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Abstract

We simulated light-scattering by small and wavetbrgized cubes with three largely

different values of the refractive index using thecrete dipole approximation (DDA) and the
T-matrix method. Our main goal was to push the eauof both methods to the limit. For

the DDA we used an earlier developed extrapolaggchnique based on simulation results for
different levels of discretization. For the T-matmnethod we developed a procedure to
estimate a confidence range for the simulated yalsimg results for different values of the
truncation index (number of multipoles). In mosse&s this confidence range was reliable,
enclosing the corresponding DDA result. We predsmrichmark results by both methods,
including estimated uncertainties, for selectedegrél and angle-resolved scattering
quantities. Estimated relative uncertainties of A result are unprecedentedly small (from
107 to 10°%), while relative differences between the T-matsixd DDA results are larger

(from 10“ to 0.2) in accordance with estimated T-matrix utairties.

Keywords: discrete dipole approximation, light seanhg simulation, T-matrix, cube,
benchmark results



1 Introduction

Light scattering by a cube is relevant for manycpcal applications, including powdered
crystal samples [1], ice crystals in atmosphere §2[d metallic nanoparticles [3]. But even
more often cubes are used in benchmark studieglufdcattering codes [4—7] to contrast
with spheres and spheroids. Although a cube is a@amggically simple object, it is
unexpectedly complicated in terms of light-scattgrisimulation. The Mie theory was
proposed more than a century ago, and currentlycalpproperties of spheres can be
evaluated with machine precision [8]. By contrasgthods to rigorously evaluate light-
scattering by cubes appeared only during the lastdecades [4,9], and their accuracy is
rarely discussed.

The first step in this direction was made by FUdihsand Langbein [10] for cubes much
smaller than the wavelength. They both used setemais of the eigenmode expansion of the
surface-integral equation, limiting the accuracyresults to several percents. This approach
was refined by Avelin et al. [11] making the errtess than 0.5%. Optical properties of small
cubes KD up to 1.2, wheré& is free-space wavenumber ads the side length of the cube)
were simulated using similar methods [12—-14], agmitih several-percent accuracy, when
compared against the finite-difference time-domaiethod (FDTD) [14]. The second step
was made by Liowet al. [15] and later others [16,17] with geometricalioptsimulation of
light scattering by cubes much larger than the \eangth.

Apparently, the first calculations for intermediaieed cubeskD ~ 5) were performed
using the resolvent-kernel method [18] and therdiscdipole approximation (DDA) [9].
Both of these methods are based on the volumeraitequation for the electric field [19].
Limited comparisons of the DDA with independent hoels at that time [20,21] achieved
relative differences between 1% and 10% dependirth@ refractive index.

Alternative methods, based on spherical basis imetwere able to handle this
problem only significantly later. In particular,etHirst application of the T-matrix method to
simulate light-scattering by a cube was shown bye#{rand Comberg [4]. Here and further
we use this general term implying the extended tdaoncondition method. Kahneet al.
refined this approach by studying different methdds handling sharp edges [22] and
explicitly employing cubical symmetries [23,24]. ¢comparison with the DDA the difference
was several percents in angle-resolved quanti#i@s Recently, the T-matrix was applied to

bi-anisotropic cubes [6], but the results wereawhpared to other methods. A cube was also



handled by a modification of the T-matrix methodl [&sulting in differences less than 10%
when compared to the DDA.

While an accuracy of several percents is sufficienimost practical applications, better
accuracy is desired for benchmark studies. Recelvilykin et al. [25] showed that the
convergence of the DDA results with increasing idiszation for a cube and other shapes,
which can be exactly described as a set of cusegemerally faster than for other shapes.
Moreover, Richardson-type extrapolation was progose the DDA [26], which lead to
extremely accurate results in combination with véng discretization. In particular, for a
cube withkD = 8 and refractive inderm = 1.5 the relative error of the obtained extinctio
efficiency Qext and maximum relative error in the phase functi@s wstimated to be 2x10
and 3x10° respectively. This result was extended to othémacéive indices — the relative
error of absorption efficienc@apswas estimated to be from 4x1@o 2x10° [27]. Moreover,
for gold nanocubed)(= 10 and 100 nm) in the wavelength range [400,8001he errors of
Qabs and Qsco Were estimated to be less than 1% and 0.1% regelycf28]. However, the
error estimate of the extrapolation technique selaon an empirical procedure; its reliability
was only demonstrated for simulations with coamdiecretization and hence larger errors
[26]. Neither rigorous proves nor direct verificats of very small errors through comparisons
with other light-scattering methods are available.

