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Engine on/off control for dimensioning hybrid
electric powertrains via convex optimization

Nikolce Murgovski, Lars Johannesson, and Jonas Sjöberg

Abstract—This paper presents a novel heuristic method for
optimal control of mixed-integer problems which for given
feasible values of the integer variables are convex in the rest of
the variables. The method is based on the Pontryagin’s maximum
principle and allows the problem to be solved using convex
optimization techniques. The advantage of this approach is the
short computation time for obtaining a solution near the global
optimum, which may otherwise need very long computation time
when solved by algorithms guaranteeing global optimum, such
as Dynamic Programming.

In this study the method is applied to the problem of battery
dimensioning and power split control of a plug-in hybrid electric
vehicle where the only integer variable is the engine on/off
control, but the method can be extended to problems with more
integer variables. The studied vehicle is a city bus which is
driven along a perfectly known bus line with a fixed charging
infrastructure. The bus can charge either at standstill, or while
driving along a tram line (slide-in).

The problem is approached in two different scenarios: first,
only the optimal power split control is obtained for several fixed
battery sizes; second, both battery size and power split control
are optimized simultaneously. Optimizations are performed over
four different bus lines and two different battery types, giving
solutions that are very close to the global optimum obtained by
Dynamic Programming.

Index Terms—plug-in/slide-in hybrid electric vehicle, battery
sizing, power management, convex optimization, Pontryagin’s
maximum principle

I. INTRODUCTION

Besides the Internal Combustion Engine (ICE), Hybrid

Electric Vehicles (HEVs) have an energy buffer, typically a

battery and/or a super capacitor, and one or more Electric

Machines (EMs). This gives them an additional degree of

freedom, compared to conventional vehicles, which allows for

a more efficient operation, due to: a possibility to recover

braking energy by using the EMs as generators and storing

the energy in the buffer; ability to shut down the ICE during

idling and low load demands; possibility to run the ICE at

more efficient load conditions while storing the excess energy

in the buffer. For a detailed overview on hybrid vehicles, see

e.g. [1].

Plug-in HEVs (PHEVs) have in addition a charging connec-

tor, which allows them to draw electric energy from the grid.

The PHEV’s that are being considered in public transport are

designed to charge from fast-charge docking stations while
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standing still at stops along the bus line [2], and while driving

along sections on the bus line [3], [4]. In [3] the PHEV city

bus is inductively charged from underground cables that have

been buried along sections of the bus line. In [4] the PHEV,

a dual-mode trolley bus, can draw electricity from overhead

wires along sections of existing tram lines. Throughout the

paper the charge-while-drive sections of the bus line will be

called slide-in intervals.

In order to be cost effective, the PHEV city bus is preferred

to drive a significant part of the bus line on electric power, even

though the charging intervals might be short and the charging

infrastructure might be sparsely distributed. This puts hard

constraints on the sizing of the energy buffer, i.e. determining

power rating and energy capacity, which is not only dependent

on the charging infrastructure, but also on the drive patterns,

the topography along the bus line, and varying factors, such

as fuel and electricity prices. Moreover, a complicating issue

when evaluating HEV city buses is that the energy efficiency

of the powertrain depends on how well adapted the energy

management strategy (power split control) is to the bus line

[5]. For PHEV city buses the energy management strategy

decides the operating point of the ICE and thereby when and

at which rate the energy buffer is to be discharged. When

optimizing the PHEV public transportation system based on a

dynamic model of the powertrain, a badly designed/adjusted

energy management may lead to a non-optimal size of the

energy buffer [6]. Hence, to overcome this problem, both the

size of the energy buffer and the energy management need to

be optimized simultaneously.

The problem of optimal sizing and control of HEVs is

traditionally solved by Dynamic Programming (DP) [7], for

which vast number of scientific articles are available [8], [9],

[10], [11], [12], [13]. The main advantage with DP is the

capability to use nonlinear, non-convex models of the com-

ponents consisting of continuous and integer (mixed-integer)

optimization variables. However, a serious limitation of DP is

that computation time increases exponentially with the number

of state variables [7]. As a consequence, the powertrain model

is typically limited to only one or possibly two continuous

state variables. Moreover, since DP operates by recursively

solving a smaller sub-problem for each time step, the second

limitation of DP is that it is not possible to directly include

the component sizing into the optimization. Instead, DP must

be run in several loops to obtain the optimal control over a

grid of component sizes, which further increases computation

time.

Another approach, proposed by [14], uses convex opti-

mization for optimal control of HEVs. In this early study
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the powertrain components are expressed with linear models

and the optimization problem is a linear program. In a more

recent study [15], the strategy is extended to powertrains with

quadratic losses for the components, and not only optimal

control is obtained, but also simultaneously the energy buffer

is sized by solving a semidefinite convex program [16]. The

study showed that for a battery with nearly constant voltage

within the allowed state of charge interval, the error due to

convexifying approximations of the powertrain components is

small. However, the disadvantage of this strategy is that it

relies on heuristic decision for the integer variables, such as

gear, and engine on/off.

This paper is an extension of [15] and proposes a novel

heuristic strategy that decides engine on/off control for PHEV

powertrains in series topology [1]. The strategy is based on the

Pontryagin’s maximum principle [17] and requires solving the

convex problem iteratively, while using the Hamiltonian [18],

[19] to obtain information on the possible improvement in cost

from flipping the value of the engine on/off signal at certain

time instances. The paper illustrates several examples where

the problem of cost optimal battery sizing, investigated for four

different bus lines and two different battery types, is solved

in less than 17min an a personal computer. The results are

validated with DP showing less than 0.35% difference from

the global optimum. Moreover, to test the convergence of the

algorithm, the problem of optimal control of a powertrain with

a fixed battery is solved for 176 different battery sizes. Each

optimization needed less than 5min and achieved a solution

within 0.03% of the global optimum.

The paper is outlined as follows: problem formulation and

modeling details are described in Section II; convex modeling

and lower bound on the optimization problem are discussed in

Section III; the novel heuristic algorithm is depicted in Section

IV; examples of optimal battery sizing are given in Section

V; and the paper is ended with discussion and conclusion in

Section VI and VII, respectively.

II. PROBLEM FORMULATION

This section gives background on the bus line and vehicle

model, and formulates the PHEV battery sizing and power

split control problem.

A. Bus line and vehicle model

The investigated vehicle is a slide-in/plug-in hybrid electric

bus in a series powertrain topology [1], where unlike the

conventional vehicles, its combustion engine is completely

decoupled from the wheels (Fig. 1). The wheels are propelled

by an EM that receives energy from the electric grid, battery,

and Engine-Generator Unit (EGU).

The bus is driven on a bus line described by a road gradient

and demanded velocity at each point of time (Fig. 2). The

bus line model, together with the vehicle inertia, aerodynamic

drag and rolling resistance, can be turned into torque Tv(n, t)
and speed ω(t) demanded by the EM. The EM, which has

torque T (t) (to improve readability decision variables will be

marked in bold), is designed to be able to deliver the demanded

torque, except during braking when not all torque may be

[+] [ ]

Fig. 1. Series PHEV powertrain model.

