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On Optimal TCM Encoders
Alex Alvarado, Member, IEEE,, Alexandre Graell i Amat, Senior Member, IEEE, Fredrik Brännström, Member,

IEEE, and Erik Agrell, Senior Member, IEEE

Abstract—An asymptotically optimal trellis-coded modulation
(TCM) encoder requires the joint design of the encoder and
the binary labeling of the constellation. Since analytical ap-
proaches are unknown, the only available solution is to perform
an exhaustive search over the encoder and the labeling. For
large constellation sizes and/or many encoder states, however,
an exhaustive search is unfeasible. Traditional TCM designs
overcome this problem by using a labeling that follows the set-
partitioning principle and by performing an exhaustive search
over the encoders. In this paper we study binary labelings for
TCM and show how they can be grouped into classes, which
considerably reduces the search space in a joint design. For 8-ary
constellations, the number of different binary labelings that must
be tested is reduced from 8! = 40320 to 240. For the particular
case of an 8-ary pulse amplitude modulation constellation, this
number is further reduced to 120 and for 8-ary phase shift keying
to only 30. An algorithm to generate one labeling in each class
is also introduced. Asymptotically optimal TCM encoders are
tabulated which are up to 0.3 dB better than the previously best
known encoders.

Index Terms—Binary reflected Gray code, bit-interleaved
coded modulation, coded modulation, convolutional encoder,
performance bounds, set-partitioning, trellis-coded modulation,
Viterbi decoding.

I. INTRODUCTION

The first breakthrough in coding for the bandwidth-limited

regime came with Ungerboeck’s trellis-coded modulation

(TCM) [1]–[4] in the early 80s where the concept of labeling

by set-partitioning (SP) was introduced. TCM was quickly

adopted in the modem standards in the early 90s and is a

well studied topic [5], [6, Sec. 8.12], [7, Ch. 18]. Another

important discovery in coded modulation (CM) design came

in 1992 when Zehavi introduced the so-called bit-interleaved

coded modulation (BICM) [8], [9], usually referred to as a

pragmatic approach for CM [10].

The design philosophies behind TCM and BICM for the

additive white Gaussian noise (AWGN) channel are quite dif-
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ferent. Ungerboeck’s scheme is constructed coupling together

a convolutional encoder and a constellation labeled using the

SP principle. For constellations having certain symmetries, SP

can be achieved by using the natural binary code (NBC) [2,

Fig. 4], [4, Fig. 3]. On the other hand, BICM is typically a

concatenation of a convolutional encoder and a constellation

labeled by the binary reflected Gray code (BRGC) [11], [12]

through a bit-level interleaver. The BRGC is often used in

BICM because it maximizes the BICM generalized mutual

information for medium and high signal-to-noise ratios [9,

Sec. III], [13, Sec. IV]. In TCM, the selection of the con-

volutional encoder is done so that the minimum Euclidean

distance (MED) is maximized, while in BICM the encoders

are the ones optimized for binary transmission. BICM systems

are then based on maximum free Hamming distance codes

[7, Sec. 12.3] or on the so-called optimum distance spectrum

(ODS) encoders first tabulated in [14, Tables III–V] and [15,

Tables II–IV] and later extended in [16].

It was recently shown in [17] that if the interleaver is

removed in BICM, its performance over the AWGN channel

is greatly improved. This was later analyzed in detail in [18]

for a rate R = 1/2 encoder and a 4-ary pulse amplitude

modulation (PAM) constellation, where the system in [17]

was called “BICM with trivial interleavers” (BICM-T) and

recognized as a TCM transmitter used with a BICM receiver.

Moreover, BICM-T was shown to perform asymptotically as

well as TCM (in terms of MED) [2, Table I] if properly

chosen convolutional encoders are used [18, Table III]. The

transmitters in [2, Table I] and [18, Table III] for the 8-

state (memory ν = 3) convolutional encoder1 are shown in

Fig. 1 (a) and Fig. 1 (c), respectively.

The authors in [18] failed to note that in fact the optimal

TCM encoder found when analyzing BICM-T is equivalent2

to the one proposed by Ungerboeck 30 years ago [19]. For a

4PAM constellation, one simple (although not unique) way of

obtaining Ungerboeck’s SP is by using the NBC. Moreover,

the NBC can be generated using the BRGC plus one binary

addition (which we call transform) applied to its inputs, as

shown in Fig. 1(b). If the transform is included in the mapper,

the encoder in Fig. 1(a) is obtained, while if it is included

in the convolutional encoder, the TCM encoder in Fig. 1(c)

is obtained. This equivalence also applies to encoders with

larger number of states3 and simply reveals that for 4PAM,

1Throughout this paper, all polynomial generators are given in octal.
2We use “equivalent” to denote two encoders with the same input-output

relationship. This is formally defined in Sec. III.
3This equivalence does not directly hold because [18, Table III] lists the

encoders in lexicographic order and because for some values of ν there are
more than one encoder with identical performance.0000–0000/00$00.00 c© 2012 IEEE



2 IEEE TRANSACTIONS ON COMMUNICATIONS

(a)

(b)

(c)

i1,n

i1,n

i1,n

xn

xn

xn

Transform

SP Mapper (NBC)

BRGC Mapper

BRGC Mapper

G = [13, 4]

G = [13, 4]

G = [13, 17]

x1

x1

x1

x2

x2

x2

x3

x3

x3

x4

x4

x4

00

00

00

01

01

01

10

10

10

11

11

11

Fig. 1. Three equivalent TCM encoders [19]: (a) convolutional encoder with
polynomial generators G = [13, 4] and an SP mapper [2]; (c) convolutional
encoder with polynomial generators G = [13, 17] and a BRGC mapper [18].
The encoder in (b) shows how a transformation based on a binary addition
can be included in the mapper (to go from (b) to (a)) or in the encoder (to
go from (b) to (c)).

a TCM transceiver based on a BRGC mapper will have

identical performance to Ungerboeck’s TCM if the encoder is

properly modified, where the modification is the application of

a simple transform. The equivalence between TCM encoders

and encoders optimized for the BRGC and the NBC as well

as the relationship between the encoders in [18] and [2] were

first pointed out to us by R. F. H. Fischer [19]. The idea of

applying a linear transformation to the labeling/encoder can be

traced back to [20, Fig. 6.5] (see also [21] and [22, Ch. 2]).

TCM designs based on SP are considered heuristic [23,

Sec. 3.4], and thus, they do not necessarily lead to an optimal

design [24, p. 680].4 The problem of using non-SP labelings

for TCM has been studied in [24, Sec. 13.2.1], [26, Sec. 8.6],

and [27]. TCM encoders using the BRGC were designed in

[25], by searching over convolutional encoders maximizing the

MED. In [20, Ch. 6] and [21], a non-Gray non-SP labeling was

used and TCM encoders with optimal spectrum were tabulated.

In a related work, Wesel et al. introduced in [28] the concept

of the edge profile (EP) of a labeling, and argued that in most

cases, the EP can be used to find equivalent TCM encoders in

terms of MED. The EP is also claimed to be a good indication

of the quality of a labeling for TCM in [28, Sec. I]; however, its

optimality is not proven. Consequently, an exhaustive search

over labelings with optimal EP does not necessarily lead to an

optimal design [29].

In summary, as clearly explained in [28, Sec. I], traditional

4Indeed, the results in [25, Tables 2–3], [20, Ch. 6] and [21] show the
suboptimality of the SP principle in terms of the multiplicities associated
with the events at MED.

TCM designs either optimize the encoder for a constellation

labeled using the SP principle, or simply connect a convolu-

tional encoder designed for binary transmission with an ad-

hoc binary labeling. It has been known for many years that

optimal TCM encoders are obtained only by jointly designing

the convolutional encoder and the labeling of a TCM encoder

[7, p. 966]. However, to the best of our knowledge, there are

no works formally addressing this problem, and thus, optimal

TCM encoders are yet to be found.

In this paper, we address the joint design of the feedforward

convolutional encoder and the labeling for TCM. To this end,

we show that binary labelings can be grouped into different

classes that lead to equivalent TCM encoders. The classes are

closely related to the Hadamard classes introduced in [30] in

the context of vector quantization. This classification allows

us to formally prove that in any TCM encoder, the NBC can

be replaced by many other labelings (including the BRGC)

without causing any performance degradation, provided that

the encoder is properly selected. This explains the asymptotic

equivalence between BICM-T and TCM observed in [18].

Moreover, since the classification reduces the number of

labelings that must be tested in an exhaustive search, we

use it to tabulate optimal TCM encoders for 4-ary and 8-ary

constellations.

