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Abstract: This paper studies convex optimization and modelling for component sizing and
optimal energy management control of hybrid electric vehicles. The novelty in the paper is the
modeling steps required to include a battery wear model into the convex optimization problem.
The convex modeling steps are described for the example of battery sizing and simultaneous
optimal control of a series hybrid electric bus driving along a perfectly known bus line. Using
the proposed convex optimization method and battery wear model, the city bus example is used
to study a relevant question: is it better to choose one large battery that is sized to survive
the entire lifespan of the bus, or is it beneficial with several smaller replaceable batteries which
could be operated at higher c-rates?

Keywords: hybrid electric vehicle, convex optimization, batteries, optimal dimensioning and
control, battery state of health.

1. INTRODUCTION

Investigations about the cost effectiveness of a future Hy-
brid Electric Vehicle (HEV) require detailed knowledge
on several system levels as well as price scenarios for
components, fuel, electricity etc. Considering the many
ways of constructing a hybrid electric powertrain and the
high degree of freedom in sizing the individual power-
train components to emphasize different characteristics
of the powertrain, there is a strong need for systematic
approaches.

A complicating factor for early concept studies of HEVs
and PHEVs is that the energy efficiency of the powertrain
depends on how well adapted the energy management
strategy, controlling the energy flows in and out of the
electric energy buffer, is to the specific vehicle concept
and its intended driving. Many researchers have addressed
this optimal control problem using Dynamic Programming
(DP), see for instance Zoelch and Schroeder (1998), and
Sundström et al. (2010). The main advantage with DP is
the capability to use nonlinear, non-convex models of the
components consisting of continuous and integer (mixed-
integer) optimization variables. However, a serious limita-
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tion of DP is that the computation time increases exponen-
tially with the number of state variables. As a consequence,
the powertrain model is typically limited to only one or
possibly two continuous state variables. Moreover, since
DP operates by recursively solving a smaller subproblem
for each time step, the second limitation of DP is that it is
not possible to directly include the component sizing into
the optimization.

In more recent studies Murgovski et al. (2012b), and Mur-
govski et al. (2012a) another approach has been proposed
that uses convex optimization to simultaneously size the
battery in a PHEV while optimally controlling the energy
flow.

This paper is an extension of Murgovski et al. (2012a),
showing the necassary modeling steps to include the bat-
tery wear model proposed in Ebbesen et al. (2012) in
the optimal component sizing and energy management
problem. In Ebbesen et al. (2012) the battery wear is
related to the energy throughput and c-rate.

An example is given for a HEV city bus of series topology.
Using the proposed optimization method and battery wear
model the example answers a relevant question: is it better
to choose one large battery that is sized to survive the
entire lifespan of the vehicle, or several smaller replaceable
batteries which could be operated at higher c-rates?
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Fig. 1. Series PHEV powertrain model.
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Fig. 2. Bus line model described by demanded velocity.
For simplicity the road grade is zero at all times in
the studied example.

The paper is outlined as follows: modeling details are
given in Section 2 and 3, the optimization problem is then
formulated in Section 4 and remodeled as convex in Section
5, the example of the optimal battery replacement strategy
is given in Section 6, the paper ends with conclusion and
discussion in Section 7.

2. BUS LINE AND POWERTRAIN MODEL

The studied HEV bus includes a powertrain in a series
topology with no mechanical connection between the en-
gine and the wheels, as in Fig. 1. Instead, the wheels are
driven by an Electric Machine (EM) that receives energy
from a battery and/or an Engine-Generator Unit (EGU).

The bus is driven on a bus line described by road gradient
and demanded velocities which are known at each point
of time (Fig. 2). The velocity and force demands from the
bus line can be translated into an angular velocity ω(t)
and torque

τv(·) = τb(t) +A1(t)nb +A2(t)s (1)

on the shaft between the EM and the differential. The
number of battery cells nb and the EGU size s are opti-
mization variables (marked in bold), and (·) is used as a
compact notation to identify a function of optimization
variables. The torque τb(t) of the vehicle without the
weight of the battery and EGU, and the time dependent
terms Aj(t) are functions of the demanded acceleration
and speed on the bus line and the known vehicle parame-
ters, such as inertia, aerodynamic drag, rolling resistance,
wheels radius, etc.

The EM delivers or regenerates the torque τ (t). The EM
brake regeneration is either limited by its torque limit
τmin(ω(t)), or the buffer charging limit, after which friction
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Fig. 3. Model of the EGU, left, and the EM, right. The
figure illustrates the efficiency curves of the baseline
EGU (s = 1), the smallest allowed EGU (s = 0.5),
and the largest EGU (s = 1.5).

brakes are used to handle the remaining braking torque
τbrk(t), i.e.

