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A UNIFIED SUBSPACE CLASSIFICATION FRAMEWORK DEVELOPED FOR DIAGNOSTIC
SYSTEM USING MICROWAVE SIGNAL

Yinan Yu, Tomas McKelvey

Chalmers University of Technology, Gothenburg, Sweden

ABSTRACT

Subspace learning is widely used in many signal process-
ing and statistical learning problems where the signal is as-
sumably generated from a low dimensional space. In this
paper, we present a unified classifier including several con-
cepts from different subspace techniques, such as PCA, LRC,
LDA, GLRT, etc. The objective is to project the original sig-
nal (usually of high dimension) into a smaller subspace with
1) within-class data structure preserved and 2) between-class-
distance enhanced. A novel classification technique called
Maximum Angle Subspace Classifier (MASC) is presented
to achieve these purposes. To compensate for the computa-
tional complexity and non-convexity of MASC, an approxi-
mation is proposed as a trade-off between the classification
performance and the computational issue. The approaches
are applied to the problem of classifying high dimensional
frequency measurements from a microwave based diagnostic
system and results are compared with existing methods.

Index Terms— Supervised subspace learning, classifica-
tion, high dimensional data, class separability

1. INTRODUCTION

Over the last decades, a family of techniques called Matched
Subspace Detector (MSD) were proposed for signal detec-
tion problems [1, 2]. These techniques are based on subspace
models and statistical assumptions of the signal. On the other
hand, in the machine learning society, there have been also
a fair number of papers on similar techniques dealing with
classification problems[3, 4, 5, 6]. The underlying idea is
that samples from each class are generated from an individual
subspace. In paper [4], a technique called Linear Regression
Classifier (LRC) is introduced. Basically, under the subspace
assumption, LRC projects the testing data onto the span of the
training data from each class and identifies the subspace with
smallest projection error. There exist many extended versions
of LRC, which mostly focus on improving the estimation of
the subspaces by reducing the regression error using the train-
ing data.

However, in a classification problem, the between-class
distance plays a key role as a part of the class separability
measure and a proper metric needs to be defined in such
cases. In this work, we present a unified subspace classifica-
tion technique called Inner-product Subspace Classifier (ISC)
and there are two steps involved: 1) constructing individual
basis for each class, and 2) computing the inner product of
the projected testing vector.

Under the ISC framework, a Naive ISC is first presented
as the simplest classification model, where the basis for each
subspace is estimated using Singular Value Decomposition

(SVD) from the training data. In Section 3.2, a novel tech-
nique called Maximum Angle Subspace Classifier (MASC)
is proposed. MASC explicitly maximizes the between-class
distance while keeping the within-class variation small. How-
ever, it suffers from a high computational complexity and no
global optimum is guaranteed. Motivated by these facts, a
new method called Empirical Subspace Intersection Removed
Classifier (ESIRC) is presented as a trade-off between the
classification performance and computational complexity in
Section 3.3. By removing nearly common directions, this
technique enhances the class separability without consuming
more computational power.

The developed classifiers are applied to data measured by
a newly developed near field microwave system consisting of
transceivers connected to an array of antennas placed around
the object under study. The objective of this system is to de-
tect objects with an internal anomaly. Empirical results show
that MASC gives the best classification rate among the com-
pared techniques. ESIRC serves as an efficient approximation
and provides a good trade-off between computational com-
plexity and classification accuracy.

2. A SHORT REVIEW OF RELATED WORK

The technique most closely related to ISC is Linear Regres-
sion Classifier (LRC) [4], which has been proposed for face
recognition in 2010. In this technique, the classification cri-
terion is to find the minimum projection error of the testing
data to all the subspaces. Several modified approaches have
been presented as well, such as Principal Component Regres-
sion Classifier (PCRC), Improved Principal Component Re-
gression Classifier (IPCRC) [5], Ridge Regression Classifier
(RRC) [6], etc. PCRC finds the regression coefficients which
minimize the residual errors in PCA space, IPCRC discards
the first principal components to improve the robustness of
the classifier in a varying environment and RRC is proposed
to tackle degenerated cases.

