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Abstract—KARYON, a kernel-based architecture for
safety-critical control, is a European project that proposes
a new perspective to improve performance of smart vehicle
coordination. The key objective of KARYON is to provide
system solutions for predictable and safe coordination of
smart vehicles that autonomously cooperate and interact in an
open and inherently uncertain environment. One of the main
challenges is to ensure high performance levels of vehicular
functionality in the presence of uncertainties and failures. This
paper describes some of the steps being taken in KARYON
to address this challenge, from the definition of a suitable
architectural pattern to the development of proof-of-concept
prototypes intended to show the applicability of the KARYON
solutions. The project proposes a safety architecture that
exploits the concept of architectural hybridization to define
systems in which a small local safety kernel can be built
for guaranteeing functional safety along a set of safety
rules. KARYON is also developing a fault model and fault
semantics for distributed, continuous-valued sensor systems,
which allows abstracting specific sensor faults and facilitates
the definition of safety rules in terms of quality of perception.
Solutions for improved communication predictability are
proposed, ranging from network inaccessibility control at
lower communication levels to protocols for assessment of
cooperation state at the process level. KARYON contributions
include improved simulation and fault-injection tools for
evaluating safety assurance according to the ISO 26262 safety
standard. The results will be assessed using selected use cases
in the automotive and avionic domains.

I. INTRODUCTION

The constantly increasing traffic density on the roads
puts substantial challenges to society. Because it is not
possible to just build new roads at the same pace as traffic
increases or extend the airspace, traffic throughput has to be
improved. One way to increase throughput is to enable the
cooperation between vehicles to allow information sharing,
prospective planning and tight manoeuvre synchronization
between vehicles beyond human reaction capabilities. The
importance of the problem finds echo in large programs
for car-to-car and car-to-roadside communication that have
been launched on the national and European level by the car
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industry1. The benefit from this vehicle cooperation firstly
comes from extending the perception of the environment
dramatically. E.g. an obstacle warning system can look
miles ahead, prospective trajectory planning can detect
possible conflicts far ahead using the information from
other planes or a central data repository as in SESAR2.
Additionally, new opportunities can be explored, such as
extensive driver assistance systems that today are based
on autonomous environment perception (and allowed only
in very constraint mission contexts), which may greatly
benefit from extended cooperation options.

However, there is a basic safety problem when moving
to these cooperative scenarios. It should be noted that all the
individual vehicles are composed from dozens (and more)
of electronic control units (ECUs) connected by a handful
of networks [29]. The safety problem of these on-board sys-
tems has been tackled through strict design rules, massive
redundancy and synchronous models of operation [22]. The
assumptions, policies and mechanisms made for the safety-
critical on-board control systems can hardly be transferred
to a scenario of cooperating vehicles communicating via a
wireless network. Thus there exists a safety problem in the
cooperative scenario that needs fairly different solutions.
We face an extremely difficult to solve problem: on the
one hand, the benefits of exploiting information coming
from remote sources are substantial and obvious. They
extend the range and quality of environment perception.
On the other side, incorporating this information to control
the mobile entities raises severe safety problems because
of the inherently less predictable wireless communication,
the difficulty to assess trustworthiness and age of this
information and other uncertainties emerging from such
a cooperative scenario. In essence, we thus face a subtle
performance-safety trade-off that we are exploring in the
KARYON project [5]. The availability of solutions to
effectively manage this trade-off will be crucial for a wide
acceptance of autonomous and semi-autonomous operation
of vehicles by the society and is a prerequisite for safety
certification by the respective certification bodies.

1A list of current project is available on the CAR 2 CAR Communi-
cation Consortium (http://www.car-to-car.org/index.php?id=6)

2http://www.sesarju.eu/about



The key objective of KARYON is to provide system
solutions for predictable and safe coordination of smart
vehicles that autonomously cooperate and interact in an
open and inherently uncertain environment. As illustrated
in the discussion above, this is a challenging objective due
to the increased safety risks introduced by increasingly
complex control components and wireless communication,
which would allow improving performance. To achieve
this main goal, KARYON encompasses a set of objectives
with a more specific scope, which are driving the work
in the project. In this paper we provide an overall view
of the work being developed, focusing on the following
fundamental issues:

• Architectural solution: We propose a system ar-
chitecture for safety and performance management,
leveraging on the existence of components provid-
ing improved functionality and on a safety kernel
for ultimate safety provision.

• Abstract sensor model: We define a fault se-
mantics for complex sensor faults, for achieving
some form of validity assessment or trustworthy
perception of the environment while using sensor
data in a large-scale distributed application and
while exploring the actuation-perception loop.

• Mechanisms for improved perception: We also
propose improvements in the reliable and trust-
worthy environment perception based not only on
adequate fault models for complex sensor faults,
but also on solutions for increased communication
predictability, namely solutions for network inac-
cessibility control at lower communication levels
and protocols for assessment of cooperation state.

• Proof of concept prototypes: We aim at demon-
strating KARYON innovations via computer sim-
ulations with fault injection support to experi-
mentally evaluate safety assurance according to
the ISO 26262 safety standard [2]. Moreover, we
will provide proof of concept prototypes and a
simulation-based demonstration that evaluate our
results in the context of automotive and aircraft
applications.

The paper is organized as follows. In the next section
we describe the progress beyond the state of the art, refer-
ring to related work in the main focal areas of KARYON.
Then, in Section III we introduce fundamental abstractions
considered in our solution and we describe the generic
KARYON architecture. Then, sections IV and V address,
respectively, the approaches for dealing with sensor faults
and for improving the predictability of communication. In
Section V we also refer to the middleware solution that is
proposed in KARYON to deal with the dynamic integration
of remote sensor systems. Then, Section VI describes the
use cases considered in KARYON, which will serve to
demonstrate the project achievements. Finally, Section VII
concludes the paper.

