
Chalmers Publication Library

Light scattering by a cube: Accuracy limits of the discrete dipole approximation and
the T-matrix method

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Journal of Quantitative Spectroscopy and Radiative Transfer (ISSN: 0022-4073)

Citation for the published paper:
Yurkin, M. ; Kahnert, M. (2013) "Light scattering by a cube: Accuracy limits of the discrete
dipole approximation and the T-matrix method". Journal of Quantitative Spectroscopy and
Radiative Transfer, vol. 123 pp. 176-183.

http://dx.doi.org/10.1016/j.jqsrt.2012.10.001

Downloaded from: http://publications.lib.chalmers.se/publication/179405

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1016/j.jqsrt.2012.10.001
http://publications.lib.chalmers.se/publication/179405


Light scattering by a cube: accuracy limits of the discrete dipole 

approximation and the T-matrix method 

Maxim A. Yurkin,a,b,* Michael Kahnertc,d 

 
a Institute of Chemical Kinetics and Combustion SB RAS,  

Institutskaya Str. 3, 630090, Novosibirsk, Russia 
b Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russia 

c Swedish Meteorological and Hydrological Institute,  

Folkborgsvägen 1, SE-601 76, Norrköping, Sweden 
d Chalmers University of Technology, Department of Earth and Space Science,  

SE-412 96, Gothenburg, Sweden 

*Corresponding author: yurkin@gmail.com 
 

Abstract 

We simulated light-scattering by small and wavelength-sized cubes with three largely 

different values of the refractive index using the discrete dipole approximation (DDA) and the 

T-matrix method. Our main goal was to push the accuracy of both methods to the limit. For 

the DDA we used an earlier developed extrapolation technique based on simulation results for 

different levels of discretization. For the T-matrix method we developed a procedure to 

estimate a confidence range for the simulated value, using results for different values of the 

truncation index (number of multipoles). In most cases this confidence range was reliable, 

enclosing the corresponding DDA result. We present benchmark results by both methods, 

including estimated uncertainties, for selected integral and angle-resolved scattering 

quantities. Estimated relative uncertainties of the DDA result are unprecedentedly small (from 

10−7 to 10−3), while relative differences between the T-matrix and DDA results are larger 

(from 10−4 to 0.2) in accordance with estimated T-matrix uncertainties. 
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1 Introduction 

Light scattering by a cube is relevant for many practical applications, including powdered 

crystal samples [1], ice crystals in atmosphere [2], and metallic nanoparticles [3]. But even 

more often cubes are used in benchmark studies of light-scattering codes [4–7] to contrast 

with spheres and spheroids. Although a cube is a geometrically simple object, it is 

unexpectedly complicated in terms of light-scattering simulation. The Mie theory was 

proposed more than a century ago, and currently optical properties of spheres can be 

evaluated with machine precision [8]. By contrast, methods to rigorously evaluate light-

scattering by cubes appeared only during the last two decades [4,9], and their accuracy is 

rarely discussed. 

The first step in this direction was made by Fuchs [1] and Langbein [10] for cubes much 

smaller than the wavelength. They both used several terms of the eigenmode expansion of the 

surface-integral equation, limiting the accuracy of results to several percents. This approach 

was refined by Avelin et al. [11] making the errors less than 0.5%. Optical properties of small 

cubes (kD up to 1.2, where k is free-space wavenumber and D is the side length of the cube) 

were simulated using similar methods [12–14], again with several-percent accuracy, when 

compared against the finite-difference time-domain method (FDTD) [14]. The second step 

was made by Liou et al. [15] and later others [16,17] with geometrical-optics simulation of 

light scattering by cubes much larger than the wavelength. 

Apparently, the first calculations for intermediate sized cubes (kD ~ 5) were performed 

using the resolvent-kernel method [18] and the discrete dipole approximation (DDA) [9]. 

Both of these methods are based on the volume integral equation for the electric field [19]. 

Limited comparisons of the DDA with independent methods at that time [20,21] achieved 

relative differences between 1% and 10% depending on the refractive index. 

Alternative methods, based on spherical basis functions were able to handle this 

problem only significantly later. In particular, the first application of the T-matrix method to 

simulate light-scattering by a cube was shown by Wriedt and Comberg [4]. Here and further 

we use this general term implying the extended boundary condition method. Kahnert et al. 

refined this approach by studying different methods for handling sharp edges [22] and 

explicitly employing cubical symmetries [23,24]. In comparison with the DDA the difference 

was several percents in angle-resolved quantities [23]. Recently, the T-matrix was applied to 

bi-anisotropic cubes [6], but the results were not compared to other methods. A cube was also 



 3

handled by a modification of the T-matrix method [7], resulting in differences less than 10% 

when compared to the DDA. 