0

20

40

60

ve
lo
ci
ty

[k
m
/
h
]

0 10 20 30 40 50

−4

−2
0

2
4

6
g
ra
d
ie
n
t
[%

]

t [min]

Charging opportunity

Fig. 2. Bus line model described by demanded velocity and road gradient.
The bus line has three charging opportunities, shaded in the figure. The bus
can charge 4min while standing still at each end, and 2min while driving
along a tram line at about the middle of the bus line.

recuperated to charge the battery, but some portion Tbrk(t) ≥
0 is dissipated at the friction brakes, i.e.

T (t) = Tv(n, t)− Tbrk(t). (1)

The model considers a demanded torque Tv(n, t) that is

an affine function on battery mass, hence it is affine on the

number of battery cells n. A detailed description of Tv(n, t)
is given in Appendix A.

The powertrain electric path is described by a power balance

T (t)ω(t) + Ploss(T (t), t)

= Pb(i(t),n) + Pg(t)e(t) + Pc(t)c(t)− Pa

(2)

that relates the EM electric power, left side of the equality, to

the battery power Pb(i(t),n), the EGU power Pg(t), the grid

charging power Pc(t), and the power consumed by auxiliary

devices Pa. The losses of the EM, including losses of the

power electronics, are modeled as a quadratic function on

T (t),

Ploss(T (t), t) = b0(ω(t))T
2(t) + b1(ω(t))T (t) + b2(ω(t))

with speed dependent coefficients where bj(ω(t)) ≥ 0, j ∈
{0, 2}, ∀t ∈ [t0, tf ]. The EGU losses are also modeled by a
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quadratic function,

Pf (Pg(t), e(t)) =
(
a0P

2
g (t) + a1Pg(t) + a2

)
e(t) (3)

with aj ≥ 0, j ∈ {0, 2}, where e(t) is a binary signal that

is needed to allow zero fuel power, i.e. to remove the idling

losses a2 when the engine is off. More details on the validity

of the EM and EGU models can be found in [15].

The vehicle has three charging opportunities, 4min while

standing still at each end, and 2min while sliding in a tram

line at about the middle of the bus line. It is assumed,

for simplicity, that the chargers have equal maximum power

Pcmax and a constant charging efficiency η. The charging

opportunities, shaded in Fig. 2, are indicated by a binary signal

c(t).

B. Battery model

The battery consists of n identical cells equally divided in

parallel strings, with the strings constructed of cells connected

in series. In this study two types of cells are considered, a

high energy 44Ah cell and a high power 10Ah cell. The cells’

open circuit voltage, illustrated in Fig. 3, is approximated by a

constant voltage V , for simplicity. This gives good fit within

the operating state of charge (SOC) range of the batteries,

but the method presented in this study can also be applied to

batteries with affine voltage-SOC approximation (details on

convex modeling can be found in [20]).

Denoting by ic(t) and R the cell current and resistance,

respectively, the battery pack power can be expressed as

Pb(ic(t),n) = (V ic(t)−Ri2c(t))n (4)

showing that the power of each cell Pb(ic(t),n)/n is equal

and does not depend on the configuration of cells (se-

ries/parallel). Therefore, the main objective of this paper is

to determine the total number of cells in the pack. After the

optimal number of cells is obtained, the cells can be configured

in parallel strings such that the open circuit voltage of a string

fulfills a desired specification. It can be expected that the error

due to rounding the total number of cells to a multiple of the

number of cells in series will be small if the results point

to large number of cells. This will generally be the case if

the cells are chosen with very small capacity, as it can be

assumed that each cell is constructed by connecting smaller

cells in parallel. With this reasoning, the cells can be chosen

small enough to consider n as a real-valued variable. (Then,

the optimal number of cells can also be interpreted as the

optimal pack capacity.)

This paper studies two scenarios with n considered an

integer, or a real number. It has been shown in [15] that when

n has a real value it is beneficial to replace the cell current

in (4) with the pack current i(t) = nic(t), giving the battery

power equation

Pb(i(t),n) = V i(t)−R
i2(t)

n
. (5)

This replaces the non-convex product of two variables ic(t)n
in (4) by a quadratic-over-linear function i2(t)/n that is

convex in both i and n for n real and strictly positive number.
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Fig. 3. Model of the battery open circuit voltage. The solid lines represent
the original models and the dashed line is the approximation. Good fit is
expected in the allowed SOC range represented by the shaded region.

Using the pack current i(t), the battery dynamics can be

described by

Ė(t) = −V i(t)

where E(t) is the pack energy.

C. The mixed-integer optimization problem

The studied optimization problem is formulated to minimize

operational and component costs. The component cost is a

linear function on battery cells, wbn, while the operational

cost refers to cumulative use of fuel and electricity on the bus

line, which at each time instant can be represented as

J(Pg(t),Pc(t), e(t)) = wfPf (Pg(t), e(t)) +
wc

η
Pc(t). (6)

The coefficients, wb [currency] and wf , wc [currency/kWh] are

used to transform the two costs into a single unit.

The optimization problem can then be summarized as the

following nonlinear mixed-integer minimization problem

minimize∫ tf

t0

J(Pg(t),Pc(t), e(t))dt+ wbn (7a)

subject to, ∀t ∈ [t0, tf ],

T (t) ≥ max {Tmin(ω(t)), Tv(n, t)} (7b)

T (t)ω(t) + Ploss(T (t), t)

≤ Pb(i(t),n) + Pg(t)e(t) + Pc(t)c(t)− Pa

(7c)

i(t) ∈ [icmin, icmax]n (7d)

Pg(t) ∈ [0, Pgmax] (7e)

Pc(t) ∈ [0, ηPcmax] (7f)

Ė(t) = −V i(t) (7g)

E(t) ∈ [socmin, socmax]QV n (7h)

E(tf ) = E(t0) = soc0QV n (7i)

e(t) ∈ {0, 1} (7j)

n > 0 (7k)

n ∈
{
Z, in scenario where n is an integer number

R, in scenario where n is a real number
(7l)

Pg(t),Pc(t),T (t),E(t), i(t) ∈ R (7m)

where Pg(t), Pc(t), T (t), E(t), e(t), i(t) and n are opti-

mization variables. In the view of optimal control, that will
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be further discussed in Section IV, Pg(t), Pc(t), T (t), e(t)
and i(t) are control signals, E(t) is a state, and n is a

design parameter. The optimization includes bounds on the

cell current icmin, icmax, maximum EGU power Pgmax, initial

SOC soc0, allowed SOC range socmin, socmax, and a speed

dependent bound on the EM generating torque Tmin(ω(t)).
The battery cell capacity is denoted by Q and the optimization

requires charge sustaining operation by (7i). The initial and

final time of the bus line are denoted by t0 and tf , respectively.

