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Abstract

In this thesis we address some issues of current interest in particle physics and
quantum field theory (QFT).

First we give an introduction to renormalized perturbation theory and
loop computations in QFT. Quantum chromodynamics (QCD) is used as an
example and it is explicitly renormalized to first order, with all counterterms
computed. The β-function is derived and used to show that QCD is asymp-
totically free.

Secondly we give a short introduction to supersymmetry (SUSY): the
algebra, superfields and SUSY breaking. We present a simple model (the
O’Raifeartaigh model) and show how to deal with the case of strong SUSY
breaking in a manifestly supersymmetry invariant way.

Finally we compute the tree level cross section for production of a hidden
vector boson present in a specific model of SUSY breaking (semi-direct gauge
mediation). Unfortunately, the resulting cross section is too small to give a
signal at the LHC. We also compute the decay rate of the vector boson and
show that it is actually a candidate for dark matter.
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1
Introduction

During my fourth year of study I took a course in quantum field theory (QFT).
I found it extremely complicated and to my great regret (and horror!) I failed,
even though I knew that it is the basic groundwork for all particle physics, in
which I have a great interest. After having thought about how to face my fear
of the subject for the better part of a year, I finally realized that the only way
I was ever going to learn, was by putting myself in a position where I had no
other choice. That said, I obviously had to do my master thesis on a subject
connected to quantum fields! In retrospect I have to say that even though the
logic seems flawed, I have not regretted the decision at all.

The goal of a particle physicist is to describe the basic constituents of mat-
ter and how it works, because from there virtually all physics can be derived.
Ideas about the smallest parts of nature have been around for centuries, but in
1789 the French chemist A. Lavoisier (who was later executed in 1794 during
the French revolution, to which Lagrange responded: ’It took them only an
instant to cut off his head, but France may not produce another such head
in a century.’) defined an element as a basic substance that could not be
broken down, and this was termed an atom. Around a hundred years later
(1897) it was shown that the atom was not the smallest constituent, when the
negatively charged electron was discovered by J.J Thompson.

In 1909 an experiment led by E. Rutherford discovered the atomic nucleus.
Two years later he suggested a model where the atom was built out of a
nucleus, where most of the mass is concentrated, and a number of electrons
circling around it (at a distance of roughly 10−10 m = 1 Å). The nucleus was
furthermore shown to be built out of the positively charged protons (found by
Rutherford in 1915) and neutrons (found by J. Chadwick in 1932) and these
were later shown to have roughly the size 10−15 m.

In the 60’s M. Gell-Mann and G. Zweig proposed on theoretical grounds
that all hadrons, including protons and neutrons, are in turn composite par-
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2 Chapter 1: Introduction

Figure 1.1: The molecule in the top left is built from hydrogen, carbon and
oxygen atoms, and each of these consist of a nucleus with electrons around it.
The nucleus is built out of protons and neutrons, which are in turn composed
of three quarks each. It is unknown whether quarks and electrons have any
inner structure and as far as we know they behave as points (they could, for
example, be strings). The size of the molecule (Thujone, C10H16O) is typically
10−9 m, the atom 10−10 m and the nucleus 10−15 m.

ticles consisting of quarks1. This proposal was verified in 1968 and today it is
still the accepted model. At the time of writing six different types of quarks
have been found. An illustration of the situation is shown in figure 1.12.

Furthermore, the electron have two heavier cousins: the muon and the tau.
Along with the neutrinos, which interact very weakly with matter, they are

1The baryons, to which protons and neutrons belong, consist of three quarks whereas the
mesons are built out of two: a quark and an anti-quark.

2The picture is composed from the following images: the molecule:
http://czechabsinthe.files.wordpress.com/2007/04/molecule.jpg; the atom:
http://stuffthathappens.com/blog/wp-content/uploads/2007/11/atom.png; the
nucleus http://www.theo-phys.uni-essen.de/tp/ags/guhr_dir/media/nucleus3.jpg;
the proton http://upload.wikimedia.org/wikipedia/commons/9/92/Quark_structure_
proton.svg.
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gathered into the family called leptons. Together with the quarks, these two
different types of particles are the basic constituents of matter, as far as we
know today.

Figure 1.2:

In addition the particles may interact
with each other in four different ways: by
gravity, by electromagnetism, by the weak
force or by the strong force. The first two
need no introduction, but the last two may
be more unfamiliar because they have very
short range and do not appear in ordinary
life. The weak force is, for example, respon-
sible for β-decay. It is the reason why there
are no free neutrons: they decay into a pro-
ton, an electron and an anti-neutrino each.
The strong force is a short range interaction
responsible for binding the quarks inside a
hadron and also, as a consequence, for keep-
ing the protons and neutrons together inside the atomic nucleus3.

The quarks, leptons and all forces, except gravity, are built into the Stan-
dard model of particle physics (along with the Higgs particle, which has not
been discovered experimentally yet), all shown in figure 1.24. It is a model
based on symmetry and it was developed in the 70’s and 80’s, and its final
parts were experimentally verified in the 90’s. It is extremely successful in that
its predictions match experimental measurements to an astounding accuracy.

However, it cannot be the theory of everything that particle physicists are
looking for. The most obvious thing is that it does not include gravity, but
that will not be the main subject here. Another puzzle is that, within the
standard model, it is impossible to explain why the mass of the Higgs particle
is so light. It could be much bigger and there is no reason why it is not so. A
model that fixes this and then some, see [1] or [2], is supersymmetry (SUSY).

Supersymmetry is a remarkable symmetry in that it is a transformation
between two completely different classes of particles, it transforms bosons into
fermions and vice versa. The two behave very differently, obeying different
statistics: two fermions in a system cannot have the same quantum numbers
but bosons can, and all particles belong to one class or the other. Supersym-
metry has the effect that the standard model is extended so that each particle
get a supersymmetric partner, essentially doubling the number of particles.
The resulting model is called the minimal supersymmetric standard model
(MSSM), but at the time of writing there has been no experimental sign of
the new particles. It is an open question whether the symmetry exists or

3Protons are positively charged so in all nuclei there are enormous electromagnetic forces
that want to rip them apart. Alpha decay and spontaneous fission are examples of such
instabilities.

4The picture was taken from http://upload.wikimedia.org/wikipedia/commons/0/00/
Standard_Model_of_Elementary_Particles.svg.



4 Chapter 1: Introduction

not, but it is widely considered to be the most promising model for physics
beyond the standard model. Fortunately, with the start of the Large Hadron
Collider (LHC) in 2010, we are on the brink of discovering whether it really
does describe reality or not.

The main subject here will be supersymmetry: how to break it and the
phenomenology of the breaking. When writing a thesis there is usually one
specific question that must be answered, but it is difficult to state one single
question for this problem. Instead the purpose has been to acquire enough
knowledge and skill to be able to understand the latest research material on
the subject.

As for the report itself, there is some thought behind what has been in-
cluded and what has been left out. The first section deals with renormalization
and loop computations in QFT, necessary for essentially any advanced phe-
nomenological application. The next chapter develops the basic working tools
of supersymmetry in superspace. The methods of both sections are then used
when working with the theory presented in section 4. In the final section we
apply (a more complicated version of) the theory of the previous chapter to
examine the phenomenology.

1.1 Method
The method is a combination of a literature study (the most important books
and papers used in each section are listed in their respective introduction), a
series of discussions and some theoretical research. In sections 2 and 3 the
tools were books, papers and discussions with my supervisor. In sections 2.3
and 2.4 we review a specific example, originally worked out in the 70’s by D.
Gross, H. Politzer and F. Wilczek.

The final two chapters contain some new theoretical results that have not
been previously published. The work has been carried out in collaboration
with my supervisor, whom deserves the credit for all ideas. The computations
have been done by both of us separately and then compared.



2
Asymptotic Freedom in QCD

Tree level quantum field theory computations often give good predictions,
however if one wants to compute higher order corrections, to get even better
results, trouble arises. Often the corrections seem to be infinite, a prediction
that does not go well with reality because experimentalists measure finite re-
sults. The solution to this problem offers a great deal of new physical insight.
In principle, to be able to go on into more advanced matters in quantum field
theory, such as supersymmetry, one has to learn about loops and renormaliza-
tion.

The outline for the section is the following: the first part will introduce
the problem and offer some qualitative explanation to why it appears. The
following two sections treat it and show how computations can be performed,
using quantum chromodynamics (QCD, the theory of quarks and gluons) as an
example. This is far from the easiest theory to work with but it is satisfying,
because as the computations become more and more complicated so does the
physics. In the last part of the section, the concepts introduced so far are
used and treated in a way that offers a more natural interpretation. The goal
is to show that QCD is asymptotically free, i.e can be treated perturbatively
at high energies. This is a computation that was done already in 1973 by
H. Politzer, D. Gross and F. Wilczek and won them the Noble prize in 2004.
Good introductions to the subject are [3] and [4].

2.1 The Problem with Divergences
The first impression you get from renormalization is usually how ugly it is.
You hear that the theory actually predicts infinities when you compute cross
sections and that you, somehow, are able to shove them away into some corner
and then leave them there to rot. The experimentalist do not measure infinite
cross sections and so, you think, the theoreticians just try to lie the infinities
away to make the theory fit reality.

5



6 Chapter 2: Asymptotic Freedom in QCD

This is as far from the truth as you can get. When you start working with
it and understand more and more you soon realize, at least that is what I did,
how subtle and beautiful it really is. But it is not all about understanding,
it takes some getting used to also. Even though you are comfortable with
it, there will be times when you are in the middle of a computation and you
suddenly start thinking ’what am I really doing?’.

To see where the problem arises we will use ϕ4-theory as a basic example.
It is defined by the familiar Lagrangian

L = 1
2
∂µϕ∂

µϕ− 1
2
m2ϕ2 − λ

4!
ϕ4 (2.1)

Even with this basic example it is impossible to compute the propagators
exactly. This is nothing strange to physicists and the way to handle it is the
same as in non-relativistic quantum mechanics - we use perturbation theory.
Let us compute the four-point interaction: there are two incoming particles
with four-momenta pµ1 and pµ2 that scatter into the two outgoing particles with
qµ1 and qµ2 . The probability of scattering is gotten by time evolving both states
and computing the overlap

lim
T→∞

⟨p1, p2| e−2iHT | q1, q2⟩ = iMδ4(p1 + p2 − q1 − q2) (2.2)

With H the Hamiltonian. The first order perturbation is the tree level
process

Mtree = = −iλ

The scattering amplitude is |M|2tree= λ2 and it is very much finite. If we
want to get a more precise result we have to go on and compute the second
order perturbation. This will be of order λ2 and if λ < 1, which it must be if
perturbation theory is to work, the second order contribution should probably
be a lesser correction.

M2 = + +

We only have to compute the first diagram, the s-channel process1.
1Technically speaking it is not really a s-channel because the outgoing propagators cannot

form a bound state and thus there is no pole. I call it s-channel because the diagrammatic
form is similar to such processes.
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M2 = −λ2
∫

d4k

(2π)4
1

k2 −m2 + iε

1
(k + p1 + p2)2 −m2 + iε

(2.3)

But this is suspicious: there are four powers of momenta both in the nu-
merator and the denominator so the integral could diverge. We are interested
in large momenta so assume k2 >> p2

1, p
2
2. Let k0 → ik0 to get an Euclidean

metric

M2 ∼ −λ2
∫

d4k

(2π)4
1

(k2 +m2)2 = −λ2 Ω3
(2π)4

∫
dk

k3

(k2 +m2)2

∼ lim
k→∞

−λ2

2
Ω3

(2π)4 log k
2 +m2

m2 (2.4)

This is the famous logarithmic divergence of quantum field theory! Does
this mean that the whole theory is complete nonsense? To answer that we will
need to discuss experimental measurements and QED may be more suitable
for that purpose, as it is easier to use physical intuition. Therefore consider
the scattering of two electrons into to muons. The full scattering process is
given by

e− µ−

e+ µ+

= + +

+ + + + (all orders)

The logarithmic divergences appear here as well, the three last diagrams
on the right-hand side have such behaviour while the top two loop diagrams
are finite. Despite the fact that the theory suggests divergences, experiments
measure the left-hand side and they get finite results. An estimate of the cross
section using only the tree level result gives the correct order of magnitude for
the scattering (see [5]). In other words the theory behave as we would expect
if we didn’t know about the divergences. Let us ponder what physically may
happen inside the loop

When computing the scattering amplitude the particle circling inside the
loop was allowed to have any momentum, in other words, arbitrarily high
energy. In the most extreme case the particle would have energy of the order
of the Planck mass and we would have to start worrying about black holes.
Quantum field theory cannot handle that because it knows nothing about
quantum gravity. At that energy, and probably long before that2, the theory

2For the specific case of QED, it breaks down already around 100 GeV when electroweak
effects become important.



8 Chapter 2: Asymptotic Freedom in QCD

breaks down. Conversely the appearance of infinities tells us that quantum
field theory is a good model, because when there are effects it cannot handle
it is intelligent enough to give a warning sign. It would be a lot worse if
everything came out finite but did not agree with experiments. The true
underlying theory should be free of infinities (note that string theory is) but
at least there is a reason why they pop up in these computations.

The divergences discussed here are called ultraviolet divergences. There is
another type of divergence, called infrared, that comes about because for any
process containing a massless propagator, there will be a pole as its momentum
approaches zero. Although it is an interesting subject it can be solved inde-
pendently of renormalization. It will not be treated here but a good treatment
can be found in [6] and [7].

A final comment: note that what was done so far was computing loops, this
is not renormalization! Renormalization is the process where the divergences
are built into the theory by reinterpreting the fields, masses and coupling
constants as actually containing them from the start and making a distinction
between the measurable physical quantities and theoretical bare quantities.
QCD will be used next as an example to really step up the difficulty.

2.2 Renormalizing a Non-Abelian Gauge Theory

In the previous section the appearance of the divergences was explained. Here
the plan of attack is to interpret them and make them a natural part of the
theory, this is what is called renormalization. There are several ways to do
it and the one used here is called renormalized perturbation theory. It is
suitable for computing physical quantities such as cross sections, but there are
more sophisticated methods that offer greater physical insight. In the end, all
methods must of course give the same result for an observable quantity.

In section 2.3 we will compute loops and to do so the integrals must be
regulated to preserve gauge invariance. For this matter we will have to work
in d-dimensions (d − 1 space dimension), only taking the limit d → 4 in the
very end. Therefore everything in this section is also done for a d-dimensional
spacetime.

