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ABSTRACT
This paper presents a set of novel structural texture features for quantifying nuclear chromatin patterns in cells
on a conventional Pap smear. The features are derived from an initial segmentation of the chromatin into blob-
like texture primitives. The results of a comprehensive feature selection experiment, including the set of proposed
structural texture features and a range of different cytology features drawn from the literature, show that two
of the four top ranking features are structural texture features. They also show that a combination of structural
and conventional features yields a classification performance of 0.954±0.019 (AUC±SE) for the discrimination
of normal (NILM) and abnormal (LSIL and HSIL) slides. The results of a second classification experiment,
using only normal-appearing cells from both normal and abnormal slides, demonstrates that a single structural
texture feature measuring chromatin margination yields a classification performance of 0.815±0.019. Overall the
results demonstrate the efficacy of the proposed structural approach and that it is possible to detect malignancy
associated changes (MACs) in Papanicoloau stain.

Keywords: Cervical cancer, feature extraction, feature selection, classification, chromatin texture, malignancy
associated changes, structural texture features, Pap smear classification

1. INTRODUCTION
The Papanicolaou (Pap) test is the primary screening test for cervical cancer.1 It involves the microscopic
examination of cells sampled from the cervix. It is laborious and time-consuming involving the review of possibly
hundreds of thousands of cells for visual signs of cancerous or precancerous changes.2 One in every 10 to 20
positive cases is missed in routine screening.1 Two major factors affect the accuracy of the Pap test. The first is
sampling error wherein no diagnostic cells make it on to the slide. The other is interpretation error for reasons
including fatigue, inexperience, and habituation. Computer-assisted interpretation can potentially address the
issue of interpretation error. The malignancy-associated change (MAC) phenomenon may potentially address
sampling error. Several studies have demonstrated the phenomenon.3–5 MACs are subtle sub-visual, i.e. visually
imperceptible, changes in the appearance of otherwise normal-looking cells from an abnormal Pap slide. MACs
cannot be detected on a cell-by-cell basis but rather in a population of cells. The MAC approach obviates the
need to perform an exhaustive review of all of the cellular material to identify diagnostic cells.

The MAC features that appear to have the most discriminatory power are those characterizing nuclear
texture or more specifically the chromatin pattern in the nucleus. Traditionally MAC features have been based
on a stochastic approach to defining texture. However such features do not correspond well to the terms used
by cytopathologists to describe chromatin texture such as heterogeneity, granularity, margination, condensation,
compaction, clumping, diffuse, blobs and particles.2 This motivates interest in a structural approach to chromatin
texture analysis. This paper presents a set of novel structural texture features for quantifying chromatin texture.
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The features are derived from an initial segmentation of the chromatin into blob-like texture primitives. The
paper also presents an investigation of the most discriminatory subset of features, from among the proposed
features and a wide range of features drawn from the literature, for discriminating between normal and abnormal
Pap smears using the MAC approach.

2. METHODS
The types of features that can be extracted from cytology images can be broadly classified into four classes:
morphometric, densitometric, textural, and contextual.6 Whilst each of these can conceptually be computed for
both nuclei and chromatin blobs/particles, in this study contextual features were excluded for nuclei, and textural
and densitometric features were excluded for chromatin blobs. Morphometric features describe the geometry
(shape, size, position and boundary) of the object and are computed from its binary mask. Densitometric
features describe the intensity or optical density of the object and are computed from the histogram of gray-
values within the object. Contextual features are derived from the spatial relationship between objects; e.g.
the number of neighbors an object has, and statistics of the distances to neighboring objects. Texture features
describe the spatial variation of gray-levels within an object. Such features can be broadly classified into statistical
features and structural/syntactic features. Statistical texture features used in this study include fractal texture
features, run-length features, histogram based features, gray-level co-occurrence matrix (GLCM) features, and
complex Daubechies wavelets features. The wavelet features used in this study to characterize nuclear texture
were computed from the first level of the wavelet decomposition.7 A down-sampled binary mask of the original
image is used to identify and retain only the nuclei regions in the decomposed images for the purpose of feature
extraction.

The structural texture features used in this study to characterize nuclear texture are derived from a segmenta-
tion of the nuclear chromatin into blob-like texture primitives. In particular they are derived from morphometric
and contextual features computed for these blobs. The approach is described in the next section.