It can be noticed that (1) and (2) have been relaxed with

inequalities in (7b) and (7c) and the braking torque has been

taken outside the optimization problem. The reason for doing

this will become clear in the following section, but at the

moment we claim that although the relaxation does change the

optimization problem, it does not change the optimal result.

Namely, in (7c) the battery and the generator are allowed

to produce more power than the electrical power needed by

the EM to drive the bus. Similarly (7b) allows the EM to

generate more mechanical power than needed. It is obvious

that at the optimum these constraints will hold with equality,

since otherwise energy will be wasted unnecessarily. The only

exception is during braking when (7b) can be satisfied with

inequality, only if the optimal battery is small and the brake

recuperation power is limited by the battery through (7d),

rather than by the EM. In either case of bounded recuperation

power, the friction brakes will be used to compensate for

the remaining braking power. Hence, after the optimization

is finished, the optimal braking power can be derived directly

from (1) and (2).

The battery dimensioning problem in this paper is ap-

proached in two different scenarios. In the first scenario the

variable n is taken outside the optimization, such that the

mixed-integer optimal control problem (7) is solved over a

grid of fixed battery sizes. The disadvantage of this scenario

is the long computation time due to the iterative solution of

the optimal control problem.

In the second scenario n is considered a real number and in

(7) the battery is dimensioned simultaneously when obtaining

the optimal control. An advantage of this approach is that

it might give shorter computation time, because a loop over

battery sizes is not needed.

III. CONVEX OPTIMIZATION

This section gives a brief background on convex optimiza-

tion and discusses how convex optimization can be used to find

a lower bound to the solution of the mixed-integer optimization

problem.

A. Definition for a convex problem

A convex problem, in its general form, can be written as

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., p

x ∈ X
where X ⊆ R

n is a convex set, fi(x) are convex functions

and hj(x) are affine in the vector of decision variables x
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Fig. 4. The original and relaxed EGU models. For generator power lower
than the power at peak efficiency, the efficiency of the relaxed model is equal
to the peak efficiency of the original model. Above this point the efficiency
of the relaxed model follows the efficiency of the original model.

[16]. For the dimensioning problem (7), the vector x will be

very large (thousands of elements), because it will include

the optimization variables in (7) for all the time instances

tk ∈ T of a typically large discrete set T . Moreover, the

problem (7) has only affine functions in equality constraints

and nonlinear functions in inequality constraints (hence the

reason for relaxing (1) and (2)), but it is not convex. This

is because even when n is considered a real number, the

control variable e(t) belongs to an integer set. Besides, the

product Pg(t)e(t) is not a convex function, even if e(t) could

be relaxed to a real number.

B. Lower bound to the mixed-integer problem

A common approach for optimizing mixed-integer problems

is to relax the integer variables to real value variables [21]. The

obtained solution of the relaxed problem is then a lower bound

to the mixed-integer problem. Moreover, if the optimal values

of the relaxed variables are nearly integer, then techniques

exist, not too computationally demanding, to obtain the opti-

mal solution of the mixed-integer problem [21]. This section

investigates whether or not the relaxation of the engine on/off

control should be used for obtaining the optimal solution of the

mixed-integer, dimensioning and control problem (7), when n
is considered a real number.

With e(t) relaxed to a real value, a convex form of (7)

can be obtained by introducing a variable change P̃g(t) =
Pg(t)e(t). This will replace (3), (7c), (7e) and (7j) with

Pf (P̃g(t), e(t)) = a0
P̃ 2

g (t)

e(t)
+ a1P̃g(t) + a2e(t) (8a)

T (t)ω(t) + Ploss(T (t), t)

≤ Pb(i(t),n) + P̃g(t) + Pc(t)c(t)− Pa

(8b)

P̃g(t) ∈ [0, e(t)Pg,max] (8c)

e(t) ∈ (0, 1] (8d)

where e(t) is limited to strictly positive to avoid division by

zero in (8a).

This convex problem can be easily solved with publicly

available tools, e.g. SeDuMi [22], but the implications from

the relaxation of e(t) can also be reasoned analytically. It can

be easily found that the optimal value e∗(t) that minimizes the
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fuel power (8a) can be expressed as a function of the generator

power

e∗(t) = min
{
P̃g(t)

√
a0/a2, 1

}
.

When this is replaced back to (8a), an expression can be

obtained

P ∗
f (P̃g(t)) =

{
P̃g(t)

(
2
√
a0a2 + a1

)
, P̃g(t) ≤

√
a2/a0

a0P̃
2
g (t) + a1P̃g(t) + a2, otherwise.

which indicates that the relaxation of e(t) causes significant

changes to the original EGU model, as illustrated in Fig.

4. Namely, the relaxed EGU model removes an important

limitation of the ICE, the low efficiency during idling. Without

this limitation, the optimal control e∗(t) is not mainly binary,

but a continuous value in (0, 1] that smoothly follows the

changes in demanded power. Hence, besides using it as a lower

bound, the solution of this relaxed problem will not be used

for obtaining the solution of the mixed-integer problem.

IV. HEURISTICS BASED ON COSTATE

This section introduces a novel strategy for optimal control

of the studied mixed-integer problem. The strategy starts by

deciding feasible values for the integer variable e(t) at each

point of time. Then, the optimization problem (7) becomes a

convex sub-problem that can be solved to obtain the optimal

values of the rest of the optimization variables. The optimal

solution of the sub-problem is used to iteratively improve

the initial choice of e(t) in direction of minimizing the

optimization cost of the convex sub-problem solved in a loop.

A method to obtain an initial feasible solution for e(t) is

discussed later in Section IV-B.

At the optimal solution of the sub-problem, the Hamiltonian

[18], [19] is investigated

H∗(·) = J(P ∗
g (t),P

∗
c (t), e(t))− V λ∗(t)i∗(t) (9)

that gives an equivalent fuel-electricity cost at each time

instance on the bus line. The symbol · in H∗(·) represents a

compact notation of a function of decision variables, and λ(t)
is the costate of the system, also known as adjoint state, or

Lagrange multiplier [23], [24]. In the optimal control of hybrid

vehicles, −λ(t) is also referred to as equivalence factor [25],

[26], since it translates the electric energy used by the EM to

an equivalent fuel consumption. In this study the unit of λ(t)
is [currency/kWh].

A. The costate heuristic method

The idea of the costate method is built upon the assumption

that the optimal costate of the convex sub-problem is close

to the globally optimal costate of the mixed-integer problem.

First an initial feasible value for e(t) is decided, the convex

sub-problem is solved and the costate λ∗(t) is obtained. Then

this costate is used to modify the initial integer control e(t),
which when used again in the convex sub-problem may further

decrease the cost.

