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The derivation of Multi-Mode anomalous transport module version 8.1 (MMM8.1) is presented. The

MMM8.1 module is advanced, relative to MMM7.1, by the inclusion of peeling modes, dependence

of turbulence correlation length on flow shear, electromagnetic effects in the toroidal momentum

diffusivity, and the option to compute poloidal momentum diffusivity. The MMM8.1 model includes

a model for ion temperature gradient, trapped electron, kinetic ballooning, peeling, collisionless and

collision dominated magnetohydrodynamics modes as well as model for electron temperature

gradient modes, and a model for drift resistive inertial ballooning modes. In the derivation of the

MMM8.1 module, effects of collisions, fast ion and impurity dilution, non-circular flux surfaces,

finite beta, and Shafranov shift are included. The MMM8.1 is used to compute thermal, particle,

toroidal, and poloidal angular momentum transports. The fluid approach which underlies the

derivation of MMM8.1 is expected to reliably predict, on an energy transport time scale, the

evolution of temperature, density, and momentum profiles in plasma discharges for a wide range of

plasma conditions. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794288]

I. INTRODUCTION

A number of special modes of tokamak operation such

as low confinement mode (L-mode), improved L-mode (I-
mode), high confinement mode (H-mode), supershot, and

internal transport barriers have been identified by experimen-

talists. The goal is to develop a theory based Multi-Mode

anomalous transport module to understand the interaction

between physical processes that influence transport in these

different modes of tokamak operation.

The Multi-Mode module version 8.1 (MMM8.1) is an

anomalous transport module consists of a combination of con-

tributions from different transport theories. The MMM7.1

module (an earlier version of the Multi-Mode module) has

been installed in the PTRANSP code, the TRANSP analysis

code extended for use in carrying out predictive integrated

modeling simulations, and has been used to compute thermal,

particle, and toroidal angular momentum transports. The

MMM7.1 is documented and organized as a stand-alone mod-

ule, which fully complies with the National Transport Code

Collaboration (NTCC) standards1 and is now available in the

NTCC Module Library. The MMM7.1 has a single clearly

defined interface, which facilitates porting the module to

whole device modeling codes and in addition to PTRANSP,

has been ported to Framework Application for Core-Edge

Transport Simulations code (FACETS),2 Automated System

for TRansport Analysis code (ASTRA),3 Tokamak Simulation

Code (TSC),4 and Simulation of Radio Frequency Wave

Interactions with magnetohydrodynamics (MHD) code

(SWIM).5 Recently, self consistent predictive simulations are

carried out using MMM7.1 module for ITER target steady

state and hybrid discharges.6,7

The MMM8.1 model describes transport driven by ion

temperature gradient (ITG) mode, trapped electron (TE)

mode, kinetic ballooning mode (KBM), peeling mode (PM),

collisionless and collision dominated MHD modes,8 electron

thermal transport driven by electron temperature gradient

(ETG) mode,9,10 and a model for drift resistive inertial bal-

looning modes (DRIBM).11 The choice of the MMM8.1 has

been guided by the philosophy of using the best transport

theories available for the various modes of turbulence that

dominate in different regions of the plasma. The theoretical

foundation of the module is improved in order to develop a

better understanding of the physics of transport and more

reliable extrapolations to new devices. The Weiland compo-

nent of the MMM8.1 model now includes transport driven

by ITG/TE/KBM/PM, collisionless and collision dominated

MHD modes as well as the diffusion and radial convective

pinch of toroidal and poloidal angular momentum.12 The

new Weiland model has gone through a significant evolution

from the model,13 used as a component in the MMM7.1

transport model, to the new Weiland component in the

MMM8.1 transport model. There have been three particu-

larly significant changes past year. (1) In addition to kinetic

ballooning mode, the new Weiland model now includes the

transport associated with turbulence driven by peeling

modes. (2) Dependence of turbulence correlation length on

flow shear is introduced in the new model to reproduce the

experimental observation that anomalous transport stiffness

is reduced for a combination of large flow shear and small

magnetic shear. (3) The new Weiland model also includes

electromagnetic effects in momentum diffusivity. The

Weiland model, which is derived in shifted circular geome-

try, includes effects of magnetic shear, elongation, finite

beta, Shafranov shift, collisions, fast ion, and impurity dilu-

tion. The poloidal width of the drift-wave eigenfunction,

which can be weakly or strongly ballooning depending on

the magnetic shear and other plasma parameters, is obtained
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iteratively. It has been shown that Weiland drift model can

predict the observed intrinsic angular rotation of the plasma

given a relatively small toroidal rotation at the edge of the

plasma. Compared with older models for transport driven by

Weiland drift mode model, such as the one used in the

MMM95 transport model,14 the new drift mode model more

accurately computes finite beta effects and the suppression

of transport at low magnetic shear.

The ETG component of the MMM8.1 module includes

both electrostatic and electromagnetic branches of the ETG

mode9,10 and is refined using the Jenko model threshold

obtained from toroidal gyrokinetic ETG turbulence simula-

tions.15 The ETG modes have very short wavelengths which

are comparable to the electron gyro-radius and much shorter

than the ion gyro-radius. Therefore, the ETG modes drive

essentially only electron thermal transport, with almost no

contribution to ion thermal, particle, or momentum

transports.

The DRIBM component of MMM8.1 module is a gener-

alization of resistive ballooning mode (RBM) in which two

fluid drift effects and electron inertia are included.11 The der-

ivation of the DRIBM model takes into account the parallel

electron and ion dynamics, collisions, electron inertia, ion

gyro-viscous stress and polarization, electron and ion tem-

perature and density profiles, temperature and density pertur-

bations, and diamagnetic and finite beta effects. It has been

found that the DRIBM model makes essential contribution to

the transport in the edge region of Ohmic and L-mode toka-

mak plasmas.

The combination of modes in MMM8.1 is necessary in

order to include the variety of different physical phenomena

that affect the plasma transport. These components of the

MMM8.1 model provide contributions to transport in the dif-

ferent regions of plasma discharge. It has been found in the

DIII-D, JET and TFTR L-mode simulations carried out using

the Multi-Mode model, that the DRIBM contributes to the

anomalous transport primarily near the edge of the plasma

where the transport associated with ITG and TE modes are

diminishing as a function of radius, while neoclassical ion

thermal transport contributes mainly near the center of the

discharge. The Multi-Mode model has been found to provide

a better match to the temperature profiles of Ohmic and

L-mode tokamak discharges compared to other theory-based

models.

The organization of this paper is as follows. In Sec. II,

the multi-fluid Weiland model equations are derived using

ions, electrons and impurity continuity, and momentum and

energy equations. Section III is devoted for six coupled equa-

tion for the DRIBM model, which is derived from Ohm’s

law, vorticity, continuity, total parallel momentum, and elec-

tron and ion energy equations. In Sec. IV, the ETG model is

described. The diagonal and off-diagonal components of to-

roidal and poloidal momentum transport are calculated in

Sec. V. The content of the paper is summarized in Sec. VI.

II. DERIVATION OF THE WEILAND MODEL

The fundamental equations used in the Weiland model

are the reactive reduced Braginskii multi-fluid equations

including charged-particle drifts due to classical collisions in

the edge and turbulent collisions in the core.8 It is assumed

that all of the perturbed quantities are taken to be propor-

tional to expðik � r� ixtÞ, where k and x are the wave vec-

tor and the frequency. The Weiland transport model is a

reactive fluid model that includes the fluid resonance in the

energy equation. By reactive model, it is meant that dissipa-

tion is not involved in the closure. A non-Markovian mixing

length rule is used in order to separate the effects of ion

modes on electron transport and vice versa. This rule is used

because the Doppler shifts due to the respective magnetic

drift frequencies are included in the dependencies on the real

frequencies. With this choice, the transport from all instabil-

ities on all channels can be self consistently included by add-

ing each contribution.