While an accuracy of several percents is sufficient for most practical applications, better 

accuracy is desired for benchmark studies. Recently, Yurkin et al. [25] showed that the 

convergence of the DDA results with increasing discretization for a cube and other shapes, 

which can be exactly described as a set of cubes, is generally faster than for other shapes. 

Moreover, Richardson-type extrapolation was proposed for the DDA [26], which lead to 

extremely accurate results in combination with very fine discretization. In particular, for a 

cube with kD = 8 and refractive index m = 1.5 the relative error of the obtained extinction 

efficiency Qext and maximum relative error in the phase function was estimated to be 2×10−6 

and 3×10−5 respectively. This result was extended to other refractive indices – the relative 

error of absorption efficiency Qabs was estimated to be from 4×10–7 to 2×10–5 [27]. Moreover, 

for gold nanocubes (D = 10 and 100 nm) in the wavelength range [400,800] nm the errors of 

Qabs and Qsca were estimated to be less than 1% and 0.1% respectively [28]. However, the 

error estimate of the extrapolation technique is based on an empirical procedure; its reliability 

was only demonstrated for simulations with coarser discretization and hence larger errors 

[26]. Neither rigorous proves nor direct verifications of very small errors through comparisons 

with other light-scattering methods are available. 

The goal of this paper is to extend the DDA results, claiming very good accuracy, to test 

them against the T-matrix method, and to provide benchmark numbers for several cubes, 

giving both the internal and independent (between-methods) error estimates. For that we use 

the symmetry-enhanced T-matrix code Tsym and push its accuracy to the limit, studying the 

dependence of the results on number of multipoles, i.e. on the T-matrix truncation index ncut. 

The details of the methods and codes are given in Section 2, including the discussion of 

numerical exactness of both methods. A new procedure to analyze the T-matrix convergence 

curves is proposed in Section 3. Simulation results are shown and discussed in Section 4, and 

Section 5 concludes the paper. 

2 Methods 

2.1 Test scatterers 

Since both codes applied here are mature and well-tested, we skip standard spherical 

benchmarks and focus on the main study object – a cube. Based on a previous study [27], we 

use three largely different refractive indices: 1.6 + 0.01i, 0.1 + i, and 10 + 10i, and two sizes: 
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kD = 8 and 0.1 (in total, 6 cubes). The kD = 8 size is exactly the same as in [27], allowing us 

to reuse the corresponding DDA results. The T-matrix code could not produce satisfactory 

results for the cube with kD = 8 and m = 10 + 10i, hence we present only the DDA results for 

that particular case. 

All considered cubes are oriented with edges parallel to the coordinate axes and 

illuminated by a plane wave, propagating along the z-axis. Angle-resolved quantities, such as 

the intensity I = S11 (element of the Mueller matrix) and linear polarization ratio P = −S21/S11, 

are calculated in the yz-plane, characterized by a scattering angle θ. All efficiencies (Qext, Qsca, 

Qabs) are defined as corresponding cross sections divided by the geometrical cross section of a 

volume-equivalent sphere. 

2.2 The discrete dipole approximation 

As a DDA implementation we have used the code ADDA [29]. It is capable of running on a 

cluster of processors with distributed memory, which allowed us to use very fine 

discretization. For kD = 8 cubes we reused the data from [27], which was calculated using 

ADDA v.0.78.2 running on the Dutch compute cluster LISA.1 The convergence criterion of the 

iterative solver εit was set to the default value (10−5) for m = 0.1 + i and 10 + 10i and to 10−10 

for m = 1.6 + 0.01. Filtered coupled dipoles (FCD) formulation of the DDA [27,30] and the 

default iterative solver (quasi-minimal residual method, QMR) was used for m = 10 + 10i and 

1.6 + 0.01. However, for m = 0.1 + i we used the default lattice-dispersion relation (LDR), 

since it resulted in smaller errors, and bi-conjugate-gradient stabilized method, since QMR 

encountered convergence problems for that particular case. For each cube 5 discretizations 

were used (characterized by the number of dipoles per cube side nd = 256, 320, 384, 448, and 

512). Then the calculated dependencies of scattering quantities on nd were extrapolated to 

infinite nd using the procedure described in [26], producing both the value and estimate of its 

error (uncertainty). Computation wall clock times for the finest discretization (nd = 512) were 

from 0.4 (for m = 1.6 + 0.01) to 6.5 hours (for m = 10 + 10i) using 16 eight-core (3.4 GHz) 

nodes. 