II. PRELIMINARIES

A. Notation Convention

Throughout this paper, scalars are denoted by italic letters x,

row vectors by boldface letters x = [x1, . . . , xN ], temporal se-

quences by underlined boldface letters x = [x[1], . . . ,x[Ns]],
and matrices by capital boldface letters X where xi,j repre-

sents the entry of X at row i, column j. The transpose of

a matrix/vector is denoted by [·]T. Matrices are sometimes

expressed in the compact form X = [x1;x2; . . . ;xM ], where

xi = [xi,1, . . . , xi,N ] is the ith row. Sets are denoted using cal-

ligraphic letters C and the binary set is defined as B , {0, 1}.
Binary addition is denoted by a⊕ b.

The probability mass function (PMF) of the random variable

Y is denoted by PY (y) and the probability density function

(PDF) of the random variable Y by pY (y). Conditional

PDFs are denoted as pY |X(y|x). The tail probability of a

standard Gaussian random variable is denoted by Q(x) ,
1√
2π

∫∞
x

e−ξ2/2 dξ.

B. TCM Encoder

We consider the TCM encoder shown in Fig. 2 where a

feedforward convolutional encoder of rate R = k/m is serially

connected to a mapper ΦL and the index L emphasizes the

dependency of the mapper on the labeling (defined later). At

each discrete time instant n, the information bits i1,n, . . . , ik,n
are fed to the convolutional encoder, which is fully determined

by k different νp-stage shift registers with p = 1, . . . , k,

and the way the input sequences are connected (through the

registers) to its outputs. Closely following the notation of

[7, Sec. 11.1], we denote the memory of the convolutional

encoder by ν =
∑k

p=1 νp, and the number of states by 2ν . The

connection between the input and output bits is defined by the
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Fig. 2. Generic TCM encoder under consideration: A feedforward convolu-
tional encoder of rate R = k/m with 2ν states serially concatenated with a
memoryless m-bit mapper ΦL.

binary representation of the convolutional encoder matrix [31,

eq. (11.6)]

G ,













g
(1)
1 g

(2)
1 . . . g

(m)
1

g
(1)
2 g

(2)
2 . . . g

(m)
2

...
...

. . .
...

g
(1)
k g

(2)
k . . . g

(m)
k













, (1)

where g
(l)
p , [g

(l)
p,1, . . . , g

(l)
p,νp+1]

T ∈ Bνp+1 is a column

vector representing the connection between the pth input

sequence and the lth output sequence with l = 1, . . . ,m. The

coefficients g
(l)
p,1, . . . , g

(l)
p,νp+1 are associated with the input bits

ip,n, . . . , ip,n−νp , respectively, and G ∈ B(ν+k)×m. Through-

out this paper, we will show the vectors g
(l)
p defining G either

in binary or octal notation. When shown in octal notation, g
(l)
p,1

represents the most significant bit (see Fig. 1).
The convolutional encoder matrix (1) allows us to express

the output of the convolutional encoder at time n, which we

define as un , [u1,n, . . . , um,n], as a function of (ν + k)
information bits, i.e.,

un = jnG, (2)

where jn , [i(1)n , . . . , i(k)n ] with i(p)n , [ip,n, . . . , ip,n−νp ] are

the information bits, and the matrix multiplication is in GF(2).

The coded bits un are mapped to real N -dimensional

constellation symbols using the mapper ΦL : Bm → X ,

where X ⊂ R
N is the constellation used for transmission, with

|X | = M = 2m. We use x[n] ∈ X to denote the transmitted

symbols at time n and the matrix X = [x1;x2; . . . ;xM ]
with xq ∈ R

N and q = 1, . . . ,M to denote the ordered

constellation points. We assume that the symbols are equally

likely and that the constellation X is normalized to unit energy,

i.e., Es , EX [‖X‖2] = 1/M
∑

x∈X ‖x‖
2 = 1. As shown in

Fig. 2, each symbol represents k information bits.

The binary labeling of the qth symbol in X is denoted by

cq = [cq,1, . . . , cq,m] ∈ Bm, where cq,l is the bit associated

with the lth input of the mapper in Fig. 2. The labeling matrix

is defined as L = [c1; c2; . . . ; cM ], where cq in L corresponds

to the binary label of the symbol xq in X . Throughout this

paper, we will show the vectors cq in L in either binary or

integer notation.

C. Binary Labelings for TCM

The NBC of order m is defined as Nm , [n1;n2; . . . ;nM ]
where nq = [nq,1, . . . , nq,m] ∈ Bm is the base-2 representa-

tion of the integer q−1 and nq,m is the least significant bit. The

BRGC of order m is defined as Bm , [b1; b2; . . . ; bM ] where

bq = [bq,1, . . . , bq,m] ∈ Bm. The bits of the BRGC can be

generated from the NBC as bq,1 = nq,1 and bq,l = nq,l−1⊕nq,l

for l = 2, . . . ,m. Alternatively, we have nq,l = bq,1 ⊕
. . . ⊕ bq,l−1 ⊕ bq,l for l = 1, . . . ,m, or, in matrix notation,

Bm = NmT and Nm = BmT−1, where

T =



















1 1 0 . . . 0 0
0 1 1 . . . 0 0
0 0 1 . . . 0 0

...
. . .

...

0 0 0 . . . 1 1
0 0 0 . . . 0 1



















, T−1 =



















1 1 1 . . . 1 1
0 1 1 . . . 1 1
0 0 1 . . . 1 1

...
. . .

...

0 0 0 . . . 1 1
0 0 0 . . . 0 1



















. (3)

Example 1: The NBC and BRGC of order m = 3 are

N 3 =

























0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

























, B3 =

























0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

























, (4)

where the pivots of the labeling matrices (defined in Sec. III-B)

are highlighted.

To formally define the SP principle for a given constella-

tion X and labeling L, we define Xl([um+1−l, . . . , um]) ,

{xq ∈ X : [cq,m+1−l, . . . , cq,m] = [um+1−l, . . . , um], q =
1, . . . ,M} ⊂ X for l = 1, . . . ,m− 1. Additionally, we define

the minimum intra-Euclidean distance (intra-ED) at level l as

δl , min
xi,xj∈Xl(u)

i6=j,u∈Bl

‖xi − xj‖, l = 1, . . . ,m− 1. (5)

and the MED of the constellation as δ0.

Definition 1 (Set-partitioning [2]): For a given constella-

tion X , the labeling L is said to follow the SP principle if

δ0 < δ1 < . . . < δm−1.

Example 2: Consider an 8PSK constellation (formally de-

fined in Sec. V). It can be easily verified that if this constella-

tion is labeled by the NBC in (4), an SP-labeled constellation

is obtained. Although the NBC is the most intuitive form

for generating an SP labeling for MPSK constellations, it is

not unique. As an example, consider the semi set-partitioning

(SSP) labeling proposed in [32, Fig. 2(c)] and the so-called

modified set-partitioning (MSP) labeling [33, Fig. 2(b)]:

LSSP =

























0 0 0
1 0 1
0 1 0
1 1 1
1 0 0
0 0 1
1 1 0
0 1 1

























, LMSP =

























0 0 0
0 0 1
0 1 0
1 1 1
1 0 0
1 0 1
1 1 0
0 1 1

























. (6)

It can be shown that both labelings follow the SP principle in

Definition 1.
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Example 2 shows that there are multiple labelings that

follow the SP principle. It can be shown that this is also the

case for MPAM constellations, and that in this case, the NBC

is also an SP labeling.

D. System Optimization and Search Problems

For a given constellation X and memory ν, a TCM encoder

is fully defined by the convolutional encoder matrix G and the

labeling of the constellation L, and thus, a TCM encoder is

defined by the pair Θ = [G,L].
For given integers k, m, and ν, we define the convolutional

encoder universe as the set Gk,m,ν of all (ν + k)×m binary

matrices5 G which result in a noncatastrophic feedforward

encoder and equally likely symbols.6 We are also interested

in the labeling universe, defined for a given integer m as the

set Lm of all M ×m binary matrices whose M rows are all

distinct.

To the best of our knowledge, there are no works addressing

the problem of designing a TCM encoder by exhaustively

searching over the labeling universe and the convolutional

encoder universe. We believe the reason for this is that an

exhaustive search over encoders and labelings is unfeasible

[34, Sec. I]. For example, for 8-ary constellations, there are in

general 8! = 40320 different binary labelings. In this paper,

we show how a joint optimization over all G ∈ Gk,m,ν and

L ∈ Lm can be restricted, without loss of generality, to a joint

optimization over all G ∈ Gk,m,ν and a subset of Lm.

III. EQUIVALENT LABELINGS FOR TCM ENCODERS

In this section, we show that binary labelings can be

grouped into classes, and that all the labelings belonging to

the same class lead to equivalent TCM encoders. This analysis

is inspired by the one in [30], where the so-called Hadamard

classes were used to solve a related search problem in source

coding.