As example a SU(3) gauge theory will be used. The Lagrangian, called
the Yang-Mills Lagrangian, is

L = −1
4
F a0µνF

µνa
0 + ψ̄0(i/∂ −m0)ψ0 + g0ψ̄0γ

µT aψ0A
a
0µ (2.5)

With F a0µν the field strength of the gluon field

F a0µν = ∂µA
a
0ν − ∂νA

a
0µ + g0f

abcAb0µA
c
0ν (2.6)

The index 0 on the fields will be useful to keep this Lagrangian separate
from the renormalized one. Equation (2.5) does not look very much different
from the Lagrangian of QED except for the generators T a (which are actually
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1/2 times the Gell-Mann matrices) but some care is needed. In addition to the
usual hidden spinor indices ψ has an additional hidden index, since it belongs
to the fundamental representation of SU(3) (ψ̄ is in the anti-fundamental).
This is contracted with the hidden indices on T a in the same way the spinor
indices are contracted with γµ. When all non-linear terms are written out
there are a lot of new interactions

L0 = ψ̄0(i/∂−m0)ψ0−1
4

(
∂µA

a
0ν − ∂νA

a
0µ

)
(∂µAνa0 − ∂νAµa0 )+g0ψ̄0γ

µT aψ0A
a
0µ

− g0f
abc(∂µAa0λ)Aµb0 A

λc
0 − 1

4
g2

0(feabAa0µAb0ν)(fecdA
µc
0 A

νd
0 ) (2.7)

From now on this will be refereed to as the bare Lagrangian and the fields
with index 0 will be the bare fields. Actually, additional terms will have to
be added later on to account for gauge invariance, but they will not affect the
discussion here. This is further commented in appendix B.

The first step in the renormalization process is a rescaling of the bare fields

Aa0µ =
√
ZAA

a
µ, ψ0 =

√
Zψψ (2.8)

This is the first place the infamous divergences appear in loop calculations.
What we have changed is the normalization of the fields and it is divergent as
d → 4 but as long as d is arbitrarily small there is no cause for alarm. Putting
this back into the Lagrangian yields

L = Zψψ̄(i/∂ −m0)ψ − 1
4
ZA

(
∂µA

a
ν − ∂νA

a
µ

)
(∂µAνa − ∂νAµa)

+ g0Zψ
√
ZAψ̄γ

µT aψAaµ − g0Z
3/2
A fabc(∂µAaλ)AµbAλc

− 1
4
g2

0Z
2
A(feabAaµAbν)(fecdAµcAνd) (2.9)

Unfortunately the coupling constant acquired a unit when going to d-
dimensions. In practice this is not a problem but it would be nice to keep
it dimensionless. The dimensions of the fields in an arbitrary dimension can
be worked out by looking at the kinetic terms and any of the interactions.
They are, in units of energy,

[L] = Ed, [ψ] = E(d−1)/2, Aµ = Ed/2−1, [g0] = E(4−d)/2

To get a dimensionless coupling constant, substitute
√
ZAZψg0 = Zgµ

εg,
where [g] = E0, [µ] = E1 and 2ε = 4 − d. The downside here is that in any
computation where previously only g0 appeared we will have to drag around
an extra factor of µε. The same thing can be done to the other interactions.

Z
3/2
A g0 = Z3µ

εg ⇒ Z3 = ZA
Zg
Zψ

Z2
Ag0 = Z4µ

εg ⇒ Z4 = Z
3/2
A

Zg
Zψ

(2.10)
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The indices 3 and 4 may seem arbitrary, but they have been chosen be-
cause the interactions describe three- and four-point vertices. These are not
independent, because it is the coupling constant that is redefined (not the
vertices themselves) and gauge invariance guarantees that it is the same for
all interactions.

The Lagrangian in equation (2.9) does not look canonically normalized. To
get it in a form we are used to, that is, in a form where it is more apparent what
the Feynman rules are, the wavefunction renormalizations must be removed
in some way. Rescaling again would achieve nothing except getting back to
the bare version. Instead we will do something that at first may seem foolish:
we rewrite the Zs as Z = 1 + δ, effectively breaking up the Lagrangian in a
canonically normalized part and additional interaction terms. The new terms
are called counterterms and are defined by

δA = ZA − 1, δψ = Zψ − 1, δm = Zψm0 −m
δg = Zg − 1, δ3 = Z3 − 1, δ4 = Z4 − 4 (2.11)

With them we rewrite the Lagrangian to its final form

L = ψ̄(i/∂ −m)ψ − 1
4

(
∂µA

a
ν − ∂νA

a
µ

)2
+ µεgψ̄γµT aψAaµ

− µεgfabc(∂µAaλ)AµbAλc − 1
4
µ2εg2(feabAaµAbν)(fecdAµcAνd) + LCT

(2.12)

LCT = ψ̄(iδψ /∂ − δm)ψ − 1
4
δA
(
∂µA

a
ν − ∂νA

a
µ

)2
+ µεgδgψ̄γ

µT aψAaµ

− µεgδ3f
abc(∂µAaλ)AµbAλc − 1

4
µ2εg2δ4(feabAaµAbν)(fecdAµcAνd)

(2.13)

This is the renormalized Lagrangian. The price we pay to reinterpret
the divergences is that the theory has to be defined at some energy scale,
otherwise the counterterms cannot be specified. This scale is arbitrary and
the renormalization parameter will affect the theoretical results. In practice
it means that the general behaviour of a process can be predicted, but no
numbers can be given unless we first go to an experimentalist and ask how
big a (for example) cross section is at a specific energy. For example: no
calculation in QED will ever tell us how big the fine-structure constant is,
but once it is known from experimental measurements, there is no end to the
potential applications of QED.

Setting this scale is next on the agenda. By fixing the propagators and
vertices at the scale µ, the counterterms and thus the entire theory can be
specified. Remember that QCD is non-perturbative at low energies so it would
not be clever to choose the renormalization scale as the mass of one of the light
quarks. Instead µ must be chosen to at least a few GeV. The theory is defined
by the diagrams in figure 2.1, with the conditions



2.3 Computing Loops and Counterterms 11

p
= i

/p+m

p2 −m2 + iε
− iΣ(/p)

p
µ ν = −i ηµνδ

ab

p2 + iε
+ iΠabµν(p2)

qµ

pλ1 pκ2

= igΓµ(p1, p2)Da

Figure 2.1: The QCD renormalization diagrams

d
d/p

Σ(/p) = 0, p2 = µ2

Σ(/p) = 0, p2 = µ2

Πabµν(p2) = 0, p2 = µ2

Γµ = igγµT a, p2
1 = p2

2 = µ2

(2.14)

At this point we can solemnly state that QCD has been renormalized!
The divergences have been reinterpreted into the definitions of the fields and
the coupling constant. The three- and four-point gluon interactions could be
specified as well, but those counterterms will be given in terms of the others
by equations (2.10) and (2.11). In practice this is not the end of the road.
The loop diagrams still need to be computed to get the counterterms, if the
theory is to be used beyond tree level.

2.3 Computing Loops and Counterterms

The aim of this section is to compute the divergent parts of the counterterms
to one loop. The first thing we need is the Feynman rules for the relevant
terms in LCT (see e.g [3]), shown in figure 2.2.

For a theory that is as complicated as QCD computing loops is rather
hard. The only diagram that will be treated here is the first order loop cor-
rection to the quark propagator. The rest of the diagrams that come into the
computation of the counterterms are found in appendix C.

To first order, the diagrams contributing to the quark propagator are shown
in figure 2.3. Write the rhs according to figure 2.1
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= i(δψ/p− δm)

= −iδA(p2ηµν − pµpν)

= iδggµ
ϵγµT a

Figure 2.2: Feynman rules for the counterterms. Note how similar the struc-
ture of these are to the tree level Feynman rules. This is essential when
isolating the divergence.

= + +

Figure 2.3: All diagrams that contribute to the quark propagator to one loop.
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− iΣ(p2) = Mq(p2) + iδψ/p− iδm (2.15)
Already at this point we can see how the counterterm works. Once com-

puted it will cancel the divergence coming from the propagator corrections. If
the correction is a part of bigger diagram, the counterterm has to be included
as well. The rest of the section goes into calculating this thing.

p p+ k

k

p
= Mq

Here we only consider the amputated diagram so there are no external
propagators. If we count powers of momenta we immediately see that it seems
to diverge linearly. Direct application of the Feynman rules gives the expres-
sion

Mq =
∫

ddk

(2π)d
(igµεT aγµ) /p+ /k +m

(p+ k)2 −m2 + iϵ
(igµεT bγν)−iηµνδab

k2 + iϵ
(2.16)

The point of dimensional regularization is that for sufficiently small d the
integral will converge. This means that we have greater mathematical freedom,
such as variable substitution. The denominator can be put on a more conve-
nient form by a method due to Feynman. The factor 1/AB can be written
as

1
AB

=
∫ 1

0
dx

1
(xA+ (1 − x)B)2 (2.17)

In which case the denominator takes the form

D2 =
(
x
(
(k + p)2 −m2 + iϵ

)
+ (1 − x)

(
k2 + iε

))2

=
(
k2 + 2xkp+ xp2 − xm2 + iϵ

)2
(2.18)

If the integral converges we can make whatever coordinate transformations
we want, as long as it is invertible. If the choice ℓµ = kµ + xpµ is made the
denominator becomes

D = ℓ2 − ∆, ∆ = xm2 − x(1 − x)p2 − iϵ (2.19)
For space-like momentum ∆ will be positive, whereas if pµ is time-like

some caution is needed and we cannot take ϵ = 0 as usual. The numerator
can be simplified with some Dirac algebra



14 Chapter 2: Asymptotic Freedom in QCD

N = γµ
(
/ℓ + (1 − x)/p+m

)
γµ = (2 − d)(/ℓ + (1 − x)/p) + dm (2.20)

Next consider the Lie algebra factor. The gauge group is SU(3) but it is
more convenient to keep it completely general, to keep the integration con-
stants separate from the Lie algebra constants. The factor T aT a is the Casimir
operator and commutes with all generators of a simple Lie algebra

[T b, T aT a] = f bacT cT a + f bacT aT c = 0 (2.21)

By Shur’s lemma, it should be proportional to the identity matrix times
some constant C2(r), that may be different for each representation. The final
expression is

Mq = −g2µ2εC2(r)
∫ 1

0
dx

∫
ddℓ

(2π)d
(2 − d)(/ℓ + (1 − x)/p) + dm

(ℓ2 − ∆)2 (2.22)

To evaluate it we make a Wick rotation to get an Euclidean integration
measure, by doing the following substitution

ℓ0 = iℓ0w, ℓ = ℓw ⇒ det(dℓ/dℓw) = i (2.23)

With an Euclidean metric it is obvious that any expression with an odd
power of ℓ in the numerator disappears, due to spherical symmetry, because
the denominator is even and positive for all ℓ. What is left to evaluate is

− ig2µ2εC2(r)
∫ 1

0
dx

[
((2 − d)(1 − x)/p+ dm)

∫
ddℓw
(2π)d

1
(ℓ2w + ∆)2

]
(2.24)

The easiest way to compute it is to use hyperspherical coordinates. The
integrand is independent of all angles and they integrate to give the surface
area of the d − 1 dimensional sphere. The rest could be looked up in a table
or in Mathematica but my secret passion for integrals demands that I do it
properly. To be more general consider the denominator to the n-th power.

∫
ddℓw
(2π)d

1
(ℓ2w + ∆)n

= Ωd−1
(2π)d

∫
dℓw

ℓd−1
w

(ℓ2w + ∆)n

= Ωd−1
2(2π)d

∫
d(ℓ2w) (ℓ2w)d/2−1

(ℓ2w + ∆)n
(2.25)

A nice way to evaluate it is to make the substitution x = ∆
ℓ2+∆ and then

compare it to the Beta function.
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∫
d(ℓ2w) (ℓ2w)d/2−1

(ℓ2w + ∆)n
→ ∆d/2−n

∫ 1

0
dx (1 − x)d/2−1xn−d/2−1

= ∆d/2−nΓ(n− d/2)Γ(d/2)
Γ(n)

(2.26)

Now set n = 2 to get back to the original problem. Using Ωd−1 = 2πd/2

Γ(d/2)
and putting everything together, equation (2.24) takes the form

Mq = −ig2µ2εC2(r)Γ(2 − d/2)
(4π)d/2

∫ 1

0
dx

(2 − d)(1 − x)/p+ dm

∆2− d
2

(2.27)

The divergence manifests itself in the Gamma function as it is singular
when d → 4. Write 2 − d/2 = ε to make it explicit. The Gamma function has
the nice property that ζΓ(ζ) = Γ(ζ + 1), i.e we can write Γ(ε) = Γ(ε+1)

ε and
the numerator is finite when ε goes to zero. To identify the different parts
write (µ2/∆)ε = exp (ε log(µ2/∆)) and expand in ε. The final expression is

Mq = −ig
2C2(r)
16π2

∫ 1

0
dx
(
(4 − ε)m− (2 − ε)(1 − x)/p

)
× 1
ε

(
1 + ε log

(
µ2

∆

)
+ O(ε2)

)
(2.28)

Note that the 1
ε stands for a logarithmic divergence. To fulfill the specified

condition in equation (2.14) the quark and mass counterterms have to take
the value iδψ = − d

d/p
(Mq) and i(/pδψ − δm) = −Mq, both conditions evaluated

at p2 = µ2.
As can be seen from the above, the finite part of any counterterm can be

changed by a different choice of renormalization scale. This means that the
constant is arbitrary and we do not have to be very specific about it in the
counterterm. Therefore we can define them as

δψ = −g2C2(r)
16π2

∫ 1

0
dx

2(1 − x)
ε

1 + ε log

 µ2

∆

∣∣∣∣∣
p2=µ2

+ O(ε2)

 (2.29)

δm = −g2C2(r)
16π2

∫ 1

0
dx

4m
ε

1 + ε log

 µ2

∆

∣∣∣∣∣
p2=µ2

+ O(ε2)

 (2.30)

This is called the minimal subtraction renormalization scheme. For our
purpose the mass counterterm can be forgotten from now on, because it is
unimportant for the β-function. The wavefunction renormalization is vital,
however, and the divergent part of it is
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lim
ε→0

εδψ = −g2C2(r)
16π2 (2.31)

Some comments are needed before the section is concluded. Using dimen-
sional regularization here was, strictly speaking, not completely necessary. The
integrals could have been regulated just as well with the Pauli-Villars method,
meaning that another heavy propagating fermion is included in the Lagrangian
that cancels the divergence for very high momenta but does not effect the low
energy result. Dimensional regularization was used anyway because it is both
more versatile and not that much more complicated, and therefore there is no
real point in doing anything else. For the gluon counterterm the Pauli-Villars
regulation does NOT work properly.

The rest of the counterterm computations have been placed in appendix
C because they are much the same as the one already done, albeit with some
complications. These are technical issues however and lead to fun calculations
but it is not much fun to read.

2.4 The β-function of QCD
It has been pointed out several times that the renormalization scale is arbi-
trary. It may be worrisome at first that the theory seems not to give unique
answers, but the physics must of course be independent of the choice of µ.
Therefore no measurable quantity can depend on the renormalization scale
and we may use that to our advantage to derive consistency equations. The
derivation of the β-function is due to ’t Hooft in [8].