For kD = 0.1 cubes we used ADDA v.1.1 running on the computing cluster of the 

Supercomputing center of the Novosibirsk State University.2 The same settings – the FCD 

formulation, QMR iterative solver, and εit = 10−10 – were used for all refractive indices. The 

                                                 
1 http://www.sara.nl/systems/lisa/description 
2 http://www.nusc.ru/wiki/doku.php/doc/nusc/description 
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discretizations and extrapolation procedure are the same as for kD = 8. Differences in ADDA 

versions should not affect the simulation results. For this cube size simulation wall clock 

times are much smaller – from 2 (for m = 1.6 + 0.01) to 30 minutes (for m = 10 + 10i) for 

nd = 512 using 16 eight-core (2.5 GHz) nodes. 

Finally, we note that the DDA is a rigorous (“numerically exact”) method to solve 

Maxwell’s equations [19], and the word “approximation” in its name is just a historical 

artifact. In particular, the DDA result converges to the exact value with refining discretization 

[25]. Moreover, the numerical stability of the DDA, e.g. measured by condition number of the 

corresponding system of linear equations, is almost independent of the discretization [27,31]. 

Therefore, convergence to an error on the order of a machine precision can be achieved with 

the current code just by adding (much) more computer power. Hence, the choice of the largest 

value of nd (512) in this study is somewhat arbitrary. Further increase of nd will improve the 

accuracy at the expense of larger computation time and required computer memory, which 

both scale as 3O( )dn  [29]. 

2.3 The T-matrix method 

T-matrix computations have been performed with the code Tsym version 4.5 [23,24]. This 

program is applicable to non-axisymmetric, star-shaped homogeneous particles. It fully 

exploits group theoretical methods for particles with discrete geometrical symmetries; it uses 

the commutation relations of the T-matrix [23] to expedite computations, and it is, to the best 

of our knowledge, the only T-matrix code that exploits irreducible representations of point 

groups for reducing numerical problems due to ill-conditioned computations [24]. Cubes 

belong to the octahedral symmetry group Oh. The use of irreducible representations of cubic 

point groups is not yet fully operational in Tsym. However, dihedral point groups have been 

extensively used and tested in Tsym. Thus we used the dihedral symmetry group D4h, which is 

a subgroup of Oh, to expedite and numerically stabilize the T-matrix computations. 

Computations were run in double precision on the Linux-based cluster Gimle of the 

National Supercomputer Centre in Linköping Sweden.3 Since the code is serial, it was run on 

a single 2.8 GHz node. The computation time mainly depends on the truncation index ncut of 

the T-matrix, and on the number of quadrature points used in the numerical evaluation of the 

surface integrals in Waterman’s extended boundary condition method. No attempt was made 

to optimize the computation time by minimizing the number of quadrature points in the 

                                                 
3 http://www.nsc.liu.se/systems/gimle/ 
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different cases considered. Instead, the number of polar and azimuthal quadrature points was 

kept fixed; we used 800 quadrature points in the range [0,π] for the polar angle, and 3200 

quadrature points in the range [0,2π] for the azimuthal one. Note that, owing to the particle 

symmetries, the actual angular integration ranges are reduced in Tsym, see [22,23] for details. 

Thus, we used 400 quadrature points in the reduced polar range [0,π/2], and 400 quadrature 

points in the reduced azimuthal range [0,π/4]. At a fixed value of ncut, this choice gave stable 

results in all cases with respect to any further increase of the number of quadrature points. 

Typical values of ncut for which convergent results have been achieved vary from 7 to 45. 

Within this range, the wall-clock time of the computations vary from 7 seconds to 1.8 hours. 

When comparing this to corresponding computation times of the DDA, it is important to 

emphasize that the information contents of T-matrix and DDA computations is not fully 

comparable. The T-matrix contains the complete information about a particle’s scattering and 

absorption properties at a given wavelength. By contrast, DDA computations yield results for 

particles in one specific orientation. For instance, one can compute from the T-matrix, with 

very little extra investment of computation time, optical properties of ensembles of identical 

particles in random orientations, while DDA computations need to be repeated for each new 

angle of incidence. 

