2,4)=gaussi(L_el,B_di(l,2)*x(—z_i*n barsxAs_ixD_si)...

.xB_w_4,w_gauss');

$Numerical integration across the length of the element

Kwdi=K_diw';

%$Numerical integration across the length of the element

K_diuO=K_u0di';
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$Numerical integration across the length of the element

K.didi(1l,1)=gaussi(L_el,B_di(l,1)*n_bars*As_ixD_si«B_di(1,1)...
+N_di 1.xD ti.*«N_di_l*s_ixn_bars,w_gauss');

K_.didi (1,2)=gaussi(L_el,B_di(l,1)+*n_bars*«As_ixD_si*xB_di(1,2)...
+N_di_1.+«D_ti.xN_di_2xs_ixn_bars,w_gauss');

K_.didi (2,1)=gaussi(L_el,B_di(1l,2)*n_bars*As_ixD_si«B_di(1,1)...
+N_di 2.xD_ti.*«N_di_l+s_ixn_bars,w_gauss');

K_.didi (2,2)=gaussi(L_el,B_di(l,2)*n_bars+«As_ixD_si«B_di(1,2)...
+N_di 2.xD_ti.*«N_di_2«s_ixn_bars,w_gauss');

%$Assemble the element tangent stiffness matrix
Ke=[K_uOu0 K_uOw K_u0di;

K_wu0 K_ww K_wdi;

K.diu0 K.diw K.didil;
%$Assemble the element matrices into the global one
[K,F_int]=assem(Edof (i, :),K,Ke,F_int, f_int);
ec_.out=[ec_out ec]; x_el_out=[x_el_out x(i,:)]; slip=[slip delta_i];
steel=[steel s_si]; e_cr.new=[e_cr_new e_cr.nytt];
s_concrete=[s_concrete s_xx_con]; M=[M M_con+n_bars*As_ixz_i*xs_si];

end
end
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[F.ext]=f_external (q,Edof,L_el,num_el)

PURPOSE
Compute the effect on the degrees of freedom in a beam element from a
uniformly distributed load

INPUT: g

Edof
L.el
num_el

OUTPUT: F_ext

uniformly distributed load
topology matrix

length of the element
number of elements

the full external force vector from the load

o0 o0 o0 0 0 O O O O O A A A A A O O o o° o°

Written by:

Dimosthenis Floros and Olafur Agust Ingason

function

[F_ext]=f_external (g,Edof,L_el, num.el)

F_ext=zeros (max (max (Edof)),1);

f_ext=zeros(8,1);

for

end

end

k=1l:num_el

f_ext (
f_ext (
(
(

3,1
4,1
f_ext (5,1
f_ext (6,1

4

=1/2xgxL_el;
=1/12xg*xL_el”"2;
=1/2+xg*xL_el;
=—1/12xgxL_el"2;

F_ext (Edof (k,2:end) )=F_ext (Edof (k,2:end) ) +f_ext;
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[t.di,D.ti]=b_slip(delta_.i,ne_x, f_c)

PURPOSE
Compute the shear stress and stiffness in the interface between concrete
and reinforcement steel. This model is adopted from FIB model code from
2010

INPUT: delta_i the slip in the integration points
ne_x number of integration points along the beam
f_c characteristic compressive strength

OUTPUT: t_di shear stress in interface
D_ti tangent stiffness in interface

Written by: Dimosthenis Floros and Olafur Agust Ingason

o0 o0 o0 0 0 O O O O O A A A A A A A o o° o°

function [t_di,D_ti]=b_slip(delta.-i,ne_x, f_c)

$Model constants for the definition of the curve

s0=20e-5; $To this point the constituitive is linear
s1=0.001; $Constants from FIB model code for good bond
s2=0.002;

s3=0.009;

a=0.4;

t_max=2.5+sqrt (f_c/le6) «le6; S$Maximum shear stress in interface
t_f=0.4xsqgrt (f_c/1eb6) x1eb; %$Final shear stress in interface

t_di=zeros(l, ne_x);
D_ti=zeros (1, ne_x);

K_fake=(t_max*abs (s0) "a/sl”a)/s0;

for j=l:ne_x

%$Linear branch of the curve
if abs(delta_i(1l,3j))>=0 && abs(delta_i(1l, ]j))<=s0

t_di(l,j)=K_fakexdelta_i(j);
D_ti(l, j)=K_fake;