In this paper, a technique called Naive ISC is introduced.
Algebraically, Naive ISC is equivalent to LRC. The only dif-
ference in the formulation is that instead of finding the small-
est projection error, Naive ISC identifies the largest subspace
inner product. The reason is that LRC focuses on the ’good-
ness of fitting’ in a regression sense, and hence the criterion
is naturally based on the size of the regression residual.

Moreover, compared to LRC related techniques, exten-
sions of ISC are different in the following ways: 1) instead of
manipulating the subspace coordinates, the whole subspace
for each class is operated as a point on the Grassmann Man-
ifold, where metrics are naturally defined. The basis matri-
ces are then considered as variables for optimization and con-
straints can be defined on a subspace level. 2) Both between-
class and within-class characteristics are taken into consider-
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ation simultaneously. As suggested by the name, LRC and
its extensions emphasize on minimizing the regression error
which guarantees a small within-class scattering. However,
for classification problems, the between-class distance has a
great contribution to the class separability. In ISC, between-
class distance is defined using the metric equipped by the cor-
responding Grassmannian. 3) Inner product space is defined
for individual subspace and kernel tricks can be applied to
improve the classification accuracy [7].

3. A UNIFIED FRAMEWORK

GivenC, the total number of classes, letxi
c be a sample drawn

from class c ∈ {1, · · · , C}. We assume that xi
c is generated

according to the following data model:

xi
c =

Nc∑
k=1

u0
c,kα

i
c(k) + e

i
c = U

0
cα

i
c + e

i
c (1)

where U0
c is a matrix containing the basis vectors u0

c,k

as its columns and αi
c represents the corresponding basis

weight vector. The vector eic is the error between the model∑Nc

k=1 u
0
c,kα

i
c(k) and the measurement xi

c. Without ambi-
guity, U0

c is used to denote the linear subspace from now
on. Note that given the feature dimension p, we assume that
Nc � p always holds.

For a given class c, the columns of U c is the estimated
orthonormal basis vectors spanning the subspace. Hence, the
inner product of a testing sample x in subspaceU c is defined
as:

l2c(x) = ‖P cx‖22
= xHU cU

H
c x (2)

where, P c = U cU
H
c is the projection matrix which projects

x onto the U c space. Class membership of x is determined
either as the largest size within the class

ĉ = argmax
c
lc(x) (3)

This is the ML classification for suitable statistical assump-
tions. Equivalently, we can also use the shortest distance to
the subspace, which coincides with the criterion for LRC [4].

ĉ = argmin
c
‖x− P cx‖2 (4)

In summary, Inner-product Subspace Classifier (ISC) is
formally formulated in Definition 1. Note that without loss of
generality, we restrict the presentation to the case of a binary
classifier, i.e. c ∈ {1, 2}. The generalization to multi-class
problems can be viewed as a natural extension of the binary
case.
Definition 1. (Binary) Inner-product Subspace Classifier (ISC)

Given basis U1, U2 and testing data x, let:

δ(x) = xHU1U
H
1 x− xHU2U

H
2 x (5)

ISC is defined as a functionf(x), such that:

f(x) =

{
+1 if δ(x) > 0
−1 if δ(x) ≤ 0 (6)

In a more general setting, instead of only considering the
criterion introduced in (3), a classifier such as Support Vec-
tor Machine (SVM) [8] can be applied to the two dimensional
space containing points {(l21, l22)} to obtain the predicted la-
bels. Now the question is how can we construct U1 and U2
to improve the performance of the classifier.