The T-matrix method is also numerically exact in the sense that one can, in principle, 

produce arbitrarily exact results by increasing ncut, the number of integration quadrature 

points, and the machine precision – see [32] for a detailed discussion. However, when 

working with a fixed machine precision (as was done in this study), the achievable precision 

is limited owing to numerical ill-conditioning and loss-of-accuracy problems. In particular, 

the condition number of the system of linear equations in the T-matrix method rapidly 

increases with ncut, contrary to the one in the DDA with refining discretization (see Section 

2.2). The severity of these problems depends on a number of factors ranging from size 

parameter and aspect ratio of the scatterer to the presence of small-scale roughness and edges 

and corners. Therefore, cubes are among the more challenging geometries in practical 

applications of the T-matrix method, while they are a “home game” for the DDA. 

Finally, let us discuss the fundamental applicability of the T-matrix method to particles 

with C0 surfaces (i.e. with sharp edges), such as a cube. For such surfaces, the surface 

integrals will have continuous, but not continuously differentiable integrands. However, 

continuity is sufficient for integrability. Thus, there are no principle mathematical problems in 

T-matrix calculations for particles with C0 surfaces. We also know from numerical 

experiments that there are no principle problems in application of the T-matrix method to 
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finite circular cylinders [33]. Critics may argue that the Gaussian quadrature scheme used in 

that T-matrix code does not include any points on the critical edge of the cylinder. However, 

the Tsym code used in our study has a different quadrature scheme for prisms (including 

cubes) that does include points on the critical edges of the top and bottom faces [23], and our 

experiences with the code do not indicate any fundamental problems related to particles with 

sharp edges. Perhaps even more important is the fact that a C0 surface is an idealization that 

does not exist in nature. As remarked in [22], a "sharp edge" should be understood as a feature 

on the particle surface with a curvature radius much smaller than the wavelength. It has been 

demonstrated in that paper that the T-matrix results converge with decreasing radius of 

curvature Rc. No indications of numerical instabilities were observed as Rc became much 

smaller than the wavelength. 

All this indicates that there are no fundamental mathematical problems with sharp 

edges, but there are, to be sure, numerical challenges. The internal field near sharp edges and 

pointy corners has large gradients, i.e. the characteristic spatial scales are smaller than the 

particle size. Therefore, a large number of terms are needed in the spherical-harmonics 

expansions to accurately represent these fields. However, this is by no means limited to 

particles with sharp edges; we encounter the same problem in spheres perturbed with a small-

scale surface roughness [34,35]. The surfaces of such particles are C∞, i.e. ultimately smooth. 

Yet to accurately describe the field induced in the small-scale surface features, a large number 

of expansion terms are required. 

3 Convergence of the T-matrix method 

Before one can meaningfully compare the DDA and T-matrix results, one should define what 

the T-matrix result is. While for the DDA this issue is (at least partly) addressed by the 

extrapolation technique (see Section 2.2), no straightforward approach is known for the T-

matrix method. The main problem is lack of uncertainty estimate associated with a computed 

value. Almost any T-matrix code incorporates some kind of an accuracy measure, which is 

usually based on the difference of results for two values of ncut [36–38]. However, to the best 

of our knowledge the relation between these measures and a real error, obtained by 

comparison with independent reference, has not been firmly established. This can be 

explained by the little relevance of this issue for simple (axisymmetric and moderate-sized) 

particles, for which the accuracy of the T-matrix method can be easily made good enough, 

taking large enough ncut. By contrast, for non-axisymmetric particles references with well-

defined accuracy are lacking. 
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The deficiencies of existing error measures has been recently discussed [37,38]. To 

illustrate this issue, we present two typical convergence plots of the T-matrix results with 

varying ncut in Fig. 1. The common feature of both parts of these graphs is that larger values 

of ncut do not necessarily imply better accuracy. There always exists an optimal range of ncut, 

where the variation of values is smallest, such as the range [15;40]. However, the convergence 

behavior can be different. In Fig. 1(b) the computed value oscillates around a certain level and 

the difference between, e.g., ncut and ncut − 3 provides an adequate estimate of the uncertainty. 

