LNA Design for Radio Navigation
Satellite System Receivers

Master of Science Thesis in the Master Degree Programme
Wireless and Photonics Engineering

ALEXANDRA ANDERSSON

Department of Microtechnology and Nanoscience
Division of Microwave Electronics Laboratory
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2013
LNA Design for Radio Navigation Satellite System Receivers

ALEXANDRA ANDERSSON

Department of Microtechnology and Nanoscience
Division of Microwave Electronics Laboratory
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2013
LNA Design for Radio Navigation Satellite System Receivers
ALEXANDRA ANDERSSON

© ALEXANDRA ANDERSSON, 2013

Department of Microtechnology and Nanoscience
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Cover:
Photography of the complete LNA circuit, see section 5.5.

Chalmers Reproservice
Gothenburg, Sweden 2013
LNA Design for Radio Navigation Satellite System Receivers
ALEXANDRA ANDERSSON
Department of Microtechnology and Nanoscience
Chalmers University of Technology

ABSTRACT
This thesis work was performed at RUAG Space in Gothenburg aiming to design an L-band low-noise amplifier for GPS receiver applications. Compared to former design of such an LNA at RUAG improved RF performance and possibly a different amplifier topology are desired. In the case of a different amplifier topology a size reduction is of interest.

Different alternatives for active components and amplifier topologies were considered and the work was focused on an AlGaAs/InGaAs pseudomorphic High Electron Mobility Transistor (pHEMT) called FPD750 from the company RF Micro Devices. Simulations of different LNA designs were performed in ADS and emphasis was put on a design including two FPD750 transistors in parallel, utilizing long source bond wires adding the extra source inductance needed for simultaneous noise and input matching. The LNA was realized as a hybrid design with bare-die transistor chips connected with bond wires and a prototype was fabricated in hardback PCB of TMM6 substrate.

The final LNA has $\text{NF} < 1 \text{ dB}$, gain of almost 20 dB and an input return loss of approximately 8 dB over the frequency band of interest (1.164-1.610 GHz). Consequently, the FPD750 transistor has potential to give low NF for L-band frequencies and is possible to use in this type of receiver application. Long source bond wires, acting as inductive source degenerations, are shown to be critical regarding high frequency stability and design of stability network needs careful consideration.

Keywords: L-band, low-noise amplifier (LNA), inductive source degeneration
ACKNOWLEDGEMENTS

Thanks to Robert Petersson at RUAG for giving me the opportunity to do this thesis work. Also thanks to all of you at the department of Microwave Electronic Design at RUAG for your support and encouragement. Especially thanks to Jonas Larsson for being very helpful and patient with all my questions.
TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. v