2.1 Novel structural chromatin texture features
Our proposed structural chromatin texture features are based on an initial segmentation of the chromatin into
blob-like texture primitives.2 For a given nucleus this involves: (i) applying a 3×3 median filter (to attenuate
impulse noise); (ii) up-sampling by a factor of 3 (to facilitate the rendering of watershed lines in a subsequent
step); (iii) locating the regional minima (inner markers); (iv) computing the watershed transform of the filtered
image with respect to the inner markers (to produce an outer marker that delineates a zone of influence (ZOI)
around each regional minimum); (v) computing the magnitude of gradient image for the filtered image; and
(vi) applying the watershed transform to the gradient image with respect to both the inner markers and the
outer marker (to delineate each dark chromatin blob). Our structural features (see Table 1) in essence describe
the attributes and arrangement of these resulting chromatin blobs. They fall into two broad categories. The
first consists of statistics of morphometric features computed for individual particles in a nucleus. The second
consists of contextual features computed from the particles in a nucleus. These contextual features can be further
subdivided into the following classes of features: margination, clustering, blob features, discrete texture features,
and features derived from the Voronoi diagram and its associated graphs.

The margination features characterize the distances of segmented chromatin blobs to the nucleus boundary.
They are computed from the cookie-cutting distances2 illustrated in Figure 1. In this study a 6th order polynomial
was fitted to the counts in the cumulative frequency histogram of these cookie-cutting distances, and the slopes at
the 25th and 37th percentiles were used as margination features M1 and M2 respectively for each nucleus. The
mean and standard deviation of these cookie-cutting distances were used as features M3 and M4 respectively.
The four features implicitly include information about the size of the nucleus. For this reason it was decided
in this study to include features M5 and M6 defined to be M3 and M4, respectively, each normalized to the
maximum value of the distance transform of the nucleus. The last margination feature, M7, is defined to be
the minimum distance between the centroids (geometrical centers) of the chromatin particles and the nucleus
boundary.



Table 1: Summary of the extracted nucleus features

Morphometric Features

Area, perimeter, mean-radius, elliptic variance8

Densitometric Features

Photometric features:6 Integrated optical density (IOD), mean optical density (MOD), variance of optical density,
skewness of optical density, kurtosis of optical density

Texture Features
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Fractal texture features:9 Fractal area 1, fractal area 2, fractal dimension
Run length features:3 SRE, LRE, GLN, RLN, RP, LGRE, HGRE, SRLGE, SRHGE, LRLGE, LRHGE

Histogram based features:9 Mean, standard deviation, and skewness of the gray level histogram

GLCM features:6 Contrast, correlation, energy, entropy, local homogeneity, maximum probability, cluster shade,
cluster prominence and information measure of correlation (H-IMC1, H-IMC2)

Complex Daubechies wavelet features of nuclei:7 Mean, standard deviation, and skewness of the gray level
histogram. GLCM features – contrast, correlation, energy, entropy, local homogeneity, maximum probability, cluster
shade, cluster prominence and information measure of correlation (W -IMC1, W -IMC2)

Statistics of the chromatin particle morphometric features

Mean of chromatin particle areas and perimeters, mean of chromatin particle areas normalized to the nucleus area,
mean of chromatin particle perimeters normalized to the nucleus perimeter, chromatin particle compactness (P2A)

Contextual chromatin particle features
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Margination: M1, M2, M3, M4, M5, M6, M7 (See section 2.1)

Clustering: C1, C2, C3, C4 (See section 2.1)

Blob features: Heterogeneity (the ratio between the area of the segmented dark and light regions, and the nucleus
area),10 the ratio between the area of the segmented dark regions and the nucleus area, number of segmented dark
particles, number of segmented light particles, area ratio of each chromatin particle to its watershed ZOI, average
distance between the geometrical center of the nucleus and pixels of all chromatin particles, distance between the
geometrical center of the nucleus and center of mass of the chromatin particles

Discrete texture features:9, 11 Medium and high DNA amount, medium and high DNA area, medium and high

DNA compactness, medium-high DNA compactness, center of gravity (the distance from the geometrical center of the
blob to the center of gravity of the optical density function)

Area-Voronoi diagram: Mean and standard deviation (SD) of the areas of the Voronoi regions, mean and SD of the
areas of the Voronoi regions normalized to the nucleus area, area disorder,3 Voronoi regions roundness,3 mean of area
ratio of each chromatin particle to its Voronoi region3

Delaunay graph and generalized Delaunay graph:Mean of the Delaunay triangle areas, mean and SD of the
Delaunay edge lengths, average of the mean and SD of the edge lengths connected to each vertex (chromatin parti-
cle), maximum Delaunay edge length, mean of the number of connections per chromatin particle, number of vertices
(chromatin particles) on the graph boundary

Gabriel graph and relative neighborhood graph: Mean and SD of the graph edge lengths, maximum edge length,
average of the mean and SD of the graph edge lengths connected to each vertex (chromatin blob), mean of the number
of connections per vertex (chromatin blob)

Minimum spanning tree: Mean and SD of the edge lengths, total edge length, edge disorder,3 minimum to maximum
edge ratio, mean of the number of connections per vertex, percentage of vertices connected to one vertex (MST 1),
percentage of vertices connected to two vertices (MST 2), percentage of vertices connected to more than two vertices
(MST 3)
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Figure 1: Illustration of how the features M1 and M2 are computed. (a) Segmented chromatin particles. (b)
Euclidian distance transform of the nucleus. (c) Portions of (b) cut out by the segmented chromatin particle
masks. (d) Cumulative frequency histogram of these cut-out distances with a polynomial fit through the counts
superimposed. Features M1 and M2 are the slopes at the 25th and 37th percentiles respectively.