A. Equivalent TCM Encoders

The transmitted symbol at time n of a given TCM encoder

Θ = [G,L] can be expressed using (2) as

x[n] = ΦL(un) = ΦL(jnG). (7)

Definition 2: Two TCM encoders Θ = [G,L] and Θ̃ =
[G̃, L̃] are said to be equivalent if they give the same output

symbol for the same information bit sequence, i.e., if they

fulfill ΦL(jG) = Φ
L̃
(jG̃) for any j ∈ Bν+k.

The concept of “equivalent encoders” is more restrictive

than the more well-known concept of “equivalent codes”. Two

equivalent encoders have the same bit error rate (BER) and

frame error rate (FER), whereas two equivalent codes have

the same FER but in general different BER. In this paper,

where BER is an important figure of merit, we are therefore

more interested in equivalent encoders.

5Note that whenever G is given in its binary form, ν1, . . . , νk are also
needed to interpret G correctly according to (1).

6For some matrices G, the symbols x[n] can be nonequally likely. This
would induce nonequally likely symbols (signal shaping) which we do not
consider in this work.

From now on we use Tm to denote the set of all binary

invertible m×m matrices.

Lemma 1: ΦL(c) = Φ
L̃
(cT ) where L̃ = LT , for any two

mappers ΦL and Φ
L̃

that use the same constellation X , any

T ∈ Tm, and any c ∈ Bm.

Proof: Let vq , [0, . . . , 0, 1, 0, . . . , 0] be a vector of

length M , where the one is in position q. From the defi-

nition of the labeling matrix L, it follows that cq = vqL

for q = 1, . . . ,M . The mapping ΦL satisfies by definition

ΦL(cq) = xq for q = 1, . . . ,M , or, making the dependency

on L explicit,

ΦL(c) = xq, if c = vqL (8)

for any c ∈ Bm. Similarly, for any c ∈ Bm,

Φ
L̃
(cT ) = xq, if cT = vqL̃

= xq, if c = vqL, (9)

where the last step follows because L = L̃T−1. Since the

right-hand sides of (8) and (9) are equal, Φ
L̃
(cT ) = ΦL(c)

for all c ∈ Bm.

The following theorem is the main result of this paper.

Theorem 1: For any G ∈ Gk,m,ν , L ∈ Lm, and T ∈ Tm,

the two TCM encoders Θ = [G,L] and Θ̃ = [G̃, L̃] are

equivalent, where L̃ = LT and G̃ = GT .

Proof: For any j ∈ Bν+k, Φ
L̃
(jG̃) = Φ

L̃
(jGT ) =

ΦL(jG), where the last equality follows by Lemma 1. The

theorem now follows using Definition 2.

Theorem 1 shows that a full search over Gk,m,ν and Lm will

include many pairs of equivalent TCM encoders. Therefore, an

optimal TCM encoder with given parameters can be found by

searching over a subset of Gk,m,ν and the whole set Lm or vice

versa. In this paper, we choose the latter approach, searching

over a subset of Lm.

B. Matrix Factorization

We briefly summarize here some matrix algebra. The fol-

lowing definition of a reduced column echelon matrix comes

from [35, pp. 183–184], adapted to the fact that we only

consider binary labeling matrices L whose columns are all

nonzero. The first nonzero element of the kth column is called

the kth pivot of L. The pivots for N3 and B3 are highlighted

in (4).

Definition 3: A matrix L ∈ BM×m is a reduced column

echelon matrix if the following two conditions are fulfilled:

1) Every row with a pivot has all its other entries zero.

2) The pivot in column l is located in a row below the pivot

in column l+ 1, for l = 1, . . . ,m− 1.

The matrix N3 in Example 1 (or more generally Nm) is

an example of a reduced column echelon matrix. On the other

hand, Bm is not a reduced column echelon matrix because it

does not fulfill the first condition in Definition 3.

The following theorem will be used to develop an efficient

search algorithm in the next section. We refer the reader to

[35, p. 187, Corollary 1] for a proof. From now on we use

Rm to denote the set of all reduced column echelon binary

matrices.
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TABLE I
NUMBER OF CLASSES (MR = |Rm|), THEIR CARDINALITY

(MT = |Tm|), AND THE TOTAL NUMBER OF LABELINGS (2m!) FOR

DIFFERENT VALUES OF m.

m 1 2 3 4 5 6

MR 2 4 240 1.038 · 109 2.632 · 1028 6.294 · 1078

MT 1 6 168 20160 9.999 · 106 2.016 · 1010

2m! 2 24 40320 2.092 · 1013 2.631 · 1035 1.269 · 1089

Theorem 2: Any binary labeling L ∈ Lm can be uniquely

factorized as

L = LRT , (10)

where T ∈ Tm and LR ∈ Rm.

Theorem 2 shows that all binary labeling matrices L can

be uniquely generated by finding all the invertible matrices T

(the set Tm) and all reduced column echelon matrices LR (the

set Rm). In particular, we have [36, eq. (1)], [30, eq. (18)]

MT , |Tm| =

m
∏

l=1

(2m − 2l−1), (11)

MR , |Rm| =
2m!

∏m
l=1(2

m − 2l−1)
. (12)

In Table I, the values for MR and MT for 1 ≤ m ≤ 6
are shown. In this table we also show the number of binary

labelings (|Lm| = 2m! = MRMT), i.e., the number of

matrices L in the labeling universe.

The modified Hadamard class associated with the reduced

column echelon matrix LR is defined as the set of matrices L

that can be generated via (10) by applying all T ∈ Tm. Note

that these modified Hadamard classes are narrower than the

regular Hadamard classes defined in [30], each including M
reduced column echelon matrices. There are thus MR modified

Hadamard classes, each with cardinality MT.

As a consequence of Theorems 1 and 2, the two TCM

encoders [G,L] and [GT−1,LR] are equivalent for any

G ∈ Gk,m,ν and L ∈ Lm, where LR and T are given by

the factorization (10). In other words, all nonequivalent TCM

encoders can be generated using one member of each modified

Hadamard class only, and thus, a joint optimization over all

G ∈ Gk,m,ν and L ∈ Lm can be reduced to an optimization

over all G ∈ Gk,m,ν and L ∈ Rm with no loss in performance.

This means that the search space is reduced by at least a

factor of MT = M !/MR. For example, for 8-ary constellations

(m = 3), the total number of different binary labelings that

must be tested is reduced from 8! = 40320 to 240. Moreover,

as we will see in Sec. V, this can be reduced even further if

the constellation X possesses certain symmetries.

C. Modified Full Linear Search Algorithm

The problem of finding the set Rm of reduced column

echelon matrices for a given m can be solved by using a

modified version of the full linear search algorithm (FLSA)

introduced in [30, Sec. VIII]. We call this algorithm the mod-

ified FLSA (MFLSA). The MFLSA generates one member of

Algorithm 1 Modified full linear search algorithm (MFLSA)

Input: The order m

Output: Print the MR different reduced column echelon vectors r

1: r ← [0, 1, . . . ,M − 1]
2: loop
3: print r

4: index ← 0
5: while rM = index do
6: [rindex+1, . . . , rM ]← [rM , rindex+1, . . . , rM−1]
7: index ← index + 1
8: while index is a power of 2 do
9: index ← index + 1

10: end while
11: if index = M − 1 then
12: Quit
13: end if
14: end while
15: Find pointer such that rpointer = index
16: Swap rpointer and rpointer+1

17: end loop

each modified Hadamard class, the one that corresponds to a

reduced column echelon matrix LR. Its pseudocode is shown

in Algorithm 1. In this algorithm, the vector r = [r1, . . . , rM ]
denotes the integer representation of the rows of the matrix LR

where rq = cq,m+2cq,m−1+. . .+2m−1cq,1 for q = 1, . . . ,M .

The first labeling generated (line 1) is always the NBC.

Then the algorithm proceeds by generating all permutations

thereof, under the condition that no power of two (1, 2, 4, . . .)
is preceded by a larger value. By Definition 3, this simple

condition assures that only reduced column echelon matrices

are generated.

Example 3: For m = 2, the MFLSA returns the following

reduced column echelon matrices:

R2 =























0 0
0 1
1 0
1 1









,









0 1
0 0
1 0
1 1









,









0 1
1 0
0 0
1 1









,









0 1
1 0
1 1
0 0























, (13)

where the first element in R2 is the NBC defined in Sec. II-C

and again we highlighted the pivots of the matrices. The 6

binary invertible matrices for m = 2 are

T2 =

{[

0 1
1 0

]

,

[

0 1
1 1

]

,

[

1 0
0 1

]

,

[

1 0
1 1

]

,

[

1 1
0 1

]

,

[

1 1
1 0

]}

. (14)

Using Theorem 2, all the 24 binary labelings in L2 (see

Table I) can be generated by multiplying the matrices in R2

and T2.