In order to decide at which time instances e(t) is to be mod-

ified, a so called Complementary Hamiltonian is constructed

H̃(¬e(t), ·), where the engine on/off signal has flipped value

at each time instance (here e(t) is also used as a Boolean

variable). In this context H̃(¬e(t), ·) is a measure of the

possible decrease in cost by changing the integer control e(t)
at certain time instances. At a predefined number, Nf , of time

instances with highest difference H∗(e(t), ·) − H̃∗(¬e(t), ·),
the value of e(t) is flipped and the convex sub-problem is

solved again for the recently obtained e(t). This procedure is

repeated while there are improvements in the cost and it can

be summarized as follows:

1) A feasible solution for the integer control e(t) is decided

and the globally minimal cost is assigned infinity, such

that the first feasible solution will be accepted.

2) For the choice of e(t) the optimal solution of the convex

sub-problem is obtained. If the problem is infeasible or

there is no improvement in cost, then go to 5.

3) From the solution of the sub-problem, the optimal

costate λ∗(t) is obtained. Using the costate, H∗(e(t), ·)
is computed and H̃(¬e(t), ·) is minimized.

4) The value of e(t) is flipped at Nf time instances with

the highest difference H∗(e(t), ·) − H̃∗(¬e(t), ·), and

the algorithm goes back to step 2.

5) If Nf > 1, then Nf = round(Nf/2), the last change of

e(t) is canceled, and the algorithm goes back to 4. Exit

otherwise.

The initial value for Nf = Ninit is an engineering de-

cision that may affect the number of iterations needed by

the algorithm. If the initial solution is known to be close to

the global optimum, then Ninit can be chosen rather small.

If the initial solution is known to be far from the global

optimum, or if there is no knowledge about it, then Ninit

can be as large as 50% of the number of time samples in

the bus line. However, choosing a large value for Ninit will

not significantly degrade the performance of the algorithm.

In a worst case scenario where Ninit is large and the initial

engine on/off control differs from the global optimum in only

one time instance, the algorithm will need to solve the convex

sub-problem log2 Ninit times before Nf decreases to 1 and a

change in e(t) is eventually performed.

Later, in the examples in Section V, the initial value for Nf

has been chosen half the number of times samples in the bus

line.

B. A feasible engine on/off control

If the mixed-integer problem (7) has a feasible solution,

then a trivial solution is choosing e(t) that never turns off

the engine. A better solution is to turn on the engine only for

high power demands where the EGU is more efficient. Such a

solution has been proposed in [15], where the engine is turned

on when the power Pbase(t) of the vehicle without the weight

of the battery exceeds a certain threshold P ∗
on.

Assuming that within the slide-in interval the vehicle will

be mainly driven by grid power, a feasible on/off control is

e(t) =

{
1, Pbase(t)− ηPcmaxc(t) > P ∗

on

0, otherwise.
(10)
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The optimal power threshold P ∗
on is different for different bus

lines. For each bus line P ∗
on can be found as the threshold

that gives a feasible solution and minimizes the cost of the

convex sub-problem iteratively solved for several gridded

(discrete) values Ponj
∈ [0, Pgmax] within the power range of

the vehicle.

Note that with this procedure the optimal battery size

and powertrain control can be obtained simultaneously. This

is because for a given e(t) the optimization sub-problem

(7) is convex in n as well as in the optimization vari-

ables Pg(t),Pc(t),T (t),E(t) and i(t). Moreover, it has been

shown in [15] that this solution is close to the global optimum,

both in total optimization cost and battery size. This is also

observed in the results in Section V-D.

C. Computing the costate

Most solvers of convex problem, e.g. SeDuMi [22], provide

the Lagrangian dual variables together with the primal optimal

solution. Then, the costate required in (9) will be the dual

variable associated to constraint (7g). In this section, however,

the costate will be derived using the Pontryagin’s maximum

principle [17]. This gives a better insight on the nature of

the costate function and on the time instances at which the

costate is not strictly defined. For didactic reasons, the process

is described through a snapshot, see Fig. 5, taken during the

iterations of the costate algorithm for an example of optimal

battery dimensioning and control of a PHEV bus. The snapshot

depicts the optimal SOC and costate trajectory of the convex

sub-problem of the bus driven on the bus line shown in Fig.

2, with a battery consisting of 10Ah cells.

1) Necessary conditions: The necessary condition for an

extremum of the Hamiltonian

dλ∗(t)
dt

= −
(
∂H(·)
∂E(t)

)∗
= 0, ∀t ∈ TE (11)

reveals that the costate is constant in time intervals TE without

active state constraints, since H(·) does not depend explicitly

on E(t). By introducing an operator free(E(t)) that gives

”true” if (7h) is not active, the set TE can be mathematically

described by

TE = {t ∈ [t0, tf ] | free(E(t))} . (12)

The value of the costate in these intervals can be obtained

from the second necessary condition for an extremum(
∂H(·)
∂u(t)

)∗
= 0, ∀t ∈ {T1 ∪ T2} (13)

with u(t) =
[
i(t) Pc(t) Pg(t) T (t)

]T
, at time instances

t ∈ {T1 ∪ T2} without active constraints on control signals of

u∗(t). Moreover, the convexity of the problem ensures that

H∗(·) is in fact a minumum, i.e.

∂2H(·)
∂u2(t)

≥ 0, ∀t ∈ [t0, tf ].

For a chosen on/off control e(t) the convex optimization

will find u∗(t) that minimizes the total cost of the sub-problem

and the only unknown in (13) will be λ∗(t). It can be shown

(detailed in Appendix B) that the optimal costate, illustrated

by circles in Fig. 5, is

λ∗(t) =

{
−wf

(
2aoP

∗
g (t) + a1

) (
1− 2R

n∗V i∗(t)
)
, t ∈ T1

−wc

η

(
1− 2R

n∗V i∗(t)
)
, t ∈ T2

(14)

with the sets T1, T2 described by

T1 =
{
t ∈ [t0, tf ] | e(t) ∧ ¬c(t) ∧ free(i∗(t)) ∧ free(P ∗

g (t))
}

T2 =
{
t ∈ [t0, tf ] | free(i∗(t)) ∧ free(P ∗

c (t)) ∧ c(t)

∧
(
e(t) ∧ free(P ∗

g (t)) ∨ ¬e(t)
)}

where free(i(t)), free(Pg(t)) and free(Pc(t)) give true if the

constraints (7d), (7e) and (7f), respectively, are not active.

Because λ∗(t) is a piecewise constant function, it can be

completely reconstructed along the bus line if each of the

intervals Ik contains at least one time instance t ∈ {T1 ∪ T2}.

Note that (13) may hold with equality at other time instances

not belonging to T1 and T2, when u∗(t) is inside the bounded

region and the optimal solution is singular. However, the

singularity of the solution will not be explicitly studied.

Instead, to obtain more information on the costate, its upper

bound will be investigated.

2) Upper bound to the costate: When no time instance in

Ik belongs to T1 or T2, the value of the costate in Ik cannot be

obtained from (14). Such a situation is depicted in I1 in Fig.

5, where it was found optimal to not charge from the grid

during the first charging opportunity. (With the high power

battery cells the vehicle can recuperate the free of charge

braking energy available at the beginning of the cycle due

to the negative road gradient.)

