
FlexCore: Implementing an Exposed Datapath Processor
Magnus Själander

Florida State University
Computer Science Department

Tallahassee, FL 32306-4530, USA
msjaelander@fsu.edu

Per Larsson-Edefors
Chalmers University of Technology

Computer Science and Engineering Department
412 96 Gothenburg, Sweden

perla@chalmers.se

Abstract—The FlexCore processor is the resulting implementation of an
exposed datapath approach conceptualized in the FlexSoC programme.
By way of a crossbar switch interconnect, all execution units in a FlexCore
datapath can potentially communicate, allowing the inherent hardware
parallelism to be utilized. This interconnect enables configuration of a
datapath to match an application domain, for example, by way of data-
path accelerators. The baseline FlexCore is a general-purpose processor
(GPP) and since all FlexCore configurations are extensions to the baseline,
they offer GPP functionality as complement to the domain-specific
functionality. This paper gives an overview of the implementation of
complete FlexCore processors, accompanied with discussions on datapath
interconnects, datapath extensions and instruction decompression.

I. INTRODUCTION

Electronic systems are constrained in many dimensions: They
must provide high enough performance under strict constraints on
the energy expended, they must retain the flexibility associated
with processors, and they must have support from an advanced
development environment in which software can be developed and
the design space can be explored. Processors are vital to electronic
systems as they offer post-fabrication flexibility, but the generality of
a processor is associated with overheads that cause inefficiencies [1].

The FlexCore processor was conceived within the FlexSoC pro-
gramme, with the goal of combining high performance, energy
efficiency, and flexibility [2]. In recent years, a complete HW/SW
development environment has been developed [3] for FlexCore in
order to provide a solid implementation methodology. The trans-
port triggered architecture (TTA) [4] is another exposed datapath
architecture. The TTA takes a more interconnect-centric approach
where the compiler has control over a set of internal transport buses.
The buses are used to transfer data between the units within the
datapath and operations are performed on the data as a side effect to
where the data is moved. The no instruction set computer (NISC) [5]
and static pipelining [6] approach bear the closest resemblance to
FlexCore in both concept and methodology. While FlexCore is
a template of a processor architecture that can support a certain
level of general-purpose functionality, NISC mainly targets narrower
application domains. Furthermore, in NISC, information about the
datapath interconnect is not considered at a fine-grained level but,
reminiscent of high-level synthesis, a datapath and the resulting
interconnect are generated from the application control-flow/data-
graph and profiling information from application execution. Referring
to the fact that the compiler statically determines the pipelining
of each processor portion, the static pipelining approach explicitly
targets general-purpose computing. This approach is not design-time
configurable to meet the needs of a particular application domain, so
datapath variations are not considered.

The FlexSoC research programme was supported by grants from the
Swedish Foundation for Strategic Research (SSF) and the Swedish Research
Council (VR).

Based on an exposed datapath, FlexCore is not a rigid architecture,
but rather a template with the following key features:

• Exposed datapath: The datapath control signals are exposed to
the compiler as a wide control word, called the native instruction
set architecture (N-ISA). The exposed datapath allows the com-
piler to harness the datapath parallelism more efficiently than in
a fixed ISA architecture.

• Rich interconnect: Since the ISA is not fixed, a FlexCore
datapath can contain an arbitrary set of datapath units and an
interconnect that allows for an arbitrary set of communication
paths. An extensive datapath interconnect allows the compiler
to work under the assumption that any two datapath units can
communicate, thereby unleashing all inherent parallelism.

• Instruction decompression: An on-the-fly instruction decom-
pressor translates shorter instructions stored in memory—the
application-specific ISAs (AS-ISAs)—to N-ISA (Fig. 1). The
efficacy of this scheme is contingent on the hypothesis that the
AS-ISAs can be more densely coded than the N-ISA, that is,
that the task running on the processor only requires a subset of
the datapath resources for its execution at any particular time.

• Datapath extensions: Thanks to the exposed datapath and the
rich interconnect, it is straightforward from a hardware point of
view to extend the basic datapath with more execution units.

Datapath

AS-ISA 1
Instruction memory

AS-ISA 2
AS-ISA 3
AS-ISA 4 Instruction

decompressor

AS-ISA

Address N-ISA

Fig. 1. Conceptual view of instruction decompression.

The following sections present parts of the FlexCore architecture
(Sec. II), and the HW/SW development environment (Sec. III).
Sec. IV describes the impact the interconnect configuration has on
processor performance and energy. Sec. V presents a validation of a
complete FlexCore system as well as evaluations of performance and
energy for the combination of an exposed datapath and an instruction
decompressor. Sec. VI describes studies done on datapath extensions,
using accelerators, to reduce total processor energy.

II. ARCHITECTURE

We will briefly review the FlexCore architecture, with emphasis on
the datapath template, the instruction decompression, and the need
for instruction scheduling across basic blocks.

978-1-4799-0103-6/13/$31.00 ©2013 IEEE 306

A. Datapath

The datapath template of FlexCore assumes an interconnect that
potentially supports communication between any two datapath units.
As shown in Fig. 2, an output of a particular unit (an output port) is
connected to a register. The output of the register is routed to several
input multiplexors, each driving an input of a unit (an input port).

MUX 1

Out

port 1

CLK

Datapath units

Out

port 2

CLK

MUX 2 MUX N

In
 p

o
rt

 1

In
 p

o
rt

 2

In
 p

o
rt

 N

Out

port M

CLK

.

.

log2 M� � log2 M� � log2 M� �

Instruction decompressor

Fig. 2. In its most complex configuration the datapath interconnect acts as a
crossbar switch, supporting communication from each of M output ports to
each of N input ports.