By contrast, Fig. 1(a) depicts an almost monotonic convergence, which is truncated by 

numerical instability at larger ncut (this instability is analyzed in [32]). In particular, the 

difference between two values of ncut can be much smaller than the real error. All other T-

matrix convergence curves (data not shown) fall into one of these two categories – with or 

without monotonic convergence. 

We note that this convergence curve is not a series in a standard sense, because 

incrementing ncut not only adds a new term to the sum, but also modifies all existing terms. 

Moreover, contrary to the DDA (see Section 2.2) throwing in more computer power will not 

help. Therefore, the full convergence curve defines the best possible result achievable with the 

current code (see Section 2.2). The only way to improve it is to modify the code, e.g. by using 

better working precision. The most rigorous approach would be to compare the whole T-

matrix convergence curve against the DDA results. This is done in Fig. 1, showing good 

agreement within the variation of the T-matrix values. However, such qualitative comparison 

is not practical for a large number of computed values, including angle-resolved ones. 

Therefore, we propose the following empirical procedure to compress the T-matrix 

convergence curve into the confidence interval, which defines the T-matrix result. 

• First, we manually choose the range of ncut, trying both to keep the variation of values 

close to the minimum and to maximize the range size. The particular choices for all 

studied cubes are summarized in Table 1. 

• Second, we fit the truncated curve by f(x) = a + bx−c. This function is somewhat arbitrary, 

but we also tried an exponential one (data not shown) resulting in consistently worse fits. 

• The fit is considered successful if the minimum of the residual sum of squares (RSS) is 

reached for 0 < c < ∞, and the null hypotheses (c = 0 or c = ∞) can be rejected with a p-

value of 0.05 based on Fisher’s criterion, i.e. the ratio of RSS for the null hypothesis to the 

minimal one is larger than the appropriate quantile of Fisher’s distribution. Then we 

determine the 95%-confidence interval for f(100) based on the upper bound for RSS. 

Using f(100) instead of a = f(∞) is more robust for small c. This confidence interval is 
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generally asymmetric (up to 20%) about the best-fit value, but that is negligible 

considering the approximate nature of the whole procedure. Thus in the following we 

present the best fit of f(100) ± half of the confidence range. 

• If the fit is unsuccessful (see above) we instead fit the data by a simpler function, 

corresponding to c = 0 (constant) or c = ∞ (constant with the data point for the smallest 

ncut omitted). Then the best-fit value is just the mean of the data, while the 95%-

confidence width is determined from the standard deviation multiplied by appropriate 

quantile of Student’s distribution. 

An illustrative application of this procedure is presented in Fig. 1, which shows both the 

fitted curve and the obtained confidence interval. We note that exactly the same procedure 

applies to both convergence cases. The T-matrix result shows good correspondence with the 

DDA results. We stress, however, that the proposed procedure is mostly a convenient 

technique to quantitatively compare T-matrix results with other methods. While in certain 

cases it works surprisingly well [Fig. 1(a)], it can also significantly under- or overestimate the 

real error. The quality of this procedure for cubes can be judged based on results in Section 4. 

However, further testing (and probably refinement) of this procedure is definitely required 

before it can be broadly applied. 

4 Comparison between the methods 

In this section we present the final processed results for the cubes, obtained using 

extrapolation techniques described in Sections 2.2 and 3 for the DDA and the T-matrix 

method, respectively. First we consider kD = 0.1 cubes. Since the angular dependence of both 

I and P is trivial for such small particles, we show only the results for efficiencies in Table 2. 

The internal error estimates of the DDA results are 2−4 orders of magnitude smaller than 

those of the T-matrix results. Hence the DDA results can be considered as a reliable reference, 

even if its error estimates are only correct by an order of magnitude. Relative differences 

between the DDA and T-matrix results are between 0.03% and 0.5%, except 2% difference 

for Qsca for m = 0.1 + i. These differences are smaller (up to 30 times) than the T-matrix error 

estimate except for Qsca for m = 10 + 10i, where it is 2 times larger. 

For kD = 8 cubes we summarize benchmark results in Table 3, showing both 

efficiencies and several particular values of I and P. Full angle-dependencies of I and P, 

computed with the DDA, are shown in Fig. 2, while the corresponding difference of the T-

matrix and DDA results is presented in Fig. 3 together with error estimates of each method. 

The overall conclusions are the same as for kD = 0.1. Differences between the T-matrix and 
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DDA results are from 0.01% (excluding occasional smaller values) to 0.3% for 

m = 1.6 + 0.01i and from 0.3% to 15% for m = 0.1 + i (efficiencies agree within 3%). 