The goal of this paper is to extend the DDA reswl@ming very good accuracy, to test
them against the T-matrix method, and to providechenark numbers for several cubes,
giving both the internal and independent (betweethiods) error estimates. For that we use
the symmetry-enhanced T-matrix coteymand push its accuracy to the limit, studying the
dependence of the results on number of multipelespn the T-matrix truncation index.
The details of the methods and codes are givenettié 2, including the discussion of
numerical exactness of both methods. A new proeettuanalyze the T-matrix convergence
curves is proposed in Section 3. Simulation resarkésshown and discussed in Section 4, and
Section 5 concludes the paper.

2 Methods

2.1 Test scatterers

Since both codes applied here are mature and est#d, we skip standard spherical
benchmarks and focus on the main study objectuba.dBased on a previous study [27], we

use three largely different refractive indices: 4.6.01i, 0.1 + i, and 10 + 10i, and two sizes:



kD = 8 and 0.1 (in total, 6 cubes). Tk = 8 size is exactly the same as in [27], allowisg
to reuse the corresponding DDA results. The T-matade could not produce satisfactory
results for the cube witkD = 8 andm = 10 + 10i, hence we present only the DDA resits
that particular case.

All considered cubes are oriented with edges prat the coordinate axes and
illuminated by a plane wave, propagating alongziagis. Angle-resolved quantities, such as
the intensityl = S;; (element of the Mueller matrix) and linear polatian ratioP = -$1/S1,
are calculated in thgz-plane, characterized by a scattering adgigll efficiencies Qext Qsca
Qa9 are defined as corresponding cross sectionseativiy the geometrical cross section of a

volume-equivalent sphere.

2.2 The discrete dipole approximation

As a DDA implementation we have used the ca@BA [29]. It is capable of running on a
cluster of processors with distributed memory, \Whiallowed us to use very fine
discretization. FOkD = 8 cubes we reused the data from [27], which wasulated using
ADDA v.0.78.2 running on the Dutch compute cluster LISPhe convergence criterion of the
iterative solver; was set to the default value {Y0for m= 0.1 +i and 10 + 10i and to 19
for m=1.6 + 0.01. Filtered coupled dipoles (FCD) folation of the DDA [27,30] and the
default iterative solver (quasi-minimal residualthuel, QMR) was used fon= 10 + 10i and
1.6 + 0.01. However, fom=0.1 +i we used the default lattice-dispersiefation (LDR),
since it resulted in smaller errors, and bi-confaggradient stabilized method, since QMR
encountered convergence problems for that particdae. For each cube 5 discretizations
were used (characterized by the number of dipadespbe sidey = 256, 320, 384, 448, and
512). Then the calculated dependencies of scaftepirantities omy were extrapolated to
infinite ny using the procedure described in [26], producioth the value and estimate of its
error (uncertainty). Computation wall clock times the finest discretizatiom{ = 512) were
from 0.4 (form= 1.6 + 0.01) to 6.5 hours (fon= 10 + 10i) using 16 eight-core (3.4 GHz)
nodes.

For kD =0.1 cubes we usedDDA v.1.1 running on the computing cluster of the
Supercomputing center of the Novosibirsk State Brrsity? The same settings — the FCD

formulation, QMR iterative solver, angl = 10'° — were used for all refractive indices. The

! http://www.sara.nl/systems/lisa/description

2 http://www.nusc.ru/wiki/doku.php/doc/nusc/descipti
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discretizations and extrapolation procedure arestmae as fokD = 8. Differences irADDA
versions should not affect the simulation resufist this cube size simulation wall clock
times are much smaller — from 2 (for= 1.6 + 0.01) to 30 minutes (fon= 10 + 10i) for
ng = 512 using 16 eight-core (2.5 GHz) nodes.

Finally, we note that the DDA is a rigorous (“numcally exact”) method to solve
Maxwell’'s equations [19], and the word “approxinoati in its name is just a historical
artifact. In particular, the DDA result convergesthe exact value with refining discretization
[25]. Moreover, the numerical stability of the DDA g. measured by condition number of the
corresponding system of linear equations, is alnmupendent of the discretization [27,31].
Therefore, convergence to an error on the order mfchine precision can be achieved with
the current code just by adding (much) more compuaever. Hence, the choice of the largest
value ofng (512) in this study is somewhat arbitrary. Furtimarease ohy will improve the

accuracy at the expense of larger computation @ik required computer memory, which

both scale a®©(n}) [29].