Assuming M output ports, N input ports, and Ndlog2 Me control
signals, the interconnect template can at most support N · M
communication paths. This is called the full interconnect configu-
ration. While it supports a very high degree of parallelism, many
of the supported paths are never used during application execution.
An efficient configuration includes only the interconnect links that
provide useful parallelism and, hence, reduce application execution
time. Communication paths that are never used should clearly not be
implemented, in order to limit the overhead, see Sec. IV.

As will be described in Sec. VI, the FlexCore datapath can be
extended with several execution units, but the basic datapath consists
of a very rudimentary set of units (Fig. 3). The two buffers are
included to make this FlexCore datapath identical—with respect to
datapath units—with the MIPS R2K datapath [7], a simple and well-
known in-order five-stage pipeline architecture.

PC

Datapath interconnect

R
EG

LS

R
EG

RF

R
EG

R
EG

ALU

R
EG

MULT

R
EG

R
EG B
U

F
1

B
U

F
2

Fig. 3. Datapath consisting of a program counter (PC), a load/store unit (LS),
a 32-entry register file (RF), an arithmetic logic unit (ALU), two buffers and an
integer multiplier (MULT). The shown datapath is referred to as the baseline.

The datapath operations can be expressed as register-transfer
notations (RTN), where an operation can be performed on output
port registers of the various datapath units. The output port from
where a value is being read represents the address of the interconnect
multiplexor, while the control signals to a specific datapath unit
represent the operation. Concatenating the RTN instructions of all
datapath units for one clock cycle creates one N-ISA.

B. Instruction Decompressor

AS-ISA LUT-1 LUT-2 LUT-3 RAW

LU
T

en
tri

es

LUT width

Fig. 4. Illustration of AS-ISA to N-ISA decompression with look-up tables.

Fig. 4 shows an instruction decompressing technique based on
partitioned look-up tables (LUTs) that was suggested in an earlier
work [8], but for the implementation that will be evaluated in
Sec. V-A the technique has been further developed into a process of
several steps: 1. Each effect of the N-ISA (e.g., ALU opcode, register
file read/write addresses, and interconnect addresses) is specified in
a configuration file that is automatically generated for each FlexCore
configuration. Effects can be manually grouped or marked to not
be stored in a LUT, so-called RAW effects. This helps to reduce
the search space as many small effects can otherwise cause a large
number of potential solutions. RAW effects are simply passed directly
from the AS-ISA to the N-ISA and are not considered by the
following steps. 2. The process starts by combining N-ISA effects
into all possible permutations within configurable bit-width limits
of a LUT. The bit-width limits are enforced to further reduce the
total number of possible LUTs and, thus, the search space. 3. All N-
ISA instructions of an application are inspected to identify all unique
bit-patterns for each LUT. For each LUT, the maximum number of
entries required across all applications are also recorded. 4. Given the
set of all LUTs, all permutations of these that form a valid N-ISA
are created; these are the possible solutions. Each bit of the N-ISA
is represented in one and only one LUT. 5. All possible solutions
are processed to calculate the width of the compressed AS-ISA and
the total bits for the LUTs, across all applications. We impose the
requirement that AS-ISAs should be equal or shorter than 64 bits, and
then we find the least number of LUT bits. 6. Given this configuration,
AS-ISAs can be generated by converting bit-patterns in the N-ISA
to the corresponding address in a LUT.

AS−ISA width (bits)

54 55 56 57 58 59 60 61 62 63 64

D
e
c
o
d
e
r

s
iz

e
 (

b
it
s
)

1000

1500

2000

2500

3000

IMM=8

IMM=8−RAW=RF

IMM=8−RAW=RF/ALU

Fig. 5. Decompressor size relative AS-ISA size for different configurations.

307

Fig. 5 shows the required number of LUT bits for different AS-
ISA widths, when different RAW effects are selected. The shown
results are for a FlexCore with a 60-link interconnect identified in
our earlier work [3], see Sec. IV. The results are generated using the
EEMBC autocorrelation (Autcor), convolutional encoder (Conven),
fast Fourier transform (FFT), and Viterbi benchmark [9]. All results
are for a decompressor in which the 32-bit immediate has been split in
an 8-bit RAW part and a 24-bit part that is stored in a LUT (IMM=8).
For the data set called RAW=RF, the register file read addresses are
represented as RAW effects that are not stored in any LUT. The data
set called RAW=RF/ALU has, in addition, the interconnect addresses
for the two input operands to the ALU represented as RAW effects.
The explanation that the configurations with RAW effects yield a
smaller decompressor size is that the selected RAW effects have
a high entropy as the register file and ALU are the datapath units
that have the highest utilization. High entropy effects are difficult to
compress and, thus, require many LUT bits to be stored. The figure
shows that the LUT size levels off at around 64 bits, not yielding
any improvement in decompressor size for larger AS-ISA sizes. The
smallest AS-ISA obtained is 54 bits wide, requiring almost three
times the LUT bit count of the smallest decompressor configuration.

During the execution of one application, the LUT bit-pattern
can be changed by using certain reload instructions, leading to
a reduced decompressor size. However, due to lack of compiler
support for reload instructions, the results in Fig. 5 are limited to
the decompressor being configured once per application.

C. Inter-Block Scheduling

One of the intrinsic disadvantages of exposed datapaths is that an
instruction only controls the datapath in the current cycle. In contrast,
in conventional pipelined general-purpose processors, control signals
are delayed by pipeline stages and follow a hardcoded pipeline path,
hence instructions from different basic blocks can exist inside the
pipeline simultaneously.

