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ABSTRACT

Modern vehicles contain nearly 100 embedded control units
to realize various comfort and safety functions. These ve-
hicle functions consist of a sensor, a data processing, and
an actor layer to react intelligently to stimuli from their
context. Recently, these sensors do not only perceive data
from the own vehicle but more often also data from the vehi-
cle’s surroundings to understand the current traffic situation.
Thus, traditional development and testing processes need to
be rethought to ensure the required quality especially for
safety-critical systems like a collision prevention system. On
the example of 1:10 scale model cars, we outline our model-
based and composable simulation approach that enabled the
virtualized development of autonomous driving capabilities
for model cars to compete in an international competition.
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1. INTRODUCTION

Modern vehicle functions increase not only the driver’s com-
fort by providing automated parking features but these func-
tions are also responsible for the reduction of traffic accidents
by, e.g., the adaptive cruise control or a pedestrian collision
warning system. In common for these functions is that they
depend heavily on perceived data from their system context
to act reliably and safely. Inspired by the 2007 DARPA Ur-
ban Challenge [11], the yearly competition “CaroloCup™ for
universities was initiated at Technische Universitdt Braun-
schweig to foster the research and education for this type of
embedded systems on the example of 1:10 scale model cars.
Within this competition, participating autonomous minia-
ture vehicles need to demonstrate the reliable capability to
follow their own lane, to overtake stationary vehicles blocking
their own lane, to handle intersections safely according to the
right-of-way traffic rule, and to park the vehicle at a sideways
parking strip as fast as possible. Furthermore, the teams
shall have an eye on the components and manufacturing costs
as well as the vehicle’s energy consumption.

These driving tasks are inspired by the aforementioned in-
ternational competition for regularly sized vehicles but they
reflect also the technical state-of-the-art for all major au-
tomotive original equipment manufacturers (OEM). In the
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upcoming future, even autonomous driving for less demand-
ing traffic situations like traffic jams on highways will not
only contribute positively to the driver’s personal comfort
level but also help to reduce rear-end collisions [2]. More-
over, these mature vehicle functions will be enhanced in the
future by incorporating data, which are provided by vehicle-
to-infrastructure communication or by vehicle-to-vehicle com-
munication. While these interconnected and thus collabo-
rating vehicle functions will help to reduce travel time on
the one hand and to reduce the risk of collision with partly
occluded vehicles on the other hand, their development is
more demanding than ever before. The reason is that test sce-
narios on real proving grounds require not only several other
vehicles to carry out a specific test case but it must also be
ensured that a specific choreography can be reproduced with
a precise accuracy to measure e.g. differences between two
versions of the same algorithm over time. This hurdle was
earlier addressed by the Gulliver test-bed [9] where off-board
infrastructure, such as a positioning system, was assumed to
be accessible. No such assumptions are considered in this
work and the capabilities presented are based on on-board
equipment, i.e. autonomous driving.

Moreover, the amount of possible and probable traffic situa-
tions, which might be encountered by these interconnected
and perceiving algorithms, is not only unlimited but also
hard to reduce to a set of some “representative” situations,
which are carried out on real proving grounds. Further-
more, even the common practice of automotive OEMs to run
long-term evaluation drives with pre-series vehicles will not
address this challenge sufficiently because the probability to
encounter a majority of all important traffic situations for
these interconnected and perceiving functions is rather small.

Instead, these existing methods of validating a vehicle’s
proper functionality in real test-runs must necessarily be
extended by appropriate simulative approaches. However,
before a certain simulation tool is chosen to be used during
the development and evaluation of a vehicle function, it
must be clarified which questions should be addressed with
simulative approaches, what are the necessary quality levels
and level of details that must be achieved by such a simulative
approach to answer these questions, and finally, how does
the expected development and testing process look like that
is based on the intended simulative approach.

In this contribution, we outline our methodical and technical
approach to provide a simulation environment during the



design and development of an autonomously driving 1:10
scale miniature vehicle. Therefore, the rest of the paper
is structured as follows: Firstly, related work is discussed
followed by a description of methodical and technical concepts
for our simulation environment. Next, the applicability of
this simulative approach is discussed on the example of the
development of a lane following algorithm, before the paper
finishes with a conclusion and an outlook of our future plans.