2.3 The T-matrix method

T-matrix computations have been performed with abde Tsym version 4.5 [23,24]. This
program is applicable to non-axisymmetric, starmpsith homogeneous particles. It fully
exploits group theoretical methods for particlethvdiscrete geometrical symmetries; it uses
the commutation relations of the T-matrix [23] tgedite computations, and it is, to the best
of our knowledge, the only T-matrix code that exjglarreducible representations of point
groups for reducing numerical problems due to olhditioned computations [24]. Cubes
belong to the octahedral symmetry gradp The use of irreducible representations of cubic
point groups is not yet fully operational Tsym However, dihedral point groups have been
extensively used and testedTisym Thus we used the dihedral symmetry gréup which is
a subgroup 00y, to expedite and numerically stabilize the T-matomputations.
Computations were run in double precision on theukibased clusteGimle of the
National Supercomputer Centre in Linkdping Sweti&ince the code is serial, it was run on
a single 2.8 GHz node. The computation time madl@gends on the truncation indey; of
the T-matrix, and on the number of quadrature gairsed in the numerical evaluation of the
surface integrals in Waterman’s extended boundanglition method. No attempt was made

to optimize the computation time by minimizing thember of quadrature points in the

% http://www.nsc.liu.se/systems/gimle/



different cases considered. Instead, the numbeplair and azimuthal quadrature points was
kept fixed; we used 800 quadrature points in theyea[Oz| for the polar angle, and 3200
quadrature points in the range [g,2or the azimuthal one. Note that, owing to thetioke
symmetries, the actual angular integration rangesedduced iTsym,see [22,23] for details.
Thus, we used 400 quadrature points in the redpotd range [0y/2], and 400 quadrature
points in the reduced azimuthal ranger[8]. At a fixed value ofh;, this choice gave stable
results in all cases with respect to any furtheraase of the number of quadrature points.
Typical values ofng,; for which convergent results have been achieveg fram 7 to 45.
Within this range, the wall-clock time of the congtions vary from 7 seconds to 1.8 hours.
When comparing this to corresponding computatiomes of the DDA, it is important to
emphasize that the information contents of T-ma#md DDA computations is not fully
comparable. The T-matrix contains the completermédion about a particle’s scattering and
absorption properties at a given wavelength. Bytrest, DDA computations yield results for
particles in one specific orientation. For instgn@ee can compute from the T-matrix, with
very little extra investment of computation timetioal properties of ensembles of identical
particles in random orientations, while DDA compisas need to be repeated for each new
angle of incidence.

The T-matrix method is also numerically exact ie #ense that one can, in principle,
produce arbitrarily exact results by increasimg, the number of integration quadrature
points, and the machine precision — see [32] faletailed discussion. However, when
working with a fixed machine precision (as was donghis study), the achievable precision
is limited owing to numerical ill-conditioning andss-of-accuracy problems. In patrticular,
the condition number of the system of linear equtiin the T-matrix method rapidly
increases withne;, contrary to the one in the DDA with refining distization (see Section
2.2). The severity of these problems depends ommaber of factors ranging from size
parameter and aspect ratio of the scatterer tprimence of small-scale roughness and edges
and corners. Therefore, cubes are among the maaberhing geometries in practical
applications of the T-matrix method, while they arthome game” for the DDA.

Finally, let us discuss the fundamental applicabiif the T-matrix method to particles
with C° surfaces (i.e. with sharp edges), such as a debe.such surfaces, the surface
integrals will have continuous, but not continuguslifferentiable integrands. However,
continuity is sufficient for integrability. Thudhére are no principle mathematical problems in
T-matrix calculations for particles wittC® surfaces. We also know from numerical

experiments that there are no principle problemsgplication of the T-matrix method to

6



finite circular cylinders [33]. Critics may arguleat the Gaussian quadrature scheme used in
that T-matrix code does not include any pointstendritical edge of the cylinder. However,
the Tsym code used in our study has a differentigare scheme for prisms (including
cubes) that does include points on the criticalesdyf the top and bottom faces [23], and our
experiences with the code do not indicate any foreddal problems related to particles with
sharp edges. Perhaps even more important is theéhtstcaC® surface is an idealization that
does not exist in nature. As remarked in [22],lmtp edge” should be understood as a feature
on the particle surface with a curvature radius msmaller than the wavelength. It has been
demonstrated in that paper that the T-matrix resatinverge with decreasing radius of
curvatureR:. No indications of numerical instabilities weresebved asR. became much
smaller than the wavelength.