Consider the n-point function both in terms of renormalized and bare quan-
tities

G(n)(g,m, µ;xνi ) = ⟨Ω|ψ(xν1) . . . ψ(xνn)| Ω⟩

= Z
−n/2
ψ ⟨Ω|ψ0(xν1) . . . ψ0(xνn)| Ω⟩ = Z

−n/2
ψ G

(n)
0 (g0,m0, ε;xνi ) (2.32)

The lhs is the renormalized n-point function which is finite and indepen-
dent of ε, whereas the correlation function on the rhs is its bare counterpart
and independent of the renormalization scale but divergent. If the equation
is to be consistent the wavefunction renormalization must be a function of g0,
µ and ε such that the dependence on variables are the same on both sides
of the equality, i.e Zψ = Zψ(g0µ

−ε, ε). The combination g0µ
−ε must appear

together because Zψ is dimensionless and can therefore only depend on di-
mensionless parameters. The spacetime dependence is of no importance here
and the label will be removed from the equations. Note that the wavefunction
renormalization can always be chosen independent of the (bare) mass3.

3This is not obvious, but it is shown in e.g [9]. The statement is true as long as the energy
is greater than the mass of all particles in the theory.
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Hold the bare parameters g0 and m0 fixed. The renormalized counterparts
must then be functions of µ, at least implicitly, to account for the difference
between renormalized and bare parameters. This reasoning makes clear the
dependence on µ and allows us to differentiate both sides of equation (2.32)
with respect to it.

d

dµ
G(n)(g,m, µ) =

[
∂g

∂µ

∂

∂g
+ ∂m

∂µ

∂

∂m
+ ∂

∂µ

]
G(n) (2.33)

d

dµ

[
Zψ(g0µ

ε, ε)−n/2G
(n)
0 (g0,m0, ε)

]
= −n

2
Z

−n/2−1
ψ G

(n)
0

d

dµ
Zψ

= −n

2
G(n) d

dµ
logZψ (2.34)

Traditionally this is written as

[
µ
∂

∂µ
+ β(g) ∂

∂g
+mγm(g) ∂

∂m
+ nγ(g)

]
G(n)(g,m, µ) = 0 (2.35)

Where

β(g) = lim
ε→0

µ
∂

∂µ
g(g0µ

−ε, ε) (2.36)

γm(g) = lim
ε→0

−µ ∂

∂µ
logZm(g0µ

−ε, ε) (2.37)

γ(g) = lim
ε→0

1
2
µ
∂

∂µ
logZψ(g0µ

−ε, ε) (2.38)

Finally the β-function has been properly defined. Even though the meth-
ods have been purely mathematical its physical meaning is clear: it shows
how the coupling constant shifts with the renormalization scale. Since it is a
dimensionless parameter it must be independent of µ, simply because there is
nothing that can kill off its unit.

In the γm equation the Zm is defined as m0 = Zmm, likewise we define g0 =
ZGgµ

ε. In the notation of section 2.2 we have ZG = ZG(g, ε) = Zg/
√
ZAZψ.

Using this for the rhs of the β-function, we have

β(g) = lim
ε→0

µ
∂

∂µ

(
g0

µεZG

)
= lim

ε→0
−εg − µgZ−1

G

∂ZG
∂µ

(2.39)

But ZG is always computed perturbatively as a function of ε and g

µ
∂ZG
∂µ

= µ
∂g

∂µ

∂ZG
∂g

= β(g) ∂
∂g
ZG

Inserting into equation (2.39) results in the Callan-Symanzik equation[
εg + gβ(g) ∂

∂g
+ β(g)

]
ZG(g) = 0 (2.40)



18 Chapter 2: Asymptotic Freedom in QCD

This is a nice result but we can do even better when considering how ZG
and β depend on ε, which has to go to zero in the end. If the limit in equation
(2.39) exists we can evaluate β as a Taylor expansion in ε, likewise ZG can be
expressed as a Laurent series

β(g) = β(0)(g) + εβ(1)(g) + ε2β(2)(g) + . . .

ZG(g) = 1 + Z
(1)
G

ε
+ Z

(2)
G

ε2 + . . .

For the equality in equation (2.40) to hold, the coefficient of every εk must
be zero. For εn≥2 we get the condition

β(n) + β(n+1)
(
Z

(1)
G + g

∂

∂g
Z

(1)
G

)
+ β(n)

(
Z

(2)
G + g

∂

∂g
Z

(2)
G

)
+ · · · = 0 (2.41)

The solution is easy to see if the equations are written on matrix form
1 (1 + g∂g)Z(1) (1 + g∂g)Z(2) . . .

0 1 (1 + g∂g)Z(1) . . .
0 0 1 . . .
...

...
... . . .



β(2)

β(3)

β(4)

...

 = 0 (2.42)

The matrix is triangular so the only solution is the trivial one with every
β(n) = 0. Using this to write the rest of the equations yields

ε1 : β(1) + g = 0

ε0 : β(0) + β(1)Z
(1)
G + gZ

(1)
G + gβ(1)∂gZ

(1)
G = 0

ε−k : β(0)Z
(k)
G +

(
β(1) + gZ

(k)
G

)
+ gβ(0)∂gZ

(k)
G + gβ(1)Z

(k)
G = 0

With the solution

β(1) = −g

β = g2∂gZ
(1)
G (2.43)

β
(
Z

(k)
G + g∂gZ

(k)
G

)
= g2∂gZ

(k+1)
G k ≥ 1

Where we have dropped the index (0). The last equation is for consistency,
it is the middle one that is interesting. It says that the β-function ONLY
depends on the simple pole ZG. This is a huge simplification as we do not
have to worry about the finite contributions or higher poles when computing
counterterms (unless we want to do cross sections). Furthermore if we are only
interested in the high momentum limit we may work with a massless theory,
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because the momentum can be taken sufficiently high to make the mass a very
minor correction. The same methods may be used to derive equations for γm
and γ but they will not be used.

The next step is to solve the Callan-Symanzik equation once and for all. To
do so we will work with the two-point correlation function. Due to dimensional
arguments it must be possible to write it as

G(2) = i

p2 f(p2/µ2) (2.44)

For some function f . By using the chain rule we can swap the µ-derivative
for a p

µ
∂

∂µ
G(2) = −

(
p
∂

∂p
+ 2

)
G(2) (2.45)

And the Callan-Symanzik equation takes the form[
p
∂

∂p
− β(g) ∂

∂g
+ 2 − 2γ(g)

]
G(2)(g, p, µ) = 0 (2.46)

The advantage compared to the previous form of the C-S equation is that
now there is no implicit dependence left. A very nice way to solve it was
worked out by Sidney Coleman (see [10]) who compared it to a fluid, full of
bacteria, running through a pipe. Interpret p as time, β as velocity, γ as
growth rate and G(2) as a density. Do the following substitutions

log (p/µ) = t
g = x

−β(g) = v(x)
2γ(g) − 2 = ρ(x)
G(2)(p, g) = D(t, x)

The C-S equation becomes[
∂

∂t
+ v(x) ∂

∂x
− ρ(x)

]
D(t, x) = 0 (2.47)

The bacterial density is the unknown function D(t, x), with ρ(x) being the
rate of growth, x the position in the pipe and v(x) the speed of the water. If
we take the Lagrangian viewpoint and travel with the water the equation is
simple, as the velocity term disappears. The solution in this case is the same
as for a stationary situation, i.e some initial density Di(x) integrated with the
growth rate along the path x(t). The problem reduces to finding the trajectory
of a fluid element in the running water to get back to the Euclidean picture.

d

dt
x̄(t, x) = −v(x̄), x̄(0, x) = x (2.48)

Combining the two will give the full solution
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D(t, x) = Di(x̄(t, x)) exp
(∫ t

0
dt′ ρ(x̄(t′, x))

)
= Di(x̄(t, x)) exp

(∫ x

x̄(t)
dx′ ρ(x̄′)

v(x′)

)
(2.49)

Curiously, the trajectory equations are at least as interesting as the full
solution. In the original variables equation (2.48) is

d

d log(p/µ)
ḡ(p, g) = β(ḡ), ḡ(µ, g) = g (2.50)

These are called the renormalization group equations. Just like x̄ is a
coordinate that runs with the fluid, ḡ must be interpreted as a running coupling
constant whose rate of change is the β-function. Finally we have ended up
with something that can be measured directly. Just for reference we write
down the solution for G(2) also

G(2)(p, g) = i

p2Hi(ḡ(p, g)) exp
(∫ p′=p

p′=µ
d log(p′/µ) 2[1 − γ(ḡ(p′, g))]

)
(2.51)

For some unknown function Hi. In practice, Hi is evaluated in terms of
the coupling constant and then coefficients in front of g are matched between
lhs and rhs. The appearance of an unknown function tells us that the C-S
equation does not contain all physics on its own.

Depending on the value of β three very different things can happen.
For β > 0 the coupling constant will grow with momentum, thus at some

point the theory will become non-perturbative and strongly interacting. This
happens in QED, but the point where ē is greater than one is way above the
planck mass. QED breaks down already at around 100 GeV.

For β < 0 the opposite happens, meaning that as momentum increases
there is some point where perturbation theory becomes valid. This is what is
called asymptotic freedom. It is great news for physicists as it is extremely
difficult to compute anything when non-perturbative methods are required.

For β = 0 the coupling constant does not change with µ. It means that the
divergent terms that come into ZG cancel each other. Note however that there
may still be divergences, for example in the wavefunction renormalizations,
and these will still have to be renormalized to specify the theory.

Finally we are at a point where the initial goal is in sight. For QCD the
β-function is

β(g) = g2 ∂

∂g
Z

(1)
G = g2 ∂

∂g

1 + δg√
1 + δA(1 + δψ)

= g2 ∂

∂g

(
1 + δg − 1

2
δA − δψ

)
(2.52)
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The expressions for the divergent parts of δψ, δA and δg are found in
equations (2.31), (C.19) and (C.28) respectively

β(g) = 2g3

16π2

[
−(C2(r) + C2(G)) − 1

2

(5
3
C2(G) − 4

3
nfC2(r)

)
+ C2(r)

]
= g3

16π2

(4
3
nfC(r) − 11

3
C2(G)

)
(2.53)

For a sufficiently small number of quark species this will be negative. The
underlying reason is the fact that the gauge group is non-abelian. To see it,
take QED as an example of an abelian group. The photon propagator is not
charged, because the adjoint representation is trivial for U(1), so all C2(G)
disappear. The consequence is that the divergent parts of δψ and δg cancel
each other and only the negative part of δA remains nonzero, meaning that
the end result is positive.

For SU(3) the coefficients are (see e.g [11]) C(r) = 1/2, for the fundamental
representation, and C2(G) = 3 so β = − g3

16π2 (11 − 2nf/3) = − b0g3

16π2 . Equation
(2.50) solves to

ḡ2 = g2

1 − 2(g2b0/16π2) log(p/µ)
(2.54)

Usually it is written with αs = g2/16π2 instead

ᾱs = αs
1 − (b0αs/2π) log(p/µ)

(2.55)

Experiments have so far discovered six quark species: u, d, c, s, t and b,
which means that β = − 7g2

16π2 and QCD asymptotically free4. This is what
we set out to prove and in the process learn something about renormalization
and a non-abelian quantum field theory.

4It is asymptotically free up to energies around the top quark mass, but above that we
do not know. If there are other flavours with bigger masses, β may still be positive for high
enough energy and that is for experiments, such as the LHC, to discover.



3
Some Introductory

Supersymmetry

The outline for this section is to introduce the main concepts of supersymme-
try. We do this by diving straight into the SUSY algebra and from there go
on to define superfields and superspace. Usually one would rather go about
doing things in component fields first, to get more comfortable, and for such
treatment see [1] or [2].

3.1 Basic SUSY
In this section we will introduce the very basics of supersymmetry and establish
the conventions. It will not be a lengthy introduction and some derivation will
be omitted. For more information see [12], [13], [14] and [15].

As was noted in the introduction, supersymmetry is a symmetry between
bosons and fermions. It is a very special symmetry in that it entails an enlarge-
ment of the Poincaré algebra, with the generators Q A

α and Qα̇B = (Q B
α )†.

These will necessarily be fermionic operators, because they are supposed to
take an integer spin state to a half-integer spin state and vice versa, there-
fore a spinorial index is present. As fermionic entities they must obey anti-
commutation relations, which will preliminary be written as

{Q A
α , Qα̇B} = Σαα̇Z

A
B

{Q A
α , Q B

β } = ΞαβXAB, {Qα̇A, Qβ̇B} = X†
ABΞ†

α̇β̇

As humble as they may look, this is the basic reason why people1 are
excited. The reason is that by having symmetry generators that obey anti-
commutation relations, the restrictions from the Coleman-Mandula theorem

1To be read as ’physicists’.

22
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are avoided and they may be used to build a model with a non-trivial S-matrix,
in other words, a model with interactions.

The roman letter index denotes the number of SUSY generators and for
d = 4 the maximal number is four2. In phenomenological applications one
deals only with one generator, because if several are present chiral fermions
cannot be constructed. This means we will stick to N = 1 SUSY.

To construct the supersymmetry extended Poincaré algebra, consider the
commutator with the momentum operator and a SUSY generator. Bosons and
fermions behave the same under (infinitesimal) translations, so the commuta-
tor will act on a state to give

εµ[Qα, Pµ]| boson, xµ⟩
= Qα| boson, xµ + εµ⟩ − εµPµ| fermion, xµ⟩ = 0 (3.1)

Likewise for Qα̇. Thus we may conclude that the generators commute with
the momentum operator. The same argument can be made with the angular
momentum operator, but the conclusion here is that Qα and Qα̇ do not com-
mute with J, because fermions and bosons behave differently under rotations.
This is not strange when considering the generator of Lorentz transformations
Mµν . Since Qα is a spinorial operator, it should transform as a spinor and we
can immediately write down the commutator

[Qα,Mµν ] = (σµν) β
α Qβ , [Qα̇,Mµν ] = (σ̄µν)α̇β̇Q

β̇ (3.2)

With this established, {Qα, Qα̇} must transform as (1
2 ,

1
2), i.e a vector. The

only vector present in the Poincaré algebra is the momentum operator, hence
{Qα, Qα̇} must be proportional to that

{Qα, Qα̇} = 2σµαα̇Pµ (3.3)

The σµαα̇ is there to soak up the indices and the factor 2 is just a convention.
The part of the Superpoincaré algebra containing the SUSY generators is, in
its full glory,

{Qα, Qβ̇} = 2σµαα̇Pµ (3.4)
{Qα, Qβ} = {Qα̇, Qβ̇} = 0 (3.5)
[Pµ, Qα] = [Pµ, Qα̇] = 0 (3.6)
[Qα,Mµν ] = (σµν) β

α Qβ (3.7)

[Qα̇,Mµν ] = (σ̄µν)α̇
β̇
Q
β̇ (3.8)

2This is true for global SUSY. In supergravity, when supersymmetry is made local, the
maximum number of generators is eight. It will not be treated here.
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Note in particular that all generators will commute with the operator P 2,
meaning that both the bosonic and the fermionic state will have the same
mass. This will be the main subject of discussion in the last section.