2. RELATED WORK

First methodical concepts for a virtual testing approach
were developed and evaluated during the development of an
autonomously driving vehicle for the 2007 DARPA Urban
Challenge competition [11]. These concepts were further
elaborated and tested together with the University of Califor-
nia, Berkeley in a subsequent project during the development
of a navigation algorithm for an autonomous ground vehicle
(AGV) [1, 3, 4]. Furthermore, some of the system components
for the miniature vehicles used in this project are based on
earlier knowledge and technology developed for the Gulliver
Testbed 2 [12].

During the case study at the University of California, Berke-
ley, no lane marking detection was required due to the fact
that these information were provided within the digital map.
Moreover, the available mounting space on the AGV as well
as the available energy supply allowed for a very powerful
sensors concept and computation setup. In the “CaroloCup’
competition, the limitations on the miniature vehicle like
mounting space and energy supply influenced significantly the
chosen hardware architecture and the sensor layout, which is
described in Sec. 3.2. Therefore, the simulation environment
that was used for the regularly sized AGV had to be adapted
to provide data according to the chosen sensor setup for the
small size version.

)

In contrast to the approach outlined in this paper, the au-
thors of [7] describe Player/Stage, which is used to program
and experiment with experimental robotic platforms. The
framework offers a standardized interface to several robots as
well as sensors like ultrasonic and laser scanner. In contrast
to the solution described here, Player/Stage does not primar-
ily support automotive function development because models
for the vehicle’s surroundings like roads with lanes and lane
markings are missing. Furthermore, the supported motion
models in the simulation are focusing on robotic platforms,
which are able to turn on the z-axis which is impossible for
regular vehicles.

The Robot Operating System (ROS) as described by [10] aims
for providing a standardized communication and configura-
tion platform especially for experimental robotic platforms.
Therefore, it provides transparent access to a variety of sen-
sors and includes also an image processing library. However,
comparable to the aforementioned approach and in contrast
to the approach described in this paper, simulative models
for vehicle motion and its environment are missing.

In [5], the authors outline a concept to provide a consistent
model-based approach for simulation system modelers and
simulation system users. By the described transformation
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process, the complexity of the considered simulation environ-
ment could be managed. The outlined methodical approach
of manually modeling the environment is related to this ap-
proach but the outlined transformation process focuses on
the actual configuration of a discrete event system simulation
while our approach is dealing with the formal description of
concrete elements from the environmental system context.

3. MODELING VIRTUAL WORLD

In this section, conceptual and technical aspects of our simu-
lation environment are outlined to support the development
of the autonomously driving miniature vehicle. The timeline
of approximately four months for the project on the one
hand, the ordering and shipping of all required hardware
components, as well as the manufacturing of the actual minia-
ture vehicle on the other hand enforced us to parallelize the
algorithm conception phase, the functional implementation,
and the realization of the hardware architecture. Thus, a sim-
ulation environment turned out to be the enabling method
to divide the development efforts.

3.1 The Virtual Test-Track
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Figure 1: Class diagram describing the environmen-
tal model: The structure from this class diagram
was modeled as a domain-specific language (DSL) for
the simulation environment realized by Boost::Spirit
for C++ [1]. Instances serve as input data to con-
struct an OpenGL scene graph or high-level object-
oriented data structures depending on the required
level of details for the simulation.

First, a virtual test track needed to be modeled. Therefore,
the domain-specific language depicted by Fig. 1 was used
to describe the vehicle’s surroundings [1]. Instances from
this language describe visible elements like lane markings
and stationary obstacles with a specific shape and color,
structural elements like the mathematical shape of a lane
(e.g. a straight line or an arc), and topological elements like
the relation between two lanes and their surrounding road
or the interconnection of lane segments to form a graph.

An example for the real test track is provided within the
official rules & regulations document [8] that also reflects
the real proving ground used in the last years’ competitions.
Besides the overall layout, all necessary parameters like color



and thickness of the lane markings, the distance between two
center lines, the individual lane width, and the minimum cur-
vature are provided by the official rules for the competition.
These parameters were used to create a model for our simu-
lation environment from the exemplary track, which consists
of 26 lane segments that are either of the type “straight” or
“arc” lane with a minimum curvature of 1,000mm according
to the rules & regulations document.