A. Fluid ion equations

The continuity equation for ions with density ni is

@ni

@t
þr � ðniviÞ ¼ 0; (1)

where

vi ¼ vE þ v�i þ vPi þ vpi þ B̂vki; (2)

represents the sum of the fluid flows.

The drift velocity vE is given by

vE ¼ E� B̂=B ¼ B̂ �r/=B ¼ �ikh/x̂=B; (3)

where B ¼ jBj; B̂ ¼ B=B is the unit vector in the direction

of the magnetic field; x̂ is the unit vector in the radial direc-

tion; and kh is the wave vector in the poloidal direction. The

electric field vector, E, is given in terms of the scalar poten-

tial, /, and the parallel component of vector potential, Ak,
by

E ¼ �r/�
@Ak
@t

: (4)

A low-b approximation, that is, b � 2l0p=B2 � 1, where

p ¼ ðniTi þ neTe) is made so that the compressional mag-

netic field perturbation can be neglected.

The ion diamagnetic drift is given by

v�i ¼
B̂ �rðniTiÞ

ZieniB
¼ ĥð1þ giÞx�i=kh; (5)

where x�i is the ion diamagnetic frequency, ĥ is the unit vec-

tor in the poloidal direction, and gi is the ratio of ion temper-

ature and ion density gradients. The ion diamagnetic

frequency can be expressed in terms of the normalized den-

sity gradient, gni, that is

x�i ¼
�khTigni

ZieBR
; (6)

where gni is given by
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gni � �Rx̂ � rni=ni; (7)

where R is the major radius to geometric center of the flux

surface. The ratio of the ion temperature and density gra-

dients is

gi � gTi=gni ¼
nix̂ � rTi

Tix̂ � rni
: (8)

The polarization drift velocity is

vPi ¼
dE

dt
=ðBXiÞ; (9)

where

Xi ¼
ZieB

mi
(10)

is the ion cyclotron frequency and d/dt is the convective

derivative.

The drift velocity due to the stress tensor pi is

vpi ¼
B̂ �r � pi

ZieniB
; (11)

which includes the lowest order finite Larmor radius effects

combined with the polarization drift resulting in the cancela-

tion of the convective diamagnetic part of the polarization

drift8 and vki is the ion velocity parallel to the magnetic field.

In the equations above, e is the electron charge, Tj is the tem-

perature of species j, mj is the mass of species j, and Zi

denotes the charge state (Zi ¼ 1 for hydrogen isotopes and

Zi ¼ �1 for electrons).

Note that the E�B drift is electrostatic in the limit of

low b. Electromagnetic effects are included in the model

equations through the parallel gradient rk ¼ B̂ � r
¼ B̂

ð0Þ � r þ B̂
ð1Þ � r, where B̂

ð0Þ
is the direction of the

unperturbed magnetic field, and B̂
ð1Þ ¼ r ~Ak � êk=B is the

magnetic perturbation associated with field line bending,

which, in turn, is associated with the perturbed part of the

parallel vector potential, ~Ak. It follows that when the

operator B̂
ð1Þ �r operates on any background variable S0

(such as density, temperature, or pressure), the result has

the linearized form� iS0 x�S e ~Ak=Te, where x�S ¼ �ðTe

=eBÞk � B̂ �r ln S0.

Equations for divergence of the drifts are

r � dðniv�iÞ ¼ vDi � rdðniTiÞ=Ti; (12)

in which d is used to indicate perturbed quantities

r � v̂E ¼
e

Ti
vDi � r~/ (13)

and

r � d½niðvpi þ vpiÞ� 	 �inik
2
yq

2
si½x� x�ið1þ giÞ�

e~/
Te
; (14)

where ~/ is the perturbed electrostatic potential, qsi � cs=Xi

is the ion Larmor radius with the electron (rather than ion)

temperature, cs �
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the speed of sound, and

vDi ¼
Ti

miXi
B̂ � rB

B
þ j

� �
(15)

is the drift velocity due to rjBj and magnetic field curvature

j ¼ B̂ � rB̂. The magnetic drift frequency xDi ¼ k � vDi so

that the linearized ion continuity equation can be written as

ð�xþ xDiÞn̂i þ xDiT̂ i þ ½ðxDi � x�iÞZiTe=Ti

� k2
hq

2
siðx� x�ið1þ giÞÞ�/̂ þ kkcsv̂ki ¼ 0; (16)

where the dimensionless perturbed ion density, ion tempera-

ture, electrostatic potential, and parallel ion flow velocity,

n̂i � ~ni=ni; T̂ i � ~Ti=Ti; /̂ � e~/=Te, and v̂ki � ~vki=cs are

defined in terms of the perturbed variables, ~ni; ~Ti; ~/, and ~vki.
The parallel ion motion vki is determined by the parallel

ion momentum equation driven by electromagnetic forces as

well as by the ion pressure gradient and momentum transfer

along the field lines with the ion stress tensor and zero order

background flow included

minið@t þ 2vDi � rÞdvki ¼ �minidvE � rVk0 � êk � r þ Vk0
mivDi � r

Ti

� �
� dpi þ enid/� x� x�ið1þ giÞ

ckk
enid Ak

� �
: (17)

After Fourier transformation, Eq. (17) takes the form

ðx� 2xDiÞv̂ki ¼ �khqs

dVk0
dr

/̂ þ Zikkcs þ
Te

Ti
V̂k0 xDi

� �

� /̂ þ Ti

Te
ðn̂i þ T̂ iÞ �

x�x�ið1þ giÞ
ckk

Âk

� �
;

(18)

where Âk � e ~Ak=Te is the dimensionless form of the parallel

component of the perturbed vector potential, ~Ak and V̂k0 is

the equilibrium flow normalized by the sound velocity.

The ion energy balance equation is

3

2
nið@=@tþ vi � rÞTi þ niTir � vi

¼ �r � q�i ¼
5

2
niðv�i � vDiÞ � rTi; (19)

where

q�i ¼
5niTi

2miXi
ðB̂ �rTiÞ (20)
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is the diamagnetic ion heat flow. When continuity equation

is utilized, the diamagnetic part of r � q�i is canceled by the

convective diamagnetic terms from v�i � rT and r � v�i, and

Eq. (19) can be expressed in the following form:8�
�xþ 5

3
xDi

�
T̂ i þ

2

3
xn̂i þxDe

gni

2

�
gi �

2

3

�
/̂ ¼ 0: (21)

B. Electron equations

The electrons can be divided into two classes: Trapped

(with density net and fraction ft ¼ net=ne) and free (with den-

sity nef and fraction 1� ft) with ne ¼ net þ nef . The electron

density ne is related to the density of hydrogenic ions nH, im-

purity ions nZ ¼ fZne, and superthermal hydrogenic ions

ns ¼ fsne through charge neutrality ne ¼ nH þ ZZnz þ ns,

where ZZ is the charge state for the impurity ions. The nor-

malized perturbed densities (such as n̂e ¼ ~ne=neÞ are then

related by

n̂e ¼ ftn̂etþ ð1� ftÞn̂ef ¼ ð1� ZZfZ � fsÞn̂H þ ZZfZn̂Z; (22)

assuming that superthermal ions do not take part in the per-

turbation, i.e., n̂s ¼ 0.