II. PROGRESS BEYOND THE STATE-OF-THE-ART

State-of-the-art approaches to deal with safety in vehic-
ular applications are typically based on worst-case analysis
and pessimistic allocation of resources to achieve the
intended functionality. This has a strong impact on the
final cost of the solutions. Most often, for instance when
considering automotive systems, even a slight increase in
cost is not affordable. This is an obstacle to achieve safe
systems with improved functionality. The scientific and
technical contributions of KARYON will advance the state-
of-the-art in this direction, allowing more efficient and
functional systems to be developed, while ensuring the
required safety goals.

A. Architectural Support for Safety-critical Systems

Safety-critical systems call for predictability, that is to
say, real-time operation. This includes real-time properties
as a crucial requirement. Therefore, system solutions for
safety-critical systems have traditionally been based on
synchronous system models, which ensure that fundamen-
tal timing variables, such as processing and transmission
delays, are known and bounded.

In the synchronous system model, the mechanisms
to meet reliability and timeliness requirements are well
understood, both in terms of distributed systems theory and
in real-time systems design principles. As examples, we
mention reliable real-time communication [8, 22, 36], real-
time scheduling [9, 34] and real-time distributed replication
management [32]. However, when moving to distributed,
large-scale, wireless and possibly complex infrastructures,
which is the case considered in KARYON, it is necessary
to recognize that these infrastructures do not provide the
timeliness guarantees required by the synchronous system
model. Therefore, designing applications using the syn-
chronous model would cause incorrect system behavior due
to the violation of assumptions, and would defeat any safety
requirements.

An important architecture that has been employed over
the last decade in safety-critical computing systems and,
in particular, in the vehicular area, is the Time-Triggered
Architecture (TTA) [17, 22]. TTA provides the basis for
inter-operable embedded systems, connected through a TTP
network, and ensuring reliability levels that are adequate
for safe drive-by-wire systems. However, this is also an ex-
ample of an architecture that assumes a fully synchronous
system model, and is inadequate when trying to incorporate
new services and adding functionality based on distributed
sensor data.

The GENESYS project proposed a generic architecture
for component-based development of distributed real-time
systems, providing core services that may be used to
integrate higher-level components. Interestingly, this archi-
tecture acknowledges the hybrid nature of systems, where
different modules can be executing in different environ-
ments and be subject to different synchrony properties.
But differently from the KARYON safety architecture, the
main goal of the GENESYS architecture is not to manage
the trade-off between the functionality achievable with



complex control components and the safety needs of the
overall application.

KARYON considers a hybrid system model and ex-
plores the concept of architectural hybridization [37]. Some
previous work that also exploited an hybrid architecture
was carried out in the HIDENETS Project [28]. The
objective in that project was to address reliability concerns,
but the results are nevertheless relevant for KARYON.
In KARYON we consider that control algorithms and
components implementing the functionality are separated
from a safety kernel, which is only concerned with man-
aging safety constraints defined in design time. With the
safety kernel it is possible to guarantee functional safety
based on timely management of operational settings. The
approach separates the (safety-critical) reconfiguration and
adaptation that is necessary to meet safety constraints, from
the functionality itself. This will be the basis for achieving
the intended balance between functionality and safety.

B. Supporting Services for Sensor-based Safe Coordina-
tion

Advanced control systems are composed by multiple
cooperating components. The important characteristic of
these systems is their reliance on a correct perception of the
environment and of the system state. In computer science, a
large body of research in fault-tolerant distributed systems
provides solutions for the second aspect, the consistent
view on the system state in the presence of faults and
concurrency [40]. Results in this field address synchrony
and replication issues but often assume correct information
at its origin, and replicas are all the same. If reliable
operation of sensors and actuators requires dealing with the
environment perception and actuation on it, these methods
have to be extended. Reliable operation has to cope with
peculiarities of sensors resulting in value failures. Here,
redundancy mechanisms have to be different. These issues
have been addressed in the control community. Analysis
and fault detection are based on mathematical models of
the sensor-to-actuator chain. This is referred to as fault
detection and isolation (FDI) [16] or analytical redundancy
methods [4]. However, because mainly developed for in-
dustrial control systems, the mechanisms do not sufficiently
care about the system impacts of largely varying network
latencies or dynamically varying sensor information beyond
mere statistical effects. The work in KARYON extends and
complements the state-of-the-art by combining results from
both research directions.

Treating environment events and the system in a generic
and uniform way will enable to relate them, put them into
order and to detect and monitor the causal and temporal
dependencies between them. The Generic Events Architec-
ture (GEAR) [6] was a first step in this direction. GEAR
elegantly deals with the communication between systems
that is substantiated by an actuation and the observation
of a related sensor event. It allows dealing with “hidden
channels” that are a problem in conventional control system
design because they are only weakly reflected in the control
system itself [23].

One key concept that we pursue is keeping environment

models in an appropriate form for run-time assessment.
This has major advantages, such as relating actuation and
subsequent sensing events, assessing the temporal uncer-
tainty of information arriving via a network with low
predictability, and supporting the formulation and detection
of a safety critical state. In consequence, the “hidden
channels” that are not explicitly covered by any approach
in distributed system research will now be represented in
an environment model. Hidden channels are understood as
physical communication channels and as an opportunity
rather than impairment, because they allow detecting unsafe
states even when the network is down. Modelling these
channels appropriately opens the opportunity of detecting
unsafe states even when the network is not working as
specified.

