LCA and simulation of a bioethanol process technology in development

Matty Janssen & Anne-Marie Tillman

Division of Environmental Systems Analysis Department of Energy & Environment Chalmers University of Technology Göteborg, Sweden

June 25, 2013

Outline

- 1 Development of a high-gravity biofuels production process
- 2 Straw-based ethanol production
- 3 Results for straw-based ethanol production
- 4 Conclusion

CHALMERS

High-gravity production of biofuels

- Second generation biofuels using wood and wheat straw
- \blacksquare Economically feasible process \rightarrow High gravity fermentation
 - Lower water use
 - Difficulties with mixing
 - High concentrations of end products and inhibitors

High-gravity production of biofuels

- Second generation biofuels using wood and wheat straw
- \blacksquare Economically feasible process \rightarrow High gravity fermentation
 - Lower water use

Introduction

CHALMERS

- Difficulties with mixing
- High concentrations of end products and inhibitors
- Use LCA along the process development path
 - To improve and/or optimize the process from an environmental life cycle point-of-view
 - To help guide the technology development by providing stakeholders the environmental hotspots during all stages

Technology development and scale

Development "stages" with respect to system boundaries¹

- $\blacksquare \ Process \ step \rightarrow Scale-up \ of \ equipment$
- \blacksquare Process complex \rightarrow Optimization of the complete process
- \blacksquare Value chain \rightarrow Inclusion of the upstream and downstream processes

¹ M. Shibasaki and S. Albrecht. Proceedings of European Congress of Chemical Engineering (ECCE-6). 2007, p. 5.

Outline

Technology development and scale

- Development "stages" with respect to system boundaries¹
 - $\blacksquare \ \mbox{Process step} \rightarrow \mbox{Scale-up of equipment}$
 - \blacksquare Process complex \rightarrow Optimization of the complete process
 - \blacksquare Value chain \rightarrow Inclusion of the upstream and downstream processes
- Time and scale in technology LCA²
 - Shifting time frame → Room for technical development, affects performance data, perhaps functional unit
 - Change in background system related to time and scale of penetration

¹ M. Shibasaki and S. Albrecht. Proceedings of European Congress of Chemical Engineering (ECCE-6). 2007, p. 5.

²K. M. Hillman and B. A. Sandén. Int. J. Altern. Propul. 2.1 (2008), pp. 1-12.

Process base case and alternatives

- Inbicon's IBUS process³ in Kalundborg, Denmark
 - Feedstock is wheat straw
 - Hydrothermal pretreatment

³J. Larsen, M. Østergaard Haven, and L. Thirup. *Biomass Bioenergy* 46 (2012), pp. 36-45.

Outline

■ Inbicon's IBUS process³ in Kalundborg, Denmark

- Feedstock is wheat straw
- Hydrothermal pretreatment
- Industrial-scale evaluation using raw lab data
 - Process calculations done in spreadsheet
 - Experimental set-up \rightarrow 33 process options
 - Type of enzyme
 - Process configurations
 - Enzyme load
 - Solids content in the reactor
 - Additive to increase enzyme activity

³J. Larsen, M. Østergaard Haven, and L. Thirup. *Biomass Bioenergy* 46 (2012), pp. 36-45.

Case study

Wheat straw

Inventory analysis for straw-based ethanol production

Preparation cutting and DM adjustment) acid acetic a Pretreatment Fibres Separation and wash Liquid Hydrolysis Evaporation ecyclina Horizontal C5 molasses fermentation Lignin pellets Vertical fermentation Drving and Distillation → Bioethanol pelletising Separation Liquid Solids

Cultivation and harvest

 Outline
 Introduction
 Case study
 Results
 C

 Inventory analysis for straw-based ethanol production

 Wreat straw

 Cultivation and harvest

Preparation and pretreatment

- Conditions: p=15 bar, T=195 °C
- Lignin used as energy source

Outline Introduction Case study Results C Inventory analysis for straw-based ethanol production

Cultivation and harvest

Preparation and pretreatment

- Conditions: p=15 bar, T=195 °C
- Lignin used as energy source

Hydrolysis & fermentation

- Differences in conversion efficiency
- Yield as basis for mass balance

Inventory analysis for straw-based ethanol production

Cultivation and harvest

Preparation and pretreatment

- Conditions: p=15 bar, T=195 °C
- Lignin used as energy source

Hydrolysis & fermentation

- Differences in conversion efficiency
- Yield as basis for mass balance

Downstream processing

- Heat duty in distillation varies little at higher ethanol concentration
- Lignin used as energy source

ne Introduction Case study Results

Flow diagram in openLCA

Impacts calculated for the whole process

Results

Results

Results for 30% dry matter content, PEG added

Results

Results for 20% dry matter content

GWP, %DM vs. enzyme load vs. yield

Outline Introduction Case study Results Conclusion

Conclusion

Related to the case study results

- Enzyme use has a significant impact
- Several trade-offs can be identified that influence environmental impact

Outline Introduction Case study Results Conclusion

Conclusion

- Related to the case study results
 - Enzyme use has a significant impact
 - Several trade-offs can be identified that influence environmental impact
- Related to scale-up
 - \blacksquare Equipment scale-up \rightarrow Use data of industrial scale processes with similar characteristics
 - \blacksquare Complete system scale-up \rightarrow Increased use of biomass
 - Level of detail needed at a very early development stage

Outling	Introduction	Coop study	Populto
Outime	Introduction	Case study	

THANK YOU

Any questions?