The continuity equation for trapped electrons is derived

from a kinetic equation including a Bhatnagar-Gross-Krook

(BGK) collision term for trapped particles, in the limit

x� Xe, and ignoring electron finite Larmor radius effects16

@net

@t
þr � netðvE þ v�eÞ ¼ ��̂xDe net � Cnet

e/
Te

� �
; (23)

where

C ¼ 1þ gTe

x=xDe þ i�̂ � 1
and �̂ � ð�e=xDeÞR=r: (24)

The electron collision frequency �e is given by

�e ¼ 4ð2pÞ1=2neðln kÞe4Zef f=½3ð4p�oÞ2m1=2
e ðkbTeÞ3=2�; (25)

where k is the Coulomb logarithm, Zeff is the effective

charge, �o is the permittivity of free space, and kb is the

Boltzmann constant.

The electron diamagnetic velocity v�e (including the full

electron pressure gradient) is

v�e ¼ �
B̂ �rðneTeÞ

eneB
¼ ĥð1þ geÞx�e=kh; (26)

where

x�e ¼
khTegne

eBR
and ge � gTe=gne ¼

nex̂ � rTe

Tex̂ � rne
: (27)

Equations for divergence of the drifts are

r � dðnetv�eÞ ¼ inetxDeðn̂et þ T̂ etÞ; (28)

r � dðnetvEÞ ¼ inetðx�e � xDeÞ/̂; (29)

in which xDe ¼ k � vDe is electron magnetic drift frequency,

n̂et � ~net=net; T̂ et � ~Tet=Tet. With the use of the divergence

expressions in Eqs. (28) and (29), the linearized continuity

equation for trapped electrons, Eq. (23), can be written as

follows:

ðx�xDeþ i�̂xDeÞn̂etþðxDe�x�eÞ/̂¼xDeT̂ etþ i�̂xDeC/̂:

(30)

The trapped electron temperature is determined by the fol-

lowing electron energy equation:

3

2

@

@t
þ vet � r

� �
ðnetTetÞ þ

5

2
netTetr � vet þr � qe

¼ �f�thTet

�
net � net

e/
Te

�
; (31)

where �th ¼ �e=�, � is the inverse aspect ratio and where a

free parameter f is introduced in the energy equation in order

to compensate the fact that velocity dependence on collision

frequency is changed. With the cross-field (or Righi-Leduce)

electron heat flux

qe ¼ �
5

2

netTet

eB
B̂ �rTet: (32)

Equation (31) for the trapped electron temperature, through

use of trapped electron continuity equation, Eq. (23), and by

canceling the convective diamagnetic effects, reduces to

3

2
net

@

@t
þvE �r

� �
Tet�Tet

@

@t
þvE �r

� �
netþ

5

2
netvDe �rTet

¼�thTetnet

�
f�5

2
C

�
/̂�

�
f�5

2

�
n̂et

� �
; (33)

which further simplifies to the following form:

x� 5

3
xDe

� �
T̂ et ¼ x�e ge �

2

3

� �
þ i�th

2

3
f� 5

3
C

� �� �
/̂

þ 2

3
ðxþ i�thÞn̂et: (34)

A comparison with typical terms by Braghinskii indicates

that f ¼ 1:5.16

The free electron continuity equation is

@nef

@t
þr � nef

�
vE þ v�e þ vke0

dB?
B
þ vke

�
¼ 0; (35)

which can be rewritten as

@~nef

@t
þ n0ðv�e � vDeÞ � r/̂ þ vDe � r~nef þ nef vDe � rT̂ e

� 1

e

~B?
B
� rJk0 þ n0êk � r~vk ¼ 0: (36)

With the use of the following equation:

~B?
B
� rJk0 ¼

@Jk0
dr

1

Br

@ ~Ak
@h

(37)
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and with the assumption of a plane wave, the equation for

the free electron density, Eq. (36), can be rewritten as

ðx� xDeÞn̂ef ¼ ðx�e � xDeÞ/̂ �
kh

en0Br

@Jk0
@r

~Ak

þ xDeT̂ ef þ kk~vke; (38)

where n̂ef � ~nef =nef and T̂ ef � ~Tef =Tef . A relation between

the perturbed free (circulating) electron density nef and the

perturbed electric and magnetic potentials can be obtained

from the momentum equation for free electrons parallel to

the unperturbed magnetic field

me

@vke
@t
¼ e B̂ � r/þ 1

c

@Ak
@t

� �
� e

c
ðv�e � dB?Þ � B̂

þ 1

nef
ðRei � êk � rpÞ; (39)

where Rei ¼ jkme�ef =1:96e is the momentum gained by elec-

trons through collisions with ions in which jke ¼ �enef ~vke.

With the assumptions that electron velocity parallel to mag-

netic field is much greater than the parallel ion velocity and

that �e 
 x, the perturbed electron velocity gives

n̂ef ¼ /̂ � T̂ ef þ
ð1þ geÞx�e � x

ckk
Âk �

~vke
ikkDe

; (40)

where De � 2Te=me�e.

The free electron temperature is assumed to be isother-

mal so that

T̂ ef ¼ ge

x�e
ckk

Âk: (41)

With the use of the toroidal component of Ampere’s law

Jk0 ¼
1

l0

1

r

@

@r
ðr BhÞ (42)

and Eqs. (38), (40), and (41), the following relation between

normalized electrostatic potential (/̂) and vector potential

(Âk) is obtained:

ðx�x�eÞ/̂¼
1

ckk

�
xðx�x�eÞþxDeðx�eT�xÞ

�kkkhq
2
s v

2
A

1

B

1

r

@Bh

@r
�Bh

r2
þ@

2Bh

@r2

� �

�k2
?q2

s k2
kv

2
A� ix2

De

me

mi

R

cs

�e

be

k2
?

kh
qs 1� x

xDe

� ��
Âk;

(43)

where x�eT is the diamagnetic drift frequency with tempera-

ture gradient, v2
A � B2=l0nmi is the Alfv�en speed, and be �

l0nTe=B2 is the ratio of electron pressure to magnetic

pressure.

The third term in bracket on the RHS of Eq. (43) con-

tains the poloidal magnetic field (Bh) and its gradient. This

term results in the inclusion of the peeling mode and is a

consequence of the background current gradient which

appears in Eq. (38). The inclusion of the peeling mode in the

Weiland model is important for the simulation of the edge

transport barrier (ETB). The dependence of ETB on Bh has

been seen in previous studies.8 The height of the ETB has

been found to increase with an increase in Bh. This is

because Bh is linked with background current gradient and

an increase in the value of Bh activates peeling mode effects

in the Weiland model.8 The contribution of the peeling

modes will be important in instances where there is a strong

current gradient. Consequently, it is anticipated that the peel-

ing modes will contribute in the H-mode pedestal region.

The fifth (last) term in the bracket on the RHS of

Eq. (43) includes the effects of the collisions on free elec-

trons. In the earlier version of the Multi-Mode model,14 the

equation comparable to Eq. (43) did not include the third and

fifth terms in the bracket. The presence of collisions on free

electrons in the Weiland model does include resistive bal-

looning modes. Therefore, a detailed validation study will be

carried out in the future once the MMM8.1 module is in-

stalled in a predictive integrated modeling code. The result

of that validation study will be to eliminate the double count-

ing of the effects of the contribution from the Weiland com-

ponent and from the DRIBM component.