Considering the DDA result as a reference, we can deduce a strong correlation between 

the estimated and real errors of the T-matrix results. However, for some scattering quantities 

the estimate is too conservative, being more than 10 times larger than the real error. For other 

cases, by contrast, the estimate is up to 4 times smaller than the real error. This applies, in 

particular, to Qsca and Qabs for m = 0.1 + i and to P near the back-scattering direction. To 

analyze this behavior we present one particular case in Fig. 4. The default fit procedure, as 

defined in Section 3, leads to confidence interval (denoted by the square symbol) that 

significantly disagrees with the DDA result. However, the disagreement with the DDA is not 

that obvious if we consider the whole convergence curve. For instance, if the ncut range used 

for fitting is decreased to [20;35], which can be justified by larger variation of the T-matrix 

results at the ends of the original range, the confidence interval moves closer to and broadens 

to include the DDA result (see the diamond symbol). Thus, we conclude that this and other 

(data not shown) underestimation of the real error is caused by imperfection of the employed 

simple fitting procedure. 

5 Conclusion 

We have simulated light-scattering by several cubes with the DDA and T-matrix method, 

pushing the accuracy of both methods to the limit. For the DDA we used an earlier developed 

extrapolation technique based on simulation results for different levels of discretization. It 

allowed us to present unprecedentedly accurate benchmark results with estimated relative 

uncertainty from 10−7 to 10−3 depending on cube size and refractive index, as well as on the 

particular scattering quantity of interest. 

For the T-matrix method we analyzed convergence curves (versus ncut) and showed that 

some cases feature almost monotonous convergence. Based on this we proposed a simple 

procedure to fit this curve by a power function, which allowed us to compress the whole 

convergence curve into a confidence range (i.e. a certain value and its uncertainty estimate). 

Comparison of the DDA and T-matrix results showed that the obtained estimate is, overall, 

reliable, although an underestimation of the real error up to a factor of four was obtained in 

rare cases. This warrants a further study of this procedure for other scattering problems, 

especially those for which the T-matrix method suffers numerical instability (scatterers with 

large sizes or aspect ratios, surface roughness, or edges). 
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The confidence intervals determined for the T-matrix and DDA results can be 

interpreted as a measure that reflects the numerical behavior of either method. While DDA 

computations progressively improve as the number of dipoles is increased, the accuracy of the 

T-matrix method is often limited by the oscillating behavior of the results as a function of ncut, 

as well as by the divergence of the results at very large values of ncut. Both the proposed error 

estimate of the T-matrix method and its difference against the DDA results showed relative 

errors from 10−4 to 0.2. Moreover, T-matrix error estimate was always from 100 to 104 times 

larger than the DDA error estimate. Although we could not directly verify the accuracy 

claimed by the DDA, even the less remarkable agreement between the two methods is 

unprecedently good in some cases. Thus we believe that the presented benchmark results 

would be useful for developers of light scattering codes, as well as for those who apply these 

codes to cubes in practical applications. 

Finally, we note that a standard approach for light-scattering benchmark studies is to 

evaluate the accuracy of the DDA versus the reference provided by the T-matrix method 

[5,39]. By contrast, we started with equal attitude to both methods and ended up with using 

the DDA as the reference to evaluate the accuracy of the T-matrix method. This outcome is 

partly due to the fact that with ever-increasing computational resources it is easier to blindly 

throw in more computer power than to increase the working precision of the existent code or 

to develop preconditioning strategies (at least for a small number of benchmark results). 

While both cubical shape and fixed orientation contribute in favor of the DDA in this respect, 

the DDA has also been shown superior for large smooth (and even axisymmetric) particles 

with small optical contrast. For instance, the T-matrix and similar methods based on 

spherical-harmonics expansion have not been able so far to handle red blood cells with size 

parameters larger than 38 [37,40] due to its biconcave shape. By contrast, DDA simulation for 

a sphere with size parameter 320 and refractive index 1.05 was demonstrated [29] albeit using 

a large computer cluster. Similar DDA applicability range is expected for (moderately) non-

spherical particles, e.g. spheroids, which is still to be matched by the T-matrix or similar 

methods. 