Next step will be to find out whether the dimension of the representation
is useful to describe nature. To do so, we will use the spin projection operator
J i = 1

2ϵ
ijkM jk. Its behaviour with the SUSY generators is

[Qα, J i] = 1
2
σiαα̇σ

0α̇βQβ, [Qα̇, J i] = 1
2
σ̄iα̇ασ0

αβ̇
Q
β̇ (3.9)

The interpretation here is that Q1 lowers the spin by 1
2 and Q2 raises it

by 1
2 . This can be seen by acting on a state | p, j,m⟩ (p is the momentum, j

is the spin and m spin projection along z-axis)

(J3Qα −QαJ
3)| p, j,m⟩ = 1

2
σ3
αα̇σ

α̇βQβ | p, j,m⟩ ⇒ J3Q1| p, j,m⟩ =
(
m− 1

2

)
Q1| p, j,m⟩

J3Q2| p, j,m⟩ =
(
m+ 1

2

)
Q2| p, j,m⟩

(3.10)

The same goes for Qα̇. Hence, the space can be constructed if one starts
with the state of lowest spin projection | p, j,−j⟩. For now, let it be a massless
state with four-momentum pµ = E(1, 0, 0, 1). Only Q2 and Q̄2̇ = Q̄1̇ can give
a non-zero result when acting on this state, but the last one must vanish by
the SUSY algebra because

⟨p, j,−j|Q1Q1̇| p, j,−j⟩ = ⟨p, j,−j| {Q1̇, Q1}| p, j,−j⟩
= 2σµ11̇⟨p, j,−j|Pµ| p, j,−j⟩ = 0 (3.11)

Thus only Q2 has a nonzero impact and Q2| p, j,−j⟩ ∼ | p, j, 1
2 −j⟩. Acting

again with Q2 gives zero because of anticommutivity, as does acting with Q1.
The other possibilities are

Q1̇Q2| p, j,−j⟩ =
(
{Q2, Q1̇} −Q2Q1̇

)
| p, j,−j⟩ =(

2σµ21̇Pµ −Q2Q1̇

)
| p, j,−j⟩ = 0

Q2̇Q2| p, j,−j⟩ =
(
{Q2̇, Q2} −Q2Q2̇

)
| p, j,−j⟩ =

(2E −Q2Q2̇)| p, j,−j⟩ ∼ | p, j,−j⟩

The end result is that there are only two states in a (massless) super-
multiplet. If we take CPT-invariance into consideration, the states with spin
projection j and j − 1

2 must also be included to account for the antiparticles.
The particle types needed to describe nature (disregarding gravitation) are

scalars, fermions and gauge bosons. The quarks and leptons are fermions and
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to describe those we need a supermultiplet of spin projection (0, 1
2) and its

conjugate (−1
2 , 0), called the chiral multiplet. The gauge sector have spin-1

bosons so here we must use a (1
2 , 1) and (−1,−1

2), called the vector multiplet.
A massive multiplet is different. The four-momentum is most conveniently

chosen as pµ = (m,0), and using this for the lhs in equation (3.11) gives a
non-zero result, but the rest is analogous. The massive chiral multiplet is
the same as the massless, but the vector multiplet is more complicated and
looks like (−1,−1

2 ,−
1
2 , 0, 0,

1
2 ,

1
2 , 1). This can be gotten from a massless vector

multiplet that eats a chiral one through a Higgs mechanism.
The next thing we want to do is construct the transformation induced by

the generators onto the fields. Consider the simplest supersymmetric model: a
massless chiral multiplet. Here we will use a coordinate basis with the ground
state | Ω⟩ of spin 0 such that |x⟩ = ϕ(x)| Ω⟩, with ϕ a complex scalar field.
Impose the constraint [ϕ,Qα̇] = 0 for simplicity.

Some very useful relations are the graded Jacobi identities (see [15]). Let
Bi be bosonic operators and Fi fermionic operators, then the Jacobi identity
can be generalized to

[[B1, B2], B3] + [[B2, B3], B1] + [[B3, B1], B2] = 0 (3.12)
[[F1, B2], B3] + [[B2, B3], F1] + [[B3, F1], B2] = 0 (3.13)

[{F1, F2}, B3] − {[F2, B3], F1} + {[B3, F1], F2} = 0 (3.14)
[{F1, F2}, F3] + [{F2, F3}, F1] + [{F3, F1}, F2] = 0 (3.15)

If we use the third identity with F1 = Qα, F2 = Qα̇ and B3 = ϕ, the
impact of Qα on ϕ can be worked out by using the SUSY algebra

{[ϕ,Qα], Qα̇} + {[ϕ,Qα̇], Qα} = [ϕ, {Qα, Qα̇}] = 2σµαα̇[ϕ, Pµ] (3.16)

The rhs has the familiar form of an infinitesimal translation. When Pµ is
represented on the field by a differential operator, the relations takes the form

[ϕ, {Qα, Qα̇}] = 2iσµαα̇∂µϕ (3.17)

Now define the fields ψα(x), Fαβ(x) and Xαβ̇(x) as

[ϕ,Qα] = i
√

2ψα, {ψα, Qβ} = −i
√

2bFαβ , {ψα, Qβ̇} = Xαβ̇ (3.18)

When playing around with the SUSY algebra and the Jacobi identities,
one can work out what the generators do to these fields as well. Equation
(3.17) becomes

2iσµ
αβ̇
∂µϕ = i

√
2{ψα, Qβ̇} = i

√
2Xαβ̇ (3.19)

With ϕ, Qα, Qβ and equation (3.14) instead, it is
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0 = [ϕ, {Qα, Qβ}] = i
√

2({ψα, Qβ} + {ψβ , Qα}) = −2(Fαβ + Fβα) (3.20)

The equation implies that Fαβ(x) = ϵαβF (x), for some complex scalar
field F (x). This must be used to define new fields in the same way ϕ was in
equation (3.18).

[F,Qα] = λα, [F,Qα̇] = χα̇ (3.21)

Now we can check what the generators do to ψα. Using the last Jacobi
identity with ψα, Qβ and Qγ yields

0 = [ψα, {Qβ , Qγ}] = −i
√

2(ϵαβλγ + ϵαγϵβ) ⇒ λα = 0 (3.22)

With Qβ̇ instead of Qγ , the equation reads

2iσµ
ββ̇
∂µψα = [ψα, {Qβ , Qβ̇}] = −i

√
2ϵαβχβ̇ + 2iσµ

αβ̇
∂µψβ ⇒

χβ̇ = −
√

2∂µψασµαβ̇ (3.23)

Already the fields defined in equation (3.21) have been expressed in the
original definitions and the rest of the commutators are superfluous, but need
to be checked for consistency. Three of them are trivial

[ψα, {Qα̇, Qβ̇}] = [F, {Qα, Qβ}] = 0, [F, {Qα, Qβ̇}] = 2iσµαα̇∂µF

The final commutator is

[F, {Qα̇, Qβ̇}] = i8
√

2σ̄µν
α̇β̇
∂µ∂νϕ = 0 (3.24)

The rhs is zero because σ̄µν is antisymmetric under µ ↔ ν. To define a
SUSY transformation on the fields, introduce the Grassman numbers ξα and
ξ̄α̇. An infinitesimal transformation is written in the usual way as

(δξ + δξ̄)Φ = −i[Φ, ξQ+ ξQ] (3.25)

The transformations on the fields are thus

(δξ + δξ̄)ϕ =
√

2ξψ (3.26)

(δξ + δξ̄)ψα = i
√

2σµαα̇ξ̄
α̇∂µϕ+

√
2ξαF (3.27)

(δξ + δξ̄)F = −i
√

2∂µψσµξ̄ (3.28)

The constants, signs and factors of i can be placed, more or less, in what-
ever place you feel is best. Here they have been chosen to get the same
transformations as in [14].
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3.2 The Superfield Formalism
Unfortunately, when dealing with supersymmetry even the simplest compu-
tation is rather lengthy, with lots of opportunities to make mistakes. When
computing something more complicated, such as proving that the gauge sector
of the MSSM is invariant under a SUSY-transformation, there is a vast num-
ber of terms to consider and it is hard to get an overview. For that matter,
a new formalism was introduced using the concept of superspace and super-
fields. There are a lot of good reviews on this and here mostly [13] and [12]
have been used, with conventions according to [14]. Any of these offer more
information than what is presented below.

The basic idea is to construct fields that behave in such a way that the
SUSY-transformations can be represented as differential operators on some
space, in analogy to how the momentum operator can be represented as a
derivative in spacetime. In order to do this some formalism is needed. The
SUSY generators obey anticommutation relations and there is little chance
to get the normal spacetime coordinates to behave in such a way. The thing
to do is extend space with new coordinates that are Grassman numbers, and
anticommute naturally. Choose four such coordinates, θα and θ̄α̇ where α =
1, 2

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄α̇} = 0 (3.29)

Spacetime extended in this way, with four fermionic dimensions, will from
now on be called superspace. Any function of such variables will be very
simple, because the Taylor expansion cancels after second order as θαθβθγ = 0.
The basic rules for differentiation and integration can be found in appendix
D.

A general superfield is an arbitrary function F = F (x, θ, θ) and after ex-
panding in θ and θ̄, it can be written on the form

F (x, θ, θ) = f(x) + θψ(x) + θχ(x) + θθm(x) + θθ n(x) + θσµθ̄vµ(x)
+ θθ θλ(x) + θθ θρ(x) + θθ θθ d(x) (3.30)

The component fields get their properties based on their relation to θ and
θ̄. The fields f , m, n and d must be scalars, while ψα, ρα, χ̄α̇ and λ̄α̇ are
two-component Weyl spinors, and vµ must be a vector.

To represent the generators as differential operators, postulate that ξQ
generates a linear translation by ξα in θα, plus some other translation in xµ.
For the superfield F , this means

(1 + ξQ)F (x, θ, θ̄) = F (x+ δx, θ + ξ, θ̄) (3.31)
(1 + ξQ)F (x, θ, θ̄) = F (x+ δx†, θ, θ̄ + ξ) (3.32)
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To satisfy it, one possible representation is

Qα = ∂α − iσµαα̇θ̄
α̇∂µ (3.33)

Q
α̇ = ∂

α̇ + iσ̄µα̇αθα∂µ (3.34)

To make sense, the above expressions must also satisfy the algebra in
equation (3.4), and it is easy to check that it does. A SUSY transformation
on a superfield is written as (compare to the component transformations in
equation (3.26))

(δξ + δξ̄)F = (ξQ+ ξQ)F (3.35)

The individual component transformations are identified by their depen-
dence on θ and θ̄. For example: the scalar term after a transformation is√

2(ξψ + ξχ), so this must be the transformation law of the (complex) scalar
field f .

We can furthermore define two differential operators that anticommute
with the generators and amongst themselves

Dα = ∂α + i(σµθ̄)α∂µ (3.36)
Dα̇ = −∂α̇ − i(θσµ)α̇∂µ (3.37)
{Dα, Dβ} = {Dα̇, Dβ̇} = 0, {Dα, Dβ̇} = −2iσµ

αβ̇
∂µ (3.38)

{Dα, Qβ} = {Dα, Qβ̇} = {Dα̇, Qβ} = {Dα̇, Qβ̇} = 0 (3.39)

These will be called covariant derivatives because Qα(DβΦ) = −Dβ(QαΦ).
A general superfield has too many components to be of much use, but the
covariant derivatives can be used to impose constraints. Define a chiral (anti-
chiral for the conjugate) superfield by

Dα̇Φ(x, θ, θ̄) = 0 (3.40)
DαΦ(x, θ, θ̄) = 0 (3.41)

As usual Φ = Φ†. The solution to equation (3.40) would be very simple if
the field depended only on θ and the spacetime coordinate yµ = xµ + iθσµθ̄,
because Dα̇y

µ = 0. The covariant derivative of the field would also be zero in
that case because of the chain rule. The solution can therefore be written

Φ(y, θ) = A(y) +
√

2θψ(y) + θθ F (y) (3.42)
Φ(y†, θ̄) = A∗(y†) +

√
2 θψ(y†) + θθ F ∗(y†) (3.43)

With y†µ = xµ − iθσµθ̄. The full component expansion is gotten when
inserting the expression for y and expanding again
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Φ(x, θ, θ̄) = A(x) + iθσµθ̄∂µA(x) + 1
4
θθ θθ ∂µ∂µA(x) +

√
2θψ(x)

+ i√
2
θθ ∂µψ(x)σµθ̄ + θθ F (x) (3.44)

Φ(x, θ, θ̄) = A∗(x) − iθσµθ̄∂µA
∗(x) + 1

4
θθ θθ ∂µ∂µA

∗(x) +
√

2θ̄ψ(x)

+ i√
2
θθ θσµ∂µψ(x) + θθ F ∗(x) (3.45)

The highest component in Φ is the auxiliary field F and the rest are space-
time derivatives. Therefore F must transform into a total derivative under a
SUSY transformation

(δξ + δξ̄)F = i
√

2∂µψσµξ (3.46)

This will be useful when constructing an action later on. Doing things by
components necessarily gets messy, simply because of the number of terms that
have to be included for a consistent theory. The point of having superfields
is that they contain essentially the same information, but in a much more
compact notation. A very convenient definition is

Φ|θ=θ̄=0 = A(x) (3.47)
DαΦ|θ=θ̄=0 = ψα(x) (3.48)

D2Φ
∣∣∣
θ=θ̄=0

= F (x) (3.49)

The normalization of the fields in these two points of view is not the same3,
but it makes no difference which definition is chosen if the conventions are
followed.

Another superfield that needs to be mentioned is the vector superfield,
defined by the reality condition

V (x, θ, θ̄) = V †(x, θ, θ̄) (3.50)

The expansion in component fields is

V (x, θ, θ̄) = C(x) + iθχ(x) − iθχ(x) + i

2
θθ (M(x) + iN(x)) − i

2
θθ (M(x)

− iN(x)) − θσµθ̄vµ(x) + iθθ θ̄

(
λ(x) + i

2
σ̄µ∂µχ(x)

)
− iθθ θ

(
λ(x) + i

2
σµ∂µχ(x)

)
+ 1

2
θθ θθ

(
D(x) + 1

2
∂µ∂µC(x)

)
(3.51)

3To converge with the notation in [14], the rhs of equation (3.48) needs to be multiplied
by 1√

2 and similarly in equation (3.49) a factor 1
4 .
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With C, D, M, N all real. Note that under a SUSY transformation the
D-field will transform as a total derivative

(δξ + δξ̄)D = −1
2

[
ξσµ∂µλ+ ∂µλσ

µξ − i

2
∂µ∂νχσ

ν σ̄µξ − i

2
∂µ∂νχσ̄

νσµξ

]
(3.52)

The number of component fields can be reduced considerably by noting
that the combination Φ+Φ̄ is a vector superfield. This can be seen as a gauge
transformation (because vµ transforms as v′

µ → vµ+i∂µΛ) and all components
except λα, D and vµ can be set to zero. Therefore V can be divided into parts:
V = VWZ + Φ + Φ̄, where

VWZ = −θσµθ̄vµ + iθθ θλ(x) − iθθ θλ(x) + 1
2
θθ θθ D(x) (3.53)

This is called Wess-Zumino gauge. The field, however, does not respect
SUSY transformations since it has too few components to give the correct
relations. Let us use it to define two particular chiral superfields, the left- and
right-handed spinor superfields

Wα = −1
4
DDDαVWZ , W α̇ = −1

4
DDDα̇VWZ (3.54)

Wα is naturally chiral (W α̇ anti-chiral), since DαDβDγ = 0 because of
anticommutivity, and furthermore

DDDαV = DDDα(VWZ + Φ + Φ) = DDDαVWZ (3.55)

The component expansion is given, in functions of the bosonic coordinates
y and y†, by

Wα = −iλα(y) + θαD(y) − i

2
(σµσ̄νθ)α(∂µvν(y) − ∂νvµ(y))

+ θθ (σµ∂µλ̄(y))α (3.56)

W α̇ = iλ̄α̇(y†) + θ̄α̇D(y†) + i

2
(σ̄µσν θ̄)α̇(∂µvν(y†) − ∂νvµ(y†))

+ ϵα̇β̇θθ σ̄
µβ̇α∂µλα(y†) (3.57)

There is also a reality constraint DαWα = Dα̇W
α̇. These fields respect

SUSY transformations and include a vector, which means that they may be
used to describe gauge fields.