RF READ, IMM

ALU, LS READ,MULT,PC

RF WRITE, LS WRITE

BASIC BLOCK N BASIC BLOCK N+1

CYCLES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 6. Independently scheduled basic blocks.

When considering N-ISA scheduling for a single basic block, the
first cycle (Fig. 6) is limited to acquire data (e.g., through an RF read
or immediate value). Only in the second cycle, data are available
to perform operations upon. Similarly, if a single basic block is
considered when scheduling the last cycle (cycle 8 in Fig. 6), the
only operations that can be performed are an RF write and a store
to memory. To perform any other operation would have no effect as
its resulting data would not be consumed by any other instruction.
The independent scheduling of two consecutive basic blocks, and the
inefficiency that this causes, is illustrated in Fig. 6.

RF READ, IMM

ALU, LS READ,MULT,PC

RF WRITE, LS WRITE

BASIC BLOCK N BASIC BLOCK N+1

CYCLES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 7. Inter-block scheduled basic blocks.

In order to improve the scheduling of basic blocks, it is desirable
to merge instructions from one block with all its predecessor blocks.
Fig. 7 shows when the two first instructions of block N + 1 have
been merged with the two last instructions of block N . This type of
inter-block optimization can have a large impact on the cycle count,
but there are limitations: Due to resource conflicts, it is not always
possible to move instructions to the end of preceding basic blocks.
Furthermore, this optimization can not be performed if the branch or
jump target is not statically known. While the environment in Sec. III
currently does not support inter-block optimization, the evaluation in
Sec. V-A uses optimized schedules.

III. PROCESSOR DEVELOPMENT ENVIRONMENT

In designing a FlexCore, one datapath configuration is initially
assumed. Subsequently the compiler creates a schedule and the
simulator generates different statistics. As part of the design space
exploration phase, the designer may iteratively want to apply changes
to the configuration, to improve different parameters such as execu-
tion time, power per cycle, or timing. When the proper configuration
has been identified, implementation commences.

The processor development environment consists of a complex
toolchain ranging from software development to circuit implemen-
tation. Since some tools have been developed within the research
group, some are commercially available and some publicly available,
a system of hierarchical makefiles that utilizes scripts greatly helps
in the development process. The development environment shown
in Fig. 8 has a software toolchain, with processor configuration,
compilation, simulation and design space exploration tools, and a
hardware toolchain for the implementation of a complete processor
system, including data and instruction caches, and interface logic.

FlexSoC Tool

Application C Code

FlexCore Compiler (FlexComp)

RTN Instructions

FlexCore Simulator (FlexSim)

FlexCore Generator (FlexGen)

NISA Instructions FlexCore Decoder (FlexSize)

Profiling / Statistics

Decoder Configuration

RTL Code
C

o
m

p
re

ss
e
d

 N
IS

ARTL Simulator

RTL Synthesis FPGA Instantiation

ASIC InstantiationPlace & Route

FlexSoC Output Third Party Tool

S
o
ft

w
a
re

 T
o
o
lc

h
a
in

H
a
rd

w
a
re

 T
o
o
lc

h
a
in

Fig. 8. Organization of the HW/SW development environment.

The software toolchain handles the configuration and software
verification of a FlexCore processor [3]. The compiler generates static
schedules of FlexCore assembly instructions (the RTN instructions)
for a particular datapath configuration. The compiler generates RTN
instructions that can be simulated in the FlexSim simulator. The
simulator also acts as the assembler to generate the N-ISA code that
is used for VHDL simulation and as input to our hardware platform.

308

The hardware toolchain has a frontend that generates a top-level
VHDL module and an associated testbench for a particular FlexCore
configuration. All datapath units (e.g., the ALU) have been imple-
mented and verified in advance, and their RTL code blocks reside in
a code repository. The generated VHDL code can be synthesized to
FPGAs for functional validation, or placed and routed in an ASIC
technology for accurate timing, power, and area estimation.

With the exception of third-party, commercial tools, the complete
development environment can be downloaded from the FlexSoC
website [10]. Also, an open-source VHDL model of a level-1 cache
system [11] was recently made available on the FlexSoC website.

IV. DATAPATH INTERCONNECT DESIGN EXPLORATION

For the baseline FlexCore datapath configuration (Fig. 3), the full
interconnect configuration for M = 9 output and N = 10 input ports
supports 90 communication paths (Sec. II-A). Since the extreme level
of parallelism that it offers cannot be exploited, the use of the full
interconnect creates a significant area and power overhead, in terms of
large multiplexors, many wires, and excessive number of N-ISA bits.

a) FFT evaluation: Before the toolchain described in Sec. III
was completed, a manual schedule was developed for the EEMBC
FFT benchmark to ascertain what could be an energy-efficient
domain-specific interconnect configuration. While the power over-
head of the FlexCore with a full interconnect was 23% as compared
to the reference processor, it turns out that the overhead of the 42-link
interconnect configuration that is tailored to the FFT application was
only 4% [12]. Since the execution time was significantly reduced,
the total energy gain was 29%. It should be noted that among the 42
communication paths selected, we made sure to have support for all
general-purpose paths that exist in the reference processor.

b) 60-link configuration: Although it always can execute
general-purpose code, typically a FlexCore processor is optimized
with respect to an application domain. With the help of the develop-
ment environment outlined in Sec. III, it is possible to explore the
design space and identify an interconnect that can service several
different application domains. Using such an interconnect somewhat
defeats the purpose of domain customization, but it makes for an
interesting study on limitations. A 60-link interconnect was shown
to be the most energy-efficient alternative when considering nine
complete EEMBC benchmarks [3]. Since there is a large variation in
the computing characteristics of the benchmarks, we clearly no longer
tap the strength of FlexCore, however, still we can identify a 15%
cycle count reduction and a 17% energy reduction in comparison to
the reference. We also note that since the benchmarks are diverse,
the performance and energy efficiency of different interconnect con-
figurations, except the one of the reference, do not vary significantly.