III. THE KARYON ARCHITECTURE

In KARYON we exploit the concept of architectural
hybridization in the definition of the KARYON architec-
ture, in particular to realize the separation of the overall
system in parts that have different properties. In this way,
we are able to identify the components that constitute the
safety kernel, which are in charge of guaranteeing that the
intended functionality is provided in a safe way despite
faults and uncertainties.

Recalling the KARYON main objective, which is to
provide system solutions for predictable and safe coordi-
nation of smart vehicles that autonomously cooperate and
interact in an open and inherently uncertain environment,
the need for reconciling predictability with uncertainty is
evident. Let us reason in terms of the synchrony dimension.
Should we consider an asynchronous system model to
homogeneously characterize the overall system, we would
have no way of addressing timeliness requirements and
providing timeliness guarantees for the temporal behaviour
of the developed systems. In essence, ensuring functional
safety would not be possible, given that even simple haz-
ards require some (temporally) bounded system reaction,
something that cannot be handled when considering an
asynchronous model. On the other hand, despite the tech-
nology improvements in computing and communication,
we should also not use a synchronous system model for the
entire system because some activities, either processing or
communication, are inherently uncertain and have temporal
bounds that are hardly known in advance with sufficient
certainty (unless these would be unreasonably high). For
example, to deal with uncertain wireless communication
delays, a synchronous model would either postulate a very
high bound for the message delivery delay, which could
be unacceptable for performance, or else, by postulating a
lower bound the risk of violating the assumption could be
too high and unacceptable.

In contrast with homogeneous models, a hybrid system
model can state assumptions that only hold during some
periods of time (hybridization in the time dimension), or
it can state different kinds of assumptions for different
parts of the system (hybridization in the space dimen-
sion). Then, provided it is possible to find a mapping
between some hybrid model and a correspondingly hybrid
architecture that is feasible in reality (considering some



concrete networking and computational environment), it
will be possible to exploit the increased expressiveness
of the hybrid model to design improved solutions and, in
particular, to address the conflicting goals of predictability
and uncertainty. A detailed discussion of the theoretical and
practical advantages of hybrid models when compared to
homogeneous models can be found in [37].

In KARYON we apply architectural hybridization to
exploit the better properties of a restricted part of the
system in the achievement of the desired safe behaviour.
Therefore, in the generic KARYON architecture, illustrated
in Figure 1, we draw an “hybridization line” to clearly sep-
arate the components that behave in a predictable way and
for which it will be possible to validate safety properties in
design time, from the components that might be affected by
run-time uncertainties (uncertain temporal behavior, faults
not covered by the design). Note that in real systems, the
latter might be just a few components, for instance those
that realize the coordination with remote systems through
wireless networks, or components realizing complex oper-
ations that may take uncertain amounts of time.
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Fig. 1. Generic KARYON architecture.

In the generic architecture represented in Figure 1, the
nominal system corresponds to the set of components that
realize the several local and cooperative functionalities.
These components include sensors, actuators, computing
and communication components. They are in charge of
getting information from the environment, processing it,
sending and receiving information from other vehicles
(which will have the same architecture), executing control
algorithms and sending control commands to actuators. In
order to understand the role of the Safety Kernel part, let
us introduce the concept of Level of Service (LoS) and
summarize the considered fault model.

Given that we are interested in managing the trade-
off between performance and safety, we consider that
functionality can be performed with possibly several LoS.
The idea is to allow the cooperative functionality to be
performed in different ways, each with its own set of
safety requirements imposed on every local system and
each allowing a certain maximum performance level. Then,
in run-time it will be possible to select the LoS that will
allow the highest performance for the functionality while

making sure that all unacceptable risks are avoided and
thus that functional safety is achieved. In design time it is
necessary to perform hazard analysis and derive the set of
conditions on the system components and data (the design
time safety information shown in Figure 1) that, for each
LoS, need to hold in order to ensure functional safety. In
run time it is necessary to evaluate which conditions (safety
rules) hold and then determine and enforce the adequate
LoS.

We consider that there is always one LoS that will
meet all the conditions for functional safety. This LoS
may correspond to a non-cooperative mode of operation,
in which safety analysis and safety solutions are the same
that are used when considering non cooperative systems.
Moreover, in this LoS the functionality is realized only us-
ing components below the hybridization line. We note that
when some conditions are met (namely the possibility to
interact, within some temporal bounds, with other vehicles)
it will be possible to realize the cooperative functionality
in a higher LoS. Finally, we also note that we consider
the existence of a scope for the realization of cooperative
functionality, and that this scope is consistently perceived
by all involved actors.

It only makes sense to consider several LoS because
faults may happen, leading to the violation of safety rules
and disabling the provision of cooperative functionality
with higher performance levels. Sensor components can
experience various faults affecting their output. For remote
sensors (i.e., sensors providing remote information received
through the wireless network) failures may occur in the
time and in the value domain. Failures are abstracted in
a data centric way and expressed by a validity estimate.
A subset of the sensors will be reliable, where a reliable
sensor is understood as an abstract sensor exploiting redun-
dancy (analytic, component, time) and fusion techniques to
achieve the required reliability (see Section IV-B). Com-
puting components above the hybridization line can fail by
crashing or doing timing faults. They may also experience
failures in the value domain, but only if the same data
centric approach that is used for sensor to express a the
failure through a validity estimate can be applied. A subset
of computing components will be reliable (to the extent
needed as dictated by the safety analysis performed in
design time), including Safety Kernel components. Com-
munication components above the hybridization line can
experience crash or timing faults, but do not corrupt data.
Actuators are assumed not to fail (in fact we consider that
they are all below the hybridization line).