%$Non—linear part of the curve

elseif abs(delta_i(l,3))>s0 && abs(delta_i(1l,]))<=sl

t_di(1l,j)=delta.i(j)/abs(delta_i(]j))* (t.max*abs(delta_i(1,3))...
“a/sl”a);
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D_ti(1l,j)=delta_.i(j)/abs(delta.i(]j))*(a*xt_max/sl ax...
abs (delta_i(1,73)) "~ (a—=1));

elseif abs(delta-i(1l,3j))>sl && abs(delta_-i(l,]j))<=s2

t_di(1l,j)=delta_.i(j)/abs(delta_i(]j))+t_max;
D_ti(1, j):O;

elseif abs(delta_i(1l,j))>s2 && abs(delta_i(1l,]))<=s3
t_di(1l,J)=delta.i(j)/abs(delta_i(]j))* (t.max—(tmax—t_f)...

* (abs (delta_i (1, j))—s2)/(s3—s2));
D_ti(l,3)=(tmax—t_f)/(s2—s3);

elseif abs(delta_i(1l, j))>s3

t_di (1, j)=delta_i(]j)/abs(delta_i(j))*t_£;
D_ti(1,3)=0;

end

end
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[s.si,D_si]=sigma_.si(es,Es, fy, ne_x)

PURPOSE
Compute the steel stress and tangent stiffness from steel strains
2010

INPUT: es steel strains in an element
ne_x number of integration points along the beam
fy characteristic yield strength
Es Youngs modulus
OUTPUT: s_si steel stress
D_si tangent stiffness for the steel

Written by: Dimosthenis Floros and Olafur Agust Ingason

P o0 o0 o0 0 O O O O O A A A A A A A o o° o°

function [s_si,D_.si]=sigma-si (es,Es, fy,ne_x)

s_si=zeros(l,ne_x);
D_si=zeros (1, ne_x);

for j=l:ne_x

%$Elastic part of the curve

if es(1l,3)>=0 && es(l,j)<=fy/Es

s_si(1,3)=Es*es(1l,7);

Q

end

4



[s.xx_con,D_con,e_cr.new]=sigma_xx_con(nhe_x,ne_z,ec,Ec,e_t...
,ft,fc,Lel,G.f,e_cr_old)

Written by: Dimosthenis Floros and Olafur Agust Ingason

% PURPOSE

% Compute element stress and tangent stiffness from a given total strain
% values

% INPUT: ne.x number of integration point along length
% ne_z number of integration points over height
% ec total strain

% Es concrete stiffness

% e_t cracking strain

% f t tensile strength

% f_c compressive strength

% L.el length of the element

% G_f fracture energy

% e_cr_old highest cracking strain in each Gauss point
% OUTPUT: s_xx_con concrete stress

% D_con Tangent stiffness

% e_cr_new new cracking strain

function [s_xx_con,D_con,e_cr_new]=sigma.xx_con(ne_x,ne_z,ec,Ec,e_t...
,ft,fc,Lel,G.f,e_cr_old)

$Material constants for concrete

e_f=5.136%xG_f/ (L_el*xf_t);
k=1.81;
ecl=—2.366%10"(=3);
ec_1lim=—3.5%x10"(=3);

e_cr_new=zeros (size(e_cr_old));

s_xx_con=zeros (ne_z,ne_x);
D_con=zeros (ne_z,ne_x);

for j=l:ne_x %$Loop for i.p. along the length of the i—st element
for i_z=1l:ne_z %Loop for i.p. along the height of the cross—section
e_cr=0;

[

%$Linear tensile part of the curve



if ec(i-z, 3)>=0 && ec(i_-z,j)<=e_t && e_cr_old(i_.z,j)==0

s_.xx_con(i_z, j)=Ecxec(i_-z, J);
D.con(i_z,Jj)=Ec;

elseif (ec(i-z,j)>e_-t && ec(i-z,j)<=e_f) (ec(i-z,3)>=0

&& ec(i_z, j)<=e_t && e,cr,old(i,z,j)>él
e_cr=le—2; %initial guess

%$'Hordjik' curve in local coordinates
[f.cr,D_c]=hordjik(e_cr,e_cr_old(i.-z,J),e_f,f_t);
$0ut—of—-balance force function

g-.c=Ecxec(i_-z, j)—Ecxe_cr—f_cr;