τ (t) = τv(·)− τbrk(t). (2)

The powertrain electric path is described by a power
balance

τ (t)ω(t) +BEM (·) = Pb(t) + sPgb(t)− Pa (3)

that relates the EM electric power, left side of the equality,
to the battery power Pb(t), EGU power sPgb(t) and power
consumed by auxiliary devices Pa. The losses of the EM
are modeled as a quadratic function on τ (t)

BEM (·) = b0(ω(t))τ2(t) + b1(ω(t))τ (t) + b2(ω(t)) (4)

with speed dependent coefficients: bj(ω(t)) ≥ 0, j ∈
{0, 2},∀t ∈ [t0, tf ].

The generator power, EGU losses and mass are assumed
to scale linearly with the generator power Pgb(t), losses
BEGUb(·) and mass mEGUb of a baseline EGU model with
maximum power of Pgbmax = 150 kW. Then, the fuel
power Pf (·) and mass mEGU of the scaled EGU can be
expressed as

Pf (·) = s (Pgb(t) +BEGUb(·)) , (5)

mEGU = smEGUb, (6)

s ∈ [0.5, 1.5]. (7)

The losses of the baseline EGU are also modeled as
quadratic

BEGUb(·) = a0P
2
gb(t) + a1Pgb(t) + a2e(t) (8)

with aj ≥ 0, j ∈ {0, 2}, where e(t) is a binary variable
that is needed to allow zero fuel power, i.e. to remove the
idling losses a2 when the engine is off. The efficiencies of
the EM and EGU are illustrated in Fig. 3, while details on
the validity of using quadratic losses for these components
can be found in Murgovski et al. (2012b).

The engine on/off control is decided using heuristics that
turn the engine on if the power of the vehicle without the
weight of the energy buffer and EGU exceeds a threshold
P ∗
on, i.e.

e(t) =

{
1, τb(t)ω(t) > P ∗

on

0, otherwise.
(9)

The optimal power threshold P ∗
on is found by iteratively

solving a convex optimization problem, described later
in Section 4 and 5, for several values of Pon within the
power range of the vehicle. In Murgovski et al. (2012b),
this heuristics has been shown to give small error to the
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Fig. 4. Model of the battery open circuit voltage. The
shaded region represents the allowed SOC range.

global optimum. The losses of the power electronics are for
simplicity neglected.

3. BATTERY MODEL

The battery consists of identical cells equally divided
in parallel strings, with the strings consisting of cells
connected in series. The battery cells are modeled by a
resitive circuit

Pb(t) =
(
u(t)i(·)−Rci

2(·)
)
nb,

where Pb(t) is the pack power, i(·) is the cell current, nb is
the total number of cells in the pack, and u(t) is the open
circuit voltage which is shown in Fig. 4 and is non-linear
function SoC. Thus

i(·) =
1

2Rc

u(t)−
√
u2(t)− 4RcPb(t)

nb

 , (10a)

i(·) ∈ [imin, imax], (10b)

Pb(t) ≤ u
2(t)nb

4Rc
, (10c)

where Rc is the inner resistance and imin, imax are the
maximum and minimum cell current 1 . The battery State
of Charge (SoC) dynamics and constraints are then written
as

˙soc(t) = − 1

Q
i(·), (11a)

soc(t) ∈ [socmin, socmax], (11b)

soc(tf ) = soc(t0). (11c)

In the optimization nb has a real value that indicates the
total pack capacity. It can be expected that rounding this
variable to the nearest integer gives small error if results
point to large number of cells. This will generally be the
case if the cells are chosen small. Another way to use the
optimization is to interpret the cell data as a relationship
for specific energy and power for given battery technology.
The assumption is then that the capacity of the actual
cells to be used in the vehicle can be purposely built to
fit the desired pack voltage and number of strings. With
this assumption the optimal number of cells n∗

b will point
towards the optimal energy/charge capacity and battery
pack power.

1 The problem can alternatively be formulated to size the pack with
fixed number of strings. The battery pack terminal voltage would
then be constrained to be within the range specified by the inverter.