The Safety Kernel (SK) is the part of the system in
charge of controlling the current LoS. It includes the Safety
Manager component and associated Design Time Safety
Information and Run Time Safety Information components.
There is logically only one SK per vehicle, although it may
be possible to make it distributed in some implementation.

The Design Time Safety Information component holds
a set of predefined safety rules establishing the conditions
for functional safety assurance in each LoS. A certain
functionality will only be safe in a given LoS (exclud-
ing the lower one), if the associated set of safety rules



is satisfied at run time. These safety rules express the
needed validity of (sensor) data and integrity of components
(e.g., timeliness requirements). The periodically collected
information is represented in the architecture by the Run
Time Safety Information component, which also abstracts
the concrete mechanisms that must be put in place to do this
information collection (which will include, for instance,
failure detectors for detecting timing faults). Finally, the
Safety Manager is the component that triggers changes in
the operation of the nominal system components in order
to adjust the LoS as necessary. There will be a predefined
configuration of the nominal system for all the possible
combinations of LoS of the functionalities. The safety
manager will periodically check the run time safety data
against safety rules and make the necessary adjustments
in the nominal system components. Upper bounds on the
time needed to perform each cycle will be known at design
time, since this is necessary to perform the safety analysis.
In particular, arguing about safety can only be done if
the time needed to switch between any two LoS of some
functionality is known and bounded.

IV. DEALING WITH SENSOR FAULTS

The primary motivation for expending particular effort
on the analysis and abstraction of failure modes of system
components originates from the distribution, mobility and
complexity of the control systems envisaged in KARYON.
We argue that this firstly requires fault models that ab-
stract from the subtle and diverse behaviours of faulty
components and provide a well-defined failure semantics
at the component’s interface. This allows defining a control
algorithm without the detailed knowledge of individual
component failures. The basic idea is to derive a validity
of the information by analyzing and classifying the failure
modes of components. This section firstly introduces the
notion of an abstract sensor that encapsulates the complex
failure modes of physical sensors and, secondly, provides
and overview of the architecture of an abstract reliable
sensor that we consider in KARYON.

A. Failure Semantics in Sensor-based Systems

We propose a failure semantics that describes the ob-
servable behaviour of a component, i.e. the service that a
component delivers, in case of an internal failure [7] at
the component’s interface. The failure semantics provides
a higher-level model for a failing component that hides
a more complex behaviour inside. As a result, it is by
far easier to develop fault-tolerant applications. Figure 2
illustrates the main idea.

The component C is the nominal component that de-
livers the respective function. C may suffer from specific
failures. The goal is to map these failures to a well-defined
failure mode at the interface. F comprises the needed
redundancy for this mapping. The user of the component’s
function only has to deal with the failure mode that is
externally visible.

The most important difference between distributed com-
puting in general and sensor-driven computations is the
nature of failures and the required redundancy. A sensor

 

Fig. 2. Illustrating failure semantics.

delivers continuous valued data and the sensor reading is
inherently affected by a measurement error. In an early
paper, Marzullo described a replication concept dealing
with such failures inspired by his work on fault-tolerant
clock synchronization [26].

In [14] and [31] the authors derive a validity value
for each measurement. The validity value represents the
probability of a fault occurrence during the sensor data
acquisition phase. The validity value shifts the decision
about acceptance or rejection of sensor information to a
higher system level. It may be useful, e.g. for a fusion
algorithm to use even low validity data rather than just drop
the sensor reading. The authors of [14] describe a scheme
that distinguishes 16 validity levels. Kaiser and Piontek
[31] introduce a continuous scale to define the validity of a
measurement. Although these schemes are suggesting the
use of such a validity value, they put less emphasis on the
problem, how this validity values are derived.

Dealing with this crucial problem for continuous valued
data starts with a careful classification of sensor failures.
In KARYON we performed a failure mode analysis for
different sensors and identified several fault modes that
were categorized along five main dimensions: delay faults,
sporadic offset faults, permanent offset faults, stochastic
offset faults and stuck-at faults. The details of these results
are provided in [42].

In KARYON we strive for deriving validity measures
for sensor data that are provided with the respective data.
This validity estimates can be exploited by remote nodes
that fuse multiple sensor sources for assessment and selec-
tion. Estimating the validity of a single sensor reading is
only one part, although an important one, towards assessing
the overall impact of failures to the system. We consider
systems that combine and fuse individual sensor data
to generate higher level, application relevant information.
Thus, there is a chain of filters, estimators, and fusion
components which finally produce the desired output to
the control functions. The MOSAIC architecture, which we
overview in the next section, is intended to cope with all
these aspects.

B. Architecture of an Abstract Reliable Sensor

Reliable sensors require a failure detection strategy
that indicates the occurrence of a fault and assesses its
impact on the output. The detection mechanisms are based



on a comparison of measurements with a reference that
may be uncertain. Redundant information can be derived
in three different ways. First of all the system may be
extended by additional sensors. This is not possible for
all sensor types and may also cause an increased effort
in energy, weight and installation space. An alternative
to component redundancy is analytical redundancy, based
on a mathematical model. A prerequisite of this approach
is a detailed knowledge about the system, to derive an
appropriate mathematical model. Additional computational
resources may be needed for execution. The third option
is based on a series of samples and some comparison
or averaging. This can be interpreted as some form of
temporal redundancy.