Example 4: For m = 3, the reduced column echelon

matrices generated by the MFLSA are shown in Table II (in

integer notation). The MFLSA first generates row number one,

then row number two, then row number three, etc., where each

row is generated from left to right. The first column in the

table corresponds to the output of the FLSA of [30]. Columns

two to eight show the additional matrices generated by the

MFLSA, which are obtained from the first column by shifting

the symbol zero to the right. In this table we also highlight

the labelings generated by the MFLSA that at the same time

have optimal EP [28] for 8PAM and 8PSK (see Sec. V).

Example 5: If we study the labelings in Example 2, we
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TABLE II
REDUCED COLUMN ECHELON MATRICES FOR m = 3 GENERATED BY THE MFLSA. THE MFLSA FIRST GENERATES ROW NUMBER ONE, THEN ROW

NUMBER TWO, ETC. THE LABELINGS SHOWN IN BOLDFACE HAVE OPTIMAL EP FOR 8PAM (FIRST FOUR COLUMNS) AND FOR 8PSK (FIRST COLUMN).

0 1 2 3 4 5 6 7 1 0 2 3 4 5 6 7 1 2 0 3 4 5 6 7 1 2 3 0 4 5 6 7 1 2 3 4 0 5 6 7 1 2 3 4 5 0 6 7 1 2 3 4 5 6 0 7 1 2 3 4 5 6 7 0

0 1 2 4 3 5 6 7 1 0 2 4 3 5 6 7 1 2 0 4 3 5 6 7 1 2 4 0 3 5 6 7 1 2 4 3 0 5 6 7 1 2 4 3 5 0 6 7 1 2 4 3 5 6 0 7 1 2 4 3 5 6 7 0

0 1 2 4 5 3 6 7 1 0 2 4 5 3 6 7 1 2 0 4 5 3 6 7 1 2 4 0 5 3 6 7 1 2 4 5 0 3 6 7 1 2 4 5 3 0 6 7 1 2 4 5 3 6 0 7 1 2 4 5 3 6 7 0

0 1 2 4 5 6 3 7 1 0 2 4 5 6 3 7 1 2 0 4 5 6 3 7 1 2 4 0 5 6 3 7 1 2 4 5 0 6 3 7 1 2 4 5 6 0 3 7 1 2 4 5 6 3 0 7 1 2 4 5 6 3 7 0

0 1 2 4 5 6 7 3 1 0 2 4 5 6 7 3 1 2 0 4 5 6 7 3 1 2 4 0 5 6 7 3 1 2 4 5 0 6 7 3 1 2 4 5 6 0 7 3 1 2 4 5 6 7 0 3 1 2 4 5 6 7 3 0

0 1 2 3 4 6 5 7 1 0 2 3 4 6 5 7 1 2 0 3 4 6 5 7 1 2 3 0 4 6 5 7 1 2 3 4 0 6 5 7 1 2 3 4 6 0 5 7 1 2 3 4 6 5 0 7 1 2 3 4 6 5 7 0

0 1 2 4 3 6 5 7 1 0 2 4 3 6 5 7 1 2 0 4 3 6 5 7 1 2 4 0 3 6 5 7 1 2 4 3 0 6 5 7 1 2 4 3 6 0 5 7 1 2 4 3 6 5 0 7 1 2 4 3 6 5 7 0

0 1 2 4 6 3 5 7 1 0 2 4 6 3 5 7 1 2 0 4 6 3 5 7 1 2 4 0 6 3 5 7 1 2 4 6 0 3 5 7 1 2 4 6 3 0 5 7 1 2 4 6 3 5 0 7 1 2 4 6 3 5 7 0

0 1 2 4 6 5 3 7 1 0 2 4 6 5 3 7 1 2 0 4 6 5 3 7 1 2 4 0 6 5 3 7 1 2 4 6 0 5 3 7 1 2 4 6 5 0 3 7 1 2 4 6 5 3 0 7 1 2 4 6 5 3 7 0

0 1 2 4 6 5 7 3 1 0 2 4 6 5 7 3 1 2 0 4 6 5 7 3 1 2 4 0 6 5 7 3 1 2 4 6 0 5 7 3 1 2 4 6 5 0 7 3 1 2 4 6 5 7 0 3 1 2 4 6 5 7 3 0

0 1 2 3 4 6 7 5 1 0 2 3 4 6 7 5 1 2 0 3 4 6 7 5 1 2 3 0 4 6 7 5 1 2 3 4 0 6 7 5 1 2 3 4 6 0 7 5 1 2 3 4 6 7 0 5 1 2 3 4 6 7 5 0

0 1 2 4 3 6 7 5 1 0 2 4 3 6 7 5 1 2 0 4 3 6 7 5 1 2 4 0 3 6 7 5 1 2 4 3 0 6 7 5 1 2 4 3 6 0 7 5 1 2 4 3 6 7 0 5 1 2 4 3 6 7 5 0

0 1 2 4 6 3 7 5 1 0 2 4 6 3 7 5 1 2 0 4 6 3 7 5 1 2 4 0 6 3 7 5 1 2 4 6 0 3 7 5 1 2 4 6 3 0 7 5 1 2 4 6 3 7 0 5 1 2 4 6 3 7 5 0

0 1 2 4 6 7 3 5 1 0 2 4 6 7 3 5 1 2 0 4 6 7 3 5 1 2 4 0 6 7 3 5 1 2 4 6 0 7 3 5 1 2 4 6 7 0 3 5 1 2 4 6 7 3 0 5 1 2 4 6 7 3 5 0

0 1 2 4 6 7 5 3 1 0 2 4 6 7 5 3 1 2 0 4 6 7 5 3 1 2 4 0 6 7 5 3 1 2 4 6 0 7 5 3 1 2 4 6 7 0 5 3 1 2 4 6 7 5 0 3 1 2 4 6 7 5 3 0

0 1 2 3 4 5 7 6 1 0 2 3 4 5 7 6 1 2 0 3 4 5 7 6 1 2 3 0 4 5 7 6 1 2 3 4 0 5 7 6 1 2 3 4 5 0 7 6 1 2 3 4 5 7 0 6 1 2 3 4 5 7 6 0

0 1 2 4 3 5 7 6 1 0 2 4 3 5 7 6 1 2 0 4 3 5 7 6 1 2 4 0 3 5 7 6 1 2 4 3 0 5 7 6 1 2 4 3 5 0 7 6 1 2 4 3 5 7 0 6 1 2 4 3 5 7 6 0

0 1 2 4 5 3 7 6 1 0 2 4 5 3 7 6 1 2 0 4 5 3 7 6 1 2 4 0 5 3 7 6 1 2 4 5 0 3 7 6 1 2 4 5 3 0 7 6 1 2 4 5 3 7 0 6 1 2 4 5 3 7 6 0

0 1 2 4 5 7 3 6 1 0 2 4 5 7 3 6 1 2 0 4 5 7 3 6 1 2 4 0 5 7 3 6 1 2 4 5 0 7 3 6 1 2 4 5 7 0 3 6 1 2 4 5 7 3 0 6 1 2 4 5 7 3 6 0

0 1 2 4 5 7 6 3 1 0 2 4 5 7 6 3 1 2 0 4 5 7 6 3 1 2 4 0 5 7 6 3 1 2 4 5 0 7 6 3 1 2 4 5 7 0 6 3 1 2 4 5 7 6 0 3 1 2 4 5 7 6 3 0

0 1 2 3 4 7 5 6 1 0 2 3 4 7 5 6 1 2 0 3 4 7 5 6 1 2 3 0 4 7 5 6 1 2 3 4 0 7 5 6 1 2 3 4 7 0 5 6 1 2 3 4 7 5 0 6 1 2 3 4 7 5 6 0

0 1 2 4 3 7 5 6 1 0 2 4 3 7 5 6 1 2 0 4 3 7 5 6 1 2 4 0 3 7 5 6 1 2 4 3 0 7 5 6 1 2 4 3 7 0 5 6 1 2 4 3 7 5 0 6 1 2 4 3 7 5 6 0

0 1 2 4 7 3 5 6 1 0 2 4 7 3 5 6 1 2 0 4 7 3 5 6 1 2 4 0 7 3 5 6 1 2 4 7 0 3 5 6 1 2 4 7 3 0 5 6 1 2 4 7 3 5 0 6 1 2 4 7 3 5 6 0

0 1 2 4 7 5 3 6 1 0 2 4 7 5 3 6 1 2 0 4 7 5 3 6 1 2 4 0 7 5 3 6 1 2 4 7 0 5 3 6 1 2 4 7 5 0 3 6 1 2 4 7 5 3 0 6 1 2 4 7 5 3 6 0