c) Interconnect optimizer: Based on the environment in Sec. III,
an interconnect optimizer was developed [13]. The optimizer invokes
the toolchain to analyze the selected interconnect configuration. The
resulting energy is considered and based on a genetic algorithm the
optimizer makes updates to the interconnect configuration and reruns
the toolchain. Preserving general-purpose functionality of the baseline
datapath is a key FlexCore feature. However, to study limitations, the
optimizer was used for the EEMBC Autcor benchmark to identify an
optimal interconnect configuration of 51 links that offers a further
29% improvement in energy efficiency over the best configuration
that was compliant with the general-purpose datapath reference.

It should be noted that all evaluations in this section were based on
the datapath only, thus, the impact of the instruction decompressor
needs to be considered. The following section will address more or
less complete FlexCore systems.

V. IMPLEMENTATION, VERIFICATION AND EVALUATION

This section deals with ASIC and FPGA implementations of the
baseline FlexCore. The first subsection presents an ASIC evaluation
of the performance and energy efficiency of the FlexCore datapath
and decompressor, while the other subsection deals with the func-
tional validation of a complete FlexCore processor system, including
caches, on an FPGA.

For both evaluations, FlexCore is assessed using the processor
that served as an inspiration for the baseline implementation as
reference, that is, MIPS R2K (see Sec. II-A). The two processors use
identical datapaths units, but different interconnects; MIPS R2K has
33 links [2], while FlexCore uses the 60-link interconnect identified
to yield the highest datapath energy efficiency for nine EEMBC
benchmarks (see Sec. IV).

A. FlexCore Processor Netlist Evaluation

We implemented the datapath and the instruction decompressor
using Synopsys Design Compiler and PrimeTime for a commercial
65-nm cell library. Similarly, a MIPS R2K processor was imple-
mented [14]. Netlists were generated for a common timing constraint
of 2.2 ns, at 125◦C, 1.1 V and the worst-case process corner.
Since the instruction decoder of the MIPS R2K reference is less
complex than the implemented FlexCore instruction decompressor
(Sec. II-B), the area of the MIPS processor becomes 31% smaller.
Due to compiler restrictions, the LUTs are loaded only once per
applications. However, the LUT implementation supports reloading
of individual entries and uses clock gating to reduce power (Fig. 9).

ENTRY-1

ENTRY-2

ENTRY-N

Read
Address

LUT out

Write
Data

clock gaters

DECODER

CP
Q

E

CP
Q

E

CP
Q

E

Write
Address

Write
Enable

clock

Fig. 9. LUT implementation.

Three different EEMBC benchmarks were used for this evaluation.
Accounting for LUT load cycles, still the FlexCore is 35%, 30%, and
18% faster than MIPS for Autcor, FFT, and Conven, respectively [14].
The result for Conven is indicative of the fact that the C code of
this benchmark has short loops and little instruction-level parallelism
to offer. Power and energy values were obtained at the nominal
process corner, using 25◦C and 1.2 V, by annotating the application
simulation’s switching activity files to the processor netlists. This
evaluation showed that the FlexCore expends 24%, 12%, and 6% less
energy than MIPS for Autcor, FFT, and Conven, respectively [14].

B. FlexCore System Validation

Fig. 10 shows a complete FlexCore system—to the right of the
synchronizer—and the testbed—to the left of the synchronizer. To
architect a system at minimal effort, IP components were used as far
as possible. A number of the system components, like the AMBA
AHB bus [15], were drawn from the GRLIB IP library [16].

309

FLEXCORE

Instruction
Cache

Data Cache

Sy
nc

hr
on

iz
er

Sy
nc

hr
on

iz
er

A
rb

ite
r

STALL

IC_STALL

DC_STALL

ST
A

LL
_I

C

CPU_ADDR

CPU_IN

CPU_READ
CPU_WRITE
CPU_MASK

CPU_OUT

MEM_IN

MEM_READY

MEM_REPLACE

MEM_ADDR

MEM_OUT

MEM_READ

MEM_WRITE

MEM_IO

CPU_ADDR

CPU_READ

CPU_OUT

MEM_ADDR

MEM_READ

MEM_IN

MEM_READY

MEM_REPLACE

AHB_SEND_1

AHB_RECEIVE_1

AHB_SEND_2

AHB_RECEIVE_2

AHB_ADDR

AHB_DATA

AHB_WRITE

AHB_IO

FP
G

A

(G
R

LI
B

co
m

po
ne

nt
s)

Fig. 10. Block diagram of the FPGA FlexCore system.

To validate the function of the system, we used a bus interface
arbiter to test an FPGA version of the FlexCore processor when
embedded inside the FPGA testbed. The bus interface implements a
handshaking protocol to ensure reliable data transfers. The data bus
at the interface is responsible for data directed to both the instruction
and data cache, and also outbound data from the data cache. The
bus interface logic on either side handles conflict resolution when
necessary. Due to the restrictions imposed by the interface and
dependencies between the caches, the data cache gets priority in
conflict resolution and can stall the instruction cache.