When developing an application the programmer has to
cope with the diversity of detection methods. To ease this
task we propose the MOSAIC architecture for reliable sen-
sors integrated in a programming concept for smart devices.
MOSAIC provides methods for dynamic data acquisition,
processing and communication, etc. [42, 43]. Figure 3
illustrates the basic structure of a node combining the
abstract sensor input layer, application modules, an abstract
communication layer and the associated crosscutting fault
management. A MOSAIC component disseminates typed
message objects called events, including the respective sen-
sor data and additional attributes like position, timestamps,
validity estimation, etc. Static properties and information
of a MOSAIC component are described in an electronic
data sheet stored on the node.

This allows the programmer to describe an application
as a network of independent components, exchanging sen-
sor data, fusion results and actuator commands.

 

Fig. 3. Structure of a sensor node in MOSAIC.

In Figure 3, two of the three application modules
(Detection 0 and Detection 1) as well as the input layer
(Sensor A) generate an individual failure detection result.
The input layer may monitor the delays or omissions of
the transducer output. All tests are connected to the fault
management module that combines the individual fault
estimations and calculates a general validity value between

0 and 100%.

MOSAIC distinguishes between two types of failure
detectors: a) dominant detectors that render a result invalid
(i.e. a validity of 0) if they detect a failure, and b) other
detectors that lead to a certain continuous validity estimate.
In this case, the fault management unit derives a validity
from the internal knowledge about the process and other
detection results. The Detection 0 and Detection 1 modules
belong to the first class and are represented by a solid dot
in Figure 3. The dot that is not filled represents a detector
of the second category.

The validity result, which we call (sensor) data validity,
is assigned as an additional attribute to each data set.
Hence, the data validity attribute represents an abstract
estimation of the reliability of the exchanged information.
It provides the possibility to compare sensor data without
an explicit knowledge of underlying fault models and
implemented fault detection strategies.

V. DEALING WITH COMMUNICATION UNCERTAINTY

KARYON devotes particular attention to the problems
caused by communication uncertainty. In this section we
overview the approaches that are taken in KARYON to
improve the predictability and resilience of communica-
tion, to define middleware that is suitable to deal with
heterogeneity and different QoS attributes of networks in
distributed control, and to address the problem of achieving
a consistent view among cooperative entities.

A. Predictability and Resilience in Embedded Networks

Providing predictability like temporal guarantees in a
wireless communication system may follow two different
but complementary approaches depending on the dynamic
properties of the network. One approach strives for mon-
itoring the network, predicting inaccessibility times and
providing means to put bounds on these inaccessibility
times. The second approach to predictable communication
is based on avoiding any arbitration conflicts.

1) Network Inaccessibility: Disturbances induced in
the operation of MAC protocols may create temporary
partitions in the network, derived of the time required
to detect and recover from these situations. These distur-
bances can be produced by external interferences or by
some glitches in the operation of the MAC layer. These
temporary network partitions are called periods of network
inaccessibility [39, 41].

Since the periods of network inaccessibility may have
durations much higher than the normal worst case network
access delay, inaccessibility incidents do represent a source
of unpredictability. The effects of network inaccessibility
may propagate to the higher layers of a communication
stack – usually a collapsed version of the Open Systems
Interconnection (OSI) reference model – potentially dis-
rupting the operation of services and applications. As a
consequence, the overall dependability, predictability and
timeliness properties of the system may be at risk, being
compromised at the communication service.



KARYON proposes an innovative extensible compo-
nent architecture, dubbed R2T-MAC, which surrounds the
standard MAC level with additional components designed
to extend and enhance its native characteristics. The extra
components allow to improve MAC level predictability and
resilience against accidental disturbances in medium and
medium access levels, providing a service layer interface
with enhanced predictability and timeliness properties in-
tended to simplify the development of networked real-time
protocols and applications.

 

Fig. 4. The KARYON R2T-MAC architecture.

The architecture illustrated by Figure 4 is composed
by two different layers: MLA, the Mediator Layer and
the Channel Control Layer, surrounding a standard MAC
layer. This means, such a solution can be incorporated
in Commercial Off-The-Shelf (COTS) components with-
out fundamental modifications in the standard MAC level
protocol.

The Mediator Layer intermediates the communica-
tion and provides error isolation between the MAC and
higher layers, minimizing the negative effects caused by
disturbances in the medium and medium access control
protocols. This is a standard-compliant solution which
extends MAC layer services with additional features and
guarantees, enhancing the predictability and timeliness
of wireless communications. The Mediator Layer may
include components to provide services such as reliable
and real-time frame transmissions, node failure detection
and membership, control of temporary network partitions
(inaccessibility), control of resilience of communications,
and management of MAC layer and its configurations.

The Channel Control Layer is designed to allow the
control of channel state, and also to improve the network
resilience by profiting from the control of the diversity of
radio channels used on the communication medium.

2) Self-stabilizing MAC algorithms: We study commu-
nication fundamentals that are related to medium access
control. We show a way to increase the degree predictability
and resilience of wireless embedded networks. We focus on
advance provision with respect to enforcing predictability
and resilience in a relevant set of wireless network settings

by suggesting our design for self-stabilizing MAC algo-
rithms that provides a greater predictability degree than
existing ones [25] in addition for an algorithmic design
for TDMA alignment [27]. Such algorithms are required
for autonomous implementation of [25], i.e., without the
use of external time sources, such as GPS. We also study
protocols that directly use the MAC protocol, i.e., the data
link layer and the end-to-end communications in dynamic
networks [12].

