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Abstract

A T-matrix code tailored to non-axisymmetric particles with finite symme-
tries is described. The code exploits geometric symmetries of particles by use
of group theoretical methods. Commutation relations of the T-matrix are im-
plemented for reducing CPU-time requirements. Irreducible representations
of finite groups are employed for alleviating ill-conditioning problems in nu-
merical computations. Further, an iterative T-matrix method for particles
with small-scale surface perturbations is implemented. The code can com-
pute both differential and integrated optical properties of particles in either
fixed or random orientation. Methods for testing the convergence and cor-
rectness of the computational results are discussed. The package also includes
a database of pre-computed group-character tables, as well as an interface to
the GAP programming language for computational group theory. The code
can be downloaded at http://www.rss.chalmers.se/˜kahnert/Tsym.html.
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1. Introduction

The T-matrix formulation of electromagnetic and acoustic scattering,
which was first introduced by Waterman [1], has become the basis for several
numerical approaches for numerically solving scattering problems described
by Helmoltz’ equation. Several specific methods have been developed for
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computing T-matrices, such as the null-field method (also known as the ex-
tended boundary condition method), which was the method originally pro-
posed by Waterman. Other methods are based on, e.g., volume-integral
equation methods [2, 3], the separation of variables method [4], the gener-
alised point-matching method [5], or the superposition T-matrix method [6].
For star-shaped particles, the null-field method is by far the most widely
used T-matrix method in numerical computations. (A star-shaped particle
has a boundary surface that can be parameterised in spherical coordinates.)
Several implementations of the method for axisymmetric [7, 8] and non-
axisymmetric particles [9] are publicly available; they can be found on the
light-scattering information portal ScattPort [10, 11].

The T-matrix formalism has a theoretical advantages over other numer-
ical methods for solving the light-scattering problem, which results in two
main practical advantages. The T-matrix is a property of the particle that is
decoupled from the incident field; it contains the complete information about
a particle’s absorption and scattering properties at a given wavelength. Thus,
for any given particle and wavelength, the T-matrix is computed once and
for all; all optical properties of interest, such as differential and total scat-
tering cross sections, can be computed from that T-matrix. One resulting
practical advantage is that the T-matrix can be rotated [12], so that optical
properties of particles in any fixed orientation, as well as ensemble-averaged
optical properties of particles in random orientations, can be computed an-
alytically from the T-matrix [13, 14]. By contrast, other numerical methods
that are not based on the T-matrix concept compute the scattered field for
one specific incident field and one specific particle orientation; if the optical
properties of particles in different or random orientations are needed, then
the computations need to be repeated for each new particle orientation.

The other practical advantage is that the T-matrix formulation lends it-
self easily to exploiting geometrical symmetries of the scatterer [15, 16]. This,
too, is a direct consequence of the T-matrix being a pure property of the par-
ticle independent of the form or direction of the incident field. The exploita-
tion of symmetries is the only known approach that is able to substantially

reduce CPU-time requirements in numerical light-scattering computations
(e.g. [16, 17]). It can also greatly alleviate ill-conditioning problems [18, 19]
that have limited the range of applicability of T-matrix computations.

The code Tsym (pronounced “tee-simm”) presented in this tutorial can be
downloaded via the Tsym homepage [20]. It has been specifically developed
for testing the use of group theory in T-matrix computations. The group
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theoretical methods that are implemented in this code are the commutation
relations of the T-matrix and the irreducible representations of finite groups.
The former were first derived in [15] and later extended in [18], and the
latter method was first formulated for T-matrix computations in [18]. The
Tsym code is, to the best of my knowledge, the only T-matrix code that
fully exploits irreducible representations of finite symmetry groups. Apart
from group theoretical methods, the code has also been extended for testing a
Lippmann-Schwinger T-matrix equation for particles with small-scale surface
roughness [21, 17], and for investigating different morphological models for
surface roughness effects [22].

A main practical disadvantage of Tsym is its low degree of user-friendliness.
Many other light-scattering codes have been geared to be used by a large
group of users with varying degree of background knowledge about numeri-
cal light-scattering methods. T-matrix codes for axisymmetric particles (e.g.
[7, 8]) are often particularly user-friendly, since they contain automatic rou-
tines for ensuring the convergence of the computational results. By contrast,
Tsym is a research code that has mainly been created for testing new theoret-
ical and numerical approaches in T-matrix computation; no efforts have been
invested to make the code foolproof. The code places all the responsibility
for ensuring and testing the correctness of the results on the user. Thus,
the program will be most useful for highly experienced users and program
developers. It can hardly be emphasised enough that newcomers and users
with little background knowledge of T-matrix theory are not encouraged to
use this code. This applies specifically to those users who wish to quickly
obtain computational results for some specific problem, and who can spend
very limited time for thoroughly familiarising themselves with the code and
its underlying theory.

The article is organised as follows. Section 2 briefly sketches the theo-
retical basics of the T-matrix approach and symmetries. Section 3 describes
the code, its structure, and use. Section 4 provides the essential information
on how to test the convergence of the computational results. Several utilities
that are contained in the Tsym package are described in Sect. 5. A short
summary is given in Sect. 6.

3



2. T-matrix formulation of electromagnetic scattering

In the T-matrix approach the incident, scattered, and internal fields are
expanded in the basis of vector spherical wave functions ~Ψ

(j)
n,m,τ according to

Einc(r) =
∞

∑

n=1

n
∑

m=−n

2
∑

τ=1

an,m,τ
~Ψ(1)

n,m,τ (k, r) (1)

Esca(r) =
∞

∑

n=1

n
∑

m=−n

2
∑

τ=1

pn,m,τ
~Ψ(3)

n,m,τ (k, r). (2)

Eint(r) =
∞

∑

n=1

n
∑

m=−n

2
∑

τ=1

cn,m,τ
~Ψ(1)

n,m,τ (ks, r). (3)

(4)

k and ks are the wavenumbers in the surrounding medium and inside the
particle, respectively. The indices n, m, and τ denote the degree, order, and
mode of the wave functions. The superscript j = 1 denotes vector spherical
wave functions that are regular at the origin, while j = 3 stands for outgoing
wave functions that satisfy the radiation condition at infinity. The linearity
of the boundary conditions results in linear relations among the expansion
coefficients in the form

an,m,τ =
∞

∑

n′=1

n′

∑

m′=−n′

2
∑

τ ′=1

Qn,m,τ,n′,m′,τ ′ cn′,m′,τ ′ (5)

pn,m,τ = −

∞
∑

n′=1

n′

∑

m′=−n′

2
∑

τ ′=1

RgQn,m,τ,n′,m′,τ ′ cn′,m′,τ ′ (6)

pn,m,τ =
∞

∑

n′=1

n′

∑

m′=−n′

2
∑

τ ′=1

Tn,m,τ,n′,m′,τ ′ an′,m′,τ ′ . (7)

The quantity of interest is the T-matrix, which expresses the linear relation
between the expansion coefficients of the unknown scattered field in terms
of the known coefficients of the incident field. Combining the last three
equations, one obtains

Tn,m,τ,n′,m′,τ ′ = −
∞

∑

n′′=1

n′′

∑

m′′=−n′′

2
∑

τ ′′=1

RgQn,m,τ,n′′,m′′,τ ′′Q−1
n′′,m′′,τ ′′,n′,m′,τ ′ . (8)

4



From the T-matrix all optical properties of interest can be computed.
Formally, the T-matrix has infinite dimension. In practice, the infinite sum,
and thus the T-matrix, needs to be truncated at some finite value n = nmax,
i.e.

∞
∑

n=1

n
∑

m=−n

2
∑

τ=1

· · · ≈

nmax
∑

n=1

n
∑

m=−n

2
∑

τ=1

· · · . (9)

Often, it is even possible to limit the summation over m to some range
m = −mmax, . . . ,mmax, where mmax ≤ n. One can rearrange the summation
according to

∞
∑

n=1

n
∑

m=−n

2
∑

τ=1

· · · ≈

mmax
∑

m=−mmax

nmax
∑

n=max{1,|m|}

2
∑

τ=1

· · · . (10)

The truncation parameters nmax and mmax are the most important parame-
ters that determine the numerical accuracy of T-matrix computations.