Table 1. Pre-exponential factor tabulated with
respect to c-rate.

c 0.5 2 6 10

B(c) 31,630 21,681 12,934 15,512

3.1 Battery wear model

The energy throughput-based battery state-of-health model
from Ebbesen et al. (2012) is used in this paper. This
model assumes that the battery can be cycled N times
before the capacity has dropped by ∆E0 = 0.2E0 from
the nominal energy capacity E0 (20% capacity drop is the
common definition of end-of-life of the battery) . In the
model, the internal battery cell power Pi(·) is intergrated
and normalized by the total amount of energy that can be
put through the battery cell before end-of-life, that is

soh(t) = 1− 1

2N(|Pi(t)|)E0(0)

∫ t

0

|Pi(τ)| dτ. (12)

Once the state-of-health soh(t) ∈ [0, 1] reaches zero,
the battery has reached its end-of-life. The first order
derivative of the state-of-health is

˙soh(t) = − |Pi(t)|
2N(|Pi(t)|)E0

. (13)

Note that a dependency of |Pi(t)| on N is included in order
to differentiate the impact of the time-variant operating
conditions on the state-of-health. Note that in the battery
wear model the internal battery power is defined by the
nominal open circuit voltage, Ū (dashed line in Fig. 4), as
Pi(·) = Ū i(·). The function N(|Pi(t)|) is defined by

N(|Pi(t)|) =
ŪA(|Pi(t)|/E0)

E0
. (14)

The variable A(c) is the total amp-hour throughput untill
the end-of-life when assuming that the battery cell is
cycled with a constant c-rate and where c = Pi/E0. The
total amp-hour throughput untill end-of-life is modeled as
in I. Bloom et al. (2001)

A(c) =

 ∆E0

B(c) exp
(

−Ea(c)
RT

)
1/z

. (15)

This relation is based on the Arrhenius equation in which
B(c) is the pre-exponential factor, and Ea(c) is the acti-
vation energy, while R is the ideal gas constant, T is the
lumped cell temperature, and z the power law factor.

The model was parameterized for the A123 Systems
ANR26650M1 cell of 3.3 V, 2.3 Ah, using the data pub-
lished in Wang et al. (2011). Equation (16) and Table 1
summarize the results of the parameterization.

Ea(c) = (31700− 370.3 c) J/mol

z = 0.55

R = 8.31 J/mol·K

T = 313 K (40 ◦C)

(16)

In Fig. 5, N(|Pi|) and ˙soh(|Pi|) are shown together

with a piece-wise quadratic approximation of ˙soh(|Pi|).
Notice that the cell appears to withstand more cycles
at an intermediate power level than at low power. This
counterintuitive observation can be explained by the fact
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that calendar-life effects were not isolated when the model
was built, i.e., the fact that N cycles take longer to process
at low power than at high power, thereby exposing the
battery to more calendar-life effects.

To ensure that battery is not worn out prematurely the
degradation in SoH over the drive cycle is constrained

soh(t0)− soh(tf ) ≤ ∆soh (17)

4. PROBLEM FORMULATION

The studied optimization problem is formulated to min-
imize a sum of operational cost for consumed fuel and
electricity on the bus line and component cost for the EGU
and the energy buffer. The costs are expressed in a single
objective (18a) using the coefficients, wf [currency/kWh],
for the fuel, and wb, wg in [currency], for the battery and
EGU. The optimization problem is formulated as

minimize

∫ tf

t0

wfPf (·)dt+ wbnb + wgs (18a)

subject to (10b)-(17) and

τ (t) ≥ max {τmin(ω(t)), τv(·)} (18b)

τ (t)ω(t) +BEM (·) ≤ Pb(t) + sPgb(t)− Pa (18c)

Pgb(t) ∈ [0, Pgbmaxe(t)] (18d)

nb ≥ 0, (18e)

s ∈ [0.5, 1.5], (18f)

for all t ∈ [t0, tf ] with optimization variables Pb(t), Pgb(t),
τ (t), soc(t), nb and s. With no effect on the optimal
solution, the constraints (2) and (3) have been relaxed
with inequalities in (18b) and (18c), respectively, and the
braking torque has been taken out of the optimization
problem, see Murgovski et al. (2012b) for details. The EGU
price is assumed to follow an affine relation

cEGU = c0 + scg
It is assumed that the payment of the EGU is divided in
equal amounts over a period of yg = 5 years, with p = 5 %

yearly interest rate. The equivalent EGU cost related to
the driven bus line is obtained by multiplying the length
of the bus line with the EGU’s price per kilometer, given
the average travel distance d in one year

wg = cg

(
1 + p

yg + 1

2

) ∫ tf
t0
v(t)dt

yg d
,

with v(t) denoting the vehicle velocity demanded by the
bus line. The the battery equivalent cost, wb is calculated
similary as the EGU cost

wb = cb

(
1 + p

yb + 1

2

) ∫ tf
t0
v(t)dt

yb d
,

where the payment period for the battery and equivalently
the expected life time, yb, is a function of the number of
battery replacements, nr, during the EGU payment period
yg.

yb =
yg

nr + 1
.