MAC protocols for VANETs need to be autonomous
and robust as well as have high bandwidth utilization, high
predictability degree of bandwidth allocation, and low com-
munication delay in the presence of frequent topological
changes to the communication network. We propose a self-
stabilizing MAC algorithm that guarantees satisfying these
severe timing requirements [25]. Besides the contribution
in the algorithmic front of research, we expect that our
proposal can enable quicker adoption by practitioners and
faster deployment of VANETs, such as the IEEE 802.11p.

The problem of local clock synchronization is studied in
the context of TDMA protocols for dynamic and wireless
ad hoc networks. In the context of TDMA, local pulse
synchronization mechanisms let neighboring nodes align
the timing of their packet transmissions, and by that avoid
transmission interferences between consecutive timeslots.
Existing implementations for VANETs assume the avail-
ability of common (external) sources of time, such as base-
stations or GPS time sources. We are the first to consider
autonomic design criteria, which are imperative when no
common time sources are available, or preferred not to be
used, due to their cost and signal loss and use self-? pulse
synchronization strategies [27]. Their algorithms consider
the effects of communication delays and transmission in-
terferences. We demonstrate the algorithms via extensive
simulations in different settings including node mobility.
We also validate these simulations in the MicaZ platform,
whose native clocks are driven by inexpensive crystal
oscillators. The results imply that the studied algorithms
can facilitate autonomous TDMA protocols for VANETs.

End-to-end communication over the data link layer (or
overlay networks) is one of the most important communi-
cation tasks in every communication network, including
mobile ad hoc networks, and VANETs. We study data
link layer and end-to-end algorithms that exchange packets
to deliver (high level) messages in FIFO order without
omissions or duplications [12]. We present a self-stabilizing
end-to-end algorithm that can be applied to networks of
bounded capacity that omit, duplicate and reorder packets.
The algorithm is network topology independent, and hence
suitable for always changing dynamic networks with any
churn rate.

B. Adaptive Middleware for Advanced Control Systems

In KARYON we aim for predictable and safe coor-
dination of smart vehicles. This requires a spontaneous
communication system in which communication end-points
may dynamically need to dynamically use information
from other vehicles or from the available infrastructure.



Another challenging property results from the system-of-
systems property in a KARYON scenario. This means that
we have to deal with heterogeneous networks concerning
data formats and addressing schemes. With some effort,
heterogeneity can be made transparent by the respec-
tive middleware abstractions. However, Quality of Service
(QoS) will be a problem, because latencies, jitter and other
inherent uncertainties cannot be removed easily.

The publish/subscribe communication model is well
known to support spontaneous, many to many commu-
nication relations and reflect autonomy of communicat-
ing entities [15, 21, 33]. This approach prevents control
flow dependencies between the communication partici-
pants. However, QoS is a major problem. In a dynamic
communication scenario the quality of service will change
over time and requirements need to be checked dynamically
whenever the communication link is established and during
run-time. AUTOSAR enables communication by using the
publish/subscribe interface in a local system where QoS
issues can be solved statically. However, AUTOSAR [1]
does not address spontaneous communication across sys-
tem boundaries.

Because this property is crucial for KARYON, we will
use the FAMOUSO communication middleware [20, 43],
which builds on basic concepts that have been developed in
the context of the IST project CORTEX [38] as COSMIC
middleware [19]. The middleware has been considerably
improved and extended with respect to adaptability and
configurability during all stages of the development process
and the support for heterogeneous systems and program-
ming languages. Key to this adaptability are machine
exploitable descriptions of the service requirements and the
provided functionality and performance of the underlying
processors and the communication system.

FAMOUSO provides event-based communication that
is explicitly designed for dynamic, distributed control.
We propose the concept of event channels that address
the problem of assessing and maintaining QoS in such a
cooperative system. Figure 5 sketches the channel concept.

 

Fig. 5. Channel concept implemented in FAMOUSO.

In FAMOUSO all disseminated information is encap-
sulated in typed message objects called events. An event is
composed from three parts:

• a subject,

• attributes, and

• content.

A subject identifies to the content of an event and is
represented by a unique identifier (UID). The UIDs span
a global name space across all networks. Subjects are
used to route an event to the interested subscribers. The
binding between a publisher and a subscriber is performed
dynamically over network boundaries.

Attributes specify quality requirements and the context
of an event. Quality attributes provide information like
timeliness and dependability parameters. Context attributes
supply information like location or time. As illustrated in
Figure 5, the publisher may add a context attribute to an
event. The subscriber may specify a set of context attributes
by using the context filter specification. The subscriber will
only get those events which pass the context filter. As an
example, a subscriber is interested in events from a specific
location.

An event channel provides a unidirectional communi-
cation channel connecting multiple publishers to multiple
subscribers. Before a publisher can disseminate an event,
it has to announce the respective event channel that is
identified by the subject of events that will be disseminated.
The notion of an event channel allows specifying and
enforcing QoS attributes. The publisher may specify the
QoS that is needed, e.g. a maximal latency, a bandwidth, a
rate of events or a delivery guarantee. It is obvious, that in
a static system these requirements can be checked against
what the network is able to provide e.g. at configuration
time, i.e. before the system is actually in operation. In a
system-of-systems in which spontaneous communication
is needed, the information about the underlying network
properties have to be acquired dynamically during run-time.
Nevertheless, any guarantee involves some assessment and
subsequent resource reservation before communication can
start. The dynamic assessment of the underlying network
properties is part of the announcement process when a
publisher creates a new event channel. The monitoring and
dynamic adaptation concepts in wireless networks, such as
those described in the previous section, acquire the knowl-
edge that is needed to check whether the requirements
match what the networks can provide.