In Waterman’s null-field method [1], the T-matrix is computed from the
matrices Q and RgQ, as can be seen in Eq. (8). The elements of these two
matrices are calculated from surface integrals over various vector products of
vector spherical wave functions. The numerical evaluation of these integrals
uses a Gauss-Legendre double quadrature, i.e.

∫ π

0

sin θdθ

∫ 2π

0

dφ f(θ, φ) ≈

Nθ
∑

i=1

wθ
i sin θi

Nφ
∑

j=1

wφ
j f(θi, φj), (11)

where the integrand f is a function of the spherical coordinates θ and φ. wθ
i

and wφ
j denote the integration weights, and Nθ and Nφ are the number of po-

lar and azimuthal Gauss-Legendre quadrature points, respectively. The main
practical problem in T-matrix computations is to determine the convergence-
controlling parameters nmax, mmax, Nθ, and Nφ. One usually wants to choose
these parameters as large as necessary and as small as possible. At too small
values the computations may not yield convergent results, while larger values
require more computation time.

2.1. Symmetries

T-matrix computations for particles with geometric symmetries can be
substantially expedited by exploiting the so-called commutation relations of
the the T-matrix. For instance, a particle with hexagonal symmetry, such as

5



Figure 1: Examples of geometries implemented in Tsym.

the one shown in Fig. 1 (upper left) is invariant under a rotation by 2π/6
about its main symmetry axis. The abstract rotation operation by 2π/6 is
denoted by Ĉ6. This operation can be represented in the vector space on
which the T-matrix operates by a unitary matrix U(Ĉ6) with elements

Un,m,τ,n′,m′,τ ′ = δn,n′δm,m′δτ,τ ′ exp (−2πim/6) , (12)

where δl,l′ denotes the Kronecker delta, and where i is the imaginary unit.
(More detailed information about representation of groups in T-matrix com-
putations can be found in [18]). A symmetry operation U leaves the T-matrix
invariant, i.e. T = U · T · U−1, or

[T,U] = 0, (13)

where [T,U]=T·U-U·T denotes the commutator of T and U. For the exam-
ple in Eq. (12), the commutation relation of the T-matrix yields Tn,m,τ,n′,m′,τ ′=
exp[−2πi(m − m′)/6]Tn,m,τ,n′,m′,τ ′ , or

Tn,m,τ,n′,m′,τ ′ = 0 unless |m − m′| = 0, 6, 12, . . . . (14)

Similar commutation relations hold for the Q- and RgQ-matrices. In this
example, the number of Q-, RgQ-, and T-matrix elements that need to be
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computed is reduced by a factor of 6. The remaining elements are zero owing
to the particle’s symmetries.

One obtains commutation relations as in Eq. (13) for each generator of
the particle’s symmetry group. In total, the commutation relations reduce
the number of matrix elements that need to be computed by a factor of 1/Mo

[18], where Mo denotes the order of the symmetry group. In addition, one
can proof [16] by use of the commutation relations that the surface area of
the particle, over which the integrals in Eq. (11) need to be evaluated, can
be reduced by a factor of 1/Mo. In total, the computation time is reduced
by a factor of 1/M2

o . Depending on the order of the symmetry group, this
typically amounts to a reduction in CPU-time requirements by 3–6 orders of
magnitude!

Equation (8) requires the inverse of the Q-matrix. The Tsym code uses
LU decomposition for inverting the Q-matrix, which has been shown to be
the most robust method in T-matrix calculations [23]. However, numerical
matrix inversion can introduce ill-conditioning problems in the calculations.
The most elegant way to alleviate such problems is to exploit particle sym-
metries (if applicable) by changing from the basis of vector spherical wave
functions to the so-called irreducible basis of the symmetry group. Tsym uses
methods of computational group theory to automatically construct a similar-
ity transformation P that represents the transformation into the irreducible
basis [18]. In this basis, the Q- and T-matrices become block-diagonal. This
is illustrated in Fig. 2 for a Q-matrix with truncation nmax = mmax=6, in
which case the Q-matrix has 96 columns and rows. The upper panel schemat-
ically shows the symmetry structure of a Q-matrix for a particle belonging to
the symmetry group D4h. (For instance, a brick with a regular square cross
section belongs to this symmetry group.) Rather than showing the Q-matrix
elements as numerical entries, this schematic picture of the matrix repre-
sents each independent, non-zero matrix element by a black square, while
white squares represent elements that are zero due to symmetry, and grey
squares represent matrix elements that are non-zero but related by symme-
try to other non-zero matrix elements. It can be seen that the commutation
relations strongly reduce the number of non-zero, independent matrix el-
ements. After application of the transformation P, the Q-matrix becomes
block-diagonal (bottom), where the number of block matrices is always equal
to the number of irreducible representations of the symmetry group (which, in
case of the group D4h, happens to be 10). Rather than numerically inverting
one large Q-matrix, the problem is now reduced to separately inverting each
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Figure 2: Schematic representation of the structure of the Q-matrix of a particle belonging
to the symmetry group D4h (top). After transformation into the irreducible basis, the Q-
matrix becomes block-diagonal (bottom).

8



of the smaller block matrices. This can significantly reduce ill-conditioning
problems in T-matrix computations.

A more detailed explanation of this method can be found in [18, 19].
The Tsym code is currently the only T-matrix code with the capability of
exploiting irreducible representations of symmetry groups.

2.2. Lippmann-Schwinger T-matrix equation for particles with small-scale

surface perturbations

Another way for reducing or, in some cases, even eliminating ill-conditioning
problems has been proposed for particles with small-scale surface roughness
[17, 21]. The idea is to compute the matrix Q of a particle with a small
surface perturbation, and the matrix Q0 of the corresponding unperturbed
geometry, and to formally introduce the difference ∆Q=Q − Q0. Substi-
tution into Eq. (8) yields after some manipulations a Lippmann-Schwinger
T-matrix equation, from which we obtain an iterative T-matrix scheme

T(0) = −RgQ · Q−1
0 (15)

T(p) = −(RgQ + T(p−1) · ∆Q) · Q−1
0 , p ≥ 1 (16)

(see [17] for details). Here p denotes the iteration order. Inversion of Q0

is usually much more well-conditioned than that of Q. If the unperturbed
geometry is a homogeneous sphere, then Q0 is a diagonal matrix, and its
inversion becomes trivial. In that case the ill-conditioning problems are en-
tirely eliminated. However, the iterative scheme is limited to particles with
small surface perturbations.

3. Description of the T-matrix code Tsym

3.1. Main purpose of the code

Tsym has been developed as a research code for developing and testing
new theoretical and numerical methods (e.g. [17, 18]), for developing mod-
els for particles with small-scale surface roughness (e.g. [17, 19]), and for
comparing optical properties of simple and morphologically more complex
model particles (e.g. [24, 25]). Therefore, the emphasis in the development
of the code has mainly been on flexibility rather than user-friendliness. Nev-
ertheless, experienced user have, in the past, successfully used the code in
rather ambitious applications that involved numerical computations for large
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ensembles of particles, such as comparisons of model computations and lab-
oratory measurements of mineral dust particles [26], and computation of ice
cloud optical properties for operational remote sensing retrieval algorithms
[27].

3.2. Applicability and general capabilities of the code

The T-matrix routines in Tsym are sufficiently general to compute the
T-matrix for any homogeneous, star-shaped particle geometry. However, the
routines are most efficient for particles with finite geometric symmetries. By
making use of group theoretical methods, the implementation both expedites
and stabilises the numerical computations for particles with symmetries. The
code is optimised for non-axisymmetric particles with discrete symmetries.
Although axisymmetric geometries and spheres can also be computed with
Tsym, there exist other T-matrix implementations (e.g. [7, 8]) that are
specifically tailored to such geometries; such codes are likely to be more
efficient for computing optical properties of axisymmetric particles.

The Tsym code can compute optical properties of particles in both fixed
and random orientations. More specifically, for particles in fixed orienta-
tion the code computes the polarised differential scattering cross section
(dσ/dΩ)αβ, where (αβ) = hh, hv, vh, or vv, and where h and v represent
polarisation in or perpendicular to the scattering plane. The first subscript α
denotes the polarisation state of the incident field, while the second subscript
β represents the polarisation state of the scattered field. The code further
computes the Mueller matrix Mij, ij =11, 22, 33, 44, 12, 34 (where, for par-
ticles in fixed orientation, the element M11 is not normalised), the extinction
cross section Cext, and the total scattering cross section Csca.