C. Impurity equations

The impurity equations are analogous to the ion equa-

tions, continuity Eq. (16), momentum Eq. (18), and energy

Eq. (21). The impurity particle equation is

ð�xþ xDZÞn̂Z þ xDZT̂Z þ ½ðxDZ � x�ZÞZTe=TZ

� k2
hq

2
sZðx� x�Zð1þ gZÞÞ�/̂ þ kkcszv̂kZ ¼ 0: (44)

The impurity momentum equation parallel to the magnetic

field is

xv̂kZ ¼ Zkkcsz /̂ þ x�zð1þ gZÞ � x
ckk

� �
Âk

� �

þ TZ

Te
cszkkðn̂Z þ T̂ ZÞ: (45)

The impurity energy equation is�
� xþ 5

3
xDZ

�
T̂ Z þ

2

3
xn̂Z þ xDe

gnZ

2

�
gZ �

2

3

�
/̂ ¼ 0:

(46)

D. Evolution of the Weiland model

The new Weiland model for drift modes has gone

through a significant evolution from the model and has been

used as a component in the first release of Multi-Mode trans-

port model,14 to the new Weiland component in the

MMM8.1 transport model. There have been four particularly

significant changes: First, eigenfunctions have been allowed

to extend along magnetic field lines so that the geometrical

shapes of the magnetic surfaces play a more significant role

in the model. Second, toroidal and poloidal momentum

transports are computed (see Sec. IV below). Third, colli-

sions on free electrons and plasma current gradients are
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added to describe the edge physics in the new Weiland

model. Fourth, the dependence of flow shear on the correla-

tion length (length-scale of turbulence) is introduced in the

new model to reproduce the experimental observation that

stiffness is reduced for a combination of large flow shear and

small magnetic shear.

An effect of the extended eigenfunctions is illustrated

by the following partial derivation. Note that the magnitude

of the ion magnetic drift frequency varies strongly around

each magnetic surface

xDj ¼
�2khTj

ZjeBR
gðhÞ; (47)

where for Shafranov-shifted circular magnetic surfaces,

gðhÞ ¼ cos hþ sh sin hþ am sin2 h: (48)

In Eq. (48), s is the magnetic shear and am, given by

am ¼
2l0Rq2

B2

dp

dr
(49)

is proportional to the Shafranov shift of the magnetic surfa-

ces relative to one another. Consider eigenfunctions that are

extended along each magnetic field line with a poloidal

angular dependence that is proportional to expð�a h2Þ. The

coefficient a is determined by asymptotically matching the

eigenfunction solution at large poloidal angle, h!1, and

is given by

a ¼ jReðxÞjk2
hq

2
s jsjq=xDe; (50)

where x is the eigenvalue (frequency and growth rate) asso-

ciated with the mode. The flux-surface average of the geo-

metric factor, gðhÞ defined in Eq. (48), times the

eigenfunction, expð�ah2Þ, has the form

hgðhÞ expð�ah2Þi ¼ 1þ s

4ReðaÞ

� �
exp � 1

8ReðaÞ

� �

þ am

2
1� exp � 1

8ReðaÞ

� �� �
: (51)

The coefficient a and, therefore, the eigenvalue x,

appear in the denominator and exponential function in this

flux-surface average. Since this kind of flux-surface average

appears in several of the eigenvalue equations in the

Weiland model, it can be seen that the eigenvalue equations

are no longer linear in the new Weiland model. It is neces-

sary to solve nonlinear equations for the frequencies and

growth rates of the eigenfunctions. The solution is deter-

mined by carrying out a nonlinear iteration of the eigenvalue

equations. It is found that the eigenfunctions extend particu-

larly far along magnetic field lines in regions of low mag-

netic shear in the core of the plasma (weak ballooning

approximation) while the eigenfunctions are concentrated

near the midplane ðh ¼ 0Þ in regions of high magnetic shear

which occur near the edge of the plasma (strong ballooning

approximation).

Inclusion of eigenfunctions that can extend along the

field line is a feature that was not implemented in the previ-

ously published description of the Multi-Mode transport

model14 but is now a new feature in the MMM8.1 transport

model. Usually for small positive or for reverse magnetic

shear, eigenfunctions of drift modes become extended along

the field line and growth rates of these modes decrease and

as a consequence the temperature increases. Therefore,

inclusion of the extended eigenfunction in the Multi-Mode

module is important in order to simulate discharges with in-

ternal transport barriers in the temperature profiles.

Scalings of the correlation length of drift wave turbu-

lence with magnetic q, shear, elongation, temperature ratio,

and flow shear have been introduced into the new Weiland

drift wave transport model. The overall numerical scalings

have resulted in the following numerical fit for the correla-

tion length:17,18

krqs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2K

1þ Ti=Te

s
; (52)

where

K ¼ 0:7þ Cjx̂e�bjð1� jŝjÞ2 þ
2:4

7:14qŝ þ 0:1

� �
khqsð Þ2;

C ¼ 4þ 3ðŝ � 0:2Þ=0:2 0 � ŝ < 1;

C ¼ 0 ŝ � 1:

The x̂e�b is the flow shear normalized by magnetic drift fre-

quency and ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s� 1þ j2ðs� 1Þ2

q
indicates the modifi-

cation of magnetic shear s due to elongation j. The value of

the Larmour radius parameter, kh qs is typically taken as

0.33. The plasma elongation mostly modifies the behavior of

the MHD modes, so that their beta threshold increases with

increasing elongation. The effects of elongation have been

studied in gyrokinetic ITG/TEM turbulence simulations in

Ref. 19. The effect of E�B flow shear, which reduces trans-

port, is approximated using the quenching rule cef f ¼
c� xe�b for the growth rate (c) of the corresponding

modes.20,21 The Waltz quench rule formulation20 is used

inside linear solver such a way that the flow shear influences

the eigenfunction (c ¼ cðxe�bÞ). The Waltz rule is used

inside the linear solver in order to find the fastest growing

mode with flowshear included. However, once the fastest

growing mode is found, the Waltz quench rule is reapplied

outside the linear solver. The reason that the Waltz rule is

initially used inside the linear solver is that the convergence

of the iterations inside the linear solver is faster for strong

instabilities. The inclusion of flow shear dependence on the

correlation length in Eq. (52) is the result of a generalization

of an earlier derivation.17 In the absence of the flow shear in

Eq. (52), the previously used correlation length formulation

is recovered. It has been found that the dependence of flow

shear on the correlation length18 can reproduce the experi-

mental observation that the transport stiffness is reduced for

a combination of large flow shear and small magnetic

shear.22 The reason is that for the large magnetic shear the
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radial correlation length is determined primarily by the mag-

netic shear, whilst for the low magnetic shear it is deter-

mined by the flow shear. The justification for using a

correlation length as the inverse wavelength of the fastest

growing mode is based on the fact that small eddies tear

apart larger eddies so that the correlation length can nor-

mally not be much larger that the wavelength of the fastest

growing mode. For shorter wavelengths, the amplitude of

oscillations usually decreases rapidly thereby leaving eddies

of the size of the fastest growing wavelength to dominate.18

E. Transport coefficients in the Weiland model

The generalized eigenvalue problem is established based

on equations derived in the Weiland model

Av ¼ kBv; (53)

where k ¼ xþ ic is the eigenvalue and v is the correspond-

ing eigenvector. The eigenvalues yield the real frequencies

and growth rates of the modes, while the eigenvectors pro-

vide the phase and magnitude of the perturbed variables rela-

tive to one another.