FAMOUSO is able to support a broad variety of
different hardware platforms ranging from low-end 8-Bit
micro-controllers up to high-end 64-Bit server systems and
enables interaction over different communication media
like the CAN field-bus [19], Wireless Sensor Networks like
IEEE 802.15.4,Wireless Mesh Networks [18] and Ethernet
like UDP broad- and multicast. FAMOUSO can be used
from different programming languages (C/C++, Python,
Java, .NET) as well as from engineering tools (LabVIEW,
MATLAB/Simulink) simultaneously [20].

C. Reliable Assessment of Cooperation State

Solutions for reliable cooperation between mobile
nodes should have a consistent view about the operational
state of cooperating entities and their intentions. We look
into protocols that can learn about the distributed system



state of the vehicular system and its network and by
that facilitate application at the higher level. Agreement
protocols are needed as building blocks for application at
the higher level. For example, Le Lann [24] considers the
vehicle platooning and lane change maneuvers. For these
applications he proposes to use high-level communication
primitives that are based on group communication and
concurrent transactions. We study additional approaches
that can allow agreement on the ongoing maneuvers with
the vehicles in close proximity. We look into the necessary
building blocks for wireless implementation of communi-
cation primitives that are needed for the reliable assessment
of the distributed system state and its network. One of these
approaches is based on virtual nodes that maintain shared
finite state machines that tile the plane [10]. These state
machines can monitor the activity in a given region, such
as intersections, or a cluster of vehicles that cruise on the
highway by consider mobile virtual nodes [11]. The next
steps are about the study of reliability aspects of virtual
nodes that are related to reliable broadcast, distributed fault
detection and agreement [3].

From the theoretical point of view, we are also working
towards understanding what may not be possible to achieve
within a predictable time bound because it heavily relies
on the inherent uncertainties of the wireless network.
Therefore, we consider Byzantine nodes in addition to
the above benign system settings. We study the problem
of topology discovery that is needed as a building block
for the problem of Byzantine agreement. We study the
possibilities of algorithmic solutions that have constant
costs [13]. Traditional Byzantine resilient (agreement) al-
gorithms use 2f+1 vertex-disjoint paths to ensure message
delivery in the presence of up to f Byzantine nodes. The
question of how these paths are identified is related to
the fundamental problem of topology discovery. Distributed
algorithms for topology discovery cope with a never ending
task, dealing with frequent changes in the network topology
and unpredictable transient faults. Therefore, algorithms
for topology discovery should be self-stabilizing to ensure
convergence of the topology information following any
such unpredictable sequence of events.

VI. USE CASES

We consider the implementation of KARYON’s con-
cepts in two vehicle-based scenarios of avionic and au-
tomotive. One of the factors used in Level of Service
determination is the distance between vehicles. This refers
to a given spatial scale and will be further described
in the next section. However, distance per se, is not a
sufficient factor to ascertain if a hazardous situation may
occur. We need to consider the predictability of such a
hazard to happen and factor it, not only in preventive
functions but also in corrective functions. This leads to
the necessity to define a temporal scale of events and from
it deriving the recommended and minimum allowed time
to reactive functionalities. These times and the associated
hazard analysis are mainly connected to the level of service
of each situation.

A. Automobile use cases

We study a set of Advanced Driver Assistance Systems
(ADASs) for coordinating vehicles and propose a set of so-
lutions that increase their safety. In particular, we examine
scenarios in which vehicles cooperate while: (1) going on
the road and keeping their distance from other vehicles, (2)
cruising in their lanes and coordinating when lane changes
are needed and (3) crossing intersections in a coordinated
way. We consider a set of ADASs covers basic operations
that allow the drivers to safely pilot their vehicles on the
road and we plan to demonstrate some of these ADASs on
the Gulliver test-bed [30].

1) Adaptive Cruise Control Systems: ACCs allow ve-
hicles to slow when approaching other vehicle and to
accelerate to their cruising speed when possible. These
systems are important for accident prevention as well as
for reducing energy consumption, because they smoothly
adjust the vehicle speed and by that reduce the stop-and-
go phenomena when the traffic contention is high. ACCs
often incorporate with several other subsystems, such as
Lane Keep Assist Systems (LKASs), Lane Change Assis-
tance Mechanisms, Electronic Stability Control (ESC) and
Real-time Traffic Information Systems (RTISs). Each of
these subsystems relies on other subsystems and enabling
technologies, such as Global Positioning System (GPS)
and Vehicle-to-Vehicle Communication (V2V). In such a
complex system of systems, the ability for monitoring the
system wellbeing is essential.

The level of service for this use case is mainly the
needed time margin between vehicles for meeting the
safety goals. Higher level of service means a lower time
margin between vehicles. For each level of service, and
for each speed interval, the safety goals are different with
respect their attributes of Automotive Software Integrity
Levels (ASIL). This means that depending on the vehicles
judgement of the integrity level possible to guarantee at a
certain moment, the level of service can be determined. The
integrity includes health status of sensors both on the actual
vehicle and the vehicles in front as well as communication
channels and computing resources.