In these cases the costate is assigned an upper bound λ̄(t)

λ∗(t) = minLk, ∀t ∈ Ik
Lk =

{
λ̄(t) | t ∈ Ik

}
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with λ̄(t) computed exactly as in (14), but with T1, T2 replaced

by

T3 = {t ∈ [t0, tf ] | e(t) ∧ ¬c(t)}
T4 = {t ∈ [t0, tf ] | c(t)}

respectively. The upper bound λ̄(t) can be interpreted as the

value of the costate that will minimize the Hamiltonian in Ik
with a control u∗(t) that is free, but very close to the bounds

(if λ̄(t) is indeed the optimal costate in some time interval,

i.e. λ̄(t) = λ∗(t), then the interval is a singular arc [27]).

Note that although λ∗(t) is constant in Ik, λ̄(t) may not

be constant, see e.g. I4 in Fig. 5.

3) Intervals with undefined costate: In time intervals Ik
where no time instance belongs to

⋃4
j=1 Tj , neither the costate,

nor its upper bound can be computed. Experiments showed

that such intervals are rare. Nevertheless, these intervals have

been given highest priority in the list of time instances where

e(t) will be flipped. This action can be seen as a deliberate

disturbance of e(t) that may give more constructive informa-

tion on the next iteration of the costate heuristic algorithm, i.e.

in the next iteration some of these time instance may belong

to
⋃4

j=1 Tj .

The set of all time instances where the costate is undefined

is denoted by Tu.

D. The Complementary Hamiltonian

The Complementary Hamiltonian H̃(¬e(t), ·), involved in

step 4) of the costate algorithm, is used to give an indication

of what can be gained by flipping the value of the integer

control e(t). When minimizing H̃(¬e(t), ·), the electric en-

ergy equivalence to fuel consumption, i.e. the costate λ∗(t),
is considered to be equal to the one that minimizes the Hamil-

tonian H(e(t), ·). Moreover, for the problem of simultaneous

dimensioning and control, it is also assumed that the battery

size n∗ will stay equal to the one used in H∗(e(t), ·) (this

is further discussed in Section IV-E). Thus, the optimization

problem that minimizes the Complementary Hamiltonian can

be formulated as a convex problem

minimize∫
T5

(J(Pg(t),Pc(t),¬e(t))− λ∗(t)V i(t)) dt (15a)

subject to (7b)-(7f), ∀t ∈ T5 (15b)

with optimization variables Pg(t), Pc(t) and i(t). The set T5
includes the time instances where λ∗(t) is obtained and where

the battery and EGU can meet the power demand, i.e.

T5 =
{
t ∈ [t0, tf ]\Tu | Tv(n

∗, t)ω(t)

+ Pa + Ploss(Tv(n
∗, t), t)

≤ Pbmax + Pgmax¬e(t) + ηPcmaxc(t)
}

with the maximum battery power found as

Pbmax = n∗ min

{
V icmax −Ri2cmax,

V 2

4R

}
.

At time instances t �∈ T5, H̃∗(·) has been assigned an infinite

cost making these time instances the least desirable choices

for flipping the engine on/off control, as they will lead to

infeasible solution.

E. Mixed-integer control problems with design parameters

When minimizing the Complementary Hamiltonian in (15)

the battery size n∗ is kept equal to the one used in H∗(e(t), ·).
The reason for doing this is to obtain a control problem

without design parameters that could be easily analyzed using

the classical Optimal Control Theory [27]. A more detailed

investigation on how to include the design parameter n
when obtaining the extremum of H̃(·) will be carried on in

future studies. This will be especially relevant if additional

powertrain components, such as EM, EGU, ICE, are to be

dimensioned simultaneously.

As a consequence, it can be expected that the Complemen-

tary Hamiltonian may give indications on how to improve the

initial integer control, but it may not give indications on how to

improve the initial battery size in two consecutive iterations of

the proposed algorithm. For this reason, the initial battery size

of the simultaneous dimensioning and control sub-problem

(7) should be chosen close to the globally optimal battery

size. A strategy for obtaining such an initial solution for the

studied problem has been given in Section IV-B, and is further

verified in the example in Section V-D. However, for a general

parameter design and control problem, it may not be easy to

find such a solution. In that case, the proposed costate method

could be used by solving the control problem iteratively for

several fixed values of the design parameters.

V. EXAMPLES OF OPTIMAL CONTROL AND BATTERY

DIMENSIONING

This section gives several examples of optimal battery

dimensioning and control of a PHEV bus. To obtain solutions

(and lower bounds) to these examples, the following optimiza-

tion methods/setups have been implemented.

• Dynamic Programming (DP) is used for obtaining the

global optimum of the mixed integer problem (7) for

several fixed battery sizes. The solution from DP is

used only for validation purposes. Details concerning its

implementation are given in Appendix C.

• The proposed costate heuristic method is used for obtain-

ing the optimal mixed-integer control for battery sizes

that were also used in DP. In each step of the algorithm,

the Hamiltonian is minimized solving the convex optimal

control sub-problem (7) with both e(t) and n having

fixed values. In the rest of the paper this convex sub-

problem will be referred to as CF (Convex, Fixed battery).

• The proposed costate heuristic method is also used for

solving the problem of simultaneous dimensioning and

control. In each iteration of the algorithm the convex sub-

problem (7) is solved where e(t) is fixed and n is a real-

valued optimization variable. This convex sub-problem

will be referred to as CS (Convex, Sizing battery).

• The above two instances of the costate heuristic method

include minimization of the Complementary Hamiltonian.
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TABLE I
RESULTS FROM OPTIMIZATION WITH DYNAMIC PROGRAMMING AND CONVEX OPTIMIZATION.

Battery cell capacity 44Ah 10Ah

Bus line L1 L2 L3 L4 L1 L2 L3 L4

Dynamic Programming (DP)
for fixed battery sizes.

n 157 92 237 296 138 121 174 168

Jtotal 45.75 39.22 46.37 52.78 30.85 23.60 24.42 31.04 EUR/100km

Jfuel 29.85 27.24 20.24 22.46 20.72 11.53 8.39 16.57 EUR/100km

Jel 4.04 5.03 8.22 7.95 2.79 5.62 6.78 5.53 EUR/100km

Jbat 11.86 6.95 17.91 22.36 7.34 6.44 9.26 8.94 EUR/100km

crate 36.48 24.53 49.14 62.14 9.41 21.53 29.58 29.52 %

Costate heuristic method for
fixed battery sizes. The
convex sub-problem used in
the method is CF.

n 157 92 237 296 138 121 174 168

Jtotal 45.75 39.21 46.37 52.76 30.85 23.60 24.42 31.03 EUR/100km

Jfuel 29.84 27.22 20.24 22.43 20.72 11.53 8.38 16.57 EUR/100km

Jel 4.05 5.04 8.22 7.97 2.79 5.62 6.78 5.53 EUR/100km

Jbat 11.86 6.95 17.91 22.36 7.34 6.44 9.26 8.94 EUR/100km

δ 0.01 -0.02 -0.00 -0.03 0.01 -0.00 -0.03 -0.01 %

Costate heuristic method for
simultaneous dimensioning
and control. The convex
sub-problem used in the
method is CS.