The testbed was an ML-402 FPGA board that has 32 MB of
onboard memory coupled to a Xilinx Virtex-4 SX-35 FPGA, which
is large enough to fit the complete design. The FPGA version
of the FlexCore processor was thoroughly tested for functionality.
The complete FlexCore and the GRLIB components of the testbed
together use 14,733 out of the available 30,720 4-input LUTs, 42 kB
memory, and 3,952 out of the available 30,720 slice registers. A
host of EEMBC applications—Autcor, FFT, bit manipulation, etc.—
were tested and the FPGA FlexCore ran them all successfully to
completion, thus, validating the functionality of the processor system.

VI. DATAPATH ACCELERATORS

One potential benefit of exposing the datapath to the compiler is
that special-purpose datapath hardware can be added to efficiently
support the needs of an application domain. Assume there are recur-
ring pieces of code that are too complex to be efficiently executed
in basic execution units such as ALUs. In this situation we may
extend the datapath by adding more execution units—datapath accel-
erators—to the FlexCore datapath. The energy reductions enabled by
these accelerators are due to three reasons: 1) they speed up execution
and shorten the time during which the processor is dissipating power,
2) they localize communication avoiding the switched capacitance on
long buses, and 3) they use, to some extent, local memory that reduces
datapath interconnect transfers.

Integrating an accelerator entails adding datapath circuits, extend-
ing the interconnect, and adding N-ISA control bits. Thus, the accel-
erated datapath will be larger and more power dissipating than the
baseline datapath. Clearly, the overhead of accelerator integration has
to be minimized. The key to energy efficiency is that the accelerators
are used frequently enough to more than compensate for the overhead
they present to the system. We use the term lightweight to emphasize
that the accelerator circuits must be of a very limited complexity
and size to be useful for integration in an exposed datapath. Still,
constrained by complexity, as much as possible the accelerators
should be versatile in the sense that they can be widely used.

Using the FlexCore framework, several projects have addressed
the implementation and integration of lightweight and versatile ac-
celerators in exposed datapaths, and the design tradeoffs involved in
using such accelerators. In Sec. VI-A we describe an accelerator that
can switch between the default 32-bit operation and a narrow-width
mode in which two 16-bit operations are done in parallel and without
any interference between the operations. The second accelerator in
this review (Sec. VI-B) has a relatively simple core functionality.
This allows for the use of several parallel circuits, each of which
supports one standard of the function and which can be invoked by
the compiler. Third, in Sec. VI-C, we target an application that has
such challenging memory requirements that the algorithmic kernel
must be divided into one accelerator part and one general-purpose
part. In Sec. VI-D, finally, we show how the expressiveness of the
datapath control word can be used to shut off unused portions of
execution units.

A. Double-Throughput Acceleration

As far as DSP filter applications, these are often limited to a 16-bit
dynamic range and thus the 32-bit datapath is not fully utilized. To
more efficiently use the datapath resources in an exposed datapath
architecture, a 32-bit multiply-accumulate (MAC) accelerator that
optionally can execute two independent 16-bit MAC operations
simultaneously was introduced [17]. This double-throughput MAC
(DTMAC) unit has a circuit complexity similar to a conventional
32-bit multiplier. Since the accumulated results remain inside the
accelerator, the DTMAC unit is a power-efficient solution as there is
no need for datapath communication to handle the accumulation.

Partial product generation

Operand A Operand B Ctrl

REG

Sign extension

Accumulate adderREG

REG

Fig. 11. Simplified block schematic of the DTMAC unit. A new way to
handle MAC sign extension enables the use of only one adder (the accumulate
adder), instead of using one each in the multiplier and the accumulator which
is the conventional way. The control signal (Ctrl) controls what mode is used;
for example, full 32-bit mode or 2x16-bit double-throughput mode.

Since the DTMAC unit also can handle multiplications, the multi-
plier in the baseline datapath in Fig. 3 can be replaced with a DTMAC
unit. The datapath area overhead of this replacement is less than 2%.
Since the interconnect ports are not affected by the replacement, the
overall overhead is very limited.

Table I shows evaluation results for three different processor data-
paths (no instruction decompressor is considered here): The reference
general-purpose processor (GPP) datapath uses a FlexCore that is
restricted to the MIPS R2K interconnect, while the two FlexCore
datapaths both use full interconnect configuration, see Sec. IV.

310

TABLE I
EVALUATION OF DTMAC ACCELERATION FOR TWO EEMBC

BENCHMARKS

Autcor FFT
Execution Energy Execution Energy
time (µs) (nJ) time (µs) (nJ)

GPP w/ MULT 3.51 22.89 127.93 835.11
FlexCore w/ MULT 2.32 14.60 84.41 530.96
FlexCore w/ DTMAC 0.80 5.84 70.20 510.35

Since the compiler can exploit the parallelism inherent in the
exposed datapath, the two FlexCore datapaths show significant exe-
cution time improvements. The DTMAC accelerator further improves
the performance by offering efficient parallel execution of the MAC
operation. Since the DTMAC hardware overhead is limited, the power
overhead is low and the shorter execution time can be turned into a
substantial energy reduction.

The selection of the two EEMBC benchmarks was made in order
to show the range of performance improvements that are possible.
The impact of using DTMAC instead of MULT is more significant
in Autcor than in FFT, because Autcor has many parallel 16-bit
multiply-accumulate operations, while FFT contains quite few 16-
bit multiply-accumulate operations in sequence.

B. Error Detection Using Cyclic Redundancy Checking

Cyclic redundancy checks (CRCs) are routinely done to ensure that
data have not been compromised. Different applications have different
CRC needs and this is reflected in the key polynomials being used,
for example, CRC5 (p(x) = x5 +x2 +1) is used in USB interfaces,
CRC8 (p(x) = x8 + x2 + x + 1) is used in ATM protocols, and
CRC16 (p(x) = x16 +x12 +x5 +1) is used in XMODEM and X25
protocols. Running CRC on a general-purpose datapath rather than
in a dedicated circuit is ineffective in terms of execution time and,
thus, in energy. Since a dedicated CRC circuit for one standard is
very small and entails insignificant overheads, we can save energy
by integrating a CRC accelerator in an exposed datapath.