For particles in random orientations, the code uses analytical orientation-
averaging [13, 14, 6] to compute the Stokes scattering matrix Fij, as well as
Cext and Csca. The first element F11 of the Stokes scattering matrix is the
phase function, which is properly normalised, i.e.

1

2

∫ π

0

F11(Θ) sin ΘdΘ = 1. (17)

(where Θ is the scattering angle). Various derived parameters are also com-
puted, such as the single scattering albedo ω = Csca/Cext, the absorption
cross section Cabs = Cext − Csca, the asymmetry parameter

g =
1

2

∫ π

0

F11(Θ) cos Θ sin ΘdΘ, (18)
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the backscattering cross section

Cbak =
1

4π
CscaF11(π), (19)

the linear backscattering depolarisation ratio

δL =
F11(π) − F22(π)

F11(π) + F22(π)
, (20)

and the circular backscattering depolarisation ratio

δC =
F11(π) + F44(π)

F11(π) − F44(π)
. (21)

3.3. Main shortcomings of the code

The main drawback of the code is its limited user-friendliness. Most im-
portantly, the code does not have any automated method for checking the
convergence of the computations and for determining the precision-controlling
parameters nmax, mmax, Nθ, and Nφ. It is entirely the user’s responsibility to
determine these parameters and to ensure the convergence and correctness
of the computational results. Therefore, the code is mainly meant to be ap-
plied by expert users. Beginners with little prior experience with numerical
methods in electromagnetic scattering usually find it difficult to use the code.
Inexperienced users may fare better with a code that offers less flexibility but
a higher degree of user-friendliness, such as T-matrix codes for axisymmetric
particles.

Apart from these technical drawbacks, the T-matrix method is limited
in the range of particle sizes, shapes, and dielectric properties for which
convergent results can be obtained. The computations can become numer-
ically unstable for particles with large size parameters x = 2πr/λ (where
r is the radius of a volume-equivalent sphere, and λ is the wavelength of
light). Also, numerical instabilities are often encountered for dielectric parti-
cles with large real or imaginary parts of the refractive index m = n + iκ, or
for geometries that deviate significantly from spherical shape, such as highly
prolate or highly oblate morphologies. Similar problems can be encountered
for particles with surface perturbations with high deformation amplitudes.
The exact parameter ranges for which convergent results can be obtained are
interdependent. For instance, for strongly elongated polygonal prisms the
range of size parameters is usually more limited than for mildly elongated
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prisms. Similarly, for particles with high real or imaginary parts of the re-
fractive index, convergent results are often obtained for a limited range of
size parameters only. It is absolutely vital that the user carefully checks the
convergence and accuracy of the computational results. Section 4.1 provides
more information on how such convergence tests should be performed.

3.4. Structure and compilation

The code is written in Fortran 90, using double precision. Although the
code is not parallelised, it can be an advantage to run it on a single node of
a computing cluster rather than on a desktop, because this usually provides
more memory. The user needs to edit the Makefile and specify the Fortran
compiler. Running the make command will produce an executable called
tsym.x.

The distribution of the program contains the Tsym source code, as well
as several other routines that have been borrowed from other programs. The
main directory contains the following program files.

• Tsym.F: This file contains the Tsym source code, including the main
program, the null-field routines for computing the T- and Q-matrices,
group theoretical routines for computing reducible representations and
for constructing the transformation into the irreducible basis, as well
as subroutines for computing the surface parameterisations of different
particle geometries.

• functions.F: This file contains subroutines for computing spherical
Bessel, spherical Hankel, and Wigner d-functions, which have been
borrowed from the code by Michael Mishchenko [7].

• gsphere.F: This is a slightly edited version of the program by Karri
Muinonen and Timo Nousiainen for generating 2D and 3D Gaussian
random spheres [28].

• lapack.F: This contains various LAPACK and BLAS routines for LU
decomposition and singular value decomposition [29].

• OrientAvg.F: This file contains routines from the program by Dan
Mackowski [6] for computing vector-coupling coefficients and the orientation-
averaged Stokes scattering matrix.
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• propack.F: This is the PROPACK package for singular value decom-
position of sparse, large matrices [30, 31].

• smatrix.F: This file contains routines from the program by Heikki
Laitinen and Kari Lumme [32] for computing the amplitude scattering
matrix and Mueller matrix for particles in fixed orientation.

• NumRec.F: In the publicly available distribution of Tsym, this file only
contains two empty subroutines. Users with a license for Numerical
Recipes can replace these by the subroutines zroots and laguer given
in [33]. These routines are needed to use the improved quadrature
method for polygonal prisms. More detailed instructions on how to
enable this functionality in Tsym is given in Sect. 5.4. Users who do
not have a license for Numerical Recipes can only run the code with
the ordinary double Gauss-Legendre quadrature method.

3.5. Input file params

The input file is named params; it has to be placed in the same directory
from which the program is called. The file contains comments that briefly
explain the different parameters. The file has a fixed format, i.e. the number
of comment lines must not be changed. A description of the parameters
follows.

The header of the file contains a non-commented line that specifies the
version of Tsym. Different program versions can require different formats of
the input parameter file. The version number is read in by the program, and
a quick test of the file params is performed to ensure that the file conforms
with the format requirements of the particular Tsym version that is being
run.

3.5.1. Parameters determining the particle geometry, symmetries, size, and

dielectric properties

• Geom: A character string variable that specifies the geometry of the
particle. The following choices are currently possible (see Figure 1 for
some examples):

– ’PRISMS’: Prisms with regular polygonal cross sections. Figure
1 shows two examples, a prism with a hexagonal cross section
(upper left), and a cube (lower left), which is a special case of a
prism with a rectangular cross section. The number of corners
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of the polygon is specified by the parameter Nsym (see below). A
general expression for the surface parameterisation r(θ, φ) for such
geometries can be found in [16]. Note that in Tsym the standard
orientation of the prisms is such that the z-axis is along the main
rotational symmetry axis of the prism, while the x-axis intercepts
one of the vertical edges of the prism. The centre of mass of the
prism is in the origin of the coordinate system. Thus the cross
section of the xy plane and the prism is a regular polygon, and
the positive x-axis goes through one of the corners of the polygon.
This even applies for a cube; so the positive z axis goes through
the centre of one of the faces of the cube, while the positive x
and y axes each intercept one of the edges (rather than one of
the faces) of the cube. Different orientations can be computed as
described farther below.

– CHEB2D: Axisymmetric Chebyshev particles (see Fig. 1, top cen-
tre). The rotational symmetry axis is along the z axis. The surface
parameterisation is given by

r(θ, φ) = r0(1 + ǫ cos ℓθ), (22)

where r0 is the size of the unperturbed sphere, θ and φ denote
the polar and azimuth angles, respectively, ǫ is the deformation
parameter, and ℓ is the order of the Chebyshev polynomial.

– ’CHEB3D’: Non-axisymmetric Chebyshev particles, defined by the
surface parameterisation

r(θ, φ) = r0(1 + ǫ cos ℓθ cos ℓφ). (23)

(see Fig. 1, top right).

– ’SPHERE’: Homogeneous spheres. Note that it is more efficient to
compute the optical properties of such particles with a standard
Mie program. They have been included in Tsym mainly for being
used in conjunction with the iterative T-matrix method defined
in Eq. (16) — see also [17].

– ’GRSPHR’: Gaussian random spheres (Fig. 1, bottom right). The
construction of these geometries is discussed in [28]. T-matrix
computations for these particles are rather limited. As they have
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no symmetries, CPU time requirements are rapidly increasing with
size parameters. However, for Gaussian random spheres with low
correlation angles, other numerically exact and semi-exact meth-
ods for solving the electromagnetic scattering program seem to be
equally, if not even more limited — see [22] for some examples.

– ’GRSP2D’: Axisymmetric Gaussian random spheres (Fig. 1, bot-
tom centre). Owing to the high symmetry of these particles,
T-matrix computations are much more efficient, and numerically
somewhat more stable than for GRSPHR.

– ’GRSCHB’: A hybrid particle with a Gaussian random surface per-
turbation in the polar direction, and a regular Chebyshev pertur-
bation in the azimuthal direction (Fig. 1, far right). This model
particle incorporates the effects of random as well as 3D surface
perturbations. By contrast to GRSPHR, it retains a high degree
of symmetry, thus allowing for fast computations.