0 1 2 4 7 5 6 3 1 0 2 4 7 5 6 3 1 2 0 4 7 5 6 3 1 2 4 0 7 5 6 3 1 2 4 7 0 5 6 3 1 2 4 7 5 0 6 3 1 2 4 7 5 6 0 3 1 2 4 7 5 6 3 0

0 1 2 3 4 7 6 5 1 0 2 3 4 7 6 5 1 2 0 3 4 7 6 5 1 2 3 0 4 7 6 5 1 2 3 4 0 7 6 5 1 2 3 4 7 0 6 5 1 2 3 4 7 6 0 5 1 2 3 4 7 6 5 0

0 1 2 4 3 7 6 5 1 0 2 4 3 7 6 5 1 2 0 4 3 7 6 5 1 2 4 0 3 7 6 5 1 2 4 3 0 7 6 5 1 2 4 3 7 0 6 5 1 2 4 3 7 6 0 5 1 2 4 3 7 6 5 0

0 1 2 4 7 3 6 5 1 0 2 4 7 3 6 5 1 2 0 4 7 3 6 5 1 2 4 0 7 3 6 5 1 2 4 7 0 3 6 5 1 2 4 7 3 0 6 5 1 2 4 7 3 6 0 5 1 2 4 7 3 6 5 0

0 1 2 4 7 6 3 5 1 0 2 4 7 6 3 5 1 2 0 4 7 6 3 5 1 2 4 0 7 6 3 5 1 2 4 7 0 6 3 5 1 2 4 7 6 0 3 5 1 2 4 7 6 3 0 5 1 2 4 7 6 3 5 0

0 1 2 4 7 6 5 3 1 0 2 4 7 6 5 3 1 2 0 4 7 6 5 3 1 2 4 0 7 6 5 3 1 2 4 7 0 6 5 3 1 2 4 7 6 0 5 3 1 2 4 7 6 5 0 3 1 2 4 7 6 5 3 0

find that the SSP belongs to the first modified Hadamard class

(LR = N 3) while the MSP belongs to a different class, i.e.,

LSSP = N3





1 0 0
0 1 0
1 0 1



 , LMSP = LR





1 1 1
0 1 0
0 0 1



 , (15)

where LT

R = [0, 1, 2, 4, 7, 6, 5, 3] (in integer notation) is the

233th labeling generated by the MFLSA (see Table II). This

shows that the NBC does not span all the labelings that follow

the SP principle.

D. NBC and BRGC

Another way of interpreting the result in Theorem 1 is that

for any TCM encoder Θ̃ = [G̃, L̃], a new equivalent TCM

encoder can be generated using an encoder G = G̃T−1 and

a labeling L = L̃T−1 that belongs to the same modified

Hadamard class as the original labeling L̃. One direct conse-

quence of this result is that any TCM encoder using the NBC

labeling Nm and a convolutional encoder G is equivalent to

a TCM encoder using the BRGC Bm and a convolutional

encoder GT with T given by (3). This is formalized in the

following theorem.

Theorem 3: The BRGC and the NBC of any order m
belong to the same modified Hadamard class.

Proof: The BRGC and NBC are related via Bm =
NmT , with T given by (3). The theorem now follows from

Theorem 2 and the definition of a modified Hadamard class.

Example 6: For the two TCM encoders in Fig. 1, the NBC

and BRGC labelings are related via B2 = N 2T , i.e.,








0 0
0 1
1 1
1 0









=









0 0
0 1
1 0
1 1









[

1 1
0 1

]

. (16)

Thus, the BRGC and the NBC of order m = 2 belong to the

same modified Hadamard class, and convolutional encoders

can be chosen to make the two resulting TCM encoders equiv-

alent. This was illustrated in Fig. 1, where the transform block

corresponds to the transform matrix T = [1, 1; 0, 1] = T−1.

Since N 2 = B2T
−1, the TCM encoders [G[13,17],B2] and

[G[13,4],N2] are equivalent, where

G[13,4] =

[

1 0 1 1
0 1 0 0

]T

= G[13,17]T
−1 =

[

1 0 1 1
1 1 1 1

]T [

1 1
0 1

]

.

Example 6 and Theorem 3 explain, in part, the results

obtained in [18], where it is shown that the encoders in [18,

Table III] used with the BRGC perform asymptotically as well

as Ungerboeck’s TCM.7

IV. ERROR PROBABILITY ANALYSIS

The results in Sec. III are valid for any memoryless channel

model and any receiver; however, from now on we focus on the

AWGN channel and a maximum likelihood (ML) decoder. In

this section, we briefly review bounds on the error probability

of TCM encoders under these constraints. These bounds will

be used in Sec. IV-B to define optimal TCM encoders. The

bounds we develop can be found in standard textbooks, see,

7The “in part” comes from the fact that the system studied in [18] uses a
(suboptimal) BICM receiver.
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e.g., [5, Ch. 4] and [23, Ch. 6], and are re-derived here to

make the paper self-contained.

Since TCM encoders are in general not linear8, the proba-

bility of error depends on the transmitted sequence, i.e., it is

not possible to make the assumption that the all-zero sequence

was transmitted [5, p. 101]. This constraint can be lifted if the

TCM encoder is “regular” [37, Lemma 2], “superlinear” [34,

Sec. II-D], “scrambled” [18], or “uniform” [38], [7, Ch. 18].

However, regularity, superlinearity and uniformity do not hold

for all constellation and labelings9, and thus, we cannot use it

in this paper.

We consider a baseband-equivalent discrete-time real-valued

multi-dimensional AWGN channel. The transmitted sequence

of equally likely symbols is denoted by x = [x[1], . . . ,x[Ns]]
where x[n] ∈ X is the N -dimensional symbol transmitted

at discrete time n and Ns is the block length. The received

sequence of symbols is y = [y[1], . . . ,y[Ns]], where y[n] =
x[n]+z[n] ∈ R

N is the received vector at time instant n. The

channel noise z[n] ∈ R
N is an N -dimensional vector with

samples of independent and identically distributed (i.i.d.) ran-

dom variables with zero mean and variance N0/2 per dimen-

sion. The signal-to-noise ratio (SNR) is defined as Es/N0 =
1/N0. The conditional transition PDF of the channel is given

by pY |X(y|xq) = (N0π)
−N

2 exp
(

−N0
−1‖y − xq‖

2
)

.

A. Error Bounds

Let Xℓ be the set of all length-ℓ symbol sequences that start

at an arbitrary time instant and encoder state. Let X̂ℓ(x) be

the set of length-ℓ sequences x̂ 6= x that start and end at the

same encoder state as x ∈ Xℓ and where all the other ℓ − 1
intermediate states are different. An error event occurs when

the decoder chooses a sequence x̂ ∈ X̂ℓ(x) which is different

from the transmitted sequence x. Using the union bound, the

probability of an error event of an ML TCM decoder at a

given time instant can be upper-bounded as [5, eq. (4.1)]10

Pe ≤
∞
∑

ℓ=1

∑

x∈Xℓ

PX(x)
∑

x̂∈X̂ℓ(x)

PEP(x, x̂), (17)

where PEP(x, x̂) is the pairwise error probability (PEP)

and PX(x) is the probability that the encoder generates the

sequence x.

Assuming i.i.d. information bits, the probability of the

sequence starting at a given state is 1/2ν . There are 2k equally

likely branches leaving each state of the trellis at each time

instant, and thus,

PX(x) =
1

2ν
1

2kℓ
. (18)

The PEP depends only on the accumulated squared ED (SED)

8Note that the usual definition of linearity applies to codes in GF(q)N .
However, since TCM codes are defined over the real numbers, the usual
definition of linearity does not apply.

9For 8PSK for example, there is in fact no binary labeling that gives a
regular TCM encoder [23, Sec. 3.3].

10All the bounds in this section are dependent on the TCM encoder Θ.
However, to alleviate the notation, we omit writing out Θ as an explicit
argument.

between x and x̂ and can be shown to be

PEP(x, x̂) = Q





√

√

√

√

Es

2N0

ℓ
∑

n=1

‖x[n]− x̂[n]‖2



 . (19)

Let Ad2,ℓ denote the number of pairs x ∈ Xℓ and x̂ ∈

X̂ℓ(x) at accumulated SED d2 =
∑ℓ

n=1 ‖x[n] − x̂[n]‖2 and

let Aw,d2,ℓ denote the number of pairs at accumulated SED d2

generated by input sequences at Hamming distance w. Using

(18)–(19) and the definition of Ad2,ℓ, (17) can be expressed

as

Pe ≤
∑

d2∈D
Ad2Q





√

d2Es

2N0



 , (20)

where

Ad2 ,

∞
∑

ℓ=1

1

2ν
1

2kℓ
Ad2,ℓ =

∞
∑

ℓ=1

1

2ν
1

2kℓ

∞
∑

w=1

Aw,d2,ℓ (21)

is the distance multiplicity of the TCM encoder. In (20) D
is the set of all possible accumulated SEDs between any two

sequences, i.e., all the values of d2 for which Ad2 6= 0.