The challenge of introducing a CRC accelerator is to find a circuit
that can handle different key polynomials in an efficient manner.
Fig. 12 shows a lightweight accelerator that was built to handle not
only CRC5, CRC8 and CRC16 (see above), but also CRC32 which
is used in the IEEE 802.3 standard of local area networks [18].

The evaluation, which was done using the PowerStone CRC16
benchmark [19] on the FlexCore datapath, showed that the addition
of the CRC accelerator in Fig. 12 improved the datapath performance
and energy efficiency by more than seven times as compared to the
baseline datapath (Fig. 3). The overheads of integrating this multi-
mode CRC accelerator were limited; the area grew by 7%, while the
timing was unaffected.

C. Error Correction Using Viterbi Decoding

Forward-error correction (FEC) is computationally challenging and
thus FEC accelerators are vital [20]. Standalone accelerator circuits
tend to be large, since the memory requirement increases expo-
nentially with the error correction capability. An exposed datapath
offers an interesting compromise solution using a mix of hard-
ware acceleration—in a lightweight, memory-limited accelerator—
and software execution—in the general-purpose portion of the dat-
apath. To address acceleration of more complex algorithms, we
recently described a Viterbi accelerator [21]. To complement the
view of the previous two accelerator descriptions, we leave out all
implementation details and instead focus on datapath integration and
overall application execution.

N

Input Output

ModeSel[1:0]

REG5

REG3

REG8

REG16

Input Gating

Enb Clk

Feedback

Bus width: 3 bits 5 bits 8 bits 16 bits 32 bits N bits

Distributed MUX Distributed state registers

MUX3

MUX5

MUX8

CRC5

CRC8

CRC16

CRC32

Fig. 12. Block schematic of a CRC accelerator that can support four different
CRC standards. The accelerator mode control signals (ModeSel) are exposed
to the compiler, which can select which CRC standard to use. The switching
power of unused CRC circuits is negligible, since the inputs are not propagated
unless needed. As in the case of the DTMAC unit, the local data feedback
reduces power dissipation.

The Viterbi accelerator in Fig. 13 has its output registers em-
bedded. The input data arrive only from the register file (RF) and
the load/store (LS) units, which simplifies the input switchbox; an
example on how the FlexCore interconnect can be configured based
on application understanding. One 32-bit word goes directly from the
RF unit to the Viterbi unit, while a 2-way multiplexer selects either
one 32-bit word from the RF unit (In A) or the 32-bit word from the
LS unit (In B). The output of the accelerator only needs to be routed
to the RF and the LS units. Thus, the input switchboxes for the RF
and the LS units need to accept one more data input.

REG

REG

RF LS

Da
ta

W
rite

Da
ta

Ad
dr

es
s

REG

Input
Data

Viterbi Unit

Inp
ut

Da
ta

(3
1:0

)

In B In A

Ou
tpu

t
Da

ta
Ad

dr
es

s
Po

int
er

Inp
ut

Da
ta

(6
3:3

2)

Fig. 13. Integration of the Viterbi accelerator into the FlexCore datapath
shown in Fig. 3.

For evaluation we used the EEMBC Viterbi benchmark, which
employs a so-called soft-decision algorithm. Fig. 14 illustrates the
sequence of execution of this benchmark, with emphasis on the most
computation-intensive parts of the benchmark. The evaluation showed
that by integrating the Viterbi accelerator, the datapath becomes 20%
larger, which directly impacts power dissipation (a 38% increase).
However, thanks to the improved performance, the reduced execution
time (90% for the total benchmark or 99% for the benchmark kernel)
yields an 87% energy reduction for the whole benchmark [21].

The overall design tradeoff is to balance the datapath resource so
that it matches the application domain. Due to its complexity, the in-
troduced Viterbi accelerator increases the datapath area significantly,
but this is an acceptable overhead in the event the processor will
run FEC applications frequently. The next subsection will show that,
unlike area overheads, power dissipation overheads—both active and
static—can be reduced by using the appropriate circuits.

311

Compute

output table in

software

Compute K-1

columns of metric
table in software

Pack K-1th

column of

metric table

Compute

1 metric table
column

Traceback

Load K-1th

column of

metric table

Load new

symbol

1 CC

((2
K-1

×2)÷D) (2K-1÷C)

1 CC

(2
K-1

× 2 HD and

2
K-1

ACS calculations)

Overhead for hardware mode: 273 CC

Load base

address
pointer

Pack

output
table

Load

output
table

2
K-1

×(B÷4)(2
K-1

×2×(A÷8))

K - Constraint length of accelerator and software application = 6

A - #Cycles required for packing 8 output table entries = 20

B - #Cycles required for packing/unpacking 4 metric table entries = 12

C - #Metric table entries loaded in 1 cycle = 4

D - #Output table entries loaded in 1 cycle = 8

321 iterations

1 iteration = 9 CC
321 iterations = 2,889 CC

Unpack metric

table column

Overhead for 321
symbols: 30,816 CC

OT

MT TB

Total cycle count for pre- and post-processing in

software (OT + MT+ TB) = 23,501 Clock Cycles (CCs)

(2K-1×(C÷4)

160 CC 96 CC 8 CC 8 CC 8 CC 96 CC

Fig. 14. Example sequence of steps while using a Viterbi accelerator. The gray boxes represent portions of the code that are performed in software, in the
general-purpose datapath portion, while transparent boxes represent portions that are accelerated. The execution time for each application phase is given in
clock cycles (CC). The constraint length parameter K represents how well the code can correct errors (the higher, the better). K is equal to 6 for the EEMBC
benchmark used. HD stands for Hamming distance calculation, whereas ACS means add-compare-select.