LIST OF ABBREVIATIONS .. ix

1 INTRODUCTION .. 1

1.1 Background .. 1

1.2 Aim ... 2

1.3 Approach to problem .. 2

1.4 Thesis outline .. 2

2 LOW NOISE AMPLIFIER DESIGN ... 3

2.1 Theory .. 3

2.1.1 Noise figure .. 3

2.1.2 Input and output matching networks ... 3

2.1.3 Conjugate match .. 4

2.1.4 Stability ... 4

2.2 Classical LNA design techniques .. 5

2.2.1 Classical noise matching (CNM) technique .. 5

2.2.2 Simultaneous noise and input matching (SNIM) technique 5

2.2.3 Power-constrained noise optimization (PCNO) technique 6

2.2.4 Power-constrained simultaneous noise and input matching (PCSNIM) technique ... 6

2.3 Broadband amplifier design .. 6

2.4 Multi transistor amplifiers .. 7

2.4.1 Transistors in parallel .. 7

2.4.2 Transistors in cascade ... 7

2.4.3 Transistors in cascode ... 8

3 FABRICATION TECHNOLOGIES .. 9

3.1 Building practice ... 9

3.2 Choice of building practice, substrate and transistor 10

3.3 Chosen transistor ... 11

3.4 Benchmarks and comparison to other works ... 11

4 INVESTIGATION OF AMPLIFIER TOPOLOGIES ... 13

4.1 Simulations of topologies and matching networks .. 13

4.1.1 Characteristics of single transistor ... 13

4.1.2 Single transistor with inductive source degeneration 15

4.1.3 Two transistors in cascode with inductive source degeneration 17
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>LNA</td>
<td>Low-noise amplifier</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>MMIC</td>
<td>Monolithic Microwave Integrated Circuit</td>
</tr>
<tr>
<td>pHEMT</td>
<td>pseudomorphic High Electron Mobility Transistor</td>
</tr>
<tr>
<td>ADS</td>
<td>Advanced Design System</td>
</tr>
<tr>
<td>LTCC</td>
<td>Low temperature co-fired ceramic</td>
</tr>
<tr>
<td>VSWR</td>
<td>Voltage standing wave ratio</td>
</tr>
</tbody>
</table>
1 INTRODUCTION
The low-noise amplifier (LNA) is one of the most critical components determining the sensitivity of a radio receiver. A particular challenge is the design of broadband LNAs with simultaneously good noise figure (NF) and input return loss. An application where broadband LNAs are required is in Global Navigation Satellite System (GNSS) receivers.

1.1 Background
GNSS is a collection of several satellite based navigation systems with global coverage. The most familiar is probably the American GPS but it also contains systems like the Russian GLONASS and the European Galileo. GNSS signals are utilized by Radio occultation (RO) instruments in low Earth orbit (LEO) satellites. RO is a remote sensing technique used for atmospheric sounding. It provides accurate measurements from which vertical temperature profiles, pressure and humidity in the atmosphere as well as profiles of electron content in the ionosphere can be derived. GNSS RO has become an important tool in meteorology and climate monitoring thanks to some key advantages: all-weather capability (not disturbed by clouds), high vertical resolution, good accuracy of the retrieved temperature and long-term consistency. [1]

In a simplified way a RO instrument in a LEO satellite works as follows. The instrument acquires and tracks the GNSS signal at two frequencies, L1 and L2, above the atmosphere. As the ray path descends into the atmosphere the Doppler shift (the change in carrier phase) is recorded at the two frequencies. See Figure 1 for RO geometry. [1]

Together with known spacecraft positions and velocities the Doppler shift provides information on the directions of reception and transmission. Using the measurement geometry and the spherically symmetric atmosphere condition the refraction index profile as a function of the Earth radius is obtained from an integral transform (Abel transform). The refractivity depends on the air pressure, temperature and water vapor content. These parameters are then retrieved from the gas equation of state and the
hydrostatic equilibrium equation. In a similar approach the electron density profile can be obtained from RO measurements in the ionosphere. [1] The instrument must be able to track a sufficient number of GNSS satellites for RO and for usual real-time navigation but it might also be equipped for precise orbit determination (POD) of the LEO satellite itself.

At RUAG Space on-board receivers for this type of GNSS occultation and POD instruments are developed. A receiver consists of several components such as antenna, LNA, filters, mixer, local oscillator and power amplifier. An essential part is the front-end, the LNA, since the noise contribution from the first component affects the performance of the complete receiver.

1.2 Aim

This thesis work was performed at RUAG Space in Gothenburg aiming to design a low-noise amplifier for GNSS receiver applications. Compared to existing design of such an LNA at RUAG the objectives were:

- Improved RF performance: focus on improved NF for maintained return loss
- Reduced circuit size

The LNA needed to be stable and have sufficient gain. It was supposed to cover the L-band (here referred to approximately 1.1-1.6 GHz). From design and fabrication point of view also parameters as costs, mounting, interface, flexibility and time to market needed to be considered.

1.3 Approach to problem

RUAG’s existing LNA design for this GNSS receiver was studied together with different alternatives for active components and amplifier topologies. After considerations regarding RF performance, flexibility, time-to-market and costs it was decided to continue the work focusing on an AlGaAs/InGaAs pseudomorphic High Electron Mobility Transistor (pHEMT) called FPD750 from the company RF Micro Devices. Using ADS a number of simulations were performed to investigate amplifier topologies and configurations. Data from RF Micro Devices was used to model the transistor. Emphasis was put on the most promising design and after optimizations and layout work a breadboard (a prototype) was fabricated. Finally RF performance of the complete circuit was measured and analyzed.

1.4 Thesis outline

The rest of this thesis is outlined as follows: Chapter 2 covers basic theory for design of LNAs. Chapter 3 describes alternative technologies and choice of active component is motivated. Chapter 4 discusses simulations performed in ADS to analyze design alternatives for the chosen transistor. Chapter 5 presents detailed LNA design and layout. Chapter 6 describes RF measurements and performance of the breadboard. Chapter 7 includes conclusions and future work.
2 LOW NOISE AMPLIFIER DESIGN

Typically the LNA is one of the key components as it tends to dominate the sensitivity of the complete receiver. The received signal might be very weak and the LNA is used to amplify the signal without adding too much noise from the LNA itself. The LNA is usually placed close to the detection device (antenna) to reduce losses and to avoid degradation of the signal-to-noise ratio (SNR). A good LNA adds as little noise as possible to the signal and has high gain.