n 156.93 78.11 254.96 304.97 137.93 121.53 174.90 168.13

Jtotal 45.76 39.30 46.52 52.84 30.84 23.60 24.42 31.03 EUR/100km

Jfuel 29.86 28.71 18.81 21.63 20.72 11.49 8.31 16.56 EUR/100km

Jel 4.05 4.69 8.45 8.17 2.79 5.64 6.80 5.53 EUR/100km

Jbat 11.86 5.90 19.26 23.04 7.34 6.47 9.31 8.95 EUR/100km

δ 0.02 0.20 0.32 0.12 -0.02 -0.00 -0.03 -0.01 %

Initial solution for the
costate method using CS.
The initial engine on/off
control is found by (10).

n 158.14 78.43 254.96 313.25 137.93 121.53 184.73 168.13

Jtotal 45.77 39.36 46.54 53.08 31.11 23.61 24.46 31.04 EUR/100km

Jfuel 29.75 28.74 18.82 21.06 20.98 11.51 7.65 16.57 EUR/100km

Jel 4.07 4.70 8.45 8.35 2.79 5.64 6.98 5.53 EUR/100km

Jbat 11.95 5.93 19.26 23.67 7.34 6.47 9.83 8.95 EUR/100km

δ 0.05 0.37 0.37 0.57 0.85 0.07 0.15 0.02 %

Lower bound to the
dimensioning problem.

n 66.28 4.52 108.20 245.22 137.93 117.72 170.40 168.13

Jtotal 40.69 33.37 39.98 50.00 30.58 23.33 24.24 30.82 EUR/100km

Jtotal, Jfuel, Jel and Jbat are the total optimization cost, fuel cost, cost for used electricity, and cost for battery, respectively;

δ is relative error in total cost; crate is average charging rate from the chargers at the ends of the bus line.

The convex problem (15) minimizing the Complementary

Hamiltonian will be referred to as CH.

• Lower bound to the mixed-integer problem is obtained by

solving the convex problem described in Section III-B.

The results are given in the last row of Table I, but they

are not further discussed in the paper.

A. Problem setup

The studied PHEV is equipped with a 220 kW EM and a

180 kW EGU as in Fig. 4. Its battery can be either energy op-

timized with cell capacity of 44Ah and cost of 500EUR/kWh,

or power optimized with cell capacity of 10Ah and cost of

1500EUR/kWh. The allowed SOC range is within 25-75%

and the operation is charge sustaining, where it is required to

start and end at 50% SOC.

The battery sizing is investigated on four bus lines, from

which the first one (L1) is given in Fig. 2, and the other three

are certified emission test cycles available online1. The second

bus line (L2) is the City Suburban Cycle, the third (L3) is the

Orange County Bus Cycle and the forth (L4) is the Manhattan

Bus Cycle repeated four times. On all four bus lines the vehicle

can charge 4min at each end and 2min slide-in at about the

middle. The chargers have maximum power of 100 kW.

1The test cycles can be found on http://www.dieselnet.com/standards/cycles,
March 2012.

B. The global optimum

The global optimum obtained by DP is given in the first row

of Table I, while the cost vs. number of battery cells is shown

in Fig. 6 and magnified around the optimum in Fig. 7. To make

the comparison easier, the cost is given in [EUR/100km]. The

results indicate that both the battery type and the bus line have

significant impact on the optimal battery size. The power limit

of the chargers, however, does not affect the battery size, as

the vehicle never charges with rate greater than 63%. This

is because battery losses increase with charging power, and

second, the batteries are too expensive to be large enough to

accumulate the available grid energy. In the case of the 44Ah

cells, it is the power limit of the cell that decides the battery

size, since these cells never reach high state of charge, see

Fig. 8(a). The battery with the 10Ah cells is instead sized by

its energy limit, see Fig. 8(b).

The dimensioning problem is solved by running DP at

gridded values of the battery size, where the grid is made

denser around the global optimum. Within the magnified

regions shown in Fig. 7, there are in total 176 battery sizes

for all four bus lines and the two battery types (see the dot

marker). The high number of investigated battery sizes is

needed to improve the solution accuracy, because near the

optimum the cost may not vary much with battery size and

a difference of 100 battery cells may give just 1% change in
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Fig. 6. Optimal cost vs. battery size obtained by Dynamic Programming. The circles indicate the global optimum of the battery dimensioning problem. The
shaded regions around the optimum are magnified in Fig. 7.
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Fig. 7. Optimal cost vs. battery size. The solution of the mixed-integer control problem solved by DP for fixed battery sizes is indicated by the thick line,
while the global optimum of the dimensioning problem is depicted by the circle. The optimal solution of the costate method (using CF) for the mixed-integer
control problem is found at the fixed battery sizes indicated by the dot marker. The solution of the costate method (using CS) for simultaneous dimensioning
and control is indicated by the plus. The initial solution of the latter costate method, where the initial engine on/off control is obtained from (10), is indicated
by the square.

total cost (see Fig. 6). For each fixed battery size, the algorithm

requires about 1.5-2.5 h on a standard PC (2.67GHz dual core

CPU and 4GB RAM), when configured for a highly accurate

result. Hence, to keep the computation time within reasonable

limits, the problem is solved using a computer cluster.

C. Results from the costate method

To investigate the performance of the costate method on

the mixed-integer optimal control problem, CF is solved at the

176 fixed battery sizes that were also used in DP. Moreover, to

better test the convergence of the costate method, the trivial

initial solution is used that keeps the engine on at all time

instances.

The results are illustrated in Fig. 7 and show that the

global optimum of the mixed-integer control problem (for

fixed battery sizes) is reached for all the 176 battery sizes.

More specifically, it was found that the distance to the global

optimum (represented as relative error in total cost)

δ =
costcostate method − costDP

costDP

is below 0.03% for all the investigated cases. For more than

90% of the cases the costate method gives even better result

than DP (negative values in Table I). This is possibly due to the

discretization error in DP, or the error due to variable scaling

in CF. Detailed results for the optimal battery sizes obtained

by the costate method are shown in the second row of Table
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Fig. 8. Optimal battery SOC trajectories obtained by Dynamic Programming (DP) and convex optimization of the simultaneous sizing and control sub-problem
(CS) using costate heuristics for the engine on/off control. The four plots, from top to bottom, represent the four bus lines L1 to L4. Charging opportunities
are depicted by the shaded regions.

I.

One execution of CF requires about 4-10 s, while one

execution of CH needs about 4-10 s, depending on the bus

line. The costate method requires in average 20 executions of

CF and 10 executions of CH. Hence, the optimal control for

a fixed battery can be obtained in less than 5min.