D. Power Gating of Idle Circuits

Operand isolation is used for the CRC unit in Fig. 12 to reduce
the switching power of unused circuit portions. Although switching
remains the dominating mechanism for power dissipation, the leak-
age power component is significant in advanced CMOS processes,
especially in high-performance process technologies (low threshold
voltages) at elevated temperature. Unless the power supply is shut off,
an accelerator that is not used will still dissipate precious static power.
If the complex accelerator is idle for a longer time, the accumulated
static energy that is dissipated can become a major problem.

In contrast to operand isolation, introducing power-gating circuits
on an accelerator is a very invasive design step. For example, the
area increases significantly due to the special circuits and extra power
supply wiring that need to be added to the physical implementation.
This ultimately increases the switching power and makes it important
to also consider the transitions between idle and active modes
when minimizing the total processor energy. A scheme based on an
exposed datapath offers some advantages in terms of mitigating the
static power overhead. Since the compiler is directly controlling the
datapath, it is possible to statically identify if an accelerator is idle
for such a long time that it is worthwhile to shut off power.

It is not controversial to claim that it is effective to use power
gating for large accelerator blocks that are unused during distinct
execution phases when the current applications have no need for
acceleration. The question we have pursued rather is; can it be
effective to implement power gating on a more fine-grain level,
shutting down datapath execution units.

We demonstrated that introducing power gating on the 32-bit mul-
tiplier can save total energy even when the multiplier is not idle for
the entire duration of the application [22]. The power gating circuit
infrastructure is shown in Fig. 15 and it is clear that power gating at
execution-unit level has a big impact on the physical implementation.
Still, for the two EEMBC benchmarks analyzed, shutting down the
multiplier when it is idle can yield an overall energy saving. The
actual saving depends on how common the multiplication operation

MULT

P
o

w
e
r
 s

w
itc

h
Is

o
la

tio
n

s

PS controller

DATAPATH

Fig. 15. Physical view after place and route of a 65-nm FlexCore datapath
with a power-gated multiplier.

is. For the Autcor benchmark, the multiplier is only used initially
as shown in the execution profile in Fig. 16a. Since the multiplier
can be shut down for a relatively long time, the total datapath energy
saving can be as high as 14.2%, assuming a high-performance process
technology. In contrast, in the FFT benchmark the multiplier is used
more frequently (see Fig. 16b) and thus the saving is limited to 8%.

Based on earlier studies [23], [24] where the foundation of the
techniques was laid, the use of power gating to reduce leakage power
for narrow-width operands in integer arithmetic was comprehensively
evaluated using an automated design flow for power gating [25].
Among the results from experiments in a 45-nm process technology,
power gating of a 32-bit multiplier is demonstrated to yield an
11.6x static leakage energy reduction per 8x8-bit operation, at a
performance penalty of 6.7%. Note that these numbers pertain to
the arithmetic unit in isolation, not to the processor.

312

0 10,000ns 20,000ns 30,000ns 40,000ns 50,000ns

(a)

0 100,000ns 200,000ns 300,000ns 400,000ns

(b)

Fig. 16. Profiles of multiplier use for (a) Autcor and (b) FFT benchmark.

VII. CONCLUSION

The presented FlexCore processor implementations have demon-
strated our approach to using exposed datapaths for energy-efficient
computing. Our processor development environment enables co-
implementation and co-verification of software and hardware to
realize and evaluate novel combinations of concepts such as exposed
datapath control, rich interconnect, on-the-fly instruction decompres-
sion, and datapath extensions. The evaluations we provide show that
the FlexCore approach intrinsically offers interesting possibilities.
While the instruction decompression incurs an area overhead, it
allows for a static schedule that can make efficient use of all hardware
resources and it allows for domain-specific datapath extensions that
can accelerate applications substantially. Although the FlexCore
implementation work has come to explore many areas, there is still
scope for further performance and energy improvements. As far as
future work, many improvements rely on compiler modifications: For
example, making the compiler support AS-ISA reload instructions
(Sec. II-B) could reduce the size of the decompressor bit-pattern by
at least three times [8].

VIII. ACKNOWLEDGEMENT

We want to acknowledge the work of many individuals that have
made contributions to the FlexSoC research programme: H. Ali,
S. Alipour, M. W. Azhar, K. K. Ansari, A. Bardizbanyan, M. Björk,
M. Brinck, A. R. Buzdar, T. Carlqvist, D. Eckerbert, K. Eklund,
J. Elahi, J. Ferry, N. Frolov, P. Gammie, P. Gavin, B. Goel,
E. der Hagopian, S. M. Hassan, B. Hidaji, T. T. Hoang, J. Hughes,
A. Ibrahim, M. Islam, K. Jeppson, U. Jälmbrant, D. Knyaginin, J. Lid-
man, S. A. McKee, J. Mårts, B. Nasri, M. Pellauer, C. Prabhushankar,
E. Ryman, V. Saljooghi, V. Saseendran, T. Schilling, M. Sheeran,
D. Siaudinis, P. Stenström, K. P. Subramaniyan, L. Svensson,
M. Thuresson, A. Vijayshekar, D. Whalley and T. Yang.

REFERENCES

[1] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in 27th Annual Int.
Symp. on Computer Architecture, 2010, pp. 37–47.