Figure 2: Modeled test track in our simulation en-
vironment with curvatures as specified in the offi-
cial rules & regulations document. Furthermore, we
added stationary obstacles as white boxes for the
overtaking and sideways parking situation.

An excerpt from an instance of the DSL is shown in Appendix
A. This instance is parsed by Boost::Spirit to generate a
graph-based representation, which is traversed afterwards
to construct an OpenGL scene-graph to be rendered in 3D.
The result is shown in Fig. 2. Besides the actual two-lane
track layout, we modeled also some obstacles for the sideways
parking situation in the lower right part and the blocked lane
situation in the center of the track.

3.2 The Virtual Miniature Vehicle

As mentioned before in Sec. 1, the autonomous miniature
vehicle shall have the different capabilities to interact safely
and reliably with its surroundings. In the following, the hard-
ware architecture is described followed by the corresponding
sensor models for the simulation environment.

The basic capability is the lane following feature, which
requires an algorithm that is keeping the vehicle on its own
lane. Due to the fact the the competition will be carried out
indoors without providing a digital map of the track, GPS
combined with an inertial measurement unit would not be
helpful to realize that task. Therefore, a sensor is required to
detect the lane markings to calculate the correct steering and
acceleration operations for the car. As shown in Fig. 3, we
decided to use a vision-based approach realized by a Logitech
C525 HD WebCam.

The advanced driving tasks rely on the capability to detect
stationary and dynamic obstacles. After analyzing the rules
& regulations document, we decided to focus on the right

Camera
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Figure 3: Concept of the sensor layout for the au-
tonomously driving model car

Figure 4: The derived sensor layout from the official
requirements was modeled in the simulation environ-
ment: The small triangles are the infrared sensors
and the larger triangles are the ultrasonic sensors,
which are jointly used to detect obstacles.

hand side as well as the vehicle’s front due to the sideways
parking situation and the right-of-way situation at inter-
sections. Thus, it is necessary to get distances from other
obstacles to create a consistent environment representation
for identifying the right spot for the sideways parking or the
check whether the intersection is clear to pass. As depicted
by Fig. 3, we decided to use ultrasonic distance sensors to
cover the range between 0.3m and 6m with an opening angle
of 30° in combination with infrared distance sensors to cover
the range between 0.04m and 0.3m. Thus, the total energy
consumption is in the range of approximately 4W for the
environmental sensors.

To parallelize the ordering and manufacturing process of the
autonomous miniature vehicle and the algorithm develop-
ment, we modeled the chosen sensor setup in the simulation
environment. Therefore, both distance-based sensors are
modeled in such a way that the set of intersection points is



(a) In the sensor layout depicted by Fig 3, a vision-based
approach is used to detect the lane markings. The
input data can be grabbed directly from the 3D
simulation environment.

15, 63 lsft

(b) Based on the virtual camera input data, the lane
detecting algorithm was developed and tested: The
horizontal lines indicate whether a left and right lane
marking is present (yellow), only one lane marking
was detected (purple), or none lane marking was
detected (red).

Figure 5: Simulated camera sensor for the develop-
ment and test of the lane detection algorithm.

calculated for all stationary and dynamic obstacles within
the modeled field of view, which is depicted by the green
triangles in Fig. 4. Next, the closest intersection per triangle
is selected and its relative distance to the virtual mounting
position of the sensor is determined. According to the tech-
nical specification of the real sensors, the simulation models
are executed at 20Hz, respectively. The simulation model for
the camera can be realized fairly easily by defining an appro-
priate OpenGL camera for the 3D scenery. In Fig. 5(a), the
bare input image for the lane detecting algorithm is shown.
In the simulation environment, this sensor model is executed
with a resolution of 640x480 pixels at 10Hz.

The actual simulation environment is based on the same
methodical and technical approach that was used during the
development of the navigation algorithm for the AGV at

University of California, Berkeley [1]. As shown in Fig. 6,
first, the environment model is created using a graphical tool
for visual feedback to the modeler. In that tool, all required
elements like roads, lanes with appropriate lane markings,
stationary and dynamic obstacles are modeled; for dynamic
obstacles, a predefined route that needs to be followed can be
specified for instance. At run-time, the resulting instance of
the DSL is then used by independently running components,
which realize one specific aspect of the simulation. This
design concept relies on separation of concerns [6] to divide
and handle the overall complexity. These components are
coupled by developers on demand at run-time by a UDP
multi-cast session. As described in [1], the entire simulation
can also be automated and executed unattendedly as part of
a continuous integration service.