The geometries CHEB2D, CHEB3D, GRSPHR, GRSP2D, and GRSCHB can be
used as models for particles with small-scale surface roughness. Some
merits and drawbacks of these models are discussed in [22].

• cheborder: The order ℓ of a Chebyshev particle as defined in Eqs. (22)
and (23). This parameter setting is only effective for Geom=’CHEB2D’,
’CHEB3D’, or ’GRSCHB’.

• ngrs: A cardinal number used for initialising the random number gen-
erator in those geometries based on the Gaussian random sphere, i.e.
GRSPHR, GRSP2D, and GRSCHB. Different choices of this parameter will
generate different pseudo-random geometries. For other geometries,
this parameter is not used.

• lreadgeom: A logical switch for reading in a geometry from a previous
run. This parameter is only effective for GRSPHR, GRSP2D, and GRSCHB.
Gaussian random sphere computations, especially for the 3D random
geometry class GRSPHR, can be very time consuming for low angular cor-
relations. If computations are to be repeated for the same geometry and
different sizes, then it can save a lot of time to set lreadgeom=.true..
However, this will only work if the same settings of the parameters
nth int and nphi int are used throughout (see below).
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• igeom: The particle size and shape of polygonal prisms are specified
by the parameters geom1 and geom2, (see below). But the program
offers four different ways of specifying the dimensions of prisms. This
is controlled by setting the parameter igeom to 1, 2, 3, or 4.

• gpar1, gpar2, gpar3: The meaning of these geometry parameters
depends on the choice of Geom and, for Geom=’PRISMS’, on the choice
of igeom.

– Geom=’PRISMS’:

∗ igeom=1:
gpar1=l, the side length of the polygon (see Fig. 3);
gpar2=h, the height of the polygon (see Fig. 3).

∗ igeom=2:
gpar1=a, the distance from the centre of the regular polygon
to each of its corners (see Fig. 3);
gpar2=h/2, the half-height of the prism.

∗ igeom=3:
gpar1=rv, the radius of a volume-equivalent sphere;
gpar2=2a/h, the “aspect ratio” of the prism.

∗ igeom=4:
gpar1=ra, the radius of a surface-area equivalent sphere;
gpar2=2a/h, the “aspect ratio” of the prism.

gpar3 is not used for Geom=’PRISMS’.

– Geom=’CHEB2D’ or ’CHEB3D’:
gpar1=r0, the radius of the unperturbed sphere;
gpar2=ǫ, the deformation parameter of the Chebyshev particle
(where −1 ≤ ǫ ≤ 1. gpar3 is not used

– Geom=’SPHERE’:
gpar1=r, the radius of the sphere. gpar2 and gpar3 are not used.

– Geom=’GRSPHR’ or ’GRSP2D’:
gpar1=r0, the radius of the unperturbed sphere;
gpar2=σ, the relative standard deviation of the Gaussian random
sphere (see [28]);
gpar3=Γ, the correlation angle (in degrees) of the Gaussian ran-
dom sphere (see [28]). Γ should be ≥ 4◦; for smaller angles, nu-
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Figure 3: Height h, side length l, and “radius” a of a prism with a regular polygonal cross
section.
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merical instabilities in the Gaussian random sphere algorithm have
been reported [22].

– Geom=’GRSCHB’:
gpar1=r0, the radius of the unperturbed sphere;
gpar2=σ=ǫ, i.e. the relative standard deviation of the Gaussian
random perturbation in the polar direction is equal to the defor-
mation parameter of the Chebyshev perturbation in the azimuthal
direction;
gpar3=Γ, the correlation angle of the Gaussian random sphere.

• Pgroup: The point group of the particle. This parameter should be set
— depending on the geometry — as follows.

– Geom=’PRISMS’: Pgroup=’Dnh’

– Geom=’CHEB2D’ or ’CHEB3D’: For even values of the Chebyshev
order cheborder, set Pgroup=’Dnh’; For odd values of cheborder,
set Pgroup=’Cnv’;

– Geom=’SPHERE’: Pgroup=’Dnh’. Note that this is not an optimal
choice, since the dihedral symmetry group Dnh is only a subgroup
of the full symmetry group of a sphere. However, Tsym has been
designed for non-axisymmetric particles, so it does not fully ex-
ploit spherical symmetry. This is why it is more advantageous to
do computations for spheres with dedicated Mie programs.

– Geom=’GRSPHR’: Pgroup=’Cn’.

– ’GRSP2D’, or Geom=’GRSCHB’: Pgroup=’Cnv’.

A summary is given in Table 1.

• Nsym: A cardinal number specifying the index of the main rotational
symmetry axis of the particle. A rotation about the z-axis by an angle
of 2π/Nsym brings the particle into a new orientation that is indistin-
guishable from the original one. The meaning of Nsym for the different
geometries is as follows.

– Geom=’PRISMS’: Nsym is the number of corners of the regular
polygonal cross section of the prism.

– Geom=’CHEB3D’ and ’GRSCHB’: Nsym has to be set equal to cheborder,
i.e. the order ℓ of the perturbing Chebyshev polynomial.

18



– Geom=’CHEB2D’, ’SPHERE’, or ’GRSP2D’: These particles are ax-
isymmetric. Thus, mathematically, Nsym= ∞. Technically, this
can be achieved by setting Nsym equal to some large number. How-
ever, one does not want to set Nsym equal to some unnecessarily
large number, since, otherwise, the group theoretical computa-
tions would take more time than necessary. It turns out to be
sufficient to set Nsym=2 mmax+1. To understand this, we first
generalise Eq. (14) to particles with ĈN -symmetry (N=Nsym).
Only those T-matrix elements are non-zero for which |m − m′| =
N, 2N, 3N, . . .. In the limit N → ∞, the T-matrix becomes block-
diagonal in the m index, i.e., only those elements are non-zero for
which m−m′ = 0. Numerically, the T-matrix is truncated. From
Eq. (10) one can see that |m − m′| never becomes larger than 2
mmax. Thus, by setting Nsym=2 mmax+1, the truncated T-matrix
has effectively the symmetry structure of an axisymmetric parti-
cle.

– Geom=’GRSPHR’: This particle has no symmetries, so one has to
set Nsym=1.

A summary is given in Table 1.

Note that for particles such as prisms and 3D Chebyshev particles,
Nsym has to be ≥ 3. The special case of Nsym=2 would require some
case distinctions in the group theoretical routines that have not yet
been implemented.

• lambda: The wavelength of the incident electromagnetic field. The user
can choose any units of length for specifying the wavelength (e.g. mm,
µm, or nm), as long as this choice agrees with that for specifying the
size of the particle.

• mr: Complex refractive index of the particle. The imaginary part of
the refractive index has to be positive.

3.5.2. Parameters concerning the orientation of the particle

Tsym can compute optical properties of particles in one or several fixed
orientations, in random orientations, or both. This is controlled by the fol-
lowing parameters.
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Geom Point group Pgroup Nsym

’PRISMS’, N-gonal cross section DNh Dnh N
’CHEB2D’, even order ℓ D∞h Dnh 2mmax + 1
’CHEB2D’, odd order ℓ C∞v Cnv 2mmax + 1
’CHEB3D’, even order ℓ Dℓh Dnh ℓ
’CHEB3D’, odd order ℓ Cℓv Cnv ℓ
’GRSP2D’ C∞v Cnv 2mmax + 1
’GRSPHR’ C1 Cn 1
’GRSCHB’, order ℓ Cℓv Cnv ℓ

Table 1: Geometries implemented in Tsym and the corresponding settings for the param-
eters specifying the point group, Pgroup, and the index of the main rotational symmetry
operation, Nsym

• norient: A cardinal number, for which the following choices are pos-
sible.

– norient=1: Only compute orientation-averaged optical proper-
ties for randomly oriented particles.

– norient=2: Only compute optical properties for particles in fixed
orientations.

– norient=3: Compute both orientation-averaged and fixed-orientation
optical properties.

Note that Tsym only performs analytic orientation-averaging. Numer-
ical orientation-averaging is not supported.

• neuler: The number of fixed orientations for which computations are
to be performed (only effective for norient=2 or 3).