2.1 Theory

2.1.1 Noise figure

The noise of an amplifier can be described with a parameter called noise figure (NF). NF is defined as the ratio of the available signal-to-noise power ratio at the input to the available signal-to-noise power ratio at the output according to equation 1.

\[NF = \frac{P_{S1}^P_{NL}}{P_{S0}^P_{No}} \]

(1)

A minimum NF can be obtained by properly selecting the source reflection coefficient (\(\Gamma_S\)) of the amplifier, a method which is explained in following sections. [2] The total NF for a chain of \(n\) cascaded amplifiers is

\[NF = NF_1 + \frac{NF_2-1}{G_{A1}} + \frac{NF_3-1}{G_{A1}G_{A2}} + \frac{NF_4-1}{G_{A1}G_{A2}G_{A3}} + \ldots \]

(2)

where \(G_A\) is the available power gain. This shows that the noise contribution from the first stage is significant for the complete amplifier performance. The objective when designing LNAs is then to obtain low NF and high gain at the first amplifier stage. Minimum NF and maximum power gain cannot be achieved simultaneously and reflection coefficients have to be chosen as a compromise between noise and gain performance.

2.1.2 Input and output matching networks

A model of a single-stage microwave transistor amplifier is seen in Figure 2. Matching networks are used on both sides of the transistor to transform 50 Ohm to the source and load impedances \(Z_S\) and \(Z_L\) (or source and load reflection coefficients \(\Gamma_S\) and \(\Gamma_L\)). \(Z_S\) and \(Z_L\) are the impedances need to be seen by the transistor for the circuit to fulfill amplifier specifications like maximum gain or minimum noise. [2]

![Figure 2. Model of a single-stage microwave transistor amplifier](image-url)
2.1.3 Conjugate match

For a bilateral transistor \((S_{12} \neq 0)\) the input and output reflection coefficients are given by

\[
\Gamma_{IN} = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1-S_{22}\Gamma_L} \tag{3}
\]

\[
\Gamma_{OUT} = S_{22} + \frac{S_{12}S_{21}\Gamma_S}{1-S_{11}\Gamma_S} \tag{4}
\]

where \(S_{11}, S_{12}, S_{21}\) and \(S_{22}\) are the \(S\)-parameters of the transistor. For a unilateral transistor \((S_{12} = 0\) or its effect is so small that it can be approximated to zero) the input and output reflection coefficients are \(\Gamma_{IN} = S_{11}\) and \(\Gamma_{OUT} = S_{22}\).

Maximum transducer power gain is obtained by conjugate match and the source and load reflection coefficients should be chosen as

\[
\Gamma_S = \Gamma_{IN}^{\ast} \quad \text{(or } Z_S = Z_{IN}^{\ast}) \tag{5}
\]

and

\[
\Gamma_L = \Gamma_{OUT}^{\ast} \quad \text{(or } Z_L = Z_{OUT}^{\ast}) \tag{6}
\]

As most transistors appear as a significant impedance mismatch the frequency response of the matching networks will be narrowband. This is an important aspect for this project as the solution needs to be very wideband.

2.1.4 Stability

Stability is important to consider when designing microwave transistor amplifiers. If a transistor is unconditionally stable it will not oscillate with any passive termination. On the other hand a potentially unstable transistor can be stabilized by adding resistive loadings. [2] One way of expressing necessary conditions for unconditional stability is

\[
K > 1 \tag{7}
\]

and

\[
|\Delta| < 1 \tag{8}
\]

where

\[
K = \frac{1-|S_{11}|^2-|S_{22}|^2+|\Delta|^2}{2|S_{12}S_{21}|} \tag{9}
\]

and

\[
\Delta = S_{11}S_{22} - S_{12}S_{21} \tag{10}
\]

Another alternative is to use the \(\mu\)-factor where the condition \(\mu > 1\) alone is sufficient for a circuit to be unconditionally stable. [3]
\[\mu = \frac{1 - |S_{11}|^2}{|S_{22} - S_{11}| + |S_{21}|} \]

(11)

If the transistor is potentially unstable stability circles can be drawn in the Smith chart to determine if there are values of \(\Gamma_S \) and \(\Gamma_L \) for which the transistor is conditionally stable. [2]

2.2 Classical LNA design techniques

Designing LNAs involves tradeoffs between NF, gain, linearity, impedance matching and power dissipation. The main goal is generally to design for simultaneous noise and input impedance matching at any given amount of power dissipation. Four common designing techniques are reviewed and analyzed in [4]. They are mentioned as classical noise matching (CNM) technique, simultaneous noise and input matching (SNIM) technique, power-constrained noise optimization (PCNO) technique and power-constrained simultaneous noise and input matching (PCSNIM) technique.