Thermal and particle diffusivities in the Weiland model

are calculated assuming the dominant nonlinearity is of the

E�B convective type in the continuity or energy equation.

The saturation level is obtained by balancing the linear

growth rate (c) calculated in the Weiland model described

above, with the E�B nonlinearity

/̂ 	 1

krqsi

c
khcs
¼ 2

Rkr

c
xDe

: (54)

The ion thermal transport coefficient (vi), the electron ther-

mal transport coefficient (ve), and the particle transport coef-

ficient (Dn) with electron trapping included can be calculated

by employing above saturation level, the energy (continuity)

equation, and Fick’s law as indicated below:

vi ¼
1

gi

gi �
2

3
� ð1� ftÞ

10

9s
en �

2

3
ftDi

� �

� c3=k2
r

ðxr � 5=3 xDiÞ2 þ c2
; (55)

ve ¼ ft
1

ge

ge �
2

3
� 2

3
ftDe

� �
c3=k2

r

ðxr � 5=3 xDeÞ2 þ c2
; (56)

Dn ¼ ftDn
c3=k2

r

x2
�e
; (57)

where Di; De, and Dn are all due to contributions from the

trapped electrons

Di ¼
1

N
jx̂j2 jx̂j2ðen � 1Þ þ x̂ren

14

3
� 2gi �

10

3
en

� �
þ 5

3
e2

n �
11

3
þ 2ge þ

7

3
en

� �
� 5

3s
e2

n 1þ ge �
5

3
en

� �� ��

þ 50

9s
x̂re

3
nð1� enÞ �

25

9s
e4

n

7

3
� ge �

5

3
en

� ��
; (58)

De ¼
1

N
jx̂j2 jx̂j2ðen� 1Þ þ x̂ren

14

3
� 2ge�

10

3
en

� �
þ 5

3
e2

n �
8

3
þ 3ge þ

2

3
en

� �� �
þ50

9s
x̂re

3
nðen� 1Þ þ 25

9s
e4

n

7

3
� ge �

5

3
en

� �� �
;

(59)

Dn ¼
1

N
jx̂j2ð1� enÞ � x̂ren

14

3
� 2gi �

10

3
en

� �
� 5

3
e2

n �
11

3
þ 2ge þ

7

3
en

� �� �
; (60)

N ¼ x̂2
r � ĉ2 � 10

3
x̂ren þ

5

3
e2

n

� �2

þ 4ĉ2 x̂r �
5

3
en

� �2

;

(61)

where en ¼ 2=gn; s ¼ Te=Ti; x̂ ¼ x=x�e; x̂r ¼ xr=x�e, and

ĉ ¼ c=x�e in which xr is the real part of the frequency x and

c is the growth rate of the mode. Note that Eq. (55), in the

absence of trapped electrons (ft ¼ 0), reduces to the following

ion thermal diffusivity:

vi ¼
1

gi

gi �
2

3
� 10

9s
en

� �
c3=k2

r

ðxr � 5=3 xDiÞ2 þ c2
: (62)

The terms with negative signs in the Eq. (62) correspond

to the ion heat pinch. However, the temperature diffusion

obtained from Eq. (62) will always be outward since growth

rate c of the mode is zero if the pinch effects dominate. It

can be noted that the vi decreases in the inner region of the

plasma where en is large. In the edge region of the plasma

where en � 1; gi 
 1, and c > xr, the ion thermal diffusiv-

ity in the Eq. (62) reduces to the well know mixing length

expression c=k2
r .

The transport coefficients can be expressed analytically

when impurities are included. The quasi-neutrality for per-

turbations is used to eliminate the main ion density perturba-

tion in the calculation of the viz. The result is
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viz ¼
1

gi

gi �
2

3
� 1� ft

bi

10

9s
enh �

2

3

ft

bi

Lnh

Lne

Di þ
2

3

Zzfz
bi

Lnh

Lnz

Diz

� �

� c3=k2
r

ðxr � 5=3 xDiÞ2 þ c2
; (63)

where bi ¼ 1� fzZz. Note that the effects that the density

length scale of main ion (Lnh) and the density length scale of

electron (Lne), in general, will be different when impurities

are taken into account. The impurity density response is

introduced through Diz, which is given by

Diz ¼
1

Nz
ðAz þ gzBz þ enCzÞ; (64)

Nz ¼ x̂2
r � ĉ2 þ 10

3

x̂ren

Zzsz
þ 5

3

en

Zzsz

� �2
 !2

þ 4ĉ2 x̂r þ
5

3

en

Zzsz

� �2

; (65)

Az ¼ jx̂j2 �jx̂j2 �
14

3

en

Zzsz
x̂r þ

5

3

e2
n

Zzsz

1

s
� 11

3Zzsz

� �� �

þ 25

9s
e3

n

ðZzszÞ2
2x̂r þ

7

3

en

Zzsz

� �
; (66)

Bz ¼ jx̂j2 2
en

Zzsz
x̂r þ

5

3

e2
n

Zzsz

1

s
þ 2

Zzsz

� �� �
þ 25

9s
e4

n

ðZzszÞ3
;

(67)

Cz ¼ jx̂j2 jx̂j2 þ
10

3

en

Zzsz
x̂r þ

5

3

e2
n

Zzsz

7

3Zzsz
� 5

3s

� �� �

þ 25

9s
e3

n

ðZzszÞ2
2x̂r þ

7

3

en

Zzsz

� �
; (68)

where sz ¼ Tz=ZzTe. The expression for impurity diffusivity

(Dz) can be developed in an analogous manner.

Transport fluxes can be divided into diffusive and convec-

tive parts by temporarily perturbing one gradient at a time (for

example, the temperature and density gradient for each species)

and defining elements of the diffusion matrix as finite difference

derivatives of the fluxes with respect to these gradients:

ðDiffusionÞi;j ¼ �
DðFluxÞi

DðgradientÞj
: (69)

The convective transport is then the difference between each

flux and the corresponding diffusive transport

ðConvectionÞi ¼ ðFluxÞi �
X

j

ðDiffusionÞi;jðgradientÞj:

(70)

The MMM8.1 module utilizes the same methodology as is

used in trapped gyro-Landau-fluid39 and gyro-Landau-fluid40

anomalous transport models in that a set of multi-species fluid

equations are linearized; eigenvalues and eigenvectors are

computed; and quasi-linear estimates are computed for all the

transport coefficients.

III. DRIBM COMPONENT IN THE MMM8.1 MODEL

The Weiland drift mode model derived in the previous

section is the primary candidate for producing the turbulence

that drives anomalous transport in the core of tokamak plas-

mas. The situation at the edge is different. Since the edge

plasma is strongly influenced by collisions, it is expected that

resistive mode is an important source of the edge turbulence.

One of the unstable plasma modes that is believed to be re-

sponsible for edge turbulence is the RBM.23–35 Resistive bal-

looning modes appear to be quite unstable for typical values

of the plasma edge parameters. These modes are the pressure

driven modes that are localized in the regions where the mag-

netic field lines are concave to the plasma (along the outboard

edge of tokamaks, for example). Resistive ballooning modes

are unstable when the electron motion along the field lines is

strongly impeded by collisions. In low-density discharges

where the electron-ion collisionality is not large enough to

excite resistive ballooning modes, additional physical effects,

such as electron inertia, plasma impurities, induction and elec-

tron trapping, can destabilize RBMs by impeding the electron

parallel dynamics.