To obtain a bound on the BER, each error event must be

weighted by the number of bits in error (w out of k), i.e.,

BER ≤
∑

d2∈D
Bd2Q





√

d2Es

2N0



 , (22)

where

Bd2 ,

∞
∑

ℓ=1

1

2ν
1

2kℓ

∞
∑

w=1

w

k
Aw,d2,ℓ (23)

is the bit multiplicity of the TCM encoder.

Finally, to obtain a bound on the FER we generalize the

bound presented in [39] for convolutional codes to obtain

FER ≤ Ns

∑

d2∈D
Ad2Q





√

d2Es

2N0



 . (24)

B. Optimum Distance Spectrum TCM Encoders

In this section we define TCM encoders that are optimal

for asymptotically high SNR. These definitions will be used

in Sec. V to tabulate optimized TCM encoders for different

configurations.

We call the infinite set of triplets {d2, Ad2 , Bd2} the distance

spectrum (DS) of a given TCM encoder Θ = [G,L], where

d2 ∈ D. We also define the ith SED of a given TCM encoder

by d2i with i = 1, 2, 3, . . ., where d2i+1 > d2i and d21 is the

minimum SED of the TCM encoder. These SEDs correspond

to the ordered set of SEDs in D. Based on (22) and (24) we

define an optimum DS-TCM (ODS-TCM) as follows.

Definition 4: A TCM encoder Θ = [G,L] with DS

{d2, Ad2 , Bd2} is said to have a superior DS to another TCM

encoder Θ̃ = [G̃, L̃] with DS {d̃2, Ãd̃2 , B̃d̃2} if one of the

following conditions is fulfilled:

1) d21 > d̃21, or

2) d21 = d̃21, Ad2

1

< Ãd̃2

1

and Bd2

1

< B̃d̃2

1

, or
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3) there exist an integer l > 1 such that d2i = d̃2i , Ad2

i
= Ãd̃2

i

and Bd2

i
= B̃d̃2

i
for i = 1, 2, . . . , l − 1 and d2l > d̃2l or

d2l = d̃2l , Ad2

l
< Ãd̃2

l
and Bd2

l
< B̃d̃2

l
.

Definition 5: For a given constellation X and memory ν,

the TCM encoder Θ = [G,L] is said to be an ODS-TCM

encoder if no other TCM encoder Θ̃ = [G̃, L̃], for all G̃ ∈
Gk,m,ν and L̃ ∈ Lm, has a superior DS compared to Θ.

An ODS-TCM encoder in Definition 5 is the asymptotically

optimal TCM encoder in terms of BER and FER for a

given block length Ns. Unlike the more classical definition of

optimal encoders, ODS-TCM encoders are defined as encoders

that are optimal in terms of both Ad2 and Bd2 . This implies

that in principle, for some combinations of k,m, ν, it is

possible that no ODS-TCM encoder exists. As we will see in

Sec. V, this is not an uncommon situation. Moreover, by using

this somehow nonstandard definition we avoid listing encoders

that have optimal BER performance but possibly rather poor

FER performance (or vice versa). This situation happens for

R = 1/2 and 4PAM, as we will show in Sec. V-A.

V. NUMERICAL RESULTS

In this section we study well-structured one- and two-

dimensional constellations, i.e., MPAM and MPSK con-

stellations. An MPAM constellation is defined by X =
[x1, x2, . . . , xM ]T with xq = −(M + 1 − 2q)∆ ∈ R,

q = 1, . . . ,M , and ∆2 = 3/(M2 − 1) so that Es = 1.

An MPSK constellation is defined by X = [x1;x2; . . . ;xM ]
with xq = [cos (2π(q − 1)/M), sin (2π(q − 1)/M)] ∈ R

2

and q = 1, . . . ,M .

In the following sections we show results of exhaustive

searches over Gk,m,ν and Rm, and thus, these results should

be understood as a complete answer to the problem of jointly

designing the feedforward encoder and the labeling for TCM

encoders. The ODS-TCM encoders presented are obtained by

comparing the first five nonzero elements in the spectrum,

which we numerically calculate using a generalization of

the algorithm presented in [31, Sec. 12.4.3].11 On the other

hand, the bounds used to compare with simulation results

were calculated using 20 terms. The tabulated results are

ordered first in terms of the output of the MFLSA, then in

lexicographic order for the memories ν1, . . . , νk, and then in

lexicographic order for the encoder matrices G. This ordering

becomes relevant when there are multiple TCM encoder with

identical (and optimal) five-term DS.

A. ODS-TCM Encoders for MPAM

MPAM constellations are symmetric around zero. Because

of this, two TCM encoders based on an MPAM constellation,

the first one using the labeling L = [c1; c2; . . . ; cM−1; cM ]
and the second one using a “reverse” labeling L′ =
[cM ; cM−1; . . . ; c2; c1], are equivalent for any M . This result

implies that the number of binary labelings that give nonequiv-

alent TCM encoders is MR/2. Specifically, for m = 2 and

m = 3 (4PAM and 8PAM), only 2 and 120 labelings need

11Note that if more than five elements are considered different ODS-TCM
encoders might be found.
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Fig. 3. BER/FER bounds in (22) and (24) and simulations for Ungerboeck’s
encoders and the ODS-TCM encoders in Table III for Ns = 1000, 4PAM,
R = 1/2 (1 [bit/symbol]), and ν = 4, 6.

to be evaluated, respectively, instead of 24 and 40320 in an

exhaustive search, see Table I.

To generate only the MR/2 nonequivalent labelings for

MPAM, the MFLSA in Algorithm 1 can be modified as

follows. Replace M on lines 5 and 6 with e(index ), where

the integer function e(q) is defined as M/2 if q = 0 and M
otherwise. This has the effect of only generating labelings in

which the all-zero label is among the first M/2 positions (i.e.,

the first 4 columns of Table II for 8PAM).

1) R = 1/2 and 4PAM: The results obtained for R = 1/2
and 4PAM and different values of ν are shown in Table III. The

table reports the DS as well as the labeling and convolutional

encoder for the ODS-TCM encoders (shown as [·]AB). For

ν = 5, however, no ODS-TCM encoder was found, i.e., there

is no TCM encoder that is optimal in terms of both Ad2 and

Bd2 . Instead, we list the TCM encoder with best Ad2 among

those with optimal Bd2 (shown as [·]B), or vice versa (shown

as [·]A). In this table we also include Ungerboeck’s encoders12,

which we denote by [·]U. When Ungerboeck’s labeling (NBC)

or Ungerboeck’s convolutional encoder coincide with [·]AB or

[·]B, we use the notation [·]UAB or [·]UB, respectively. The

results in Table III show that no gains in terms of MED are

obtained and that the NBC is indeed the optimal labeling

for all memories. The key difference between Ungerboeck’s

design and the ODS-TCM encoders is the better multiplicities

obtained. To compare the gains obtained by the ODS-TCM

encoders over Ungerboeck’s encoders, we show in Fig. 3 their

BER/FER for ν = 4, 6. This figure clearly shows the gains

obtained by using the ODS-TCM encoders which are visible

not only at high SNR, but also for low SNR values (see,

e.g., the FER markers for ν = 6).

12Ungerboeck did not report results for ν = 1, and thus, we do not include
them in the Tables, i.e., we only show the ODS-TCM encoder for ν = 1.
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TABLE III
DISTANCE SPECTRUM OF ODS-TCM ENCODERS ([·]AB) AND UNGERBOECK’S ENCODERS ([·]U) FOR k = 1 [BIT/SYMBOL] AND 4PAM (m = 2). THE

NOTATION [·]A AND [·]B IS USED WHEN NO ODS-TCM ENCODER WAS FOUND.