The next question is how to use the new tools to construct Lagrangians
and actions. For an arbitrary number of chiral superfields the most general,
supersymmetrically invariant action is

S =
∫
d4x

[∫
d4θK(Φi,Φj̄) +

(∫
d2θW (Φi) + c.c

)]
(3.58)
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The function K is the called the Kähler potential and it is a vector su-
perfield. The superpotential W (Φi) is a chiral superfield and it must be an
analytic function, so it cannot depend on Φj̄ . The SUSY invariance is easy
to prove by using the equations (3.46) and (3.52). It is not renormalizable, in
general, and imposing this condition results in the Wess-Zumino model

LWZ =
∫
d4θΦīΦi +

(∫
d2θ λiΦi + 1

2
mijΦiΦj + 1

3
gijkΦiΦjΦk

)
(3.59)

When dealing with non-abelian fields equation (3.58) must be generalized,
for more information see [12]. Another possibility is to construct an action
with the spinor superfields. The prescribed combination is

S =
∫
d4x

1
4

[∫
d2θWαWα +

∫
d2θW α̇W

α̇
]

(3.60)

This is works even for a non-abelian gauge group. An interesting applica-
tion of this action is found in section 5.

The final thing that will be mentioned is the classical scalar potential. It
is the basic working tool when analyzing SUSY breaking. Consider the action
in equation (3.58) and swap Berezin integration for differentiation

∫
d4θK(Φi,Φī) = D2D

2
K(Φi,Φj̄)

∣∣∣
θ=θ̄=0∫

d2θW (Φi) = D2W (Φi)
∣∣∣
θ=θ̄=0∫

d2θ̄ W (Φī) = D
2
W (Φī)

∣∣∣
θ=θ̄=0

Hitting K repeatedly yields lots of terms, but only those depending on the
auxiliary field are interesting for the classical potential. The other terms are
couplings that do not come into the potential. The notation is

∂i = ∂

∂Φi
, ∂̄ī = ∂

∂Φī

The above relations are equivalent to derivatives with respect to the com-
ponent scalar field ϕ, because K(Φ,Φ)|θ=θ̄=0= K(ϕ, ϕ†), as we’ve taken it to be
independent of covariant derivatives. For the scalar potential, the interesting
part of the Lagrangian is

Lauxiliary = ∂i∂̄j̄K F iF j̄∗ + ∂i∂̄j̄ ∂̄k̄K F iψ̄j̄ψ̄k̄ + ∂i∂j ∂̄k̄K ψiψjF k̄∗

+ ∂iW F i + ∂̄īW F ī∗ (3.61)

The term ∂i∂̄j̄K = gij̄ is called the Kähler metric and plays a big role in
supergravity. The fermion terms will not be a part of the classical potential
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and we can neglect them. The auxiliary field can be solved for by the normal
procedure of functional derivatives. The classical potential is defined as

V = −gij̄F
j̄∗F i = gij̄∂iW∂̄j̄W (3.62)

With this final piece of the puzzle we can at last begin to use this new
formalism.



4
A SUSY Breaking Sector

The first thing a phenomenologist would want to do with a brand new sym-
metry, is to build an extended version of the standard model and this has
been done, see [1] or [2]. The Lagrangian of the MSSM was first written down
using component fields and the result is rather long, but with the superfield
formulation it is much more compact.

It is certainly encouraging to know that it is possible to construct a su-
persymmetric extension of the standard model, but there are a great many
things that need a more detailed analysis. Here we will be interested in su-
persymmetry breaking, in other words, explaining how and why the standard
model particles and their supersymmetric partners have different masses. For
a deeper review see [16] and [17], while more phenomenological arguments can
be found in [1] or [18].

4.1 A SUSY Breaking Model

In section 3.1 it was briefly commented that, because the SUSY generators
commute with P 2, the masses of both the particle and its supersymmetric
partner are the same. This is trivial to show

P 2|ϕ⟩ = m2|ϕ⟩ ⇒ P 2 (Qα|ϕ⟩) = QαP
2|ϕ⟩ = m2 (Qα|ϕ⟩) (4.1)

From a phenomenological point of view this is obviously wrong. In that
case supersymmetry would have been discovered long ago and the superpart-
ners would have been found at the same time the standard model particles
were. This was not the case and that implies that supersymmetry is not an
exact symmetry, but must somehow be broken. Theoretically we would like it
to be spontaneously broken, which means that when the fields get their vac-
uum expectation values (vev) the Lagrangian is still invariant but the ground

33
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state is not. For SUSY this happens if the minimum of the scalar potential is
non-zero.

However, the complicated structure of the MSSM makes it more or less
impossible to break in such a way. One way to avoid this difficulty is to let the
breaking take place in a different gauge sector than the SU(3)×SU(2)×U(1)
of the standard model, and then let the breaking be mediated by some other
field.

An example of a possible SUSY breaking sector is the O’Raifeartaigh model
(see [19]), defined by the Lagrangian

L =
∫
d4θK(X,X,Φ1,Φ1̄,Φ2,Φ2̄) +

(∫
d2θW (X,Φ1,Φ2) + c.c

)
K = XX + Φ1Φ1̄ + Φ2Φ2̄, W = h

2
XΦ2

1 +mΦ1Φ2 + fX (4.2)

X = X +
√

2θψX + θθ F, Φi = ϕi +
√

2θψi + θθ Fi

Note that the superfield X is written in bold and its scalar component
X in normal font. This is only a toy model and it does not describe nature
(the universe would be a boring place if it did), but it is a good place to test
new ideas. The classical potential is given by formula (3.62) and takes the
following form

V = |hXϕ1 +mϕ2|2+
∣∣∣∣h2ϕ2

1 + f

∣∣∣∣2 + |mϕ1|2 (4.3)

All three constants can be made real by rotating each field by a phase, but
to be slightly more general they will be considered complex. The fields will
have their vevs at the minimum of the potential

∂V

∂X∗ = h∗ϕ∗
1(hXϕ1 +mϕ2)

∂V

∂ϕ∗
2

= m∗(hXϕ1 +mϕ2)

∂V

∂ϕ∗
1

= h∗X∗(hXϕ1 +mϕ2) + h∗ϕ∗
1

(
h

2
ϕ2

1 + f

)
+ |m|2ϕ1

Choosing ⟨ϕ2⟩ = h⟨X⟩⟨ϕ1⟩
m sets the first and second equation to zero, but

the third one must be analyzed more thoroughly. Writing ϕ1(x) = Reiθ yields

Re : |m|2R cos θ + 1
2

|h|2R3 cos θ + fh∗R cos θ = 0

Im : |m|2R sin θ + 1
2
R3 sin θ − fh∗R sin θ = 0

Both equations are satisfied if ⟨ϕ1⟩ = 0, but there may be a second solution
for
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θ = ±π

2
, R2 = 2

|h|2
(fh∗ − |m|2)

This is only possible if the dimensionless parameter ξ = fh∗

|m|2 > 1, in which
case there will be two different branches of SUSY breaking vacua. Here we
will only be interested in the case ξ < 1, and the potential is minimal when

⟨ϕ1⟩ = ⟨ϕ2⟩ = 0, ⟨X⟩ arbitrary ⇒ Vmin = |f |2 (4.4)
There is no constraint for ⟨X⟩ and SUSY will be broken regardless of its

value. The degeneracy is lifted when quantum effects are considered (first
order loop corrections) and that is the reason why we refer to X as the pseu-
domodulus.

Next up is to compute the spectrum of the theory, i.e the masses of the
particles. To find the scalar masses, let the fields take their vev plus some small
quantum fluctuation ϕi(x) → ⟨ϕi⟩ + φi(x). Expand the classical potential to
second order in φi, and gather the couplings into a matrix. The potential is
given in terms of the superfields, so the easiest way to get the matrix is to
compute the Hessian and arrange it to be Hermitian

M2
b =


∂φ1∂φ1V ∂φ1∂φ1V ∂φ1∂φ2V ∂φ1∂φ2V
∂φ1∂φ1V ∂φ1∂φ1V ∂φ1∂φ2V ∂φ1∂φ2V
∂φ2∂φ1V ∂φ1∂φ1V ∂φ2∂φ2V ∂φ2∂φ2V
∂φ2∂φ1V ∂φ2∂φ1V ∂φ2∂φ2V ∂φ2∂φ2V


To get the masses the matrix must be diagonalized. For convenience, define

a second dimensionless parameter x = h⟨X⟩/m∗. The eigenvalues are

m2
b1,b2 = |m|2

2

(
2 + |x|2+|ξ|±

√
4|x|2+|x|4+|ξ|2+2|ξ||x|2

)
(4.5)

m2
b3,b4 = |m|2

2

(
2 + |x|2−|ξ|±

√
4|x|2+|x|4+|ξ|2−2|ξ||x|2

)
(4.6)

m2
X,X̄

= 0

There are two bosonic masses for each field, corresponding to the two de-
grees of freedom from one complex scalar field. The fermion masses are easier
to compute as the mass matrix can be gotten straight from the superpotential,
without having to go all the way around the classical potential.

Mf =
(

∂2
Φ1
W (Φi) ∂Φ1∂Φ2W (Φi)

∂Φ1∂Φ2W (Φi) ∂2
Φ2
W (Φi)

)
(4.7)

Diagonalizing gives the following eigenvalues

m2
f1,f2 = |m|2

2

(
|x|2+2 ±

√
|x|4+4|x|2

)
(4.8)

m2
ψX

= 0
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The massless fermion of the X field is the Goldstino and it will always
appear when SUSY is broken, in the same way a Goldstone boson does when
a global symmetry is broken.

In order to compute the quantum correction it is convenient to define the
full mass matrix M2

M2 =
(
M2
b 0

0 M2
f

)
(4.9)

Also, define the supertrace as Str(M2) = trM2
b − 2trM2

f . Note that there
are an equal number of fermionic and bosonic degrees of freedom, which means
that Str(1) = nb − nf = 0.

4.2 An Effective Field Theory

Our mission here is to find an effective potential from the O’Raifeartaigh model
in the previous chapter. First introduce the energy scale Λ: above it there may
be some UV-complete theory and below there is an O’Raifeartaigh model.
Furthermore, let Φ1 and Φ2 be heavy superfields, i.e mϕ1 ∼ mϕ2 >> mX . If
we are interested only in energy lower than mϕ, we can integrate out the two
heavy fields to get an effective theory for the remaining light field.

To get an effective theory one normally computes an effective Kähler po-
tential. If there are terms in the superpotential that depend only on the light
field, they are kept and provide a (effective) superpotential below the cut-
off mϕ. In the specific case of the O’Raifeartaigh-model, the term fX will be
unaffected and provide a Polony model. The effective Kähler potential is com-
puted through loop calculations (see [20]), and can be specified to whatever
order one prefers.

Usually this is good enough. However, if the SUSY breaking is strong some-
thing else is required, because the auxiliary field appears at most quadratically
in the effective Kähler potential and by equation (3.62) we see that the aux-
iliary field encodes the SUSY breaking. Therefore, if higher order terms in F
are neglected their information will be lost. If the breaking is weak on the
other hand, the higher order terms will be very small and little information is
lost when neglecting them.

To treat the problem of strong SUSY breaking we will have to generalize
the Kähler potential. We denote its generalization by H and let it depend
on X, DαXDαX and D2X. For simplicity, let X be constant in spacetime so
that ∂µX = 0 (called a spurion field). Recall that X is a chiral superfield and
thus H must be on the form

H = Xa(DαXDαX)b(D2X)cXe(Dα̇XDα̇X)f (D2X)g (4.10)

With only b, f = 0, 1 because of anticommutivity. The Lagrangian is
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L =
∫
d4 θH(X,X, DαX, Dα̇X, D2X, D2X) +

(∫
d2θ fX + c.c

)
(4.11)

The DαXDαX-term (likewise for the conjugate) can be removed because
integration by parts yields

Dα
(
Xa+1DαX(D2X)cXe(Dα̇XDα̇X)f (D2X)g

)
= (a+ 1)Xa(DαXDαX)b(D2X)cXe(Dα̇XDα̇X)f (D2X)g (4.12)

+ Xa+1(D2X)c+1Xe(Dα̇XDα̇X)f (D2X)g

The lhs is zero when it is hit by D2. This will always be the case since we
will deal with H only through the Lagrangian. Thus the generalized Kähler
potential can be chosen with b = f = 0 in equation (4.10).