• alpha, beta, and gamma: The three Euler angles (in degrees) describ-
ing the particle orientation. Each of these is an array with neuler

elements, one for each of the discrete orientations of the particle for
which the computations are to be performed. In other words, alpha(i),
beta(i), gamma(i) are the three Euler angles for the ith orientation.
These angles describe an active rotation of the particle in a fixed coor-
dinate system, i.e. the particle is first rotated about the z axis by an
angle gamma, then it is tilted by an angle beta about the y axis, then
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it is rotated by an angle alpha about the fixed z axis. (Note that in
Tsym the incident field is propagating in the positive z direction.)

3.5.3. Parameters determining the numerical precision and computational

methods

• nmax, mmax: These parameters determine the truncation of the field
expansions, thus of the T-matrix — see Eq. (10). The most critical
step in successfully using the Tsym program is to determine these two
parameters. More on that will be said in Sect. 4.

• th nint, phi nint: The number of Gauss-Legendre subintervals in the
polar and azimuthal direction, respectively. The numerical evaluation
of the surface integrals in Waterman’s method uses th nint integration
intervals in the polar direction, and phi nint intervals in the azimuthal
direction, where each subinterval contains 16 Gauss-Legendre quadra-
ture points. Thus the total numbers of quadrature points in Eq. (11)
are given by Nθ = 16×th nint, and Nφ = 16×phi nint. It is impor-
tant for the accuracy of the computations to carefully determine these
parameters — see Sect. 4 for more information.

• lprtb: A logical flag. If true, then the T-matrix is computed by use
of the iterative scheme given in Eq. (16). Otherwise the direct method
in Eq. (8) is used. Note that the iterative method can only be used
in conjunction with Geom=’CHEB2D’, ’CHEB3D’, ’GRSPHR’, ’GRSP2D’,
and ’GRSCHB’.

• prtb order: The maximum iteration order p in Eq. (16). This will not
be determined automatically. It is the user’s responsibility to ensure
that the results have converged with respect to the perturbation order.
Note that the convergence with respect to prtb order will become
slower for larger perturbation amplitudes, i.e., for larger deformation
parameters ǫ (for Chebyshev geometries) or relative standard devia-
tions σ (for Gaussian random sphere geometries). If the perturbation
amplitude becomes too large, the results may actually diverge. The
larger the particle, the more limited the range of perturbation ampli-
tudes for which convergent results can be obtained.

• Cyl Quad: For Geom=’PRISMS’, there exists an optimised method for
evaluating the surface integrals that is superior to the double Gauss-
Legendre quadrature method. This method has been introduced in [16].
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However, this method makes use of an implementation of Laguerre’s
method from Numerical Recipes [33], which is not publicly available.
The subroutine for Laguerre’s method could therefore not be included
in the distribution of Tsym, so this option had to be disabled. Users
who have a licence for Numerical Recipes can easily include them in
Tsym and enable the alternative quadrature method by just making mi-
nor adjustments. Section 5.4 explains how to do the necessary changes
to the code.

• lirredrep: A logical flag. If true, the program will exploit irreducible
representations of the particle’s symmetry group to perform the in-
version of the Q-matrix in Eq. (8). This can substantially reduce
ill-conditioning problems. For low-order symmetry groups, it can also
speed up the computations. This requires that the user specifies a char-
acter table file (see below). Note that this method cannot be combined
with the iterative approach; so lprtb and lirredrep must not be true
simultaneously.

Also, note that the group theoretical methods only have been imple-
mented for finite symmetry groups. For axisymmetric particles the
only way of using irreducible representations is by setting Pgroup to
the corresponding finite subgroup, and Nsym=2mmax+1 (see Table 1
and accompanying text). However, this is less efficient than using a
T-matrix program that has been specifically hard-coded for axisym-
metric geometries, such as those described in [7, 8]. So why, then, have
axisymmetric geometries been included in Tsym in the first place? It
is because other T-matrix programs do not currently use the iterative
T-matrix method given in Eq. (16). The axisymmetric geometry op-
tions (Geom=’CHEB2D’ and ’GRSP2D’ have been included to be tested
in conjunction with lprtb=.true. rather than lirredrep=.true..

• chartabfile: If lirredrep=.true., the user needs to provide the
character table of the symmetry group. For many groups, the subdi-
rectory CHARACTER TABLES contains precomputed tables. The naming
convention of the files in that directory is rather self explaining, as
illustrated by the following examples (see also Table 1).

– If Geom=’PRISMS’, Nsym=6, then the corresponding symmetry group
is the group D6h (Pgroup=’Dnh’). The file containing the charac-
ter table of that symmetry group is named D0006h.char.
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– If Geom=’CHEB3D’, cheborder=70, one needs to set Nsym=70 and
Pgroup=’Dnh’. The corresponding character table is named D0070h.char.

– If Geom=’CHEB3D’, cheborder=71, one needs to set Nsym=71 and
Pgroup=’Cnv’. The corresponding character table is named C0071v.char.

– If Geom=’GRSCHB’, cheborder=55, one needs to set Nsym=55 and
Pgroup=’Cnv’. The corresponding character table is named C0055v.char.

– If Geom=’GRSPHR’, then the particle has no symmetries. In such
case, one needs to set Pgroup=’Cn’, Nsym=1, and lirredrep=.false..
No character table will be read in by the program.

– If Geom=’GRSP2D’, the particle has axial symmetry. The idea of
including axisymmetric geometries was to test them in conjunc-
tion with the iterative T-matrix method. However, it is also pos-
sible to use irreducible representations for these geometries. To
this end, one needs to set Pgroup=’Cnv’ and Nsym=2mmax+1, and
the table will be named Cxv.char, where x=2 mmax+1. However,
depending on how large mmax is, the use of irreducible represen-
tations may become inefficient. In such case it may be best to
set lirredrep=.false., and no character table will be read in,
although the program will still exploit symmetries for speeding up
the computations. Rather than using irreducible representations,
one may either try to use the iterative T-matrix method, or a
different T-matrix code that has been optimised for axisymmetric
particles.

If the required table is not found in the directory CHARACTER TABLES,
then the directory GAP contains some script programs for computing
the table. More information on how to precompute character tables is
given in Sect. 5.3.

Note that the program does not currently perform any check of the
character table specified by chartabfile to ensure that it is consistent
with the specified symmetry group. Therefore, if one should forget to
specify the correct character table in the input file, the program will
crash, but it will not issue an easily interpreted error message that
points to the source of the error.

• Pmatmethod: If lirredrep=.true., one needs to specify the method by
which the transformation into the irreducible basis shall be computed.
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There are currently three choices, which are explained in detail in [19].

– Pmatmethod=1: The transformation matrix is computed by a fairly
simple and fast method that works well for low-order symmetry
groups, such as the group D6h of hexagonal prism. However, this
method often fails for higher-order symmetry groups.

– Pmatmethod=2: This uses a general singular value decomposition
(SVD) algorithm. This is the most robust method that works well
for all groups. However, this is also the slowest method.

– Pmatmethod=3: This invokes an SVD algorithm that exploits the
sparsity of the transformation matrix. This method is much faster
than method 2, but it is also less stable. It seems to work best for
symmetry groups of intermediate order.

Generally speaking, one should use method 1 for low symmetry orders.
For higher orders one may want to try method 3. If it fails, one should
use method 2. It does not cost much time to test out different methods.
The transformation into the irreducible basis is computed before the
time-consuming Q- and T-matrix computations are started. Thus, if
the method for computing the transformation into the irreducible basis
fails, then the program will crash relatively fast, and the program can
be restarted with a different choice of Pmatmethod.

3.5.4. Output options

• ntout: Specifies the number of discrete angles at which the Stokes
scattering matrix and the polarised differential scattering cross sections
are written to the output files.

• tmin: The smallest scattering angle (in degrees) for which the differen-
tial scattering properties are written. It has to be ≥ 0◦. Usually, one
will set tmin=0.

• tmax: The largest output angle (in degrees). If only orientation-averaged
optical properties are computed, then one usually sets tmax=180. Oth-
erwise, if optical properties of particles in fixed orientations are com-
puted, one sets tmax=360.

3.6. Output files

Runtime information and error messages are written to a file called logfile.
The computational results are written to the following output files.
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3.6.1. Particles in fixed orientation

• C000001, C000002, . . .: These files contain integrated optical proper-
ties. There is one output file for each set of Euler angles. The output
files are numbered in the order in which the Euler angles are specified
in the input parameter file params.