3.1. The simplest model

A simplest mode called Naive ISC is defined as an ISC
equipped with a straightforward estimation of the projection
matrix. That is, in the training step, we construct a data ma-
trix Xc by placing all the training data from class c as its
columns:

Xc =
[
x1
c , x

2
c , · · · , xmc

c

]
(7)

In our study, we assume that the training sample sizemc is
always much smaller than the feature dimension p and Nc =
mc. Therefore, given Xc, the basis U c can be estimated by
QR or singular value decomposition ofXc.

The projection matrix P c presented in Equation (2) can
be estimated by:

P c =Xc(X
H
c Xc)

−1XH
c (8)

Without any modification, Naive ISC is equivalent to LRC
and closely related to the Generalized Likelihood Ratio Test
(GLRT) [9], which is included as a special case of ISC.

3.2. An improved model with high complexity

We are interested in finding subspaces U1 and U2 such that
the class separability is enhanced. As we know, subspaces can
be considered as points on a Grassmann manifoldG(k, n) and
the corresponding metrics can be defined to study the topol-
ogy of the set. With a well defined searching space using
these terminologies and their corresponding characteristics,
optimization can be applied to locate candidates of the sub-
space basis.

First, we define Grassmann manifold and its equipped
metric in order to formally describe the searching space of
MASC.

Definition 2. Grassmann manifold[13]
Let V be a complex vector space of dimension n. The

Grassmann Manifold, denoted byG(k, V ) is defined to be the
set of k-dimensional linear subspaces of V ; we write G(k, n)
for G(k,Cn).

Therefore, a subspace constructed by training data from
each class is one point on the Grassmann manifold. Metrics
can be equipped by Grassmann manifold in order to assess
the between-classes distance. One widely used metric is the
principal angles, which is defined as follows:

Definition 3. Principal angles [14]
The principal angles θk between the subspaces U1 and

U2 are defined as:

cos(θk) = max
u∈U1

max
v∈U2

uHv = uH
k vk

subject to:
‖u‖ = ‖v‖ = 1

uHui = 0, i = 1, · · · , k − 1 (9)
vHvi = 0, i = 1, · · · , k − 1
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Empirical results show that with a constraint on the pro-
jection error of the training data, when the principal angles are
larger, the classification performance becomes better. This is
due to the fact that compared to subspaces with small angles,
for the same level of noise, the data points are less likely to be
mixed. This motivates us to find subspaces with a maximum
minimal angle between them without sacrificing the accuracy
of the subspace representation of the data. The Maximum
Angle Subspace Classifier (MASC) defines such a basis:

Definition 4. MASC
A Maximum Angle Subspace Classifier (MASC) with ac-

curacy ε is defined by the bases U1 and U2 such that:

minimize
U1,U2

max
u∈U1

max
v∈U2

uHv

subject to
1

mc

mc∑
i=1

(‖xi
c −U cU

H
c x

i
c‖2l2) ≤ ε

UH
c U c = I,

(10)

where mc is the number of samples in class c and U c ∈
G(Nc, p).

A heuristic algorithm which sequentially maximizes the
minimal angle can be found in Algorithm 1. The notation
’∼ c’ is used to denote the classes ’not c’. The optimization
problem in Algorithm 1 is approached numerically using a
constrained nonlinear programming algorithm. Note that due
to the high computational complexity, a subspace projection
step (PCA) needs to be applied before Algorithm 1 for dimen-
sionality reduction.

Algorithm 1 Construction of MASC basis

- Apply PCA for dimensionality reduction
- Initialize U c by QR or SVD of the data matrix
- For c ∈ {1, ..., C}, iterate until convergence:

Fix U∼c :
minimize

Uc∈G(Nc,p)
max
u∈Uc

max
v∈U∼c

uHv

subject to
1

mc

mc∑
i=1

(‖xi
c −U cU

H
c x

i
c‖2l2) ≤ ε

UH
c U c = I

(11)

3.3. A complexity reduced approximation

MASC maximizes the between-class distance while keeping
the within-class scattering small. However, it is relatively
time consuming and no global optimum can be guaranteed. In
this section, a different approach is attempted. Instead of di-
rectly maximizing the principal angles, the bases are reduced
by removing the direction(s) in respective basis which have
the smallest principal angle(s) with respect to the other basis.
This improves the classification performance when the bases
are estimated from noisy data.