The bosonic part of the action is gotten as usual but with some extra
difficulty

S =
∫
d4x [∂X∂X̄HFF

∗ + fX + f∗X∗] (4.13)

Here H is a function not only of X but also of F , so when solving for the
auxiliary field the equation is more complicated than usual

F (1 + F ∗∂F ∗)∂X∂XH + f∗ = 0 (4.14)

Likewise for the conjugate. Putting this result back into the Lagrangian
gives the classical (scalar) potential on the form

V = |f |2
(1 − F∂F − F ∗∂F ∗)∂X∂XH

|1 + F∂F∂X∂XH|2
(4.15)

There are also some new couplings for the Goldstino. When computing
D2D

2
H by brute force the new terms that appear are

Lnew = −F

2
ψ̄2∂X∂X∂XH − F ∗

2
ψ2∂X∂X∂XH + 1

4
ψ2ψ̄2∂X∂X∂X∂XH (4.16)

For now, let us computeH to one loop for the specific case of the O’Raifeartaigh
model. One way to do it is by a path integral, see [21] for a review. Consider
a Lagrangian (in Euclidean space)

Lheavy = 1
2

(∂ϕ)2 + m

2
ϕ2, m = m(X) (4.17)

Where the mass is a function of the light field X. The generating functional
is
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∫
Dϕ exp

(
−1

2

∫
d4x

(
(∂ϕ)2 +mϕ2

))
= 1√

det (−∂2+m2)
Λ2

(4.18)

But this can be thought of as a potential for the X-field, because it is the
only thing left after integration. Thus we can write

∫
Dϕ exp

(
−1

2

∫
d4x

(
(∂ϕ)2 −mϕ2

))
= exp

(∫
d4xV (X)

)
(4.19)

The rhs of these two equations can be identified, but the resulting expres-
sions must be massaged to a sensible form. Take the logarithm of both to
get ∫

d4xV (X) = −1
2

log
[
det

(
−∂2 +m2

Λ2

)]
(4.20)

The rhs needs some interpretation. By diagonalizing the matrix the de-
terminant can be reduced to the trace of the operator. This in turn must be
interpreted as

tr O = tr ({⟨x| O| y⟩}) =
∫
d4x ⟨x| O|x⟩ (4.21)

Equation (4.20) is thus∫
d4xV (X) = −1

2

∫
d4x

∫
d4p

(2π)4 log
(
p2 +m2

Λ2

)
(4.22)

Where we have gone over to a momentum basis to get rid of the differential
operator. The integration over space may diverge, but it is just the volume
of space itself and should not cause too much worry. The integrands can be
identified, with the result

V (X) = −1
2

∫
|p|≤Λ

d4p

(2π)2 log
(
p2 +m2

Λ2

)

= 1
64π2

[
Λ4
(

1
2

− log
(

Λ2 +m2

Λ2

))
+ Λ2m2 +m4 log

(
m2

Λ2 +m2

)]
(4.23)

In the limit Λ >> m it simplifies to

V (X) = 1
64π2

[
Λ4

2
+ Λ2m2 +m4 log

(
m2

Λ2

)]
(4.24)

For several heavy fields, the mass m(X) will instead be a X-dependent
matrix and it should be traced over in the final expression. It is best written
using the supertrace. In the end the potential becomes
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V (X) = 1
64π2

[
Λ4

2
Str(1) + Λ2Str(M2) + Str

(
M4 log M2

Λ2

)]
(4.25)

As was already noted, Str 1 = Str M2 = 0 for the O’Raifeartaigh model1.
Note that to one loop only the quadratic terms in the Lagrangian are relevant.

For the O’Raifeartaigh model, the quadratic terms are the masses in equa-
tions (4.5)-(4.8), but now the light field is NOT on shell and the dimensionless
constants x = hX

m and ξ = hF
m2 depend on the components themselves, not on

their vev as before. With these masses, the expression for the scalar potential
can be computed through equation (4.25) and put equal to the generalized
Kähler potential by way of equation (4.15), in which case H is specified to one
loop order as

∂X∂XH = 1
64π2F 2 Str M4 log M2

Λ2

= 1
64π2F 2

[
Str M4 log |m|2

Λ2 + Str M4 log M2

|m|2

]
(4.26)

This is a nice result and it calls for some discussion. The point is that we
have constructed a manifestly supersymmetric, effective theory for X, even
in the regime of strong breaking. Previously one was confined to leave X on
shell when this was the case, and proceed by computing the Coleman-Weinberg
potential, but then the theory is no longer manifestly invariant under a SUSY
transformation. Therefore the method presented here is superior.

To make certain that what we have done is correct, we can compare the
result in equation (4.26) to the method with an effective Kähler potential
mentioned in the beginning. To do so we have to assume that the breaking
is small, i.e fh∗/|m|2<< 1, otherwise the effective Kähler potential is not the
full answer. From [17] the expression to one loop is

Keff = − 1
32π2 tr

(
M̂†M̂ log M̂†M̂

Λ2

)
(4.27)

The mass matrix M̂ = M̂(X) is gotten straight from the superpotential
by looking at the quadratic terms

M̂ : W (X,Φi) = λi(X)Φi + M̂(X)ΦiΦj + . . . (4.28)

For the O’Raifeartaigh model it is
1This is true not only in the specific case of the O’Raifeartaigh model, but in general

for globally supersymmetric theories. Once again the situation is more complicated in su-
pergravity and Str M2 = 2(n − 1)m2

3/2 − 2⟨Rij̄G
iGj̄⟩m2

3/2, where n is the number of chiral
fields, Rij̄ the Ricci tensor and G = K + log W + log W .
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M̂(X) =
(
fX m
m 0

)
(4.29)

The classical potential is computed in the usual way by equation (3.62)

V = ∂XW∂̄X̄W

∂X ∂̄X̄Keff

= |f |2(1 − ∂X ∂̄X̄Keff + O(h4)) (4.30)

This matches the potential in (4.26). We could also consider our method
but for a meta-stable model, with a high-energy superpotential on the form

W (Φ1,Φ2,X) = h

2
XΦ2

1 +mΦ1Φ2 + fX + ϵm

2
X2 (4.31)

This is somewhat more complicated than a normal O’Raifeartaigh model.
The classical potential has a supersymmetric vacuum for ⟨X⟩ = − f

ϵm , but it
goes to infinity as ϵ goes to zero. Therefore the original vacuum should be
approximate and SUSY broken2. The end result is the same and the extra
complication adds no extra spice to the problem. There is no need for further
details.

There is a different method presented in [22] which deals with the regime
of strong SUSY breaking. This method also deals with the cases where the
pseudomodulus is integrated out or where there is no pseudomodulus at all,
but these topics will not be disucssed.

In this method the pseudomodulus was taken to be a constrained super-
field, which means

X2 = 0 (4.32)

In terms of components, this equation has the solution that the scalar
component is

X = −ψ2
X

2F
(4.33)

It looks simple but works remarkably well, however it prohibits all cou-
plings between the Goldstino and the pseudomodulus since XψX ∼ (ψX)3 = 0.
Therefore the terms in equation (4.16) will never appear. The conclusion is
that when one is interested specifically in how the Goldstino couples to the
pseudomodulus, using a constrained superfield is not an option.

A subject that has been avoided here is the discussion of R-symmetry, a
U(1)-symmetry, which can be used in spontaneous SUSY-breaking. In the

2A master thesis at Chalmers is required to discuss sustainable development and this is
my addition to that discussion. If the universe is in a meta-stable state it could, at any time,
tunnel through from the approximate, SUSY breaking vacuum to the true supersymmetric
vacuum at infinity, and reality would cease to exist. This certainly wouldn’t be in humanity’s
best interest, in which case it is of highest importance, for a sustainable society, to further
investigate the issue.
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O’Raifeartaigh model the field would transform as R(X) = R(Φ2) = 2 and
R(Φ1) = 0. For a detailed discussion on how this ties to spontaneous SUSY
breaking see [23].

Although the O’Raifeartaigh model was used to specify the properties of
H in equation (4.26), the derivation is more general. The developed method
is certainly applicable to much more complicated models and it would be very
interesting to apply it to something that describes reality better. Hopefully
that would lead to more interesting conclusions and deeper a physical insight.



5
An Experimental Sign of SUSY

Breaking

In this section we will investigate if there is a chance of experimental detection
at the LHC of a specific SUSY breaking model. We will use a semi-direct
gauge mediation model (see [24], [25] and [26]), which means that the field
that mediates the SUSY breaking from the hidden sector to the messengers is
not the usual spurion chiral superfield but some other gauge field (here taken
to be U(1)). The messenger fields are charged under both the SM gauge group
and the hidden one. These fields mediate the breaking between the hidden
sector and the MSSM.

Gauge mediation models with messengers have a very nice feature. With-
out them, coupling the MSSM to the hidden sector directly forces one to
include too many extra charged fields. Consider equation (2.53). In order to
break SUSY dynamically a lot of new fields need to be added and each of these
provide a correction, a possible particle that can circle the loop in figure C.1,
that needs to be considered when computing the counterterms. This bumps
up the nf high enough to make the β-function too large thus introducing Lan-
dau poles (i.e the running coupling constant diverges) at energies below the
GUT scale.

The advantage of having messengers is that they screen the MSSM from
the SUSY breaking fields, and the only correction that needs to be considered
is the one where the messenger itself is circling the loop. In this way Landau
poles can be avoided.

In so called ”minimal gauge mediation” the messengers acquire a mass via
coupling to a spurion chiral superfield, whereas in semi-direct gauge mediation
they have a tree level supersymmetric mass and get non supersymmetric mass
corrections from couplings with the hidden gauge field.

We will assume that the messengers are very heavy, heavier than the CM
energy in the LHC (14 TeV). Therefore we may use an effective Lagrangian

42
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Figure 5.1: The Feynman diagram for the scattering process gg → hh. The
loop diagram to the left reduces to the simpler tree level process when the
messengers are integrated out.

where they have been integrated out. Since the gauge group of the hidden
sector is chosen to be U(1), the effective theory will be the similar to the
Euler-Heisenberg Lagrangian of S-QED (for a derivation see [27]).

5.1 Producing the Hidden Particles
The effective action is Seff = S0 + Sint, where S0 are the kinetic terms (com-
pare to equation (3.60))

S0 = 1
4

∫
d4x

[(∫
d2θW 2 + c.c

)
+ 1

4

(∫
d2θW a 2 + c.c

)]
(5.1)

The first part is the hidden sector kinetic energy and the second one, with
the color index, is the corresponding one for SU(3)c. The interacting part
comes from the Euler-Heisenberg Lagrangian

Sint = g2
sg

2
h

192π2M4

∫
d4x

∫
d2θd2θ̄

(
W a 2W

2 +W 2W
a 2 + 4W aαWαW

a
α̇W

α̇
)

(5.2)
Here we have taken the effective coupling constant to be gsgh/M2, where

gs is the strong coupling constant, gh is the interaction strength in the hidden
sector and M is the mass of the messenger. The Feynman diagram for the
scattering process is shown in figure 5.1.

The components of the spinor superfield Wα are given by equation (3.56),
but here we will neglect the D-field because we are only interested in the vector
component. Furthermore, use the gluons’ equations of motion

∂µFµν = 0
∂[ρFµν] = 0 ⇒ 1

4
σµν βα θβθσ

ρθ̄∂ρFµν = 0

Since we are interested in producing the hidden particles at the LHC, we
can neglect the gluinos1 in the incoming state and also the fermionic com-
ponent in the outgoing state. The latter is a choice: we choose to look at

1This is a well-founded approximation because we want to investigate a cross section and
the LHC is, more or less, a gluon collider. If there is some other universe where people are
using gluino colliders, they would do it the other way around and neglect the gluons instead.
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the boson rather than its fermionic component. In the end the result will be
similar no matter which component we look at. The only parts of Wα that
cannot be neglected are

Wα = − i

4
σµν β

α θβFµν , with σµναβFµν = fαβ (5.3)

W α̇ = i

4
σ̄µν

α̇β̇
θ̄β̇Fµν , with σ̄µν

α̇β̇
Fµν = f̄α̇β̇ (5.4)

The action can be written in a more transparent form using the component
fields instead of the superfields

Sint = 1
48
αsαh
M4

∫
d4x

(
f2f̄a 2 + fa 2f̄2 + 4ffaf̄ f̄a 2

)
(5.5)

Note that this is not renormalizable, because the effective coupling constant
gsgh
M2 has a dimension, it goes like [E]−2. As long as we restrict the computation

to tree level amplitudes and ŝ << M2 (i.e the messengers circling the loop in
figure 5.1 are off shell) everything is ok.

Denote the hidden field strength by Gµν . The matrix element for the
scattering process is written simply as

M = −i 1
48
αsαh
M4

× ⟨p1, ε1; p2, ε2|Tµ1ν1...µ4ν4Fµ1ν1Fµ2ν2Gµ3ν3Gµ4ν4 | k1, λ1; k2, λ2⟩ (5.6)

Here p1, p2, ε1 and ε2 are the momenta and polarization vectors of the
gluons and k1, k2, λ1 and λ2 the corresponding ones for the hidden particles.
The tensor Tµ1ν1...µ4ν4 is gotten from the action

Tµ1ν1...µ4ν4 = tr (σµ1ν1σµ2ν2) tr (σ̄µ3ν3 σ̄µ4ν4) + tr (σµ3ν3σµ4ν4)
× tr (σ̄µ1ν1 σ̄µ2ν2) + 4tr (σµ1ν1σµ3ν3) tr (σ̄µ2ν2 σ̄µ4ν4) (5.7)

When contracting the fields with the external states it becomes

M = −iαsαh
3M4 V

µ1ν1...µ4ν4p1µ1p2µ2k1µ3k2µ4ε1 ν1ε2 ν2λ1 ν3λ2 ν4 (5.8)

V µ1ν1...µ4ν4 = Tµ1ν1...µ4ν4 + (1 ↔ 2) + (3 ↔ 4) +
(

1 ↔ 2
3 ↔ 4

)
(5.9)

The traces can be simplified by some neat identities, see [28] for reference.
There is no real point in proceeding further by hand, but rather use some
software2 to compute it. The polarization sums were calculated using the
standard substitution

2Here the computations were performed using the Mathematica package Ricci, see
http://www.math.washington.edu/˜lee/Ricci/ for more information.
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P1 P2

k1

p1 p2

k2

h h

fg(x1) fg(x2)

Figure 5.2: This is the true collision in the lab frame, involving the gluons
as partons of the colliding protons. Note that the momenta of the gluons are
p1 = x1P1 and p2 = x2P2. In the LHC the protons are approximately massless
and their four momenta can be written P1 =

√
s

2 (1, ẑ) and P2 =
√
s

2 (1,−ẑ).

∑
λ=1,2

ελµε
λ
ν = −ηµν (5.10)

It has been checked that the Ward identities are still satisfied when using
this. The final expression for the scattering amplitude is written in a simple
form using the Mandelstam variables

ŝ = (p1 + p2)2, t̂ = (p1 − k1)2, û = (p1 − k2)2

ŝ+ t̂+ û = m2
1 +m2

2 +m2
3 +m2

4

Here we have gluons (massless) and the hidden particles (of mass m) so
ŝ+ t̂+ û = 2m2. The averaged matrix element is

|M|2= 1
4

1
64

(
αsαh
3M4

)2 (
2m4ŝ2 + 2ŝ2(−2m2 + ŝ)2 + 2(m2 − t̂)4 + 2(m2 − û)4

)
(5.11)

To obtain the full cross section there are some extra difficulties that need
to be taken into account. In the above derivation of the scattering amplitude
we have only considered the colliding gluons, but the LHC collides protons!
The two processes are not the same, but by using Feynman’s parton model of
hadrons they can be related to each other. Introduce the parton distribution
functions fi(x) (see [29], [30]), and let it denote the probability of finding a
quark (or gluon) of flavor i with a fraction x of the proton’s momentum. The
situation is shown in figure 5.2.