The allowed SoH degradation over the drive cycle is then

∆soh =

∫ tf
t0
v(t)dt

yb d
. (19)

5. CONVEX MODEL

This section presents the convexified version of the prob-
lem (18). The convex modeling approach of the battery
from Section 5.2 is described in detail in Murgovski et al.
(2012a) but the main steps are presented here for com-
pleteness. The modelling follows a disciplined methodology
Boyd and Vandenberghe (2004) where the convexity of
complex functions is verified using operations that pre-
serve convexity of elementary convex functions, e.g. affine
f(x) = qx+ r, quadratic f(x) = px2 + qx+ r with p ≥ 0,
quadratic-over-linear f(x,y) = x2/y with y > 0, negative
geometric mean f(x,y) = −√xy with x ≥ 0,y ≥ 0, etc.

5.1 Convex EGU model

The EGU can be modeled as convex by introducing a
variable change Pg(t) = sPgb(t) that eliminates the non-
convex product of two variables. The change affects Pf (·)
making the cost function (18a) convex. The constraint
(18d) is also affected, but its convexity is preserved,
yielding

Pf (·) = a0
P 2

g (t)

s
+ (a1 + 1)Pg(t) + sa2e(t)

Pg(t) ∈ [0, sPgbmaxe(t)].

5.2 Convex battery model

The battery open circuit voltage, illustrated in Fig. 4, can
be approximated with a linear function 2

u(soc(t)) = d0soc(t) + d1
that gives good fit within the allowed SOC range.

The variable change proposed in Murgovski et al. (2012a)
replaces the open cell voltage with

E(t) =
Cu2(t)nb

2
⇒ Ė(t) = Cnbu(t)u̇(t)

2 Approximating the open circuit voltage with an affine function in
SoC is equivalent to modeling the battery as a an ideal capacitor



where the used C = 2Q/Ū . 3 The battery dynamics and
constraints (11) can be then written as

Ė(t) ≤ − d0
RcQ

(
E(t)−

√
E2(t)− 2RcCPb(t)E(t)

)
(20a)

E(t) ∈ C

2

[
u2(socmin), u2(socmax)

]
nb (20b)

E(tf ) = E(t0) (20c)

The bounds on the cell current (10b) and the constraint
(10c) are expressed as bounds on the pack power

Pb(t) ≥
√

2E(t)n

C
imin −Rci

2
minnb (21a)

Pb(t) ≤ E(t)

2RcC
(21b)

E(t)−
√
E2(t)− 2RcCE(t)Pb(t) ≤ imaxRc

√
2CE(t)nb

(21c)

For a detailed derivation of the intermidiate steps nec-
essary to get to (20) and (21) as well as the proof of
convexity, please refer to Murgovski et al. (2012a).

5.3 Convex battery wear model

The SoH model from Section 3.1 is piece-wise approxi-
mated using the three quadratic curves shown in Fig. 5
leading to the following SoH model

˙soh(t) ≤ h0,jPi(·)2 + h1,j , j = 1, 2, 3, (22)

where h0,j , j = 1, 2, 3 all are negative. The resoning
behind (22) is as follows: if the battery wear is influencing
the optimal design, constraint (19) must be activated for
the optimal solution. Moreover, at all times one of the
constraints in (22) must be active, since otherwise the
battery is ”worn out” more than necessary which would be
non-optimal if the wear is influencing the optimal design.

Since the model in Section 3.1 is formulated and parame-
terized with experiments at the nominal SoC and nominal
voltage, Ū , whereas the battery model in 5.2 considers
the open circuit voltage as an affine function of SoC, the
following approximation is proposed when predicting the
battery wear,

Ė(t)

nb
= Cu(t)u̇(t) = Cu(t)d0 ˙soc(·) =

2Q

Ū
u(t)

d0i(·)
Q

=
2d0
Ū
u(t)i(·) ≈ 2d0

Ū
Ū i(·) =

2d0
Ū
Pi(·).