The resistive ballooning modes can be unstable in the col-

lisional edge region of the plasma even when the local pressure

gradient is not large enough to drive ideal MHD ballooning

modes.37 This is particularly true in the vicinity of the separa-

trix or magnetic divertor where the steep density gradients and

low plasma temperature enhance the growth rate of resistive

ballooning modes, in spite of the stabilizing influence of large

magnetic shear near the separatrix. In contrast, the effects of

increasing temperature gradient and Larmor radius are found to

be stabilizing for resistive ballooning modes.36–38

The DRIBMs11 are a generalization of RBMs in which

two-fluid drift effects and electron inertia are included. The

DRIBM two-fluid model consists of six coupled reduced

Braginskii equations: These linearized equations take into

account diamagnetic effects, parallel electron and ion dynam-

ics, electron inertia, magnetic perturbations, gyro-viscous

stress terms, electron and ion equilibrium density and temper-

ature gradients, and temperature and density perturbations.

The equations for ion continuity, total momentum (sum

of electron and ion momentum equations), ion energy, vor-

ticity, generalized Ohm’s law and electron energy11 are

given below using notation defined in the previous section:

ð�xþ xDiÞn̂i þ xDiT̂ i þ ½ðxDi � x�iÞTe=Ti

� k2
hq

2
siðx� x�ið1þ giÞÞ�/̂ þ kkcsv̂ki � ibg?k2

?p̂ ¼ 0;

(71)

ðx� 2xDiÞv̂ki � kkcs½ðT̂ i þ n̂iÞTi=Te þ T̂ e þ n̂e�
� ½xTi þ x�i � ðxTe þ x�eÞ�Âk ¼ 0; (72)

�
� xþ 5

3
xDi

�
T̂ i þ

2

3
xn̂i þ x�e

�
gi �

2

3

�
/̂ ¼ 0; (73)

xDi½ð1þ Te=TiÞn̂ þ T̂ i þ ðTe=TiÞT̂ e�
� k2

hq
2
si½x� x�ið1þ giÞ�/̂ þ ðv2

A=c2
s Þkkcs½k2

hq
2
siÂk� ¼ 0;

(74)
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½x� x�eð1þ 1:71geÞ þ igkk
2
? þ xk2

?d
2
e �Âk

� kkcs½/̂ � 1:71T̂ e � n̂e� � ðme=miÞxv̂ki ¼ 0; (75)

�
x� 5

3
xDe þ i

k2
kv

2
Te

0:51�e

�
T̂ e �

2

3
xn̂e �

1

2
xDe

�
gTe �

2

3
gne

�
/̂

þkkcs

�
0:96

be

k2
?q

2
si � i

mi

2me

xDe

�e
gTe

�
Âk ¼ 0: (76)

Here n̂ � ~n=n and p̂ � ~p=p are dimensionless forms of the

density and plasma pressure perturbations, ~n and ~p, respec-

tively. In Eq. (75): de � c=xpe is the electromagnetic skin

depth; c is the speed of light; xpe �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne2=�0me

p
is the elec-

tron plasma frequency in which �0 is the permittivity of free

space; kk and k? are the parallel and perpendicular wave

numbers; and gk and g? are longitudinal and transverse

Spitizer resistivities. The following notation is used in all of

these expressions:

xTe
� kh

Te gTe

eBR
; xTi

� �kh
Ti gTi

eBR

gTj � �R
x̂ � rTj

Tj
; vtj �

ffiffiffiffiffi
Tj

mj

s
;

(77)

where xTj, gTj, and vtj are the temperature gradient drift fre-

quency, the normalized temperature gradient, and thermal

velocity for species j, respectively.

The DRIBM is developed for computing the electron and

ion thermal and particle diffusivities in the axisymmetric toka-

mak edge plasmas. As noted above, the DRIBM model is

based on the linearized multifluid Braginskii equations for the

time evolving perturbed density, velocity, and temperature of

thermal ions and electrons. The derivation also uses Ampere’s

and Faraday’s law for the perturbed electric and magnetic

fields. The electron trapping, the displacement current, and the

effects of impurity ions are neglected. A mixing length

approximation, described below, is used to compute the ther-

mal and particle fluxes from the eigenvalue and eigenvector

solutions. The thermal and particle fluxes driven by DRIBMs

have different magnitudes due to the fact that the temperature

and density perturbations have different amplitudes and

phases relative to the perturbed convective velocity.

A. Thermal and particle transport fluxes in the DRIBM
model

The DRIBM equations (71)–(76) are used to establish

the generalized eigenvalue problem (53). In the short poloi-

dal wavelength (high poloidal mode number) limit, these

equations become localized to each flux surface.

Computational techniques are used to find the eigenvalues

and eigenfunctions of these linearized equations. The anoma-

lous particle and thermal transport fluxes can be computed

directly from the eigenvalues and the eigenvectors. The par-

ticle flux, produced by the perturbed E�B motion of the

plasma, is given by

Cn ¼ ~n~v�E þ c:c: ¼ 2ðRe ½~n�Im ½~/� � Im ½~n�Re ½~/�Þ kh=B;

(78)

where ~v�E represents complex conjugate of the perturbed

E�B drift. Note, even though magnetic perturbations are

included in the models used to compute the eigenvalues and

eigenvectors, the fluxes include only the electrostatic E�B

drift computed from these eigenvalues and eigenvectors. The

saturation level of turbulence is computed by balancing the

linear growth rate with the nonlinearity (54) which results in

a particle flux given by

Cn

n

Rk2
r

xDe
¼ 4ĉ2ðRe ½~n�Im ½~/� � Im ½~n�Re ½~/�Þ=j/̂j2; (79)

where ĉ ¼ c=xDe is the growth rate normalized by the elec-

tron magnetic drift frequency. Similarly the ion heat flux is

given by

Ci

nTi

Rk2
r

xDe
¼ 4ĉ2

	
Re ½n̂þ T̂ i�Im ½/̂� �Im ðn̂þ T̂ iÞRe ½/̂�



=j/̂j2:

(80)

Equation (80) is used together with Fick’s law,

Ci ¼ �viðdTi=dxÞ, to compute an effective ion thermal diffu-

sivity vi. The turbulence is assumed to be isotropic in the

sense that the poloidal and radial wavenumbers are the same.

It is found that the fastest growing mode for DRIBM model

occurs in the vicinity krqs ¼ 0:2. Therefore, krqs ¼ 0:2 has

been used in the DRIBM component of an earlier version of

the Multi-Mode model. The procedure for separating diffu-

sion and convection shown in Eq. (70) can also be used for

the DRIBM model.

IV. ETG COMPONENT IN THE MMM8.1 MODEL

Transport driven by short wavelength ETG modes is

another component within the MMM8.1 transport model.

Since ETG modes have very short wavelength—comparable

to the electron gyro-radius rather than the ion gyro-radius—

ETG modes drive essentially only electron thermal transport,

with almost no contribution to ion thermal, particle, or mo-

mentum transports. The model chosen for the ETG compo-

nent45,46 is based on a quasi-linear model by Horton9

modified by an ETG mode threshold computed by Jenko.15

The Horton ETG model was developed as a generalization

of a hydrodynamic theory for short wavelength ETG turbu-

lence with electromagnetic effects included. The model was

then calibrated using data from fast wave electron heated

Tore Supra discharges with hot electrons.10

In this model for ETG turbulence, it is assumed that the

ETG mode is a toroidal version of the lower hybrid drift mode

driven unstable by charge separation due to the unfavorable

rB and curvature electron drift in the presence of an electron

temperature gradient. The resulting instability can drive short

wavelength drift wave turbulence resulting in electron thermal

transport in tokamaks. In the non-linear regime, it is assumed

that the turbulence is driven in two space scale regimes.