ν L
T

G Distance Spectrum {d2, A
d2

, B
d2

}

1 [0,1,2,3]AB [3,1]AB {4.00, 0.50, 0.50}, {4.80, 0.50, 1.00}, {5.60, 0.50, 1.50}, {6.40, 0.50, 2.00}, {7.20, 0.50, 2.50}

2 [0,1,2,3]UAB [5,2]U {7.20, 1.00, 1.00}, {8.00, 1.25, 2.50}, {8.80, 1.75, 5.25}, {9.60, 2.56, 10.25}, {10.40, 3.81, 19.06}
[7,2]AB {7.20, 0.50, 0.50}, {8.00, 1.25, 2.50}, {8.80, 1.63, 4.88}, {9.60, 2.56, 10.25}, {10.40, 3.78, 18.91}

3 [0,1,2,3]UAB [13,4]UAB {8.00, 0.25, 0.50}, {8.80, 1.00, 3.00}, {9.60, 1.56, 6.25}, {10.40, 2.75, 9.75}, {11.20, 3.14, 16.84}

4 [0,1,2,3]UAB [23,4]U {8.80, 0.63, 1.88}, {9.60, 0.50, 2.00}, {10.40, 2.00, 6.00}, {11.20, 2.02, 10.09}, {12.00, 2.03, 13.22}
[23,10]AB {8.80, 0.13, 0.38}, {9.60, 0.50, 2.00}, {10.40, 1.88, 5.38}, {11.20, 2.39, 10.34}, {12.00, 3.72, 21.03}

5 [0,1,2,3]UAB [45,10]UB {10.40, 1.13, 1.63}, {11.20, 1.52, 5.09}, {12.00, 2.59, 12.16}, {12.80, 3.58, 22.13}, {13.60, 5.29, 38.60}
[55,4]A {10.40, 0.75, 1.75}, {11.20, 2.13, 8.75}, {12.00, 2.14, 10.48}, {12.80, 4.47, 24.75}, {13.60, 5.45, 37.01}

6 [0,1,2,3]UAB
[103,24]U {11.20, 2.34, 5.91}, {12.80, 2.82, 22.01}, {14.40, 7.60, 57.35}, {16.00, 31.39, 268.35}, {17.60, 74.37, 779.76}
[107,32]AB {11.20, 0.13, 0.50}, {12.00, 1.44, 5.81}, {12.80, 1.41, 5.77}, {13.60, 1.73, 12.58}, {14.40, 4.58, 31.53}

7 [0,1,2,3]UAB [235,126]U {12.80, 2.19, 8.19}, {14.40, 3.05, 17.66}, {16.00, 10.09, 89.43}, {17.60, 25.03, 231.04}, {19.20, 90.45, 920.63}
[313,126]AB {12.80, 1.46, 8.02}, {14.40, 4.77, 34.60}, {16.00, 15.42, 130.51}, {17.60, 35.60, 375.08}, {19.20, 103.30, 1213.89}

8 [0,1,2,3]UAB [515,362]U {13.60, 0.53, 4.66}, {14.40, 1.89, 10.79}, {15.20, 1.66, 14.10}, {16.00, 3.81, 30.45}, {16.80, 6.03, 49.34}
[677,362]AB {13.60, 0.36, 2.05}, {14.40, 1.06, 6.41}, {15.20, 1.47, 11.09}, {16.00, 3.44, 23.69}, {16.80, 5.25, 41.32}

2) R = 2/3 and 8PAM: The results for R = 2/3 and

8PAM are shown in Table IV. For ν = 1, 2, 3, 4, 6 the reported

encoders are in the form [·]AB, while for ν = 5 no ODS-TCM

was found, and we use the same notation as for 4PAM. Unlike

for R = 1/2, the parity-check matrix reported by Ungerboeck

for R = 2/3 specifies the code but not the encoder. To have a

fair comparison between Ungerboeck’s codes with the ODS-

TCM encoders, we first listed all the convolutional encoders

that give Ungerboeck’s parity-check matrix and then pick the

one with optimal Bd2 (all of them have the same Ad2 ). These

are the encoders reported in Table IV as [·]U. Even though

Ungerboeck’s encoders in Table IV are the best encoders for

that particular parity-check matrix, they coincide with the [·]B

encoders only for one out of six cases (ν = 5). For all the other

cases, the ODS-TCM encoders result in a better spectrum.

Also, unlike for 4PAM, Table IV shows that the NBC is not the

optimal labeling. For example, for ν = 4, the optimal labeling

is LT = [1, 2, 4, 0, 6, 5, 3, 7]AB, which does not follow the SP

principle (cf. Definition 1). In Fig. 4, we show the BER/FER

results obtained by the ODS-TCM encoders for R = 2/3,

8PAM, and ν = 4, 6. This figure shows the tightness of the

bounds and again gains over Ungerboeck’s encoders.

B. ODS-TCM Encoders for MPSK

A TCM encoder based on an MPSK constellation is not

affected by a circular rotation of its labeling, i.e., without

loss of generality it can be assumed that the all zero label

is assigned to the constellation point x1 = [1, 0]. The conse-

quence of this is that for MPSK constellations, the number

of reduced column echelon matrices that give nonequivalent

TCM encoders is further reduced by a factor of M . In view

of the results in Table I, for 4PSK, there is only one labeling

that needs to be tested, e.g., the NBC. For m ≥ 3, the

nonequivalent labelings can be obtained from the MFLSA by

setting index ← 3 in line 4, which gives the FLSA of [30].

For example, for M = 8, the output corresponds to the first

column of Table II, which gives 30 labelings.
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1) R = 1/2 and 4PSK: In this case there is only one

labeling to be tested (the NBC), and thus, only a search over

the encoders needs to be performed. Moreover, without loss

of generality, we can use the BRGC instead (because it is

in the same Hadamard class as the NBC) and search over

encoders for this labeling. Since 4PSK with the BRGC can

be considered as two independent 2PAM constellations (one

in each dimension), the design of TCM encoders in this case

boils down to selecting convolutional encoders with optimal

spectrum (in the sense of Definition 5).

We have performed an exhaustive search for convolutional

encoders with optimal spectrum up to ν = 12 and found that

our results coincide with those reported in [40, Table I]. For

ν = 1, 2, 3, 4, 5, 6, 11, 12 the optimal convolutional encoders
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TABLE IV
DISTANCE SPECTRUM OF ODS-TCM ENCODERS ([·]AB) AND UNGERBOECK’S ENCODERS ([·]U) FOR k = 2 [BIT/SYMBOL] AND 8PAM (m = 3). THE

NOTATION [·]A AND [·]B IS USED WHEN NO ODS-TCM ENCODER WAS FOUND.

ν L
T

G Distance Spectrum {d2, A
d2

, B
d2

}

1 [1,2,4,0,6,5,3,7]AB [1,1,1; 1,3,0]AB {0.95, 1.13, 0.84}, {1.14, 1.13, 1.69}, {1.33, 1.13, 2.53}, {1.52, 1.13, 3.38}, {1.71, 1.13, 4.22}

2 [0,1,2,3,4,5,6,7]UAB [1,0,0; 0,5,2]U {1.71, 2.25, 1.88}, {1.90, 3.52, 5.11}, {2.10, 6.05, 12.35}, {2.29, 10.56, 27.64}, {2.48, 18.47, 58.91}
[1,0,0; 0,7,2]AB {1.71, 1.69, 1.69}, {1.90, 3.52, 5.11}, {2.10, 6.01, 12.34}, {2.29, 10.56, 27.64}, {2.48, 18.46, 58.91}

3
[0,1,2,3,4,5,6,7]U [1,0,0; 0,13,4]U {1.90, 1.27, 2.11}, {2.10, 3.38, 6.75}, {2.29, 5.49, 14.14}, {2.48, 12.45, 32.48}, {2.67, 18.59, 64.81}
[1,2,4,0,6,5,3,7]AB [1,1,1; 2,15,0]AB {1.90, 1.27, 1.90}, {2.10, 3.38, 8.44}, {2.29, 5.49, 17.25}, {2.48, 12.45, 38.50}, {2.67, 18.59, 74.81}

4
[0,1,2,3,4,5,6,7]U [1,0,0; 0,23,4]U {2.10, 2.64, 5.59}, {2.29, 2.53, 6.75}, {2.48, 6.75, 13.50}, {2.67, 12.11, 40.55}, {2.86, 15.99, 66.51}
[1,2,4,0,6,5,3,7]AB [1,1,1; 2,31,0]AB {2.10, 0.95, 1.90}, {2.29, 2.53, 7.59}, {2.48, 7.91, 21.78}, {2.67, 13.21, 45.70}, {2.86, 19.77, 88.01}

5 [0,1,2,3,4,5,6,7]UAB [1,0,0; 0,45,10]UB {2.48, 4.32, 6.54}, {2.67, 7.99, 19.45}, {2.86, 14.26, 46.29}, {3.05, 27.05, 102.83}, {3.24, 44.27, 201.33}
[1,0,0; 0,55,4]A {2.48, 3.80, 6.96}, {2.67, 8.74, 21.63}, {2.86, 13.53, 45.10}, {3.05, 29.51, 106.50}, {3.24, 44.49, 198.08}

6 [0,1,2,3,4,5,6,7]UAB
[1,0,0; 0,103,24]U {2.67, 10.74, 22.97}, {3.05, 19.91, 86.93}, {3.43, 72.68, 343.40}, {3.81, 353.99, 1927.40}, {4.19, 1137.86, 7442.94}
[1,0,0; 0,107,32]AB {2.67, 1.42, 4.27}, {2.86, 8.46, 24.43}, {3.05, 12.94, 40.47}, {3.24, 15.68, 74.20}, {3.43, 40.61, 182.47}

([·]AB) are in fact the encoders from [16, Table I] (which were

initially optimized only in terms of Bd2). For ν = 7, 8, 9, 10
we found that no optimal encoder exists, i.e., the convolutional

encoders optimal in terms of Ad2 are not optimal in terms of

Bd2 and vice versa.13 These encoders are in fact shown in [40,

Table I]14, which extends the results in [14]–[16] because it

considers both Ad2 and Bd2 as optimization criteria.