D. Simultaneous dimensioning and control

In this section the costate method is used to solve the

problem of simultaneous dimensioning and control when the

battery size is a real-valued optimization variable. The purpose

of this example is to show that the proposed costate method

may not perform well on the control problem with design

parameters.

First, an initial solution is chosen with the engine turned on

at all time instances. The investigated PHEV is driven on L3

using the energy optimized battery cells, and the successive

steps of the costate algorithm are illustrated in Fig. 9(a).

This example shows that the costate method is not able to

move the battery size further from the initial value. There are

two reasons for this; one is that at this stage of development

no mechanism has been implemented to improve the battery

size when minimizing the Complementary Hamiltonian, as

discussed in Section IV-D. The other reason is a premature

convergence that traps the solution in a local minimum. With

the engine on at all time instances CS gives small battery size.

Then, for this battery size the Complementary Hamiltonian

suggests many (Nf ) time instances at which the engine on/off

control flips value, thus drastically decreasing the total cost.

In the next step when the Hamiltonian is minimized for the

recently obtained on/off control, the solution is already trapped

in a local minimum and CS gives a battery size that is close to

the initial one. In certain cases the algorithm may still converge

to the global optimum, as illustrated in the example in Fig.

9(b). However, a general conclusion can be drawn that the

costate method may decrease the initial cost by improving the

engine on/off control, but it may not be able to improve the

design parameter, so it may be crucial to start with an initial

battery size that is close to the optimal one.

Second, the costate method is evaluated with a better initial

solution where the initial engine on/off control is obtained

from (10). It can be noticed in the fourth row of Table I

that this initial solution is already within 0.9% to the global

optimum, thus supporting the same outcome observed in [15]

that even this simple heuristic choice is a viable approach when

dimensioning PHEVs with a series topology. Starting from

this feasible solution, the costate method further decreases the

difference in total cost to less than 0.35%, which has been

shown in the third row of Table I.

The optimal SOC trajectories of both DP and the costate

method are shown in Fig. 8. It can be seen that both algorithms

point to the same solution, as the lines almost completely

overlap.

The total computation time needed to solve the problem of

simultaneous dimensioning and control is less than 16.3min.

Up to 10min of this time are needed to obtain the initial

solution. This is because 30 power levels are investigated to

obtain the optimal power threshold above which the engine

is turned on, and for each power level CS is solved in about

8-20 s, depending on the bus line. The remaining 6.3min are

due to the costate method that requires executing CS and CH,

15 and 8 times in average, respectively.

VI. DISCUSSION AND FUTURE WORK

This section points out the key benefits of the proposed

methodology and discusses possibilities for further studies.
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Fig. 9. Successive steps of the costate method for simultaneous dimensioning and control of the PHEV driven on L3. The direction of movement is towards
decreasing total cost. The thin solid and dotted lines show evaluations of the algorithm with an initial solution e(t) = 1, ∀t ∈ [t0, tf ], and with an initial
solution obtained from (10), respectively. The latter (better) initial solution is indicated by a square. The boxed shaded regions to the right of the plots are
magnifications around the global optimum indicated by a circle. The first and second number in parentheses show the number of time instances the engine
is turned on and off, respectively, in the first few iterations of the algorithm.

A. Multidimensional problems

This study showed an alternative approach for solving

the one-dimensional (one state) battery sizing and control

problem. The simplicity of the problem allowed it to be

solved with DP. In this study DP was configured to deliver

very high accuracy that may not be necessary in industrial

applications. Moreover, dedicated solvers exist [28] that may

further decrease the computation time of DP to be comparable

with the costate method.

However, the true advantage of the proposed method is in

the possibility of optimizing multi-dimensional problems for

which DP will need very long computation time. One example

could be simultaneous dimensioning and control of a power-

train with two or more energy buffers, as investigated in [15],

or an optimal control of a powertrain with thermal states of the

vehicle components, such as the battery, EM, EGU, catalytic

converter, passenger compartment. This is especially important

for the electric components that could easily overheat if not

managed properly. (An example illustrating convex modeling

steps for including a thermal state in the model is given in

[29].)

Each new state in the multidimensional model will introduce

an additional costate in the Hamiltonian. This will affect the

costate method and future work is needed to extend the method

to such cases.

B. Future studies

The examples in this study showed that using costate

heuristics for the engine on/off control, the solution of the

dimensioning problem (using CS) is close to the global opti-

mum, while the control problem (CF) for a fixed battery size

practically reaches the global optimum. Although experimen-

tal, these results are promising and certainly show the need

for further studies to investigate in which cases the algorithm

will converge and in which it may not.

The computation time required by the costate method is

short, about 5min for a fixed battery size, but it could be

decreased even further. For example, instead of using CH that

requires 4-10 s, H̃∗(·) can be solved analytically in millisec-

onds. Similarly, H∗(·) could also be solved analytically, if it

is known that the state is not activating any constraints, as

with the 44Ah cell. Then, the costate is constant, it needs to

be computed only once, and it can be found either by convex

optimization, or by root finding algorithm that gives a costate

which preserves the charge sustain operation [30].

Future studies may focus on extending the strategy on

problems with more integer control variables, e.g. parallel

powertrains that have gear as an additional integer control

signal. If the set of discrete values for the integer variables is

small, then the costate strategy can be applied immediately by

constructing new Complementary Hamiltonian for each new

discrete value. If the discrete set is large, then instead of using

Complementary Hamiltonians, improved values for the integer

variable could be obtained using solvers for integer problems

or with DP. These solvers will need relatively short compu-

tation time, because the costates can be used to eliminate the

need for the continuous states in the problem (of course the

same assumption will be used that the optimal costates will

not change much between two consecutive iterations of the

proposed algorithm).

Investigations are also needed for problems where states

are integer variables. For example, the PHEV transportation

problem could be easily transformed into an integer state

problem, if the model penalizes (or prevents) frequent engine
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TABLE II
PARAMETER VALUES.

Vehicle frontal area A = 7.54m2

Aerodynamic drag coefficient cd = 0.7
Rolling resistance coefficient cr = 0.007
Wheel radius r = 0.509m
Final gear γ = 4.7
Vehicle mass without the battery m = 14.5 t
EM inertia IEM = 2.3 kgm2

Inertia of final gear and wheels I = 41.8 kgm2

Charging stations efficiency η = 92%
Power used by auxiliaries Pa = 7 kW
Fuel price wf = 0.11EUR/kWh
Electricity price wc = 0.1EUR/kWh
Sampling time 1 s

on/off switching. An example of such model can be found in

[15].

VII. CONCLUSION

This paper presented a method for optimal control of mixed-

integer problems, which for given feasible values of the integer

variables are convex in the rest of the variables. The method

allows the problem to be solved in relatively short time using

convex optimization techniques, while obtaining a solution

near the global optimum.

The method has been applied on the problem of optimal

battery dimensioning and control of a PHEV bus where the

only integer variable is the engine on/off control. The results

showed that the problem can be solved in less than 17min

with less than 0.35% difference from the global optimum.