The short wavelength regime is electrostatic, where the

maximum linear growth pumps energy into the electrostatic

turbulence, while the long wavelength regime is neutrally

stable. The ETG fluctuation spectrum mode couples energy

to longer space scale fluctuations. This inverse cascade, or
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mode coupling of shorter space scale electrostatic fluctua-

tions to longer space scales, drives a coupling to the parallel

vector potential Ak fluctuations at the scale of electromag-

netic skin depth c=xpe. At this scale, the fluctuations become

neutrally stable electromagnetic vortices. This secondary

driven electromagnetic turbulence is expected to lead to a

large stochastic diffusion of the trapped electrons. Stochastic

transport studies indicate that, once the turbulence level

reaches the mixing length level, the electron diffusivity is

insensitive to the details of the fluctuation spectrum and,

under these conditions, the electron diffusivity is governed

by a random walk of the trapped electrons over the skin

depth correlation length, c=xpe, at the rate of the decorrela-

tion frequency, which is of the order of bounce frequency of

the trapped electrons. For the long wavelength part of the

spectrum, stochasticity occurs due to the overlap of the vor-

tex circulation frequency with the parallel bounce frequency,

which produces a strong diffusion of the trapped electrons

and a weak diffusion of the passing electrons.

The Horton model includes an electrostatic contribution,

which is analogous to the ITG electrostatic model, and an

electromagnetic contribution, which in the Horton model

describes non-isotropic mode structure when the turbulence

mixing length, lc;e ¼ qqeR=LTe
is greater than the electron

skin depth de ¼ c=xpe. In this model, the critical threshold

gradient for the transport driven by ETG modes, based upon

linear toroidal gyrokinetic simulations, is given by the formula

R

LTe

� �
crit

¼ max 1þ ZeffTe

Ti

� �
1:33þ 1:91s

q

� �
ð1� 1:5�Þ

�

� 1þ 0:3�
dj
d�

� �
; 0:8

R

Ln

�
: (81)

where � ¼ r0=R0 is the inverse aspect ratio.

The effective ETG electron thermal diffusivity in the

electrostatic limit (lc;e < de), including the Jenko threshold,

is given by

ves
e ¼ 0:06 q2 R

LTe

� �3=2 q2
e vth;e

R
max

R

LTe

� R

LTe

� �
crit

� �
; 0

� �
;

(82)

where vth;e is the thermal velocity of the electrons and qe is

the electron gyroradius. In the expression for ves
e , the critical

gradient given in Ref. 10 is replaced by Eq. (81). The effec-

tive ETG electron thermal diffusivity in the electromagnetic

limit (lc;e > de), which is also modified in order to include

the Jenko threshold, is given by

vem
e ¼ 0:06 d2

e vth;e

ffiffiffiffiffiffiffiffiffiffiffiffi
R=LTe

p
R

max tanh
R

LTe

� R

LTe

� �
crit

� �
; 0

� �
:

(83)

The electromagnetic part of the ETG diffusivity is zero

below the threshold or for negative temperature gradient. It

was found that electromagnetic limit of the ETG mode pro-

vides an important contribution, particularly in the region

near the magnetic axis.46

V. TOROIDAL MOMENTUM TRANSPORT

It is important to predict the plasma toroidal rotation fre-

quency profile in tokamaks because the rotation effects can

have a significant impact on plasma confinement, fusion power

production, and instabilities such as resistive wall modes and

neoclassical tearing modes. The toroidal rotation frequency,

which is a measure of the net plasma velocity, can affect ther-

mal confinement through the flow shear stabilization of turbu-

lent transport. In the core of H-mode neutral beam heated

discharges, the gradient of the toroidal rotation frequency pro-

duces the largest contribution to the flow shear rate.

The toroidal momentum transport can be calculated

using the parallel electromagnetic ion momentum Eq. (18)

with the ion stress tensor and zero order background flow

included

dvki ¼
�khDB

x� 2 xDi

dVk0
dr

/̂ þ
kkc

2
s þ ðTe=TiÞVk0 xDi

x� 2 xDi

� /̂ þ Ti

Te

dpi

pi
� x� x�ið1þ giÞ

ckk
Âk

� �
; (84)

where DB � qscs. The toroidal momentum flux, C/, is calcu-

lated using the following expression:

C/ ¼ mini Re½hv�Ev/i� ¼ miniv/rV/; (85)

where * denotes complex conjugate, v/ is the momentum

diffusivity, and v/ is the toroidal velocity. The toroidal ve-

locity is approximated as v/ 	 vk � ðBh=B/Þvh, in which vh

is the poloidal component of the convected velocity, B/ and

Bh are the toroidal and poloidal components of the magnetic

field, and V/ is the toroidal flow velocity.

A. Diagonal toroidal and poloidal momentum
transport

The first term on the right hand side of Eq. (84) is the

E�B convection of the background velocity that gives the

diagonal momentum flux. The second term will provide

the off-diagonal part of the parallel momentum equation.

The diagonal momentum flux is calculated using

C/D ¼ mini Re½hv�Erv/;Di�; where v�Er ¼ ikhDB /̂
�
: (86)

The velocity v/;D, ignoring the poloidal flow in the first term

of the right hand side of Eq. (84), can be written as

v/;D ¼
�khDB

x� 2 xDi

dV/

dr
/̂: (87)

The following result for the diagonal toroidal momentum dif-

fusivity can be obtained by employing Ficks’ law

(v/;D ¼ �C/;D=drV/) and by assuming that the E�B con-

vection is the main nonlinear saturation mechanism and that

the normalized potential fluctuation /̂ is estimated by Eq. (54)

v/;D ¼
c3=k2

r

ðxr � 2xDiÞ2 þ c2
; (88)

where xr is the real part of the frequency x. The above diag-

onal toroidal momentum diffusivity expression can also be
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used for the diagonal poloidal momentum diffusivity. A

result similar to Eq. (88) was obtained previously by kinetic

orbit integration.41

The diagonal component of the ion thermal diffusivity

can be obtained employing a similar approach

vi ¼
c3=k2

r

ðxr � 5=3 xDiÞ2 þ c2
: (89)

Note that the diagonal part of the momentum diffusivity

in Eq. (88) is similar to the diagonal part of the ion thermal

diffusivity in Eq. (89). The expressions for both v/ and vi

have resonance terms in the denominator due to toroidicity

but slightly different coefficients. It can be seen that the anom-

alous transport is reduced due to the presence of a real fre-

quency (non-Markovian effect). However, for c
 xr; the

Kadomstev mixing length transport (c=k2
r ) can be recovered.

It has been found that the Kadomstev mixing length estimate

is good for typical experimental situations as long as there is

only one dominant instability. However, in a case where sev-

eral instabilities are present, non-Markovian effects in Eqs.