Using the variable change ˜soh(t) = nbsoh(t) and the
approximated internal battery power as above, (22) is
rewritten as

˙̃soh(t)− h0,j
Ū2Ė(t)2

4d20nb
− nbh1,j ≤ 0, j = 1, 2, 3, (23)

The constraints (23) are convex since nb > 0 and Ė(t)2

nb

can be recognized as the quadratic-over-linear elementary
convex function. The allowed SoH degradation over the
drive cycle is then

˜soh(t0)− s̃oh(tf ) ≤ ∆sohnb. (24)

3 Note that E is a scaled version of battery energy.

Table 2. Parameter values.

Vehicle frontal area Af = 7.54 m2

Aerodynamic drag coefficient cd = 0.7

Rolling resistance coefficient cr = 0.007

Wheel radius r = 0.509 m

Final gear γ = 4.7

Vehicle mass without buffer and EGU mvb = 13.7 t

EM inertia IEM = 2.3 kgm2

Inertia of final gear and wheels I = 41.8 kgm2

Sampling time 1 s

Battery cell specific energy 0.39 MJ/kg

Battery cell resistance, Rc 0.01 Ohm

Pa = 7 kW, wf = 0.15e/kWh, mEGUb = 800 kg

c0 = 6450e, cg = 6450e

6. EXAMPLE OF POWERTRAIN SIZING

This section gives an example of optimal powertrain sizing
and control of a city bus. Using the proposed battery wear
model the main question is to study the optimal battery
replacement strategy for different price scenarios of the
battery cells.

6.1 Problem setup

The bus is equipped with a 220 kW EM and a 150 kW
baseline EGU as in Fig. 3. Data for the city bus and the
used battery cells are given in Table 2. The example is done
for the bus line in Fig. 2, with four scenarios for the battery
cost: 500, 750, 1000, and 1250e/kWh, investigating the
optimal sizing and operational cost with four different
strategies for the number of battery replacements over the
time period, yg = 5 [years]: nr ∈ {1, 2, 3, 4}. Moreover, a
zero replacement strategy (nr = 0) was tried finding no
feasible solution.

The convex problem is written in a time discrete form and
a parser is used, CVX Grant and Boyd (2010), to translate
the problem in a general form of linear matrix inequalities
required by the solver. More details on the problem post-
treatment can be found in Murgovski et al. (2012b).

6.2 Results

An overview of the results are given in Fig. 6, showing
operating cost (eur/km), total battery energy capacity,
maximum EGU power, used SoC window (∆SoC), per-
centage of total brake energy regenerated, and maximum
c-rate for the four replacement strategies and the four
battery cell cost scenarios. The first thing to note is that
difference in operating cost is very small between having
two or three replacements. However, by looking carefully
the figure shows that the best replacement strategy for all
battery cell cost scenarios is to size and use the battery so
that it needs two replacements over the period of five years.
Although the operating cost is relatively similar between
the different replacement strategies, the same thing cannot
be said about the optimal battery size and the percentage
of total brake energy regenerated which changes signifi-
cantly between the different replacement strategies. The
reason is that (17) is active in all the shown results, which
simply means that the battery is sized and used to last
according to the replacement strategy. Thus, the battery is
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Fig. 6. Optimization study considering battery wear: The
figure shows the optimal sizing and operational cost
(cost of EGU, battery and fuel) with four different
battery cell cost scenarios and with 1 to 4 battery
replacements over the bus expected life time

almost three times bigger with one replacement compared
to with four. This means that with one replacement, the
used SoC window will be less than 5 %. Moreover, the
results show that both the percentage of total brake energy
regenerated into the battery and the EGU size depend
primarily on the battery cell cost and only slightly on the
replacement strategy.

In Fig. 7 histograms of the norm of the internal battery
cell power, |Pi|, are shown for the battery cell cost sce-
nario of 1000e/kWh. With fewer replacements the power
distribution is compressed to lower power levels. The in-
creasingly damaging power levels above 35 W are only
used if the battery is to be replaced at least two times.
With only one battery replacement, a significant part of
the total battery wear is induced at power levels below 20
W where the calendar-life effects are predominant. These
calendar-life effects explains why no feasible solution could
be found for the zero replacement strategy, since at these
low power levels simply doubling the battery size of the
two replacement strategy will not result in twice as long
battery life.

7. CONCLUSION AND DISCUSSION

The results clearly illustrate the importance of including
the battery wear into the component sizing and optimal
control problem. This expansion of the problem formula-
tion with the inclusion of a battery wear model is prac-
tically feasibly in the convex optimization approach since
computational complexity is polynomial in the number of
dynamic states.

The studied battery model relates battery wear to c-rate
and is based on experimental data. However, for use in
optimization studies it would be preferable to use a battery
wear model that separate the calendar-life effects.
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