On the other hand, the T-matrix approach lends itself more easily to other complex 

morphologies, e.g., particles with small-scale surface roughness, especially when the surface 

perturbations have sub-wavelength scale. Novel numerical schemes for performing T-matrix 

computations have recently been reported that substantially extend the size parameter range 

while reducing CPU time requirements for such morphologies [41]. By contrast, the DDA 

computations require a very large number of dipoles to resolve such surface features, which 
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can result in high CPU time requirements and more severe limitations in the range of 

accessible size parameters [34]. Therefore, further development of both methods, including 

numerical aspects of the corresponding codes, is definitely an important research topic. 
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Table 1. Ranges of ncut used for processing T-matrix convergence curves. 

kD       m 1.6 + 0.01i 0.1+i 10 + 10i 

0.1 [7;30] [11;30] [10;30] 

8 [15;40] [20;45] –– 

 

Table 2. Benchmark results for kD = 0.1 cubes. Uncertainties (±) are in the last shown digits of the 

corresponding value and have nominal confidence level of 95%. 

 m 1.6 + 0.01i 0.1+i 10 + 10i 

Qext DDA 0.0012368241 ± 1 0.206751 ± 1 0.0122143 ± 4 

 T-matrix 0.0012372 ± 9 0.2069 ± 33 0.01216 ± 7 

Qsca DDA (4.85770 ± 3)×10−6 (4.592 ± 1)×10−5 (5.86192 ± 5)×10−5 

 T-matrix (4.850 ± 27)×10−6 (4.67 ± 15)×10−5 (5.849 ± 5)×10−5 

Qabs DDA 0.0012319664 ± 1 0.206705 ± 1 0.0121557 ± 4 

 T-matrix 0.0012324 ± 10 0.2068 ± 33 0.01211 ± 7 

 

Table 3. Same as Table 2 but for kD = 8 cubes. The T-matrix method failed for m = 10 + 10i. 

 m 1.6 + 0.01i 0.1+i 10 + 10i 

Qext DDA 4.2480442 ± 3 2.816375 ± 7 2.48217 ± 7 

 T-matrix 4.24775 ±33 2.795 ± 26 –– 

Qsca DDA 3.9715646 ± 3 2.229316 ± 7 2.11276 ± 1 

 T-matrix 3.97156 ± 24 2.251 ± 16 –– 

Qabs DDA 0.2764796 ± 1 0.58706 ± 1 0.36941 ± 1 

 T-matrix 0.2757 ± 7 0.573 ± 5 –– 

I(0°) DDA 725.8766 ± 2 356.391 ± 1 234.86 ± 2 

 T-matrix 725.81 ± 13 350 ± 8 –– 

I(90°) DDA 5.071924 ± 2 2.5343 ± 5 5.4350 ± 1 

 T-matrix 5.087 ± 13 2.523 ± 79 –– 

I(180°) DDA 3.72126 ± 1 72.982 ± 7 75.095 ± 7 

 T-matrix 3.725 ± 15 78.6 ± 55 –– 

P(90°) DDA −0.2574261 ± 2 0.7871 ± 3 0.1976 ± 3 

 T-matrix −0.2569 ± 19 0.838 ± 48 –– 
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Fig. 1. Dependence of Qext (a) and Qabs (b) on ncut for a cube with kD = 8 and m = 1.6 + 0.01i computed 

with the T-matrix method. Fitted curves and estimated confidence ranges are also shown (based on 

data for 15 ≤ ncut ≤ 40, see text). DDA results (extrapolated) are shown for reference; their estimated 

uncertainty is less than the line width (see Table 2). 
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Fig. 2. DDA results for I (a, logarithmic scale) and P (b) of kD = 8 cubes. The T-matrix results are 

omitted for clarity of presentation. See Fig. 3 for differences. 
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Fig. 3. Comparison between DDA and T-matrix results in terms of relative difference of I (left row) 

and absolute difference of P (right row) for kD = 8 cubes with three refractive indices. Together with 

differences, internal error estimates of each method are shown. The T-matrix method failed for 

m = 10 + 10i, so only the DDA error estimate is shown in this case. 
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Fig. 4. Dependence of P(160°) on ncut for a cube with kD = 8 and m = 1.6 + 0.01i computed with the 

T-matrix method. Fitted curves and estimated confidence ranges are shown, derived from two subsets 

of data – ncut ∈ [15,40] (default) and [20,35]. The DDA result (extrapolated) is shown for reference; its 

estimated uncertainty is less than line width (see Fig. 3). 

 