[2] M. Thuresson, M. Själander, M. Björk, L. Svensson, P. Larsson-Edefors,
and P. Stenstrom, “FlexCore: Utilizing exposed datapath control for
efficient computing,” J. of Signal Processing Systems, vol. 57, no. 1,
pp. 5–19, 2009.

[3] T. T. Hoang, U. Jälmbrant, E. der Hagopian, K. P. Subramaniyan,
M. Själander, and P. Larsson-Edefors, “Design space exploration for an
embedded processor with flexible datapath interconnect,” in Proc. IEEE
Int. Conf. on Application-specific Systems Architectures and Processors,
Jul. 2010, pp. 55–62.

[4] H. Corporaal and M. Arnold, “Using transport triggered architectures for
embedded processor design,” Integrated Computer-Aided Engineering,
vol. 5, no. 1, pp. 19–38, 1998.

[5] B. Gorjiara and D. Gajski, “Automatic architecture refinement techniques
for customizing processing elements,” in 45th ACM/IEEE Design Au-
tomation Conf., Jun. 2008, pp. 379–384.

[6] I. Finlayson, G. Uh, D. Whalley, and G. Tyson, “An overview of static
pipelining,” IEEE Computer Architecture Letters, vol. 11, no. 1, pp. 17–
20, Jun. 2012.

[7] D. A. Patterson and J. L. Hennessy, Computer Organization & Design,
The Hardware/Software Interface, 2nd ed. Morgan Kaufman Publishers
Inc., 1998.

[8] M. Thuresson, M. Själander, and P. Stenstrom, “A flexible code com-
pression scheme using partitioned look-up tables,” in Proc. 4th Int. Conf.
on High Performance Embedded Architectures and Compilers, 2009, pp.
95–109.

[9] Embedded Microprocessor Benchmark Consortium. [Online]. Available:
http://www.eembc.org

[10] The FlexSoC Project. [Online]. Available: http://www.flexsoc.org
[11] V. Saljooghi, A. Bardizbanyan, M. Själander, and P. Larsson-Edefors,

“Configurable RTL model for level-1 caches,” in Proc. IEEE NORCHIP
Conf., Nov. 2012.

[12] M. Själander, P. Larsson-Edefors, and M. Björk, “A flexible datapath in-
terconnect for embedded applications,” in Proc. IEEE Computer Society
Annual Symp. on VLSI, May 2007, pp. 15–20.

[13] B. Hidaji, S. Alipour, K. P. Subramaniyan, and P. Larsson-Edefors,
“Application-specific energy optimization of general-purpose datapath
interconnect,” in Proc. IEEE Computer Society Annual Symp. on VLSI,
Jul. 2011, pp. 301–306.

[14] A. Bardizbanyan, M. Själander, and P. Larsson-Edefors, “Reconfigurable
instruction decoding for a wide-control-word processor,” in Proc. IEEE
Int. Symp. on Parallel and Distributed Processing, May 2011, pp. 322–
325.

[15] ARM Limited, AMBA Design Kit Technical Reference Manual, revision
r3p0.

[16] Aeroflex Gaisler, GRLIB IP Core User’s Manual, Version 1.1.0 B4104.
[Online]. Available: http://gaisler.com/products/grlib/grip.pdf

[17] T. T. Hoang, M. Själander, and P. Larsson-Edefors, “Double throughput
multiply-accumulate unit for FlexCore processor enhancements,” in
Proc. IEEE Int. Symp. on Parallel and Distributed Processing, May
2009.

[18] M. W. Azhar, T. T. Hoang, and P. Larsson-Edefors, “Cyclic redundancy
checking (CRC) accelerator for the FlexCore processor,” in Proc. Eu-
romicro Conf. on Digital System Design: Architectures, Methods and
Tools, Sep. 2010, pp. 675–680.

[19] J. Scott, L. H. Lee, A. Chin, J. Arends, and W. Moyer, “Designing the
low-power M•CORETM architecture,” in IEEE Power Driven Microar-
chitecture Workshop, Jun. 1998, pp. 145–150.

[20] M. A. Anders, S. K. Mathew, S. K. Hsu, R. K. Krishnamurthy, and
S. Borkar, “A 1.9 Gb/s 358 mW 16-256 state reconfigurable Viterbi
accelerator in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43,
no. 1, pp. 214–222, Jan. 2008.

[21] M. W. Azhar, M. Själander, H. Ali, A. Vijayashekar, T. T. Hoang,
K. K. Ansari, and P. Larsson-Edefors, “Viterbi accelerator for embedded
processor datapaths,” in Proc. IEEE Int. Conf. on Application-specific
Systems Architectures and Processors, Jul. 2012, pp. 133–140.

[22] T. T. Hoang, V. Saseendran, D. Siaudinis, and P. Larsson-Edefors,
“Power gating multiplier of embedded processor datapath,” in Proc.
Conf. on Ph.D. Research in Microelectronics and Electronics, Jul. 2011,
pp. 41–44.

[23] M. Själander and P. Larsson-Edefors, “Multiplication acceleration
through twin precision,” IEEE Trans. on Very Large Scale Integrated
Systems, vol. 17, pp. 1233–1246, Sep. 2009.

[24] M. Själander, M. Draždžiulis, P. Larsson-Edefors, and H. Eriksson,
“A low-leakage twin-precision multiplier using reconfigurable power
gating,” in Proc. IEEE Int. Symp. on Circuits and Systems, May 2005,
pp. 1654–1657.

[25] T. T. Hoang and P. Larsson-Edefors, “Data-width-driven power gating
of integer arithmetic circuits,” in Proc. IEEE Computer Society Annual
Symp. on VLSI, Aug. 2012, pp. 237–242.

313