More specifically, the files contain the following results.

– Cext, extinction cross section;

– Csca, total scattering cross section;

– Cabs, absorption cross section;

– Qext = Cext/(πr2), extinction efficiency;

– Qsca = Csca/(πr2), total scattering efficiency;

– Qabs = Cabs/(πr2), absorption efficiency.

The dimension of the cross sections is L2, and the units of length agree
with those used in the specification of the size and wavelength in the
file params. The efficiencies are dimensionless. The particle size r used
in the definition of the efficiencies is the particle radius for spheres, the
volume-equivalent radius for prisms, and the radius of the unperturbed
sphere for all Chebyshev and Gaussian random sphere geometries.

• D000001, D000002, . . .: These files contain the elements of the po-
larised differential scattering cross section (dσ/dΩ)αβ. There is one
file for each discrete orientation of the particle. More specifically, the
columns of the files contain the elements

Θ, k2

(

dσ

dΩ

)

hh

, k2

(

dσ

dΩ

)

hv

, k2

(

dσ

dΩ

)

vh

, k2

(

dσ

dΩ

)

vv

, (24)

where Θ is the scattering angle. Note that the scaling with the squared
wavenumber k2 makes the differential scattering cross sections dimen-
sionless. The rows of the files display results for equidistantly-spaced
scattering angles, where the number and range of scattering angles has
been specified in the file params.

• F000001, F000002, . . .: These files contain the Mueller matrix M for
particles in fixed orientation. There is one such file for each particle
orientation. The columns contain the following data.

Θ, M11, M22/M11, M33/M11, M44/M11, −M12/M11, M34/M11. (25)
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The element M11 is not normalised. The rows contain entries for dif-
ferent scattering angles.

3.6.2. Particles in random orientation

• C.dat: This file contains the following orientation-averaged, integrated
optical properties.

– Cext, extinction cross section;

– Csca, total scattering cross section;

– Cabs, absorption cross section;

– Cbak, backscattering cross section;

– Qext = Cext/(πr2), extinction efficiency;

– Qsca = Csca/(πr2), total scattering efficiency;

– Qabs = Cabs/(πr2), absorption efficiency.

– Qbak = Cbak/(πr2), backscattering efficiency;

– ω = Csca/Cext, single scattering albedo;

– g, asymmetry parameter;

– δL, linear backscattering depolarisation ratio

– δC , circular backscattering depolarisation ratio

• F.dat: The orientation-averaged Stokes scattering matrix F with the
following columns.

Θ, F11, F22/F11, F33/F11, F44/F11, −F12/F11, F34/F11. (26)

The phase function F11 is normalised according to Eq. (17). The rows
of the file contain entries for different scattering angles.

• E.dat: The expansion coefficients of the elements of the orientation-
averaged Stokes scattering matrix in the basis of generalised spherical
functions. The expansion coefficients, rather than the matrix elements,
are often required as input to polarised radiative transfer codes, such
as VDISORT [34, 35]. The columns contain the following entries.

l, a1(l), a2(l), a3(l), a4(l), b1(l), b2(l), (27)

where l is the expansion order, and the elements a1, a2, a3, a4, b1, and b2

are the expansion coefficients of the Stokes scattering matrix elements
F11, F22, F33, F44, F12, F34, respectively. The rows contain entries for
increasing expansion orders l.
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4. Testing the accuracy of the computations

This section contains important information on how to test the correct-
ness of the computational results. Accuracy tests need to be performed
scrupulously. Failure to do so will almost certainly lead to wrong results.

4.1. Convergence tests

A necessary criterion for the correctness of the computations is that the
results have converged with respect to the parameters nmax, mmax, th nint,
and phi nint.

4.1.1. Computations for a single particle size

If computations are to be performed for just a single particle size, then
the following procedure can be recommended.

• For any given nmax, set mmax=nmax. Since mmax is always ≤nmax,
this is the safest choice in terms of computational accuracy, but also
the most time-consuming. Any attempts to reduce mmax will only be
advantageous when performing computations for many particle sizes
(see below).

• Start by performing computations for some relatively low but fixed
value of nmax that will not take much computation time, say, some-
where in the range between 10–20, depending on particle size. For that
fixed value of nmax, perform computations for different values of the pa-
rameters th nint, and phi nint. The parameters should be increased
until the computational results have converged. Then one should fix
th nint and phi nint at those values where convergence has just been
reached. (Choosing larger values will, of course, also give correct re-
sults, but it will require more computation time than necessary).

Note that the relative number of polar and azimuthal quadrature in-
tervals depend on symmetry and aspect ratio. As a rough guideline,
if the particle has an aspect ratio near unity, one can set, as a first
guess, th nint≈Nsym×phi nint. Strongly prolate prisms may require
a larger number of polar angles, strongly oblate prisms will need a larger
number of azimuthal angles. Note also that phi nint and th nint

must be ≥ 2.
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• Once the values of th nint and phi nint have been fixed, run com-
putations for increasing values of nmax=mmax, and investigate the con-
vergence of the optical properties. The smaller the size parameter, the
smaller values of nmax will be required for obtaining convergent results.
So, for size parameters much smaller than unity, one should choose a
starting value of nmax=1. For particles with size parameters on the or-
der of or much larger than unity, correspondingly larger starting values
of nmax can be chosen. To save time in the convergence tests, one can
increase nmax in steps of 3.

An example is given in Fig. 4, which is based on computations for a
hexagonal ice prism with dimensions l=200 µm, h=400 µm, and for a
sub-millimetre wavelength of λ=500 µm. The refractive index of ice
at that wavelength is m=1.79+0.014i. The top left panel shows Csca

(solid line) and Cabs (dashed line) as a function of nmax. There is an
initial increase of the cross sections with nmax followed by a broad range
up to about nmax=38 in which the results have converged. Finally, at
higher values of nmax the results start diverging, and they even become
non-physical (Cabs < 0).

Within the range of nmax values for which the cross sections have con-
verged, one can investigate the elements of the Mueller matrix (for par-
ticles in fixed orientation) and/or of the Stokes scattering matrix (for
particles in random orientations). The recommended way to do this
is to compare computational results obtained for nmax and nmax+3.
One wants to find the smallest value of nmax for which this comparison
indicates that the results have converged. Fig. 4 shows such a compar-
ison for the example above. The phase function F11 (bottom left) and
the degree of linear polarisation −F12/F11 (bottom right) are shown for
nmax=10 and nmax=13, each computed for particles in random orien-
tation. The results are virtually indistinguishable. For smaller values
of nmax, the results had not yet converged (not shown). Note that the
minimum value of nmax for which the elements of the Stokes scattering
matrix have converged is larger than the minimum value of nmax for
which the cross sections have converged.

More examples on the convergence behaviour of cubes of different size
parameters and refractive indices can be found in [36].

Figure 5 shows a similar investigation for a 2D-Gaussian random sphere
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Figure 4: Csca and Cabs (top left) and percent reciprocity errors of the hh and vv compo-
nents of the polarised differential scattering cross section (top right) as a function of nmax.
Both plots are based on computations for a hexagonal prism (as explained in the text)
in a fixed orientation. The bottom row shows a comparison of the phase function (left)
and degree of linear polarisation (right) for corresponding hexagonal prisms in random
orientation, computed with nmax=10 and nmax=13.
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Figure 5: Csca and Cabs (top left) and percent reciprocity errors of the hh and vv compo-
nents of the polarised differential scattering cross section (top right) as a function of nmax.
Both plots are based on computations for a 2D-Gaussian random sphere (as explained in
the text) in a fixed orientation. The bottom row displays the hh and vv components of
the polarised differential scattering cross section computed with nmax=35 and nmax=38.
The middle row shows a comparison of the phase function (left) and degree of linear po-
larisation (right) for corresponding 2D-Gaussian random spheres in random orientation,
computed with nmax=35 and nmax=38.