All this indicates that there are no fundamentalthematical problems with sharp
edges, but there are, to be sure, numerical clggtenhe internal field near sharp edges and
pointy corners has large gradients, i.e. the charatc spatial scales are smaller than the
particle size. Therefore, a large number of termes rreeded in the spherical-harmonics
expansions to accurately represent these fieldsveMer, this is by no means limited to
particles with sharp edges; we encounter the saotd@gm in spheres perturbed with a small-
scale surface roughness [34,35]. The surfacesabf garticles ar€”, i.e. ultimately smooth.
Yet to accurately describe the field induced inghwll-scale surface features, a large number

of expansion terms are required.

3 Convergence of the T-matrix method

Before one can meaningfully compare the DDA anddfrix results, one should define what
the T-matrix result is. While for the DDA this issus (at least partly) addressed by the
extrapolation technigque (see Section 2.2), noghitiorward approach is known for the T-
matrix method. The main problem is lack of uncetiaiestimate associated with a computed
value. Almost any T-matrix code incorporates sonmal lof an accuracy measure, which is
usually based on the difference of results for iatues ofn., [36—38]. However, to the best
of our knowledge the relation between these measared a real error, obtained by
comparison with independent reference, has not Weerly established. This can be
explained by the little relevance of this issue $onple (axisymmetric and moderate-sized)
particles, for which the accuracy of the T-matriethod can be easily made good enough,
taking large enougin.. By contrast, for non-axisymmetric particles refaes with well-

defined accuracy are lacking.



The deficiencies of existing error measures has veeently discussed [37,38]. To
illustrate this issue, we present two typical cageace plots of the T-matrix results with
varying ng in Fig. 1. The common feature of both parts okehgraphs is that larger values
of neyt do not necessarily imply better accuracy. Thewags exists an optimal range s,
where the variation of values is smallest, sucthasange [15;40]. However, the convergence
behavior can be different. In Fig. 1(b) the computelue oscillates around a certain level and
the difference between, e.ge.: andng, — 3 provides an adequate estimate of the uncéytain
By contrast, Fig. 1(a) depicts an almost monototooivergence, which is truncated by
numerical instability at largenc,: (this instability is analyzed in [32]). In partian, the
difference between two values f;: can be much smaller than the real error. All offier
matrix convergence curves (data not shown) fab iome of these two categories — with or
without monotonic convergence.

We note that this convergence curve is not a seniea standard sense, because
incrementingng,: not only adds a new term to the sum, but also fissdall existing terms.
Moreover, contrary to the DDA (see Section 2.2pwing in more computer power will not
help. Therefore, the full convergence curve defthesbest possible result achievable with the
current code (see Section 2.2). The only way taawp it is to modify the code, e.g. by using
better working precision. The most rigorous apphoamuld be to compare the whole T-
matrix convergence curve against the DDA resultss s done in Fig. 1, showing good
agreement within the variation of the T-matrix \&duHowever, such qualitative comparison
is not practical for a large number of computedugsal including angle-resolved ones.
Therefore, we propose the following empirical pehoe to compress the T-matrix
convergence curve into the confidence interval ciiiefineghe T-matrix result
e First, we manually choose the rangengf;, trying both to keep the variation of values

close to the minimum and to maximize the range.size particular choices for all
studied cubes are summarized in Table 1.

« Second, we fit the truncated curvefiy) = a + bx°. This function is somewhat arbitrary,
but we also tried an exponential one (data not sha@asulting in consistently worse fits.

* The fit is considered successful if the minimumtled residual sum of squares (RSS) is
reached for 0 € <o, and the null hypotheses £ 0 orc =) can be rejected with g
value of 0.05 based on Fisher’s criterion, i.e.rét® of RSS for the null hypothesis to the
minimal one is larger than the appropriate quartileFisher’'s distribution. Then we
determine the 95%-confidence interval f¢100) based on the upper bound for RSS.

Using f(100) instead of =f(«) is more robust for small. This confidence interval is

8



generally asymmetric (up to 20%) about the bestfitue, but that is negligible
considering the approximate nature of the wholecgulare. Thus in the following we
present the best fit &100) + half of the confidence range.

e If the fit is unsuccessful (see above) we insteadhe data by a simpler function,
corresponding ta@ = 0 (constant) oc =« (constant with the data point for the smallest
Ncut Omitted). Then the best-fit value is just the mednthe data, while the 95%-
confidence width is determined from the standardiad®n multiplied by appropriate
guantile of Student’s distribution.