A subset of the contextual features are those derived from the Voronoi diagram and a generalization called
the area Voronoi diagram. In this study the Delaunay graph (dual of the Voronoi diagram) is computed for
the centroids of the particles in the nucleus and several features are then directly computed from it. The area
Voronoi diagram is computed from the watershed transform of the distance transform of the set complement of
the union of the chromatin particle masks. The region adjacency graph defined on the resulting watershed regions
yields a generalization of the Delaunay graph as shown in Figure 2. Several sub-graphs—Gabriel graph, relative
neighborhood graph, and the minimum spanning tree12–14—are also computed. Each type of graph defines a
different adjacency relationship between the particles. Details concerning the explicit features computed from
the Voronoi diagram and associated graphs are given in Table 1.

(c)(b)(a)

Figure 2: Illustration of how the area Voronoi diagram and generalized Delaunay graph are computed. (a)
Distance transform of the set complement of the union of the chromatin particle masks in Figure 1a. (b) Area
Voronoi diagram and segmented chromatin particles. (c) The region adjacency graph defined on the Voronoi
regions then defines a generalized Delaunay graph.

The clustering features characterize the way the chromatin particles are clustered in the nucleus. They are
computed from the area Voronoi diagram. Features C1 and C2 are computed similarly to features M1 and
M2 except that the cookie-cutting distances are obtained from the distance transform of the Voronoi regions as
shown in Figure 3. Features C3 and C4 are computed from the area Voronoi diagram and the distance transform
image used in its construction (see Figure 2a and 2b) as follows. Firstly for every pair of Voronoi regions that
share a common edge, the convex hull is computed for the union of the corresponding pairs of particles. Secondly
the union of these convex hulls is filled to form a binary mask (Figure 3b). Thirdly this mask is intersected with
the divide lines of the area Voronoi diagram. Finally features C3 and C4 are the mean and standard deviation,
respectively, of the distance transform values corresponding to the residual divide line pixels in this intersection
(Figure 3c).

Details concerning the blob features and the discrete texture features are given in Table 1.
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Figure 3: Illustration of how the features C1, C2, C3, and C4 are computed. (a) Distance transform of the
Voronoi regions in Figure 2b. (b) Binary mask (with particles superimposed) formed from the union of the
convex hulls (see the text for details). (c) Voronoi region divide lines clipped according to the mask in(b).

2.2 Pap smear images and ground truth
The image data used in this study originate from a set of 68 conventional Pap smear slides. Each slide was
reviewed by a cytopathologist and assigned a cytological diagnosis according to the Bethesda system.15 The
cytopathologist subsequently acquired representative FOVs from each slide. In the case of abnormal smears this
included FOVs with and without diagnostic cells. The cytopathologist also labeled individual cells in each FOV
accordingly. The FOV images were acquired using a monochrome CCD camera mounted on a light microscope
with a 40× objective lens. Each image has a gray-scale resolution of 8 bits per pixel and is of size 1024×1344
pixels with square pixels of size 0.25µm.

2.3 Experiments
To evaluate the performance of the proposed structural chromatin texture features two experiments were per-
formed. The aim of the first experiment was to determine the most discriminatory subset of features, from
among the proposed features and a wide range of features drawn from the literature, for discriminating between
normal and abnormal Pap smear slides. A normal smear is deemed to be one that has been labeled as NILM
(Negative for Intraepithelial Lesion for Malignancy). An abnormal smear is one that has been labeled as either
LSIL (Low grade squamous intraepithelial lesion) or HSIL (High grade squamous intraepithelial lesion). The
aim of the second experiment was to evaluate the performance of a variety of classifiers built using the feature
subset obtained in the first experiment to discriminate between the normal and abnormal slides.