Moreover, the results showed that the global optimum is

practically reached (difference of less than 0.03%) for the

optimal control problem of a PHEV with fixed battery.

Future studies may focus on adapting the method to prob-

lems with more integer control signals and design parameters.

APPENDIX A

DATA FOR THE TRANSPORTATION PROBLEM

Denoting by v(t) and α(t) the velocity and slope of the bus

line, the angular velocity and torque demanded on the shaft

between the EM and the differential can be computed as

ω(t) =
γ

r
v(t)

Tv(n, t) =
gr

γ
(m+ nmbc) (cr cosα(t) + sinα(t))

+
ρAcdr

3

2γ3
ω2(t) +

(
IEM +

I

γ2
+ (m+ nmbc)

r2

γ2

)
ω̇(t)

where g is gravitational acceleration, ρ is air density, and the

rest of the parameters are described in Table II. The model

neglects the inertial effects of the EGU.

Traction power to the wheels is delivered by a 220 kW EM

as in Fig. 10 (losses of the power electronics are considered

within the EM).

The 10Ah and 44Ah cells have mass of 600 g and 900 g,

resistance of 0.9mΩ and 2mΩ, maximum charging current of

300A and 50A and maximum discharging current of 1000A

and 50A, respectively. The additional mass due to packaging
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Fig. 10. Model of the EM. The thin lines represent efficiency and the thick
lines are the torque bounds.

and circuitry is 14.5%. The payment for both batteries is

equally divided in y = 2 years with p = 5% yearly interest

rate. By denoting with cb the battery price in curency/kWh, the

equivalent cell cost related to the driven bus line is obtained

by multiplying the length of the bus line with the cell price

per kilometer, given the average travel distance in one year

d = 50 000 km. This yields

wb = cbEsmbc

(
1 + p

y + 1

2

) ∫ tf
t0

v(t)dt

yd

where Es [kWh/kg] is specific energy of the entire energy

content of the battery cell.

APPENDIX B

ANALYTICAL DERIVATION OF THE COSTATE

To simplify the complex mathematical expressions below,

the functions dependency on time will not be shown.

For a given battery size n∗ that minimizes H, the torque

of the EM can be uniquely determined via

T ∗ = max {max{Tmin, Tbmin}, Tv(n
∗)}

where Tbmin is the equivalent torque limit in the EM imposed

by the battery charging with maximum current. It can be

computed from (2) by considering zero EGU and grid power

Tbminω + Ploss(Tbmin) + Pa = Pbmin

=
(
V icmin −Ri2cmin

)
n∗.

The EGU power can also be described from (2)

P ∗
g = T ∗ω + Ploss(T

∗) + Pa − Pb(i
∗,n∗)− P ∗

c (16)

leaving only two variables, i∗ and P ∗
c , at which the extremum

of H will be investigated. If these variables are free, then at

the extremum it holds(
∂H
∂i

)∗
= −wf (2aoP

∗
g + a1)

(
V − 2R

n∗ i
∗
)
− λ∗V = 0

(17)(
∂H
∂Pc

)∗
= −wf (2aoP

∗
g + a1) +

wc

η
= 0. (18)

The costate can be computed at time instances covered by

the following three cases:
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1) If the engine is on, there is a charging opportunity, and

the constraints (7d), (7e) and (7f) are not active (whether

a constraint is active, is decided with a tolerance of

0.01% of the expected signal’s magnitude), the costate

can be obtained by replacing P ∗
g from (18) in (17),

giving

λ∗ = −wc

η

(
1− 2R

n∗V
i∗
)
. (19)

2) If the engine is on, there is no charging opportunity and

the constraints (7d) and (7e) are not active, then P ∗
c = 0

and the costate can be obtained from (17)

λ∗ = −wf

(
2aoP

∗
g + a1

)(
1− 2R

n∗V
i∗
)
.

3) If the engine is off, there is a charging opportunity and

the constraints (7d) and (7f) are not active, then

P ∗
c = T ∗ω + Ploss(T

∗) + Pa − Pb(i
∗,n∗)(

∂H
∂i

)∗
= −wc

η

(
V − 2R

n∗ i
∗
)
− λ∗V = 0

which gives expression for λ∗ exactly as in (19).

APPENDIX C

DYNAMIC PROGRAMMING

DP uses Bellman’s principle of optimality [7] to solve the

problem via backwards recursion handling nonlinearities and

constraints in a straightforward way. The problem of battery

sizing is solved by running DP at gridded values of the battery

size. For each grid value nj ∈ N the algorithm finds the

optimal power split that minimizes the operational cost

J∗
DP (E(tk), tk) = min

i(tk)

{∫ tk+1

tk

J(i(t))dt

+ J∗
DP (E(tk+1), tk+1))

}
tk ∈ T , i(tk) ∈ U , E(tk) ∈ X , tk ∈ T

where tk and tk+1 are consecutive time instances and

J∗
DP (E(tk), tk) is a cost matrix holding the optimal cost-to-

go from state E(tk) at time tk to the desired final state at

time tf . The sets N , T , X and U are discrete and the grid

resolution determines the accuracy of the solution. Hence, to

obtain an accurate solution, both the state and the current are

gridded with 2000 points.

The operational cost J(i(t)) is computed as in (6), but with

i(t) as a single control variable. Note that for a fixed battery

size, the same procedure can be applied as in Appendix B to

decrease the number of control variables. Moreover, the need

for Pc(t) as a control variable in (16) can also be eliminated,

because the EGU will be turned on only if the vehicle cannot

satisfy the driving demands by the electric grid alone.

The optimization is subject to the same constraints as in (7),

except the constraint for ending at the desired SOC value (7i)

which is formulated as a soft constraint

J∗
DP (E(tf ), tf ) = 1000|E(tf )− soc0QV nj |.

The infeasible points in J∗
DP (E(tk), tk) have been given a

cost of 1000 and the sampling time is 1 s.

APPENDIX D

THE CONVEX SUB-PROBLEM (CS)

The convex sub-problem (7), where e(t) is not a decision

variable, can be written in discrete time as

minimize

h
N−1∑
0

J(Pg(k),Pc(k), e(k)) + wbn

subject to, ∀k ∈ {0, ..., N − 1},
T (k) ≥ max {Tmin(ω(k)), Tv(n, k)}
T (k)ω(k) + Ploss(T (k), k)

≤ Pb(i(k),n) + Pg(k)e(k) + Pc(k)c(k)− Pa

i(k) ∈ [icmin, icmax]n

Pg(k) ∈ [0, Pgmax]

Pc(k) ∈ [0, ηPcmax]

E(k + 1) = E(k)− hV i(k)

E(k) ∈ [socmin, socmax]QV n

E(N) = E(0) = soc0QV n

n > 0

where h is the sampling time and N is the total number of

samples.

The decision variables are scaled and a parser is used, CVX

[31], to translate the problem into a form required by the solver

SeDuMi [22].
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