2) Crossing road intersections using ITSs’ traffic lights:
One of the most fundamental components in contemporary
Intelligent Transport Systems (ITSs) are the traffic lights
that coordinate and monitor the crossing of intersections.
When a traffic light system detects a critical failure in its
components, it signals to the arriving vehicles that it is in
an inoperative mode (i.e., blinking the orange light). While
the traffic light is in failure mode, the drivers coordinate
the crossing of the intersection by themselves. Future
traffic light systems will periodically broadcast I-am-alive
messages to the arriving vehicles. The arriving vehicles will
monitor the reception of the I-am-alive messages. When the
traffic light system is in an inoperative mode, the vehicles
will switch to the use of a backup system: a virtual traffic
light that relies on vehicle-to-vehicle communications for
coordinating the intersection crossing. It is unclear whether
a virtual traffic light that relies entirely on mobile ad hoc
networking can provide the same dependability level as a
traffic light system that uses stationary infrastructure. How-



ever, virtual traffic light can be literally deployed anywhere
without the need for stationary infrastructure. Therefore,
virtual traffic lights are likely to emerge as an important
ITS technology. The KARYON project develops a means
that would facilitate the assertion of safety constraints that
are related to virtual traffic lights.

3) Coordinated lane change manoeuvres on highways:
Unintentional lane departure is one of the highest risk
factor on the road. The idea here it to provide a distributed
mechanism for assuring that at any time and any region
there is at most one vehicle that is changing its lane and
that the nearby vehicles allow it to safely complete the
manoeuvre. This concept can be, of course, extended to
platoons of cars that can change lanes in a coordinated
manner.

B. Avionics

The current considered pattern (see Figure 6) is for
the Remote Piloted Vehicles (RPV) to begin a controlled
climb into the boundary of non-segregated air space and
take safety measures and a final 4D navigation plan. It will
then commence its ascent to the target altitude and space,
perform the scanning of the targeted area through a grid
sweep pattern and then descend to the previously referred
boundary. Once ground control has been reasserted at the
boundary, the RPV will then proceed to the selected landing
space and finalize its operation.

Fig. 6. Avionics base scenario.

A “safety state” for an aerial vehicle can be considered
as a spatial volume around the vehicle where the possibility
of entrance of others objects is minimal, see Figure 7. The
approach or the eventual entrance of some other vehicle
into this volume is defined as an “air traffic conflict.”
Usually this spatial volume is described in terms of a
vertical and a lateral distance, called “separation minima.”

In the future air traffic management systems (ATM),
each aerial vehicle will sense its position and time clock
based on satellite navigation information, sending its posi-
tion information to the ATM on the ground and to other
aerial vehicles flying in the same airspace. This way, the air
traffic mapping of all vehicles will be available to the ATM

Fig. 7. Aerial Vehicle Safe State.

and also to each vehicle flying in that region. The dissem-
ination of vehicle position information based on satellite
technology shall allow the development of a collaborative
air traffic management. It is expected that direct flights
following optimal trajectories, the called 4D-Trajectories,
shall be authorized. Complex flight procedures executed
for safety purposes shall be eliminated and, mainly, it shall
allow the integration of RPVs into the airspace shared by
others piloted vehicles.

Aiming to perform a safety analysis of a shared airspace
traffic including RPVs it is convenient to consider two
special traffic scenarios involving: (1) a RPV and a collabo-
rative aerial vehicle, and (2) a RPV and a non-collaborative
aerial vehicle. A collaborative vehicle here means an aerial
vehicle that knows its position and is able to diffuse it
to other vehicles, as well as to the ATM center. A non-
collaborative vehicle, i.e., not using ADS-B satellite based
information, has a much less accurate estimative of its
actual position, and only can transmit it to the ATM center
by a voice channel.

In the sequel we present three avionic use cases that are
related to the automotive domain use cases, which will al-
low to demonstrate KARYON concepts. Although requiring
somewhat different safety conditions and having different
control options, the scenarios are similar in nature in a
form that allow us to extrapolate safety and performance
measures in a confident nature. In each of the three use
cases, the two traffic scenarios mentioned above will be
considered.

1) Common trajectory traffic in the same direction:
This is an aerial traffic situation analogous to the road
traffic scenario with cars running Adaptive Cruise Control
Systems (ACCS).

Two aerial vehicles fly a common optimal trajectory
that connects a common origin and destination. A traffic
conflict may appear when the rear vehicle is faster than
the front one, or when both vehicles fly in the same speed.



A similar and more frequently situation occurs between
two aerial vehicles during the climbing flight phase after
departing from the same airport.

2) Leveled crossing trajectories: This is an aerial traffic
situation analogous to a crossing road intersection. It is a
conflict situation of frequent occurrence, where two aerial
vehicles with similar performance would have optimal
trajectories that cross in some airspace point.

3) Coordinated flight level change manoeuvres: This
scenario considers flight level change for a RPV where it
intersects the flight altitude of other vehicles. Difference
between this scenario and the previous is that the cross is
not directly in a collision path.

VII. CONCLUSIONS

The key objective of KARYON is to provide system
solutions for predictable and safe coordination of smart
vehicles that autonomously cooperate and interact in an
open and inherently uncertain environment. This is a
challenging objective since the same increasingly complex
control components and wireless communication, which
would allow improving performance, end up introducing
new safety risks, which have to be mitigated or neutralized.
Addressing this challenge requires innovative solutions
concerning the overall system architecture, the middleware
and the mechanisms to deal with faults and uncertainty.

In this paper we presented the work that is being
developed in KARYON, the approaches that are being
considered, and selected ideas on how to address the
problems ahead. We also described the scenarios in the
automotive and avionic domains, which will be considered
for the demonstration of the technical achievements.

We expect that KARYON will open new perspectives
on the use of available technology for safe cooperative sys-
tems with increased efficiency. In particular, we believe that
the proposed approaches and solutions may be important
contributions to improved vehicle density without driver
involvement and increased traffic throughput to maintain
mobility without a need to build new traffic infrastructures.
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