Based on the discussion above, we conclude that an ODS-

TCM encoders can be constructed by concatenating the en-

coders in [40, Table I] with a 4PSK constellation labeled

by the BRGC. Alternatively, ODS-TCM encoders can be

obtained by using a 4PSK constellation labeled by the NBC

and using the encoders in [40, Table I] after applying the

transformation T−1 = [1, 1; 0, 1]. For example, for ν = 8,

we found G[515,677] and G[435,657] to be the optimal encoders

in terms of Ad2 and Bd2 , respectively, and thus, the two pairs

of equivalent ODS-TCM encoders are Θ = [G[515,677],B2]

and Θ̃ = [G[515,677]T
−1,N 2], and Θ = [G[435,657],B2] and

Θ̃ = [G[435,657]T
−1,N2].

2) R = 2/3 and 8PSK: The results obtained for R = 2/3
and 8PSK are shown in Table V. Somehow disappointingly,

this table shows that the NBC is indeed the optimal labeling

in all the cases, and thus, the selection of the labeling for

this particular configuration does not provide any gains over

Ungerboeck’s TCM schemes. The better spectrum obtained by

the ODS-TCM encoders in this case then comes only from the

selection of the convolutional encoder.

In Fig. 5, we show the DS for the encoders in Table V with

ν = 4. It is clear from the figure that an encoder optimal in

terms of Ad2 can be suboptimal in terms of Bd2 , and vice

versa. In addition, the figure shows how the set of SEDs D
is in general different for different encoders. It also shows

how Ungerboeck’s encoder is optimal in terms of Ad2 for the

term at MED, but in general suboptimal if the whole DS is

considered.

We note that depending on ν, the ODS-TCM encoders in

Table V have inferior, equivalent, or superior Bd2 spectrum to

13Convolutional encoders with optimal A
d2

and memories up to ν = 26
have been recently published in [41, Table 7.1].

14Although the search in [40] was performed only considering events at
minimum Hamming distance and not over the whole spectrum.
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Fig. 5. DS for encoders with ν = 4 for R = 2/3 and 8PSK from Table V.

those listed in [23, Table 3.2], [20, Table 6.10].15 The reason

for this is that the codes tabulated in [23, Table 3.2], [20,

Table 6.10] are found by searching over parity check matrices

and then converted to feedback encoders (in observer canoni-

cal form [20, Fig. 2.2]). On the other hand, we search over a

different set of encoders, namely, over all the noncatastrophic

feedforward encoders.

All labelings we found for the ODS-TCM encoders (i.e., the

highlighted labelings in Table II and the optimal ones in

Tables IV and V) have optimal EP. This makes us conjecture

that good TCM encoders can be found by using the EP of [28]

on top of the proposed classification. This approach would

indeed reduce the search space (for example, for 8PAM and

8PSK constellations, only eight and two labelings, respec-

tively, would need to be tested). However, it would not allow

us to claim optimality in the sense of Definition 5.

15To have a fair comparison, the values of B
d2

listed in [23, Table 3.2],
[20, Table 6.10] should be scaled by a factor 1/k = 1/2.
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TABLE V
DISTANCE SPECTRUM OF ODS-TCM ENCODERS ([·]AB) AND UNGERBOECK’S ENCODERS ([·]U) FOR k = 2 [BIT/SYMBOL] AND 8PSK (m = 3). THE

NOTATION [·]A AND [·]B IS USED WHEN NO ODS-TCM ENCODER WAS FOUND.

ν L
T

G Distance Spectrum {d2, A
d2

, B
d2

}

1 [0,1,2,3,4,5,6,7]AB [1,0,0; 0,1,2]AB {2.59, 2.00, 1.50}, {3.17, 2.00, 3.00}, {3.76, 2.00, 4.50}, {4.00, 1.00, 0.50}, {4.34, 2.00, 6.00}
2 [0,1,2,3,4,5,6,7]UAB [1,0,0; 0,5,2]UAB {4.00, 1.00, 0.50}, {4.59, 4.00, 4.00}, {5.17, 8.00, 14.00}, {5.76, 16.00, 38.00}, {6.34, 32.00, 96.00}

3 [0,1,2,3,4,5,6,7]UAB
[1,2,0; 4,1,2]U {4.59, 2.00, 2.50}, {5.17, 4.00, 8.50}, {5.76, 8.00, 25.00}, {6.00, 1.00, 0.50}, {6.34, 16.00, 66.00}
[1,2,0; 4,5,2]AB {4.59, 2.00, 2.00}, {5.17, 4.00, 8.50}, {5.76, 8.00, 25.00}, {6.00, 1.00, 0.50}, {6.34, 16.00, 66.00}

4 [0,1,2,3,4,5,6,7]UAB

[2,7,0; 7,3,2]U {5.17, 2.25, 5.50}, {5.76, 4.63, 14.13}, {6.00, 1.00, 0.50}, {6.34, 6.06, 26.50}, {6.59, 4.00, 5.50}
[2,7,0; 7,1,2]A {5.17, 2.25, 5.00}, {5.76, 3.88, 11.56}, {6.00, 1.00, 0.50}, {6.34, 9.56, 38.81}, {6.59, 4.00, 5.50}
[1,4,2; 6,1,0]B {5.17, 2.50, 5.00}, {5.76, 3.75, 11.25}, {6.34, 8.13, 32.44}, {6.59, 3.50, 4.50}, {6.93, 16.19, 80.94}

5 [0,1,2,3,4,5,6,7]UAB [1,2,0; 30,25,16]U {5.76, 4.00, 10.50}, {6.00, 1.00, 0.50}, {6.34, 4.00, 16.25}, {6.93, 4.00, 24.13}, {7.17, 3.00, 7.50}
[1,2,0; 30,25,10]AB {5.76, 2.00, 5.75}, {6.00, 1.00, 0.50}, {6.34, 3.63, 15.56}, {6.59, 3.00, 5.50}, {6.93, 8.06, 40.63}

6 [0,1,2,3,4,5,6,7]UAB

[4,11,0; 13,4,6]U {6.34, 5.25, 22.56}, {7.17, 10.00, 28.88}, {7.51, 14.53, 98.50}, {8.00, 3.00, 3.75}, {8.34, 38.56, 199.78}
[1,6,0; 27,25,12]A {6.34, 3.25, 12.00}, {7.17, 7.25, 17.88}, {7.51, 19.13, 119.17}, {8.00, 3.00, 5.00}, {8.34, 36.69, 159.69}
[1,6,0; 35,31,6]B {6.34, 3.56, 11.50}, {7.17, 7.25, 16.88}, {7.51, 16.58, 92.05}, {8.00, 3.50, 4.75}, {8.34, 30.63, 150.81}

VI. CONCLUSIONS

In this paper we analyzed the problem of jointly designing

the feedforward convolutional encoder and the labeling of a

TCM encoder. It was shown that the number of labelings that

need to be checked can be reduced if they are grouped into

modified Hadamard classes. This classification allowed us to

prove that it is always possible to design a TCM encoder based

on the BRGC with identical performance to the one proposed

by Ungerboeck in 1982. The numerical results show that in

most cases, the NBC is the optimal binary labeling for TCM

encoders and that gains up to 0.3 dB over the previously best

known TCM schemes can indeed be obtained.

The classification of labelings presented this paper does

not make any assumption on the channel nor on the receiver.

Because of this, the presented design methodology can be used

to design optimal TCM encoders for other channels as well

as for suboptimal (BICM) decoders.

The algorithm introduced in this paper to find all the label-

ings that need to be tested in an exhaustive search becomes

impractical for constellations with more than 16 points. In this

case, a suboptimal solution based on an algorithm (inspired by

the linearity increasing swap algorithm of [30, Sec. IX]) that

generates a subset of (good) labelings could be devised. This

approach could also be combined with the concept of labelings

with optimal EP [28]. The design of such an algorithm is left

for further investigation.
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