Design time

Run-time

obstacles

lanedetector driver

monitor

Figure 6: Our model-based, composable simulation
approach at design time and run-time: Firstly, we
model the environment using a graphical editor and
set up sensor parameters; at run-time, the simu-
lation environment consists of several independent
components, which can be run selectively according
to the required details and which share the same
UDP multi-cast session. During the development of
the lane detector algorithm, the distance-based sen-
sor simulation “irus” is not executed for instance.

To realize the simulation for the autonomous miniature vehi-
cle, the following components were used: “vehicle”, “monitor”,
“irus”, and “camgen”. The first component simply provides
the absolute position data of the virtual vehicle; however,
the position data is not used by the actual algorithms for
the real car but it is necessary to realize the other simulation
components. “monitor” is a visualization environment for
the modeled instance of the DSL together with all other
exchanged packets from the live UDP multi-cast session.
Therefore, it derives a corresponding OpenGL 3D scene-
graph to allow the inspection of the current traffic situation
in 3D. Furthermore, the exchanged UDP packets can be
recorded for a later playback.

When the component “irus” is additionally activated by a



developer, it initially reads the modeled instance from the
environment DSL to get all modeled obstacles. These obsta-
cles are either simplified polygons with a specific height or
complex 3D models in Wavefront OBJ format. Furthermore,
“irus” reads its sensor setup consisting of the sensor’s heading,
mounting position wrt. to the vehicle’s center, and the angle
and distance for the field of view from a configuration file.
Combined with the continuously received absolute position
data for the virtual car, these simplified sensors’ viewing
areas are positioned accordingly to calculate the relative
distance between its virtual mounting position and an in-
tersecting surface from one of the environmental obstacles.
The resulting distance data is broadcasted to autonomous
miniature vehicle’s algorithms.

The implemented concept of “camgen” to provide an image
stream from a virtualized camera is comparable to the pre-
viously described visualization application: Firstly, it reads
the modeled instance of the environment DSL to construct
its OpenGL 3D world; next, it is continuously receiving the
updated absolute position from “vehicle” to move its OpenGL
camera to the corresponding position in the 3D environment
to provide a continuous image sequence to the lane detecting
algorithm.

3.3 Performance of the Simulation

In the following, preliminary results of the lane following algo-
rithm consisting of “lanedetector” and “driver” are presented.
In Fig. 5(b), the feature detection results from the bird’s eye
perspective are shown: yellow horizontal lines indicate that
lane markings could be successfully detected on the left and
right hand side, purple lines indicate that one side could not
be detected, and red lines indicate that no lane markings
were found at all. Based on this input data, the desired
steering angle for the control algorithm is derived and fed
back to the simulation component “vehicle”.

In Fig. 7, the driven path in absolute coordinates is depicted
for five test-runs of the lane following algorithm during the
beginning of the test-track on the right hand side in Fig. 2
where the sideways parking spot is located. The dark and
light blue curves represent the skeleton lines for each lane. In
the best case, the vehicle would follow perfectly this skeleton
lane. In our example, the resulting absolute vehicle positions
of all five test-runs lay mostly on top of each other.

In Fig. 8, the absolute deviation from the lane’s skeleton line
is shown for all five test-runs. Comparable to the previous
chart, all test-runs are very similar. The slight differences
between each other are caused by the algorithmic design of
the lane following algorithm: Its feature detection operates
on the most recent perceived image and thus, depending
on the provided images from the simulation environment,
the derived steering angles are slightly different for several
test-runs. Since the absolute deviation of all test-runs is very
similar for the test-runs, this limitation is acceptable for the
development and evaluation of the algorithm.