An illustrative application of this procedure iepented in Fig. 1, which shows both the
fitted curve and the obtained confidence interVeieé note that exactly the same procedure
applies to both convergence cases. The T-matridtresows good correspondence with the
DDA results. We stress, however, that the propogsextedure is mostly a convenient
technique to quantitatively compare T-matrix reswitith other methods. While in certain
cases it works surprisingly well [Fig. 1(a)], itrcalso significantly under- or overestimate the
real error. The quality of this procedure for cubaa be judged based on results in Section 4.
However, further testing (and probably refinemenftithis procedure is definitely required
before it can be broadly applied.

4 Comparison between the methods

In this section we present the final processed ltesior the cubes, obtained using
extrapolation techniques described in Sectionsah@ 3 for the DDA and the T-matrix
method, respectively. First we consi#t® = 0.1 cubes. Since the angular dependence of both
I andP is trivial for such small particles, we show ot results for efficiencies in Table 2.
The internal error estimates of the DDA results 2rd orders of magnitude smaller than
those of the T-matrix results. Hence the DDA ressa#tn be considered as a reliable reference,
even if its error estimates are only correct byoater of magnitude. Relative differences
between the DDA and T-matrix results are betwe®3%. and 0.5%, except 2% difference
for Qscafor m= 0.1 + i. These differences are smaller (up tai®@s) than the T-matrix error
estimate except fd@scafor m= 10 + 10i, where it is 2 times larger.

For kD=8 cubes we summarize benchmark results in T&hleshowing both
efficiencies and several particular valuesl aind P. Full angle-dependencies bfand P,
computed with the DDA, are shown in Fig. 2, white tcorresponding difference of the T-
matrix and DDA results is presented in Fig. 3 thgetwith error estimates of each method.
The overall conclusions are the same askidr~ 0.1. Differences between the T-matrix and



DDA results are from 0.01% (excluding occasional aken values) to 0.3% for
m= 1.6 + 0.01i and from 0.3% to 15% for= 0.1 + i (efficiencies agree within 3%).
Considering the DDA result as a reference, we @ude a strong correlation between
the estimated and real errors of the T-matrix testiowever, for some scattering quantities
the estimate is too conservative, being more tlftatinies larger than the real error. For other
cases, by contrast, the estimate is up to 4 timeslar than the real error. This applies, in
particular, t0Qsca and Qaps for m=0.1 + i and toP near the back-scattering direction. To
analyze this behavior we present one particulae aag-ig. 4. The default fit procedure, as
defined in Section 3, leads to confidence interfggnoted by the square symbol) that
significantly disagrees with the DDA result. Howevihe disagreement with the DDA is not
that obvious if we consider the whole convergenowe For instance, if the,, range used
for fitting is decreased to [20;35], which can hbetjfied by larger variation of the T-matrix
results at the ends of the original range, theidente interval moves closer to and broadens
to include the DDA result (see the diamond symbblus, we conclude that this and other
(data not shown) underestimation of the real es@aused by imperfection of the employed

simple fitting procedure.

5 Conclusion

We have simulated light-scattering by several cubgs the DDA and T-matrix method,
pushing the accuracy of both methods to the lifot.the DDA we used an earlier developed
extrapolation technique based on simulation redoltdifferent levels of discretization. It
allowed us to present unprecedentedly accuratehbeenk results with estimated relative
uncertainty from 10 to 10° depending on cube size and refractive index, dsageon the
particular scattering quantity of interest.

For the T-matrix method we analyzed convergenceesufversus,,) and showed that
some cases feature almost monotonous convergemasedBon this we proposed a simple
procedure to fit this curve by a power function,iethallowed us to compress the whole
convergence curve into a confidence range (i.er&io value and its uncertainty estimate).
Comparison of the DDA and T-matrix results showeat the obtained estimate is, overall,
reliable, although an underestimation of the remdreup to a factor of four was obtained in
rare cases. This warrants a further study of tihecexlure for other scattering problems,
especially those for which the T-matrix method stgfnumerical instability (scatterers with

large sizes or aspect ratios, surface roughnessigas).
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The confidence intervals determined for the T-mmatsind DDA results can be
interpreted as a measure that reflects the nunhdredeavior of either method. While DDA
computations progressively improve as the numbelipadles is increased, the accuracy of the
T-matrix method is often limited by the oscillatibghavior of the results as a functiomgf,
as well as by the divergence of the results at laage values of.,.. Both the proposed error
estimate of the T-matrix method and its differeagainst the DDA results showed relative
errors from 10 to 0.2. Moreover, T-matrix error estimate was afsvirom 100 to 1btimes
larger than the DDA error estimate. Although we Idooot directly verify the accuracy
claimed by the DDA, even the less remarkable ages¢rbetween the two methods is
unprecedently good in some cases. Thus we belietethe presented benchmark results
would be useful for developers of light scatteraugles, as well as for those who apply these
codes to cubes in practical applications.