The gluon cross section can be written in the usual form (see e.g [31]
or [32])
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dσij = 1
2ŝ

|M|2dLips2 (5.12)

dLipsn =
(

n∏
i

d3ki
(2π)3

1
2Ei

)
δ4(pin −

n∑
i

ki) (5.13)

Using Lorentz invariance, the two integrals coming from dLips2 can be
computed in the center of mass frame of the gluons3, and the differential cross
section written

dσij

dt̂
= |M|2

16πŝ2 , t± = m2 − ŝ

2

1 ±

√
1 − 4m2

ŝ

 (5.14)

Introduce another factor 1/2 (because the outgoing particles are identical)
and integrate between t− and t+ to get the full cross section for the gluon
collision

σij = 1
128

(
αsαh

3

)2 ŝ3

40πM8

√
1 − 4m2

ŝ

(
27m

4

ŝ2 − 26m
2

ŝ
+ 7

)
(5.15)

The cross section for the protons is gotten when summing up all possible
parton configurations. With the previously introduced PDFs4 this is simply
done by including them and integrating over the fraction of momenta carried
by the gluons

σ =
∫ 1

0
dx1

∫ 1

0
dx2

∑
i,j

fi(x1)fj(x2)σij (5.16)

Here
∑
fi(x1)fj(x2) = fg(x1)fg(x2). The integration is done numerically

and the process is plotted versus the hidden particle mass in figure 5.3, with
M = 1 TeV/c2, αh = αs = 0.069 and s = 14 TeV. Equation (5.15) can be used
to get σ for any value of M or αh.

Unfortunately the cross section is very small. A good landmark for com-
parison is to use an integrated luminosity of one inverse femtobarn to estimate
the number of events, which is simply the integrated luminosity times the cross
section. For this process we would have approximately 0.07 events, i.e none
at all.

Furthermore, the messenger mass was taken rather low: it is expected to
be much bigger and since the equation (5.15) goes like M−8, a small increase

3This is a very nice simplification, otherwise one would have to compute the integrals in
the lab frame. In this case it is the same as the CM frame of the protons, where p1 ̸= p2 and
there would be x1 and x2 everywhere. In the end, this way of doing things must of course
give the same answer and it has been checked that it does.

4Numerical values for the PDFs are based on measurements form the Hera experiment
and it was taken from http://hepdata.cedar.ac.uk/pdf/pdf3.html.
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Figure 5.3: The figure shows the total cross section σgg→hh as a function of
the mass of the hidden particle, for M = 1 TeV/c2.

in M means a huge decrease in the already very small cross section. The
conclusion is that there is very little chance of producing the hidden particles
at the LHC, and no chance of getting statistically reliable measurements.

5.2 Decay of the Hidden Particle

The decay rate of the previously mentioned hidden particles may still provide
some interesting results, for cosmological purposes. With the action given
in equation (5.1), one hidden particle can be coupled to three photons (or
any gauge field) through the messenger field. Note that both fields have a
U(1)-charge, but they are of different origin. The same procedure that gave
equation (5.2) can be used here, but as already mentioned we want to couple
one hidden particle to three photons

Sint = − 3e3gh
192π2M4

∫
d4x

∫
d2θd2θ̄

(
W (e) 2W̄

(h)
α̇ W

(e)α̇ +W (h)αW (e)
α W̄ (e) 2

)
(5.17)

There are no gauge indices here so instead we have introduced the label
(e) for the photon and (h) for the hidden field. The combinatorics and cou-
pling constants are different, but the rest is similar. The tensor structure
corresponding to equation (5.7) is

T̃µ1ν1...µ4ν4 = tr (σµ1ν1σµ2ν2) tr (σ̄µ3ν3 σ̄µ4ν4) + tr (σµ3ν3σµ4ν4)
× tr (σ̄µ1ν1 σ̄µ2ν2) (5.18)

The matrix element is
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M = e3gh
(4π)2M4B

µ1ν1...µ4ν4pµ1λν1k1µ2ε1 ν2k2µ3ε2 ν3k3µ4ε3 ν4 (5.19)

Bµ1ν1...µ4ν4 = T̃µ1ν1...µ4ν4 + (all permutations of 234) (5.20)
(5.21)

This is a 1 → 3 process and is thus best presented using the variables

s = (p1 − k1)2, t = (p1 − k2)2, u = (p1 − k3)2 (5.22)
s+ t+ u = m2 +m2

1 +m2
2 +m2

3 (5.23)

Here the decay products are photons so m1 = m2 = m3 = 0. The same
procedure for the sum over polarization is used here, but the hidden particle
can have three different polarizations

|M|2= 1
3

∑
polarizations

|M|2= α3
eαh

6M8

(
s4 + t4 + u4 − 2m2(s3 + t3 + u3)

+m4(s2 + t2 + u2)
)

= α3
eαh

6M8 g(s, t, u) (5.24)

The expression for the differential decay rate can be found in e.g [3]

dΓ(1 → 3) = 1
2m

|M|2dLips3 (5.25)

The kinematic integrals in the massless case turn out to be

dLips3 = 1
3!

1
16(2π)3

ds dt

m2 , s, t ∈ [0,m2] (5.26)

The extra factor of 1
3! is there to avoid counting identical configurations

several times, because the three decay products are identical particles. The
decay rate can be computed in closed form

Γ = α3
eαh

1152(2π)3m3M8

∫
ds dt g(s, t,m2 − s− t) = α3

eαh
30720π3

m9

M8 (5.27)

This can be plotted but it is more informative to plot its inverse τ = 1/Γ,
with τ the mean life time, shown in figure 5.4.

We see that the decay rate can vary over many orders of magnitude. Note
that if the hidden particle exist, lots of them would have been created at the
Big Bang. With a more likely value for the messenger mass, say M = 10
TeV, the mean life time of the hidden particle can, depending on its mass, be
greater than the age of the universe (roughly 1019 s). This means that most
of it would still be around, providing a possible candidate for dark matter.
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Figure 5.4: Logarithmic plot of the mean life time of the process h → γγγ,
with M = 1 TeV/c2 and αh = αs. There are several other decay channels (e.g
h → ggg or h → gg̃g̃) and τ is therefore smaller, but the order of magnitude
should be correct.



A
Conventions

Unless otherwise stated we work in god given units, i.e

h̄ = c = 1
The Minkowski metric

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ⇒ p2 = m2 (on shell)

The usual notation is used for coordinates, momentum etc

xµ = (t,x), pµ = (E,p), ∂µ = (∂/∂t,∇)
The sigma matrices

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
σµαα̇ = (σ0,σ), σ̄µα̇α = (σ0,−σ), [σi, σj ] = 2ϵijkσk, {σi, σj} = 2δij

Especially important are

σµν β
α = 1

4

(
σµαα̇σ̄

να̇β − σναα̇σ̄
µα̇β

)
σ̄µνα̇

β̇
= 1

4

(
σ̄µα̇ασν

αβ̇
− σ̄να̇ασµ

αβ̇

)
Introduce the two-component spinor ψα (a left-handed Weyl spinor), trans-

forming in the (1
2 , 0) representation of the Lorentz group. Its conjugate is writ-

ten ψ̄α̇ = ψ†
α̇ = (ψα)† and transforms as (0, 1

2) (a right-handed Weyl spinor).
The indices on two component spinors must be contracted according to
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ξζ = ξαζα = ξαζβϵαβ , λρ = λ̄α̇ρ̄
α̇ = λ̄α̇ρ̄β̇ϵ

α̇β̇, λ̄α̇ = (λα)†

ϵαβ =
(

0 1
−1 0

)
, ϵαβ =

(
0 −1
1 0

)
, ϵα̇β̇ = (ϵαβ)∗

Suppressed indices can always be reconstructed with these conventions,
for example: ψσµχ̄ = ψασµαα̇χ̄

α̇. For a wealth of identities for two component
spinors see [28].

A chiral representation is used for the 4-component Dirac spinors, where
the gamma-matrices are

γµ =
(

0 σµ

σ̄µ 0

)
, {γµ, γν} = 2ηµν (A.1)

Note that with this representation we can write a Dirac spinor as

ΨD =
(
ψα
ξ̄α̇

)
(A.2)

Important integrals

∫
ddℓ

(2π)d
1

(ℓ2 − ∆)n
= (−1)n

(4π)d/2
Γ(n− d/2)

Γ(n)

( 1
∆

)n−d/2
(A.3)∫

ddℓ

(2π)d
ℓ2

(ℓ2 − ∆)n
= (−1)n−1

(4π)d/2
id

2
Γ(n− d/2 − 1)

Γ(n)

( 1
∆

)n−d/2−1
(A.4)



B
Ghosts

In section 2.2 it was briefly mentioned that the Yang-Mills Lagrangian in
equation (2.7) is not quite the full story . To quantize it we will use the
method of path integrals. Ignore the fermions and consider only the gluon
field in the generating functional

Z =
∫

DAµ e−SYM [Aµ] (B.1)

In the action a Wick rotation has been made (x0 → ix0) to get an Euclidean
metric and the minus sign. Along some directions of Aµ the action SYM will
be constant, because it is invariant under gauge transformation. Therefore
when we try to compute the vacuum energy ⟨0|0⟩ and integrate over all paths,
we will get an infinite result along those directions. Such a divergence must
be treated somehow, but it is not of the same type as those that appear in
renormalization and cannot be removed in the same way. The way to handle
it was proposed by Faddeev and Popov (see [33]) and the resulting Lagrangian
is called the Faddeev-Popov Lagrangian.

To start out we make a naive analogy: the situation is similar to a normal
double integral with the integrand only depending on one of the directions

Z =
∫
dx dy e−S[x] → ∞ (B.2)

Such a problem could be avoided in a number of ways. The most obvious
is to skip the integration in y, but that would be very difficult to do for a
path integral. Another possibility is to insert a delta function δ(y). This
would certainly work for a functional measure and to make it more general
we insert δ(f(x, y)), such that f(x, y) = 0 for some path y(x). The function
f(x, y) defines a gauge fixing along all possible gauge orbits, and the change
of variables in the delta function brings about the Jacobian (∂f/∂y|x). The
modified integral is
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Z =
∫
dx dy

∂f

∂y

∣∣∣∣
x

δ(f(x, y))e−S[x] (B.3)

Consider now the multidimensional generalization

Z =
∫
dnX dmY det

(
∂fa

∂Y b

) m∏
c=1

δ(f c(X,Y ))e−SYM [X] (B.4)

The f c(X,Y ) fixes the gauge in m directions. The determinant can be
interpreted as a functional determinant, coming from a fermionic field

det
(
∂fa

∂Y b

)
=
∫
dmη dmη̄ exp[−η̄a

∂fa

∂Y b
ηb] (B.5)

The η is called a BRST-ghost. Likewise, the delta function can be rewritten
as an integral

∏
δ(f c(X,Y )) =

∫
dmB e−iBcfc(X,Y ) (B.6)

With these new fields the full path integral is

Z =
∫
dnX dmY dmη dmη̄ dmB exp

(
−SYM [X] − η̄

∂f

∂Y
η − iBT f(X,Y )

)
(B.7)

The linear term is unphysical (it is a tadpole), but we can modify the
integral by including a quadratic term ξ

2B
2 and complete the square, then

integrate the B-fields away. The modification only changes the constant in
front of the integral and that cancels when computing correlation functions.
The generating functional can be written as

Z =
∫
dnX dmY dmη dmη̄ exp

(
−SYM [X] − η̄

∂f

∂Y
η + 1

2ξ
f †f

)
(B.8)

For the Yang-Mills Lagrangian (equation (2.5)), SYM is invariant under
Aaµ → Aaµ+∂µΛa−gfabcAbµΛc. Some function must be chosen to fix the gauge
and, theoretically, anything would do as long as it is not gauge invariant. In
practice we still require something that is both Lorentz invariant and linear,
and the canonical choice is

fa = ∂µA
µa = 0 (B.9)

Note that under a gauge transformation this condition transforms as ∂µAaµ →
∂µAaµ + ∂µDab

µ Λb (with the covariant derivative defined as Dab
µ = δab∂µ −

gfabcAcµ), in which case

∂fa

∂Y b
= δ

δΛb(y)
∂µAaµ(x) = ∂µDab

µ δ(x− y) (B.10)
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The η-integral can be written properly with the above information and the
new field c

det
(
∂fa

∂Y b

)
=
∫

DcDc̄ exp
(∫

d4x c̄a∂µDab
µ c

b
)

(B.11)

The final form of the gauge sector in the Yang-Mills action is

SYM =
∫
d4x

[
−1

4
F aµνF

aµν − c̄a(∂µDab
µ )cb − 1

2ξ
(∂µAaµ)2

]
(B.12)

The end result is that a new field ca has appeared. This is not a physical
field, it is a theoretical tool to help kill of the extra degrees of freedom coming
from gauge invariance. However it does provide a new interaction with the
gluon field and this must be taken into account in the same way as any other
vertex.

The second term, 1
2ξ (∂µAaµ)2, is a correction to the propagator and we

have to take it into account when computing the full expression for the gluon
two-point correlation function

⟨Ω|TAaµAbν | Ω⟩ = −iδab

k2 + iϵ

(
ηµν − (1 − ξ)kµkν

k2

)
(B.13)

.
In this thesis ξ = 1, called the Feynman-’t Hooft gauge. The physics must

be independent of ξ but depending on what is described other choices may be
preferable.



C
QCD Counterterms

C.1 The Gluon Counterterm
The gluon propagator diagrams to one loop are given in figure C.1

= + + +

+ +

Figure C.1: All gluon propagator diagrams to one loop.

The only way to specify the counterterm is to compute all of them. With
the definitions in figure 2.1 we may write

iΠabµν = Mabµν
g1 + Mabµν

g2 + Mabµν
g3 + Mabµν

g4 − iδA(p2ηµν − pµpν)δab (C.1)

With a, b the color indices and Mg corresponds to the loops in the order
specified by the figure. The color dependence on the corrections should be
Kronecker deltas, otherwise the gluon field would not be properly diagonalized.
Compute the diagrams in the order specified by figure C.1. The first one is
the fermion loop
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p

k

p

k + p

Application of the Feynman rules gives the expression

Mabµν
g1 = −tr[T aT b]

∫
ddk

(2π)d
tr
[
(igµεγµ)i

/k + /p+m

(k + p)2 −m2 + iϵ
(igµεγν)

×i
/k +m

k2 −m2 + iϵ

]
(C.2)

The first minus sign is needed because it is a fermion circling the loop. The
Lie algebra factor is trT aT b and can be chosen proportional to the identity
matrix times some constant C(r)δab, different for each representation (see
[11]). Remove the Kronecker delta to make the derivation cleaner. Using the
Feynman parameters and shifting the momentum to ℓµ = kµ + xpµ brings
the integral to the usual form, and all odd powers of ℓ can be dropped in the
numerator. The resulting expression is

Mµν
g1 = −g2µ2εC(r)

∫ 1

0
dx

∫
ddℓ

(2π)d
Nµν

(ℓ2 − ∆)2 (C.3)

Nµν = dm2ηµν + d
[
2ℓµℓν − 2x(1 − x)pµpν − (ℓ2 − x(1 − x)p2)ηµν

]
∆ = x(x− 1)p2 +m2 − iϵ

Inside the integral Lorentz invariance demands that ℓµℓν = Aηµνℓ2 and
contracting the indices on both sides shows A = 1/d, after which it can be
computed as before. Tables for the integrals can be found in the appendix
of [3] and the result is

Mµν
g1 = −ig

2µ2εC(r)
(4π)d/2

∫ 1

0
dx d

[(
m2ηµν − x(1 − x)(2pµpν − p2ηµν)

)
×Γ(2 − d/2)

∆2−d/2 − ηµν(d
2

− 1)Γ(1 − d/2)
∆1−d/2

]
(C.4)

The last term is the apparent quadratic divergence1 but if the Gamma
function is expanded we get

1It is called a quadratic divergence because it is divergent for d = 2.