For carrying out the real test-runs for the autonomous minia-
ture vehicle (cf. Fig. 10), a real world test-track on a 4mx4m
pond liner as shown in Fig. 9 was prepared. Currently, ex-
periments with the algorithms in reality are carried out to
achieve two goals: Firstly, the right parameters for the lane

-10
-50 -40 -30 -20 -10 o 10
X [m]

==Quter lane ==Inner lane

==Vehicle position (run 1) =Vehicle position (run 2)
==Vehicle position (run 3)==Vehicle position (run 4)

Vehicle position (run 5)

Figure 7: Driven path of the lane following algo-
rithm at the beginning of the course for five differ-
ent test-runs: The dark blue line is the skeleton line
of the outer lane and the light blue line is the one
from the inner lane. The orange path occludes the
lines from the other test-runs due to the fact that
all five runs are very similar.
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Figure 8: Absolute deviation of the vehicle’s center
from the lane’s skeleton line for five test-runs in the
simulation.

following algorithm shall be found to exhibit a reliable vehicle
motion in reality; secondly, the model parameters in the sim-
ulation shall be optimized to provide a virtual development
and testing environment that is even closer to the reality.

4. CONCLUSION AND OUTLOOK

In this paper, we presented a methodical and technical ap-
proach to support the development and testing of sensor-
based vehicle functions. The concept was originally developed
for an autonomous ground vehicle at the University of Cali-
fornia, Berkeley but we extended it to be applicable for the
“CaroloCup” competition of 1:10 scale autonomous miniature
vehicles. Due to the tight schedule in the competition on the



Figure 9: Part of the real test track, which was re-
alized by a black pond liner and white tape.
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Figure 10: 1:10 scale miniature vehicle with Panda-
Board main ECU and camera for lane detection.

one hand and because of the manufacturing process of the
vehicle on the other hand, the software development for the
algorithms to handle lane following, intersections, and park-
ing at a sideways parking strip required the utilization of an
approach that enabled a distributed and parallel development
of hardware and software.

The outlined approach based on a domain-specific language
to formally model the traffic situation. These instances
are the input for composable simulation components that
fulfill certain aspect of the entire simulation, respectively.
Furthermore, simulation models for sensors were outlined
and their usage during the development and test a lane
following algorithm for the autonomous miniature vehicle
was described.

The next steps are to standardize the software interface of
the autonomous miniature vehicle to simplify the integration
of prototypical algorithms. Furthermore, a formal language
to describe a sensor setup is planned to simplify the con-
figuration process on the one hand and to carry out sensor
concept optimization strategies on the other hand. More-

over, our outlook includes a unified framework for simulation
and development of both autonomous and cooperative capa-
bilities [9]. As a future goal, we will look into the effect of
autonomous driving in very large scale traffic systems, and by
that further validate the proposed solutions before studying
them on full-scale vehicular systems with many vehicles.
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APPENDIX
A. EXEMPLARY EXCERPTS FROM THE
ENVIRONMENT DSL

In the following, a short excerpt of the environment DSL
is depicted. In this example, the formal description of a
lane segment is shown, which is based on a radius, the arc’s
length in radians, and its rotations around the z-axis to fit
seamlessly to a preceding lane segment.

LANE
LANEID 2
LANEWIDTH 4.0

5 LEFTLANEMARKING broken_white
RIGHTLANEMARKING solid_white
(1.1.2.1) -> (1.1.1.2)
(1.1.2.2) -> (1.1.3.1)
FUNCTIONMODEL

10 ARC
RADIUS 16.2
[ 0 2.443460953 1]
START
ID 1

15 VERTEX2
X 0
Y 63.5
END
ID 2

20 VERTEX2
X -27.700000762939453
Y 75
ROTZ 1.570796327
ENDFUNCTIONMODEL

25 ENDLANE

Listing 1: Excerpt from environment DSL that
describes an arc-based lane model.

SURROUNDING
SHAPENAME Box_0
POLYGON
5 HEIGHT 1
COLOR
VERTEX3
X 1
Y 1

10 Z2 1
VERTEX2
X 3.5999999046325684
Y 25.100000381469727
VERTEX2
15 X 7.599999904632568
Y 25.100000381469727
VERTEX2
X 7.699999809265137
Y 32.20000076293945
20 VERTEX2
X 3.5999999046325684
Y 32.20000076293945

Listing 2: Excerpt from environment DSL that
describes a polygon-based obstacle.