30



(Geom=’GRSP2D’), where the radius of the unperturbed sphere is r=1.0
µm, the relative standard deviation is σ=0.05, the correlation angle
is Γ = 18◦, the wavelength is λ=0.628 µm, and the refractive index
is m=3+0.1i (typical for hematite at visible wavelengths). The top
panels are analogous to those in Fig. 4. The middle panels show the
phase function (left) and the phase matrix element F22/F11 (right) for
randomly oriented particles, comparing computations for nmax=35 and
38. A corresponding comparison is shown in the bottom row for the hh
(left) and vv components of the polarised differential scattering cross
sections for particles in a fixed orientation. One main difference to Fig.
4 is the much slower increase of the cross sections with increasing nmax.
Higher values of nmax are needed for obtaining stable results. Within
the range of nmax values considered here, no divergence at the higher
end of the range is observed.

• For larger size parameters, the final result obtained for nmax can be
significantly larger than the initial value of nmax used for determining
the parameters th nint and phi nint. Thus one needs to check once
more with the new value of nmax if the computations are still stable
with respect to increasing th nint and phi nint. If not, then th nint

and phi nint need to be further increased until convergence is reached.
If new values of th nint and phi nint are found, one needs to use these
values to double-check once more convergence with respect to nmax, etc.
In practice, this procedure does not require more than one iteration.
Convergence with respect to th nint and phi nint is usually much
less critical than convergence with respect to nmax.

More detailed discussions of convergence tests and error measures of T-matrix
results can be found in [37, 38, 36]. For instance, a systematic procedure for
analysing curves such as those shown in the upper left panels of Figs. 4 and
5, and for obtaining error estimates of T-matrix results is presented in Ref.
[36].

In practice, one needs to expedite the convergence tests without com-
promising the reliability of the results. One important way to achieve this
is to find a good starting value for nmax. Even with much experience, it is
not always easy to guess a reasonable starting value, especially when doing
calculations for different refractive indices. In some cases, it can be helpful to
obtain a first guess by running computations for axisymmetric particles with
a T-matrix program with automatic convergence procedures. For instance,
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for those geometries that are based on imposing a surface perturbation on a
sphere, i.e. Geom=’CHEB2D’, ’CHEB3D’, ’GRSCHB’, ’GRSPHR’, or ’GRSP2D’,
one can run a code such as mieschka [8] for axisymmetric Chebyshev parti-
cles of comparable size and deformation parameter, and use the truncation
of the T-matrix determined with the automatic convergence routines of that
code as a first guess for Tsym. Note that 3D-Chebyshev particles and, even
more so, particles with stochastic surface perturbations can require higher
values of nmax than 2D-Chebyshev particles. So, the short-cut for obtaining
a first guess for nmax described here is not a substitute for carefully testing
the convergence of the Tsym calculations.

4.1.2. Computations for many particle sizes

Consider the case of an ensemble of particles with the same geometry
but with different sizes within a size range ri ≤ r ≤ rf . Computing optical
properties averaged over a size distribution usually involves calculations for
many discrete sizes. It would be extremely impractical and time consuming
to repeat the procedure described in Sect. 4.1.1 for each and every particle
size in the ensemble. However, it is, in most cases, safe to assume that a set of
parameters nmax, mmax, th nint, phi nint that gives convergent results for
one particle size r0 will also give convergent results for particles of the same
geometry with size r < r0 (as long as r does not become much smaller than
r0, in which case the value of nmax applicable to r0 may lie in the divergent
regime for r << r0). If the size distribution covers a large range with many
discrete particle sizes, it would be inefficient to determine the convergence-
controlling parameters for just the largest size rf in the size distribution, and
use these values for all other sizes. Rather, the following procedure should
be followed.

• Choose a number of “milestone sizes” rf = rn > rn−1 . . . > r1 that
stake out the whole size range, where r1 > ri .

• For each of these n sizes determine the convergence-controlling param-
eters nmax, th nint, phi nint as described in Sect. 4.1.1, where one
initially sets mmax=nmax.

• Try to reduce mmax and test how low you can go before the results
deviate from the results obtained for mmax=nmax. Trying to reduce
mmax will help to save computation time in the following calculations.
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• At this stage you have determined for each size rj (j = 1, . . . , n) the
parameters nmax(j), mmax(j), th nint(j), phi nint(j). Now use these
values in the computations for all sizes r with rj−1 < r ≤ rj.

The user needs to decide how many size intervals are to be used. The decision
will be a compromise between the amount of manual work and the amount
of computation time one can afford to invest. If only a few size intervals are
selected, then the intervals rj−1 < r < rj will be rather large. Thus many
computations for smaller sizes near the lower end of the interval will be
performed with unnecessary high values of the truncation parameters nmax,
mmax, th nint, and phi nint, which can result in high CPU time require-
ments. On the other hand, increasing the number of intervals will require
more manual work to determine the truncation parameters nmax(j), mmax(j),
th nint(j), phi nint(j) for a large number of size-interval boundaries rj.

4.2. Reciprocity tests

The reciprocity condition expresses the invariance of electromagnetic scat-
tering under the exchange of the source and detector point, In other words,
the polarised differential scattering cross section is invariant under reversal
of the optical path. This is illustrated in Fig. 6 (left). We denote the wave
vector and polarisation state of the incident field by kinc and α, respectively,
and those of the scattered field by ksca and β. Formally, the reciprocity
condition states that

(

dσ

dΩ

)

αβ

(kinc,ksca) =

(

dσ

dΩ

)

βα

(−ksca,−kinc). (28)

In Tsym the incident field is always assumed to be propagating in the
positive z direction. Hence, reciprocity tests need to be performed by rotating
the particle, rather than changing the direction of the incident field. This is
illustrated in the example in Fig. 6. In the original case we consider a particle
in its original orientation (which we denote by θp = 0◦), and we are interested
in the scattered field at a scattering angle of θs = 90◦. The reciprocal case
is obtained by reversing the optical path (left). Alternatively, one can rotate
the particle by an angle of θp = 90◦ about an axis perpendicular to and
pointing into the plane of the figure, and investigate the scattered field at
an angle of θs = 270◦ (right). Comparison of the left and right panels in
Fig. 6 shows that the reciprocal light paths in both cases are identical. More
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Figure 6: The reciprocity condition is based on reversing the optical path, i.e. exchanging
source and detector point (left). In Tsym, the direction of the incident field is fixed, and
the reciprocal case is obtained by rotating the particle (right).

formally, the reciprocity condition in this specific example becomes

(

dσ

dΩ

)

αβ

(θp = 0◦, θs = 90◦) =

(

dσ

dΩ

)

βα

(θp = 90◦, θs = 270◦). (29)

This example can be implemented in the parameter file params by the
following settings.

3 ! norient

2 ! neuler

0.0 0.0 ! alpha

0.0 90.0 ! beta

0.0 0.0 ! gamma

The parameter norient has to be either 2 (only fixed orientations) or 3
(both fixed and random orientations). The program will perform compu-
tations for two fixed particle orientations characterised by the Euler angles
(0◦, 0◦, 0◦) and (0◦, 90◦, 0◦), respectively. In the second orientation, the par-
ticle is rotated by an angle of 90◦ about the y axis. The polarised differential
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scattering cross sections for these two particle orientations will be written to
the output files D000001 and D000002, respectively. The results in the first
file at a scattering angle of 90◦ need to be compared to those in the second
file at 270◦. One must not forget to perform this comparison for the correct
polarisation states: The component hh (column 2) in the first and second file
are compared with each other, and likewise the component vv (column 5).
However, recall that the component hv (column 3) in the first file needs to be
compared to the component vh (column 4) in the second file — see Eq. (29).
Similarly, the vh component in the first file is compared to the hv component
in the second file. Note that in many cases the cross-polarisation components
hv and vh are much smaller than the other two components; in such case,
the reciprocity tests should concentrate on the hh and vv components.

Clearly, one can set up more reciprocity tests by choosing other scatter-
ing angles and corresponding particle orientations. Obviously, one must not
select a case in which the rotation of the particle happens to be a symmetry
operation of the particle (i.e., in the reciprocal case the particle orientation
must not be indistinguishable from the original particle orientation), other-
wise the reciprocity condition is trivially fulfilled due to symmetry. Also, it
is usually a good idea to test the reciprocity condition at a scattering angle
where the polarised differential scattering cross section does not have any
narrow peaks or troughs. At such angles one can obtain unrepresentatively
high reciprocity errors even if the overall accuracy of the results is fairly high.