(88) and (89), in combination with the toroidal Doppler shift,

are required in order to separate out how different types of

instabilities affect different transport coefficients. The Doppler

shift ð5=3ÞxDi, in the expression for the ion thermal diffusiv-

ity, is due to the presence of diamagnetic heat flow term in the

ion energy equation. The physical reason for the Doppler shift

is that ions move with the magnetic drift velocity. Since the

resonance x� 2 xDi in the v/ expression is close to the reso-

nance x� ð5=3ÞxDi in the diagonal part of vi, the ratio v/=vi

corresponding to the diagonal transport far from the marginal

stability is close to unity. Close to the marginal stability, as for

example near the axis in tokamak where the real frequency

approaches to ð5=3ÞxDi; the ratio v/=vi is greater than unity.

B. Off-diagonal toroidal momentum transport

The off-diagonal toroidal momentum flux, C/;OD, has a

parallel and perpendicular components

C/;OD ¼ C/;ODk þ C/;OD?: (90)

The parallel component, C/;ODk, can be calculated by utiliz-

ing the second term in the right hand side of Eq. (84), which

is the off-diagonal contribution from the Reynolds stress,

parallel velocity

C/;ODk ¼ miniRe

�
v�Er

kkc
2
s þ ðTe=TiÞV/ xDi

x� 2xDi

� /̂ þ Ti

Te

dpi

pi
� x� x�ið1þ giÞ

ckk
Âk

� ��
: (91)

The off diagonal parallel part of toroidal momentum diffu-

sivity (v/;ODk) is calculated by utilizing Ficks’ law

v/;ODk 	�
khDB

dV/=dr
ðhkkic2

s �V/xDeÞ

�Re
�

i/̂
�

x�2xDi
/̂þ Ti

Te

dpi

pi
�x�x�ið1þgiÞ

ckk
Âk

� ��
;

(92)

where hkki in Eq. (92) is an average parallel wave number

over the mode profile and can be written as42,43

hkki¼�
1

qR

� 0:5ðx̂þ5=3Þj1þhðx̂� x̂rkÞj2

x̂ð1þ5=3Þþð1=senÞðgi�2=3Þþð5=3sÞð1þ1=sÞ ;

(93)

where

j1 ¼
sk2

hRq

xci

dVk0
dy
þ 2s2qkhqs

Vk0
cs

� �
x

x� 2xDi
;

j2 ¼
kh

dVh

dy
þ kk

dVk0
dy

x�e
;

(94)

and

s ¼ Te

Ti
; h ¼ 4k2

hq
2
s

x
x�e

q

en

� �2

:

In the definitions for j1 and j2 in Eq. (94), note the contribu-

tions of toroidal and poloidal flow velocities gradients, x̂rk is

the normalized real part of the linear eigenvalue in the ab-

sence of rotation. Thus, hkki is generated by poloidal as well

as toroidal flow shear together with curvature effects from

the stress tensor. Based on the assumption that a=qR / kh qs,

an average hkki can be estimated as

hkki /
a

L

1

qR
; (95)

where L is the length scale of toroidal and poloidal flows.

The other off-diagonal component of the toroidal mo-

mentum flux C/;OD? in Eq. (90) and associated effective dif-

fusivity v/;OD? can be calculated using the toroidal

component of the E�B drift velocity

vE;/ ¼ �ið�=qÞkrDB/̂; (96)

and the toroidal component of the diamagnetic drift velocity

v�i;/ ¼ �iðTi=TeÞð�=qÞkrDBP̂i ; (97)

where �=q ¼ Bh=B/. The perpendicular contribution from

the Reynolds stress

v/;OD? ¼ �
�

q

krkhD2
B

dV/=dr
Re

�
/̂� /̂ þ 1

s
P̂i

� ��
: (98)

The total toroidal effective momentum diffusivity v/ ¼
v/;D þ v/;ODk þ v/;OD? can be computed by adding Eqs.

(88), (92), and (98) as indicated in Ref. 44

v/ ¼
c3=k2

r

ðxr � 2xDiÞ2 þ c2
� �

q

krkhD2
B

dV/=dr
Re

�
/̂� /̂ þ 1

s
P̂i

� ��

� khDB

dV/=dr
ðhkki c2

s � V/ xDeÞ

� Re

�
i/̂
�

x� 2xDi
/̂ þ Ti

Te

dpi

pi
� x� x�ið1þ giÞ

ckk
Âk

� ��
:

(99)
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C. Off-diagonal poloidal momentum transport

The off-diagonal poloidal momentum transport can be

calculated using the following expression:

Ch ¼ Rehv�Ervhi ¼ �vh;OD?
@Vh

@r
; (100)

where vh;OD? is the off-diagonal poloidal momentum diffu-

sivity and Vh is the poloidal flow velocity, and

vh ¼ vEh þ v�ih; (101)

in which

vEh ¼ ikrDB/̂ (102)

is the poloidal component of the E�B drift velocity and

v�ih ¼ �iðTi=TeÞkrDBP̂i (103)

is the poloidal component of the diamagnetic drift velocity.

It follows from Eq. (100) that the off diagonal poloidal mo-

mentum diffusivity can be written as

vh;OD? ¼ �
krkhD2

B

dVh=dr
Re

�
/̂� /̂ þ 1

s
P̂i

� ��
: (104)

The momentum transport and flow-shear suppression fea-

tures of the new MMM8.1 model will be utilized to compute

the toroidal and poloidal angular frequency profiles that are

important in the computation of the internal and edge trans-

port barriers. Note that in the earlier version of Multi-Mode

model, the electromagnetic effects in the toroidal momentum

diffusivity were not included. It has been seen in a numerical

study that electromagnetic effects on toroidal momentum

transport can increase the toroidal momentum pinch and are

sometimes strong enough to make the toroidal momentum

flux inward.44 It is important to understand the poloidal rota-

tion in the ITER plasmas, in which the toroidal rotation is

expected to be low. In those discharges poloidal rotation and

pressure gradient will primarily contribute to the radial elec-

tric field. The gradient of the radial electric field will provide

flow shear, which can provide suppression of mode turbu-

lence and can result in an internal or edge transport barrier.

VI. SUMMARY

A theory based Multi-Mode anomalous transport module

version 8.1 (MMM8.1) is derived, which can be used to pre-

dict ion thermal, electron thermal, particle and momentum

transports. The MMM8.1 transport module consists of a com-

bination of components corresponding to different modes of

transport driven by turbulence and collisional effects. The

MMM8.1 module includes a model for ion temperature gradi-

ent, trapped electron, kinetic ballooning, peeling, collisionless

and collision dominated magnetohydrodynamics modes as

well as a model for electron temperature gradient modes and a

model for drift resistive inertial ballooning modes. The effects

of impurities, trapping, collisionality, magnetic shear, flow

shear, finite beta, elongated plasma shaping, and Ti 6¼ Te fast

ions (which are assumed to not take part in the perturbation)

are incorporated in the MMM8.1 module. Magnetic drifts are

used in the closure of the Braginskii equations. These equa-

tions are assumed to be localized on each flux surface.

Turbulence in the model is assumed to be isotropic. Diagonal

and non-diagonal components of toroidal and poloidal mo-

mentum transport are derived. Dependence of drift wave tur-

bulence correlation length on magnetic q, shear, elongation,

temperature ratio, and flow shear has been introduced into the

Weiland drift wave transport model. Inclusion of flow shear

dependence in correlation length reproduces the experimental

observation that stiffness is reduced for a combination of large

flow shear and small magnetic shear. In contrast with the

MMM7.1 transport module, the MMM8.1 transport module

includes a number of new features: Peeling modes, poloidal

momentum diffusivity, electromagnetic effects on toroidal

momentum diffusivity, and dependence of turbulence correla-

tion length on flow shear.
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