Finally, we note that a standard approach for igg#ttering benchmark studies is to
evaluate the accuracy of the DDA versus the retergorovided by the T-matrix method
[5,39]. By contrast, we started with equal attitudeboth methods and ended up with using
the DDA as the reference to evaluate the accurltyeoT-matrix method. This outcome is
partly due to the fact that with ever-increasingnpaitational resources it is easier to blindly
throw in more computer power than to increase theking precision of the existent code or
to develop preconditioning strategies (at least dosmall number of benchmark results).
While both cubical shape and fixed orientation dbunte in favor of the DDA in this respect,
the DDA has also been shown superior for large $m¢and even axisymmetric) particles
with small optical contrast. For instance, the Twmaand similar methods based on
spherical-harmonics expansion have not been abfargo handle red blood cells with size
parameters larger than 38 [37,40] due to its biasashape. By contrast, DDA simulation for
a sphere with size parameter 320 and refractivexidd05 was demonstrated [29] albeit using
a large computer cluster. Similar DDA applicabilignge is expected for (moderately) non-
spherical patrticles, e.g. spheroids, which is s$tillbe matched by the T-matrix or similar
methods.

On the other hand, the T-matrix approach lenddfiteere easily to other complex
morphologies, e.g., particles with small-scale atefroughness, especially when the surface
perturbations have sub-wavelength scale. Novel nigaleschemes for performing T-matrix
computations have recently been reported that antislly extend the size parameter range
while reducing CPU time requirements for such molpgies [41]. By contrast, the DDA

computations require a very large number of diptdesesolve such surface features, which
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can result in high CPU time requirements and maeere limitations in the range of
accessible size parameters [34]. Therefore, furdeselopment of both methods, including

numerical aspects of the corresponding codes fisitgdy an important research topic.
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Table 1. Ranges ot used for processing T-matrix convergence curves.

kD m 1.6 + 0.01i 0.1+i 10 + 10i
0.1 [7;30] [11;30] [10;30]
8 [15;40] [20;45] —

Table 2. Benchmark results feD = 0.1 cubes. Uncertainties (+) are in the laswshdigits of the

corresponding value and hawveminalconfidence level of 95%.

m 1.6 + 0.01i 0.1+i 10 + 10i
Qext DDA 0.0012368241 + 1| 0.206751 + 1 0.0122143 + 4
T-matrix | 0.0012372 +9 0.2069 + 33 0.01216 + 7
Qsca DDA (4.85770 + 3)x1T | (4.592 + 1)x10° | (5.86192 + 5)x1T
T-matrix | (4.850 +27)x10 | (4.67 + 15)x10° | (5.849 + 5)x10°
Qabs DDA 0.0012319664 +1| 0.206705 + 1 0.0121557 + 4
T-matrix | 0.0012324 + 10 0.2068 + 33 0.01211+7

Table 3. Same as Table 2 but k&r = 8 cubes. The T-matrix method failed for= 10 + 10i.

m 1.6 + 0.01i 0.1+i 10 + 10i

Qext DDA 42480442 +3 | 2.816375+7 2.48217+7
T-matrix | 4.24775 +33 2.795 + 26 —

Qsca DDA 3.9715646 + 3 2229316 +[7 2.11276 1
T-matrix | 3.97156 + 24 2.251+16 —

Qaps DDA 0.2764796 + 1 0.58706 + 1| 0.36941 + 1
T-matrix | 0.2757 £7 0.573 5 —

1(0°) DDA 725.8766 + 2 356.391+1 234.86+2
T-matrix | 725.81 £ 13 350+8 —

1(90°) DDA 5.071924 + 2 253435 54350 +1
T-matrix | 5.087 + 13 2.523+79 —

1(180°) DDA 3.72126 + 1 729827 75.095+7
T-matrix | 3.725+ 15 78.6 £55 —

P(90°) DDA -0.2574261 £ 2 0.7871+3 0.1976 + 3
T-matrix | -0.2569 + 19 0.838 + 48 —
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