C.1 The Gluon Counterterm 57

(d
2

− 1)Γ(1 − d/2) = −(1 − d/2)Γ(2 − d/2)
1 − d/2

(C.5)

The factor in front cancels the quadratic divergence. Combining the two
contributions (by multiplying the latter by ∆/∆) yields

Mµν
g1 = i

g2µ2εC(r)
(4π)d/2

(
pµpν − p2ηµν

) ∫ 1

0
dx 2dΓ(2 − d/2)

∆2−d/2 [x(1 − x)] (C.6)

Note that the tensor structure pµpν − p2ηµν is transverse to pµ. This is
not a coincidence but actually a requirement forced onto the propagator by
the Ward identity. The tensor part of the gluon propagator MUST be of this
form, otherwise it violates gauge invariance. Each flavor of quark contributes
to this diagram so we must multiply the above result by nf .

The second diagram is

p

k

p

k + p

Application of the Feynman rules give

Mabµν
g2 = −g2µ2ε

2

∫
ddk

(2π)d
f cad [ηρµ(k − p)σ + ηµσ(2p+ k)ρ − ησρ(2k + p)µ]

× ησκδ
dd′

(k + p)2 + iϵ
fd

′bc′ [
ηκν(2p+ k)λ + ηνλ(k − p)κ − ηλκ(2k + p)ν

] ηλρδcc′

k2 + iϵ
(C.7)

The factor of 1/2 is a symmetry factor and needed because the gluon
propagators inside the loop are equivalent. The Lie algebra factor is the
Casimir operator but for the adjoint representation, denoted by r = G, so
facdf bcd = C2(G)δab. Shift momentum to ℓµ = kµ + xpν and drop all odd
powers of ℓ

Mµν
g2 = g2µ2εC2(G)

2

∫ 1

0
dx

∫
ddℓ

(2π)d
Nµν

(ℓ2 − ∆)2 (C.8)

Nµν = 6(ℓ2ηµν − ℓµℓν) + ((1 + x)2 + (2 − x)2)ηµνp2

+ pµpν
(
(d− 2)(1 − 2x)2 − 2(1 + x)(2 − x)

)
∆ = x(x− 1)p2 − iϵ
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The integration can be performed in the familiar way and the result is

Mµν
g2 = ig2µ2εC2(G)

2(4π)d/2

∫ 1

0

dx

∆2−d/2 [3(1 − d)∆ηµνΓ(1 − d/2) + ΞµνΓ(2 − d/2)]

(C.9)
The third diagram is

p p

k

The Feynman rules give the amplitude

Mabµν
g3 = −ig

2µε

2

[
f cdefabe (ηρµησν − ηρνησµ) + f caefdbe (ηρσηµν − ηρνησµ)

+f cbefdae (ηρσηµν − ηρµησν)
] ∫ ddk

(2π)d
−iηρσδcd

k2 + iϵ
(C.10)

The factor of 1/2 is again due to symmetry. To make the amplitude look
like the ones already computed we multiply by (k + p)2/(k + p)2 and shift
momentum. The expression simplifies to

Mµν
g3 = (1 − d)g2µεC2(G)ηµν

∫ 1

0
dx

∫
ddℓ

(2π)d
ℓ2 + (1 − x)2p2

(ℓ2 − ∆)2 (C.11)

Again the color delta has been taken away. The integral solves to

Mµν
g3 = i

g2C2(G)
(4π)2 (1 − d)ηµν

∫ 1

0

dx

∆2−d/2

[
(1 − x)2p2Γ(2 − d/2)

−d

2
∆Γ(1 − d/2)

]
(C.12)

This does not fix the any of the problems that came up. The only hope is
the final diagram, the ghost contribution

p

k

p

k + p
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The matrix element is

Mabµν
g4 = −

∫
ddk

(2π)d
(−gµεfdac) i(k + p)µ

(k + p)2 + iϵ
(−gµεf cbd) ikν

k2 + iϵ
(C.13)

The ghost are fermions which explains the extra minus sign. Shift momen-
tum and simplify as before to get the expression

Mµν
g4 = −g2µ2εC2(G)

∫ 1

0
dx

∫
ddℓ

(2π)d
ℓµℓν − x(1 − x)pµpν

(ℓ2 − ∆)2 (C.14)

The final form of the ghost contribution is

Mµν
g4 = i

g2µ2εC2(G)
(4π)2

∫ 1

0

dx

∆2−d/2 [x(1 − x)pµpνΓ(2 − d/2)

+ηµν ∆
2

Γ(1 − d/2)
]

(C.15)

Now we sum up the four contributions and take a closer look at the coef-
ficient in front of the seemingly quadratic divergence

1
2

(3(1 − d) − d(1 − d) + 1) Γ(1 − d/2) = 2
(

1 − d

2

)2
Γ(1 − d/2)

= 2
(

1 − d

2

)
Γ(2 − d/2) (C.16)

It cancels! This would not have happened without the ghost diagram. The
second thing that needs checking is that the tensor structure has the proper
form. The coefficients in front of the different parts are

p2ηµν : 2x(x− 1)(1 − d/2) + (1 − d)(1 − x)2 + 1
2

(
(1 + x)2 + (2 − x)2

)
pµpν : (d

2
− 1)(1 − 2x)2 − 2

At first glance they do not look the same. The brute force way of showing
it is to perform the integrals in x and both turn out to be ±7

3 ∓ d
6 . A more

elegant way to do it is by realizing that the expression is symmetric under
x → 1 − x, a consequence of the Feynman parameters, in which case we may
simplify by letting x → 1

2x+ 1
2(1−x) = 1

2 . For the coefficient in front of p2ηµν ,
it yields

p2ηµν : −d

2

[
(1 − 2x)2 + 1 − 2x

]
+ (1 − 2x)2 + 2 + 1

2
− x

→ −(d
2

− 1)(1 − 2x)2 + 2 (C.17)
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Note that dimensional regularization is a requirement for this to work.
Unlike the quark counterterm, here it would not be possible to both satisfy
the Ward identities and get the correct tensor structure using a Pauli-Villars
prescription. The counterterm can now be specified by summing up the four
diagrams and using equation (C.1) at p2 = µ2

δA = g2

16π2

∫ 1

0
dx

1
ε

1 + ε log

 µ2

∆

∣∣∣∣∣
p2=µ2

+ O(ε2)


×
(
(2 − (1 − 2x)2)C2(G) − 8nfx(1 − x)C(r)

)]
(C.18)

The divergent part is

lim
ε→0

εδA = g2

16π2
5C2(G) − 4nfC(r)

3
(C.19)

C.2 The Vertex Counterterm
The diagrams are given by figure C.2. Write the propagator as

= + + +

Figure C.2: The vertex correction diagrams to one loop.

igµεΓµDa = igγµT a + Maµ
v1 + Maµ

v2 + igµεδgγ
µT a (C.20)

The first diagram is

q

k − qk

k − p1
p1 p2

Maµ
v1 = g3µ3εT bT aT b

∫
ddk

(2π)d
γρ

/k +m

k2 −m2 + iϵ
γµ

/k − /q +m

(k − q)2 −m2 + iϵ
γσ

× ησρ
(k − p1)2 + iϵ

(C.21)
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The Lie algebra factor can be simplified by commuting T b through

T bT aT b = C2(r)T a + if bacT cT b =
(
C2(r) − 1

2
C2(G)

)
T a (C.22)

In the last step the anti-symmetry of fabc was used to write f bacT cT b =
1
2f

bac(T cT b − T bT c). Shift the momentum to k = ℓ− yq − zp1 to get

Mµ
v1 = g3µ3ε

(
C2(r) − 1

2
C2(G)

)∫
dx dy dz δ(x+ y + z − 1)

×
∫

ddℓ

(2π)d
2Nµ

(ℓ2 − ∆)3

∆ = (x+ y)m2 + y(y − 1)q2 + z(z − 1)p2
1 + 2yzqp1 − iϵ

Nµ = γρ(/ℓ + y/q + z/p1 +m)γµ(/ℓ + (y − 1)/q + z/p1)γρ

The numerator can be simplified but it is more complicated here than it
was for the propagators. This is because there will be a wealth of finite terms
and they must be simplified to a form where the renormalization condition in
(2.14) can be used. We can argue for both Lorentz invariance and parity, in
which case the only possible terms are

Mµ = Aγµ +B(p1 + p2)µ + Cqµ (C.23)

But it doesn’t help off-shell because the coefficients will depend not only
on m2, p2

1 and p2
2, but also on /p1 and /q. Therefore it is far from obvious how

the renormalization condition should be used. As only the divergent part is
important for the β-function we can isolate it and go on without specifying
the finite contribution further, meaning that we only have to compute Aγµ.
The resulting expression is

Mµ
v1 = i

g3µ3ε

16π2

(
C2(r) − 1

2
C2(G)

)
γµ
∫
dx dy dz δ(x+ y + z − 1)

× (2 − d)2

2
Γ(2 − d/2)

∆2−d/2 (C.24)

The second diagram is

q

k − qk

k − p1
p1 p2
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Maµ
v2 = ig3µ3ε

∫
ddk

(2π)d
[−ηµν(q + k)µ + ηνρ(2k − q)µ + ηρµ(2q − k)ν ]

× fabcT bT cγλ
/k − /p1 +m

(k − p1)2 −m2 + iϵ
γσ

ηνλ
k2 + iϵ

ηρσ
(k − q)2 + iϵ

(C.25)

The Lie algebra factor simplifies to i
2C2(G)T a. Shift momentum to ℓ =

k − yq − zp1 and combine the denominator

Mµ
v2 = −g3µ3εC2(G)

2

∫
dx dy dz δ(x+ y + z − 1)

∫
ddℓ

(2π)2
2Nν

(ℓ2 − ∆)3

∆ = xm2 + y(y − 1)q2 + z(z − 1)p2
1 + 2yzqp1 − iϵ

Nµ = −γµ(/ℓ + y/q + (z − 1)/p1 +m)(/ℓ + (1 + y)/q + z/p1)
− (/ℓ + (y − 2)/q + z/p1)(/ℓ + y/q + (z − 1)/p1 +m)γµ

+ γρ(/ℓ + y/q + (z − 1)/p1 +m)γρ(2ℓ+ (2y − 1)q + 2zp1)µ

As before we are only interested in the divergent part and it integrates to

Mµ
v2 = −ig

3µ3εC2(G)
16π2 γµ(1−d)

∫
dx dy dz δ(x+y+z−1)Γ(2 − d/2)

∆2−d/2 (C.26)

With the counterterm specified as in equation (C.20), with x = 1 − z − y

δg = −g2µ2ε

16π2

∫
dy dz

1
ε

1 + ε log

 µ2

∆

∣∣∣∣∣
p2=µ2

+ O(ε2)


× 2 (C2(r) + C2(G)) (C.27)

The divergent part is

lim
ε→0

εδg = − g2

16π2 (C2(r) + C2(G)) (C.28)



D
Calculus in Superspace

This is a short list of the most common conventions for integration and
differentiation with Grassman numbers. Actually, calculus is much simpler
for fermionic numbers than for normal coordinates, because anticommutivity
guarantees that the only functions that appear are constants and first order
polynomials. The basic rules for differentiation are

∂α = ∂

∂θα
, ∂α = ∂

∂θα
= −ϵαβ∂β

∂̄α̇ = ∂

∂θ̄α̇
, ∂̄α̇ = ∂

∂θ̄α̇
= −ϵα̇β̇ ∂̄

β̇

∂αθ
β = δβα, ∂̄α̇θ̄β̇ = δα̇

β̇

∂α(θθ ) = 2θα, ∂̄α̇(θθ ) = −2θ̄α̇
∂2(θθ) = 4, ∂̄2(θθ ) = 4

Integration is also very simple. It is called Berezin integration, due to its
founder

∫
dθ1 θ1 =

∫
dθ2 θ2 = 1∫

dθ1 θ2 =
∫
dθ2 θ1 =

∫
dθα = 0

Likewise for θ̄. Note that Berezin integration produces the same result as
differentiation and therefore an integral can always be swapped for a deriva-
tive. The basic reason integration is defined in this way is to get translational
invariance, in analogy to integration in normal space. It is easy to see that it
is invariant: make a change of coordinates θ → θ+ ζ, where ζ is a constant in
superspace, and we have
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64 Appendix D: Calculus in Superspace

∫
d(θ + ζ) f(θ + ζ) =

∫
dθ f(θ) (D.1)

Note that if the coordinates were assigned a unit, the differential dθβ would
acquire the inverse unit. Introduce the following conventions for the differential

d2θ = −1
4
dθαdθβϵαβ

d2θ̄ = −1
4
dθ̄α̇dθ̄β̇ϵ

α̇β̇ (D.2)

d4θ = d2θ d2θ̄

The reason these conventions are preferable is the identity∫
d2θ θθ = 1,

∫
d2θ̄ θθ = 1 (D.3)

The expression for the SUSY generators and the covariant derivatives are

Qα = ∂α − iσµαα̇θ̄
α̇∂µ, Qα̇ = −∂̄α̇ + iθασµαα̇∂µ (D.4)

Dα = ∂α + iσµαα̇θ̄
α̇∂µ, Dα̇ = −∂̄α̇ − iθασµαα̇∂µ (D.5)

For chiral superfields it is often convenient to use the bosonic coordinates
y and y†. In terms of these the generators and covariant derivatives are

Qα(y) = ∂α, Qα̇(y) = −∂̄α̇ + 2iθασµαα̇
∂

∂yµ
(D.6)

Qα(y†) = ∂α − 2iσµαα̇θ̄
α̇ ∂

∂y†µ , Qα̇(y†) = −∂α̇ (D.7)

Dα(y) = ∂α + 2iσµαα̇θ̄
α̇ ∂

∂yµ
, Dα̇(y) = −∂̄α̇ (D.8)

Dα(y†) = ∂α, Dα̇(y†) = −∂̄α̇ − 2iθασµαα̇
∂

∂y†µ (D.9)

The properties of the covariant derivatives are

{Dα, Dα̇} = −2iσµαα̇∂µ (D.10)
{Dα, Dβ} = {Dα̇ = Dβ̇} = 0 (D.11)
{Dα, Qβ} = {Dα, Qβ̇} = {Dα̇, Qβ} = {Dα̇, Qβ̇} = 0 (D.12)
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