Error_cr=norm(g-c); %Evaluate the error
n_cr=0; $Counter of iterations

while Error_cr>10"(—8) %$Iterations' loop
J_cr=—Ec—D_c; $Tangent stiffness function
De,cr=—J,cr\g,c; %$Solve g(e_cr+De_cr) for e_cr
e_cr=e_cr+De_cr; $Update the cracking strain e_cr
[f.cr,D_cl=hordjik(e_.cr,e_cr_old(i_.z,j),e-£,£f.t);

g-c=Ecx (ec(i-z, j)—e-cr)—f_cr; %Calculate the new
%$o—o—b force function

Error_cr=norm(g.c); %Evaluate the error
n_.cr=n_cr+l; $Add one step
end

$Material tangent stiffness in Global coordinates
D=Ec—Ec* (Ec+D_c) " (—1) xEc;

%$Cracked concrete stress in total deformation
s_.xx_con(i_z,j)=Ecx(ec(i_.z,j)—e_cr);

D_con(i-z, j)=D;



[)

%$Stress for strains over the ultimate strain e_f

elseif ec(i_z,j)>e_f

s_xx_con(i_-z, 3)=0;
D_con(i-z, 3)=0;

e_cr=e_f;

elseif ec(i-z, j)<0 && abs(ec(i-z, j))<=abs(ec_-lim)
s_.xx_con(i_.z,j)=—f_cx(kxec(i_z,]j)/ecl—ec(i_z,Jj) "2/ecl™2)...
/ (1+ (k—2)*xec(i_z, J) /ecl);
D_con(i_z,j)=f_cx* ((k/abs(ecl)—2*abs(ec(i_z,Jj))/ecl™2)...
*x (1+ (k—2)*ec(i_z, j) /ecl)— (kxec(i_z,j)/ecl—ec(i_.z,j) " 2/ecl”2)...
* (k—2) /abs (ecl))/ (1+ (k—2) xec (i_z, j) /ecl) "2;

elseif ec(i_-z,J)<0 && abs(ec(i_z,]j))>abs(ec_lim)
s_.xx_con(i-z, j)=0;
D_con(i-z, 3)=0;

end

e_cr-new(i_-z,j)=e_cr;

end

end
end
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[f.cr,D_c]=hordjik(e_cr,e_cr_old,e_f, f_t)

PURPOSE

Compute element post cracking stress, from a Hordjik tension softening,
from a given cracking strain. Has a damage history variable for a secant
damage model from the highest provious converged strain.

INPUT: e_cr cracking strain
e_cr_old highest previously converged strain
e_f minimum strain to give tensile stress
f_t tensile strength

OUTPUT: f_cr stress
D_c Tangent stiffness

Written by: Dimosthenis Floros and Olafur Agust Ingason

o0 ° o° o o° O O A A A A A A A A A O o° o° o° o° o

function [f_cr,D_c]=hordjik(e_cr,e_cr_old,e_f, f_t)

cl=3; %$Constants of the Hordjik curve
c2=6.93;

$Checks if cracking strain is larger then previous value
if e.cr<e_cr_old
f_cr=e_cr/e_cr_oldx (f_tx((l+(cl*xe_cr_old/e_f) "3)+exp(—c2xe_cr_old/e_f)—...
exp(—c2)* (1+cl"3)*e_cr_old/e_f));
D.c=1/e_cr_old*(f_t*((l+(clxe_cr_old/e_f) "3)*exp(—c2+e_cr_old/e_f)—...
exp(—c2) * (1+cl”3)+e_cr_old/e_f));
elseif e_cr>=e_cr_old
f_cr=f_tx((l+(clxe_cr/e_f) "3)*exp(—c2xe_cr/e_f)—...
exp(—c2) x (1+cl”3)*xe_cr/e_f);
D.c=f_tx ((3xcl " 3*exp(—c2+xe_cr/e_f)+e_cr”"2/e_£°3)—...
((1+cl”3) rexp(—c2) /e_f)—(c2xexp(—c2+e_cr/e_f)*...
(1+cl”"3*xe_cr"3/e_£°3)/e_f));
end

end
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