If some of the principal angles between the spaces would
be zero the two spaces would have a common intersecting
subspace. However, in practice the angles are never zero and
we call the directions which have angles close to zero as the

Empirical Subspace Intersection (ESI) for each subspace re-
spectively. Formaly we define ESI as follows:

Definition 5. Empirical Subspace Intersection
The Empirical Subspace Intersection ESI(U1,U2, δ) of

U1 and U2 is defined as:

ESI(U1,U2, δ) = {uj : uj ∈ U1, ∀ j, s.t. θj < δ} (12)

where s is the dimension of the empirical subspace intersec-
tion, θj’s are the principal angles and uj are the the principal
vectors and δ is the empirical tolerance.

The algorithm of removing ESI(U1,U2, δ) from U1
and ESI(U2,U1, δ) from U2 is summarized in Alg.2 [14].

Algorithm 2 ESI removal between 2 subspaces:

Note: in this algorithm, the intermediate basis is calledQi,
i = 1, 2. The notation U i, i = 1, 2 is used to denote the
final constructed basis for class i.
- Let the columns of X1 and X2 be vectors spanning sub-
space 1 and 2 respectively andN1 ≥ N2 be the dimensions
ofX1 andX2 respectively;
- Compute the QR:

X1 = Q1R1

X2 = Q2R2 (13)

- Construct matrix C: C = QT
1Q2

- Compute the SVD of C (assume N1 > N2):

Y TCZ =


cos(θ1) · · · 0

0
. . . 0

0 · · · cos(θN2
)

0
... 0

0 0 0

 (14)

where θk’s are the principal angles and 1 ≥ cos(θ1) ≥
cos(θ2) ≥ · · · ≥ cos(θs) >> cos(θs+1).
- Compute the associated basis {uk} and {vk}:

Q1Y = [uk], k = 1, · · · , N1

Q2Z = [vk], k = 1, · · · , N2 (15)

where
ESI(Q1,Q2, θs+1) = [u1,u2, · · ·us]

ESI(Q2,Q1, θs+1) = [v1,v2, · · ·vs] (16)

- Remove the intersection and construct the subspaces:
U1 = [us+1,us+2, · · · ,uN1 ]

U2 = [vs+1,vs+2, · · · ,vN2 ] (17)

In summary, ESIRC is defined as follows:

Definition 6. ESIRC

An Empirical Subspace Intersection Removal Classifier
(ESIRC) is a binary Inner-product Subspace Classifier (ISC)
using basis constructed from Algorithm 2.

4. EXPERIMENTAL RESULTS

The experimental results are based on microwave measure-
ments for the purpose of object classification. There are two

3
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prototypes with different measurement setups, which result
in various data features summarized in Table 1. The system
consists of N antennas mounted around the object under test.
Each antenna performs as both transmitter and receiver. The
measured signals are scattering parameters, which is defined
as the received energy divided by the transmitted energy at
each antenna for a single frequency excitation. The signals
are measured at 401 different frequencies from 100 MHz to
3.0 GHz. If we vectorize the raw measurement, a high di-
mensional complex vector space is obtained. The numbers
of independent objects from class 1 and 2 are also summa-
rized in Table 1 and for each object, multiple measurements
are taken.

In our experiment, subspace basis for each class is learned
using: (a) singular value decomposition of the data matrix de-
fined in Equation (7) for Naive ISC (b) empirical intersection
removal by Algorithm 2 and (c) maximization of principal
angles using Algorithm 1 (MASC). Note that for MASC, fea-
ture reduction using PCA is performed on the dataset. The
new dimension of the feature space is m1 +m2. On the other
hand, no dimension reduction is needed for ISC and ESIRC.
The experimental results are compared with other supervised
classification approaches: (d) linear SVM (e) Gaussian kernel
SVM [15], (f) PCA+ LDA, (g) PCRC [5]. and (h) IPCRC [5].