In the first experiment, the free-lying nuclei in each digitized FOV were automatically segmented using the
algorithm we have previously described.16 For each nucleus we computed the 159 features listed in Table 1. The
mean and standard deviation of each feature over all segmented nuclei for a slide yielded a total of 318 slide-based
features. An additional random feature was included to gauge the efficacy of feature selection. As a compromise
between having a reasonable number of cells per slide for MAC analysis and having a reasonable number of slides
for our study we decided to impose the following two criteria. Firstly each slide should have a minimum of 80
non-superficial cervical cells with a NILM label. Secondly, 10% to 40% of the cells in the abnormal slides should
be diagnostic cells. This left a total of 44 slides: 25 NILM, 10 LSIL, and 9 HSIL. The following three feature
selection methods were investigated: state-of-the-art multiple support vector machines with recursive feature
elimination (MSVM-RFE),17 L1-regularization path for generalized linear models,18 and the recently introduced
guided regularized random forest (GRRF).19 To optimize classification performance it is necessary to couple each
classification approach with the most relevant feature selection method. In this experiment we paired the MSVM-
RFE with a linear kernel SVM classifier, the GRRF with an ordinary RRF20 classifier, and the L1-regularization
procedure with a generalized linear model. Given the limited number of slides available in this study, all the slides
were used for feature selection. However an internal cross validation (in-loop feature selection) technique21 was
employed to avoid overfitting and overoptimistic estimation of the performance. Feature selection by the SVM-
RFE was achieved using 100 iterations of double 5-fold cross validation, each iteration with random combinations
of samples in the training and the test set. The inner cross validation loop was used for feature selection and
tuning the optimal parameters for the SVM classifier with a linear kernel. The outer cross validation loop
was used to evaluate the classifier model performance in terms of the AUC (area under the receiver operating



characteristic curve). For GRRF feature selection and the L1-regularization path for generalized linear models,
100 repeated 5-fold cross validation was employed.

In the second experiment only the cells marked by the cytologist as NILM on normal and abnormal slides
were segmented and slides with a minimum of 80 such cells retained. This left a total of 44 slides: 26 NILM, 9
LSIL, and 9 HSIL. To avoid the curse of dimensionality, only feature subsets with one or two features identified
in experiment 1 were considered. Two classifiers were evaluated using 100 iterations of 5-fold cross validation:
SVM with a linear kernel and a logistic regression (LR) classifier.

3. RESULTS
Experiment 1: The classification performance results together with the four top-ranked features for the three
feature selection approaches are presented in Table 2. “SD of IOD” and “Mean of M2” are the top two features
in all three feature selection (FS) methods. The top four features appearing most frequently among the feature
selection methods are: SD of IOD, Mean of M2, SD of MST3 and Mean of W -IMC1. Figure 4a shows boxplots
for each of these features for both the normal and abnormal slides. The best AUC (0.954±0.019) was achieved
using the L1-regularization procedure with a generalized linear model.
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Figure 4: (a) Boxplots of the features F1, F2, F3, F4, F5, F6 for experiment 1. (b) Boxplots of the features
F1, F2, F5, F6 for experiment 2.

Experiment 2: The classification performance results are presented in Table 3. Boxplots for each feature for
both the normal and abnormal slides are shown in Figure 4b. The feature “Mean of M2”, which is a measure
of chromatin margination inside the nucleus, achieved the best classification performance in both classifiers for
the detection of MACs. This is also supported visually in Figure 4b. The feature “SD of IOD”, whilst quite
discriminatory in the first experiment, does not show any discriminatory power in the second experiment. This
is not surprising given that the Pap stain is not stoichiometric and that none of the cells in experiment 2 were
diagnostic.



Table 2: Classification results for experiment 1.

FS Method Top 4 features AUC (Mean±SE)
MSVM-RFE F1, F2, F3, F4 0.934±0.038

L1-Reg F1, F2, F5, F6 0.954±0.019
GRRF F1, F2, F5, F6 0.935±0.029

F 1: SD of IOD, F 2: Mean of M2, F 3: SD of C1, F 4: SD

of nucleus area, F 5: SD of MST 3, F 6: Mean of W -IMC1

Table 3: Classification results for experiment 2.

Classifier Features AUC (Mean±SE)

SVM

F2 0.815±0.015
F5 0.706±0.053
F6 0.792±0.026

F2, F6 0.822±0.024

Logistic
Regression

F2 0.803±0.026
F5 0.591±0.054
F6 0.784±0.027

F2, F6 0.752±0.038

4. CONCLUSIONS AND DISCUSSION
A set of novel structural texture features for quantifying nuclear chromatin patterns in cells on a conventional
Pap smear was presented. The experimental results demonstrate the efficacy of this structural approach and that
a combination of these structural texture features and conventional features can be used to discriminate between
normal (NILM) and abnormal (LSIL and HSIL) slides with high accuracy. They also demonstrate that it is
possible to detect malignancy associated changes (MACs) in Papanicoloau stain. The most discriminating single
feature, Mean of M2, for detecting malignancy associated changes (MACs) is a structural feature measuring
chromatin margination. This in turn suggests the possibility of developing a fully automated Pap smear screener
based on MACs.

Most of the proposed contextual features for describing chromatin arrangement can be applied at the nucleus
level to quantitatively characterize the spatial arrangement of cells on a slide. This will be the subject of future
work.
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