The reciprocity condition tends to be a highly sensitive test of the accu-
racy of the computations. It is particularly useful if one needs to compute
differential scattering properties with high accuracy. As a rough guideline,
reciprocity errors of less than 5 % usually indicate highly accurate results;
errors less than 3 % can be considered excellent. It is not unusual that one
observes convergence of the results with respect to an increase of the trun-
cation parameters, such as nmax, but violation of the reciprocity condition.
This can indicate that one should choose larger values of the truncation pa-
rameters than suggested by the convergence tests. This can be clearly seen
in the example given in Fig. 4. The cross sections (upper left) seem to have
converged at values of nmax as low as 3. However, the reciprocity errors
(upper right) are still highly oscillating at such low values of nmax. Consis-
tently low reciprocity errors are not reached before increasing nmax to 8–10
and higher. A close inspection confirms that values of nmax≥10 are needed
for obtaining convergent results of the Mueller matrix elements. Similarly,
the cross sections appear to be computationally stable for values of nmax up
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to 38, while the reciprocity test indicates numerical instabilities at values of
nmax>33. This clearly illustrates the high sensitivity of the reciprocity condi-
tion to numerical inaccuracies that can easily be overlooked when inspecting
integrated optical properties only. Similar observations can be made by in-
specting the reciprocity error in Fig. 5 (top right panel). The total cross
sections (top left) seem to have converged at nmax as low as 13. However,
much higher values of nmax (around 35) are needed for obtaining stable re-
sults for the Mueller matrix elements (middle panels). This is confirmed by
the reciprocity error of the hh component. It is quite large for nmax=13, and
it starts falling below the 5 % mark at around nmax=33.

These examples illustrate the potential usefulness of the reciprocity con-
dition as an additional test of the computational accuracy. The reciprocity
condition is particularly useful for testing the correctness of computations
for which no other independent electromagnetic scattering method exists.
For instance, it will be difficult to compare computations with Tsym for
high-order 3D-Chebyshev particles of large size parameters to computations
performed with other codes. In the absence of such independent information,
reciprocity tests can help to stake out the range of applicability of the pro-
gram. A major disadvantage of the reciprocity condition is that it requires
extra computation time. Usually, one does not need to invest this extra com-
putation time if one is only interested in total optical cross sections. A more
detailed account of reciprocity tests in light scattering computations can be
found in [39].

5. Utilities

5.1. Examples

The subdirectory EXAMPLES contains a few test cases with corresponding
input and output files. Each directory contains a README file that describes
the test case. In some cases, the README file also contains suggestions for
exercises related to the test case that the novice practitioner can do to become
familiar with the code. One test case contains shell-scripts and Fortran
programs for performing a detailed analysis of the convergence of the code for
a particular test case. The user can modify the scripts and input file of this
test case to set up convergence analyses for other applications. Instructions
on how to use and modify the scripts are given in the README file.
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5.2. Matlab plotting script

When running Tsym, the program automatically generates three files
matlabx.out, matlaby.out, and matlabz.out. These files contain the ge-
ometry of the particle in a format that can be read in by Matlab for plotting
the particle. The subdirectory MATLAB/ contains a simple Matlab script
plot geometry.m for this purpose. The particle is always displayed in its
standard orientation, i.e. for Euler angles alpha=0, beta=0, and gamma=0.

5.3. GAP

As explained in Sect. 3.5.3, the group theoretical methods in Tsym re-
quire a file that contains the so-called irreducible characters of the symmetry
group. The name of that file is assigned in the input file params to the string
variable chartabfile. Several precomputed character tables are found in the
subdirectory CHARACTER TABLES. If the particle of interest belongs to a sym-
metry group of which the character table is not contained in that directory,
then the user needs to compute the table prior to running Tsym.

The calculation of character tables requires methods of computational
group theory. Such methods are implemented in the Groups, Algorithms,
and Programming (GAP) system for computational discrete algebra. The
source code can be obtained at the GAP website [40]. However, using GAP

for computing character tables, especially for high-order symmetry groups, is
far from trivial. (Some of the technical difficulties are discussed in [19]). For
this reason, the newer versions of Tsym contain a subdirectory GAP with a
shell script and two Fortran programs that essentially automatise the running
of GAP and the post-processing of the output.

To compute character tables with the help of the toolbox provided by
Tsym in the subdirectory GAP, the user should proceed as follows.

• Obtain and install GAP. The source code with installation instructions
can be downloaded from the GAP website [40].

• Compile the two Fortran programs generate gap input.f and
reorder character table.f, and name the executables generate gap input.x

and reorder character table.x, respectively.

• Edit the shell script ’gap.bash’.

– Edit the line
gap=/.../gap.sh
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and specify the complete path of your GAP installation, under
which the script gap.sh can be found.

– Specify the names of the point groups for which you want to com-
pute character tables, as well as the indices of the main rotational
symmetry axes. Example: Suppose you want to compute charac-
ter tables for the groups C100, C150, C200, C100v, C150v, C200v, D100h,
D150h, and D200h. Then you make the following settings in the
bash script.

groups="Cn Cnv Dnh"

Nsyms="100 150 200"

• Run the script gap.bash.

• Move the output files ∗.char to the directory ../CHARACTER TABLES/.

The script gap.bash loops over the point groups specified by the user and
performs the following tasks.

• First it calls the program generate gap input.x, which generates the
files gap.in and gap2.in in the GAP programming language.

• The first script gap.in is run by calling GAP. This generates a char-
acter table in GAP format, which is written to the temporary file
gap.out.

• GAP is called again to execute the second script gap2.in. This gener-
ates a file ConjClass.out. That file contains the vital information of
the ordering of the conjugacy classes of the character table in gap.out.

• Finally, the script calls the program reorder character table.x. This
program analyses the conjugacy classes and reorders the character ta-
ble according to the Tsym standard ordering of conjugacy classes. Now
the table is ready for use in Tsym.

5.4. Numerical Recipes

For Geom=’PRISMS’, it is recommended to perform the surface integra-
tions in Waterman’s T-matrix method with a quadrature method that has
been tailored to this class of particles. It is invoked by setting Cyl Quad equal
to .true.. The method is described in [16]. It uses a double Gauss-Legendre
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quadrature scheme on the side facets, but only a single quadrature in the po-
lar direction on the top and bottom facets. The azimuthal integration on the
top and bottom facets is performed analytically. To determine the range of
the azimuthal integration for each polar quadrature angle, one needs to find
the roots of a fourth order polynomial — see Eq. (37) in [16]. Tsym uses the
Fortran routines zroots and laguer from Numerical Recipes [33] to deter-
mine the roots by use of Laguerre’s method. However, these routines are not
part of the publicly available distribution of Tsym, because they cannot be
used without a license. Information on how to obtain a license for Numerical
Recipes can be found in [33] on p. iv.

Licensed users can easily insert the Numerical Recipes Fortran routines
zroots and laguer in the file NumRec.F. Further, one needs to edit the
subroutine setup in the file Tsym.F and comment out the marked lines just
after the comment heading “Integration scheme”. These lines issue a warning
if the user attempts to set Cyl Quad=.true., and they enforce the setting
Cyl Quad=.false.. After commenting out those lines and implementing the
Numerical Recipes subroutines for Laguerre’s method, the user can use the
quadrature scheme for prisms by setting Cyl Quad equal to .true. in the
input file params.

6. Summary

The Tsym code described here is meant to be applied to non-axisymmetric
particles with finite symmetries. Tsym exploits particle symmetries by use
of group theory, which can profoundly improve the speed and stability of
T-matrix computations. On the down side, it requires both skill and time
to carefully check the convergence of the computations, which severely limits
the user-friendliness of the code. Thus, the code should be used by program
developers, experienced users, and those who are able and willing to spend
time for thoroughly familiarising themselves with the theoretical basics and
practical aspects of the program. The source code can be obtained via the
Tsym homepage [20].

The public release of a research code always carries a certain risk of im-
proper use of the program, resulting in the production and publication of
incorrect result. This is particularly true for a code such as Tsym that places
a high responsibility on the user for ensuring the correctness of the results.
On the other hand, scientific progress critically depends on transparency,
openness and, most importantly, independent analyses of scientific methods
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and results. The public release of Tsym allows other users to carefully ex-
amine the strengths and limitation of the theoretical and numerical methods
implemented in this code. The long-term benefits of an open-access policy
are therefore expected to outweigh the potential risks.
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