Dataset 01 Dataset 02
Number of antennas: N 10 12
Dimension of the signal 22,055 31,278
Measurements in class 1 27 30
Measurements in class 2 21 45

Independent objects in class 1 11 15
Independent objects in class 2 9 11

Table 1. Description of settings for dataset 01 and dataset 02.

All classifiers are evaluated using a leave-one-out valida-
tion procedure [16]. That is, for each run, all measurements
from one object is removed for testing. For training, one
measurement is randomly picked from each of the remain-
ing objects. The empirical performance of the classifiers are
recorded for all the left-out measurements and shown in Ta-
ble 2. The given evaluation is the classification accuracy of
class 1 at a constant false alarm rate of 20%. In our experi-
ments, PCA + LDA technique improves the classification re-
sults compared to linear SVM, whereas by applying Gaussian
kernel to SVM, it provides a more significant improvement.
Probably due to the large dimensionality and small sample
size issue, PCRC does not increase the classification accu-
racy. This is because when the sample size is very small,
the estimated basis does not converge to the true subspace
and thus even components corresponding to small eigenvalues
contain information which makes the PCA space less repre-
sentative. Nevertheless, IPCRC gives a better result compared
to LRC and PCRC in our case. The reason is that for medical
measurements, the varying environments and situations might
dominate the main variability. By discarding the first princi-
pal components, these effects are excluded to some extent.
MASC searches for two representative subspace bases with
maximal principal angles on Grassman manifold and provides
the best performance among all the compared techniques on
both datasets. EESIRC ended up being a good trade-off.

To further compare the three proposed classification
schemes: ISC, ESIRC and MASC, scatter plots of the in-

ner products (l22, l
2
1) are shown in Figure 1 for dataset 01 and

02 respectively. The only difference of the three methods
is that they use different basis construction techniques. As
we can see from the figure, MASC results in the best class
separability. However, if computational time is of concern,
ESIRC can be a good substitute.

Classification model Dataset 01 Dataset 02
(a) LRC (ISC) 57% 56%
(b) ESIRC 85% 76 %
(c) MASC 92% 89 %
(d) Linear SVM 57% 55 %
(e) (Gaussian) Kernel SVM 78 % 73 %
(f) PCA+LDA 67 % 64%
(g) PCRC 57% 54%
(h) IPCRC 77 % 72%

Table 2. Empirical performance of different classifiers for
class 1 at a constant false alarm rate of 20%. The parameters
are chosen as: (a) Nc = mc; (b) Nc = mc−dim(ESI), where
dim(ESI)= 4 for data 01 and dim(ESI)= 6 for data 02; (c)
Nc = mc; (d) C = 10; (e) Gaussian kernel σ = 1, C = 10;
(f) dimension of PCA space ismc; (g,h)Nc = mc−kc, where
kc = 4 for data 01 and kc = 6 for data 02.

5. CONCLUSION

In this paper, a novel subspace classification framework called
ISC is proposed. ISC includes several subspace detection
and classification techniques as special cases and it actively
searches the optimal subspaces on a Grassman manifold. The
underlying idea of ISC is to enhance the class separability
through different subspace constructions. Compared to other
class separability maximization techniques, such as LDA, the
classifiers proposed in this paper are able to deal with sub-
space data model, in which case, LDA does not give the opti-
mal solution. From empirical tests, constructed MASC gives
the best classification result among all the compared tech-
niques. However, when the dimension of the subspace grows,
the optimization becomes highly time consuming. Another
drawback of this approach is that there is no global optimum
guaranteed. On the other hand, ESIRC provides a good trade-
off between computational complexity and classification per-
formance. Our future work will focus on 1) estimation of
the subspace dimensionality and 2) further studies of how the
parameters in the proposed algorithm affect the classification
performance.
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