2.2.1 Classical noise matching (CNM) technique

This method is based on designing the LNA for minimum NF by presenting the optimum noise impedance \(Z_{\text{OPT}} \) (or the optimum noise reflection coefficient \(\Gamma_{\text{OPT}} \)) to the given transistor. This is typically obtained by adding an input matching network between the source and the input of the transistor. With this technique the amplifier can be designed to have the lowest possible NF, \(F_{\text{min}} \), of the given transistor. However, there can be a mismatch between \(Z_{\text{OPT}} \) and \(Z_{\text{IN}}^* \) which is the desired input matching network impedance for maximum gain. The amplifier might therefore experience a significant gain mismatch at the input. As a result the CNM technique requires compromise between gain and noise. [4]

2.2.2 Simultaneous noise and input matching (SNIM) technique

To achieve \(NF = F_{\text{min}} \) of the amplifier the source reflection coefficient should be chosen as \(\Gamma_S = \Gamma_{\text{OPT}} \). In the same time, as described earlier, it is desirable to choose \(\Gamma_S = \Gamma_{\text{IN}}^* \) for maximum transducer power gain. Feedback is then a commonly used technique to obtain both input matching and noise matching simultaneously when designing LNAs. With feedback the optimum noise impedance \(Z_{\text{OPT}} \) can be shifted to a desired point, in this case closer to the point of \(Z_{\text{IN}}^* \). [4] This makes it possible to choose a \(\Gamma_S \) satisfying both noise and gain conditions simultaneously. Parallel feedback is used for wide-band and improved input/output matching while series feedback is preferred to obtain SNIM while causing no degradation of the NF. A widely used series feedback technique is inductive source degeneration. It is applied to common-source or cascode topologies and is done by adding an inductance \(L_S \) in series at the source of the transistor. [4]

For a small transistor size, hence for low power dissipation, and the LNA operating at low frequencies it is not possible to achieve SNIM by adding inductive source degeneration as the value of \(L_S \) becomes too large and in the end instead increases the minimum achievable NF. However, input matching can still be satisfied by proper selection of \(L_S \) as there exists an optimum transistor size that provides a minimum NF. But this achievable minimum NF will be higher than \(F_{\text{min}} \) of the original common-source transistor. [4] This leads to the next topic, the PCNO technique.
2.2.3 Power-constrained noise optimization (PCNO) technique

As mentioned in the previous section the simultaneous gain and noise matching approach can still be used for a constrained amount of power dissipation. For any given amount of power dissipation, input matching can be obtained by proper selection of L_S for the given transistor size in combination with an input matching circuit, typically a series inductance. For a fixed drain current and satisfied input matching there exists a transistor size for which the NF of the amplifier is minimum. However, this minimum NF is higher than F_min of the original common-source transistor due to the mismatch between Z_S and Z_OPT and/or the high value of L_S which can increase the minimum achievable NF. [4]

2.2.4 Power-constrained simultaneous noise and input matching (PCSNIM) technique

For low-power applications, like for radio transceivers, SNIM and PCNO techniques still don’t satisfy simultaneous noise and gain match. With an extended input matching network, an additional capacitor, this can be solved and simultaneous matching can be achieved for any amount of power dissipation. Limitations of this technique are higher values of noise resistance (makes it less wide-band) and lower effective cut-off frequency. [4]

2.3 Broadband amplifier design

Designing broadband amplifiers requires careful considerations due to variations of S-parameters, NF and VSWR with frequency. Two commonly used techniques when designing broadband amplifiers are compensated matching networks and negative feedback. Compensated matching networks involve mismatching the input and output a bit to compensate for the variation of S_{21} with frequency. The networks are designed for best input and output VSWR but it will only be optimum for certain frequencies in the wide frequency band.

To achieve good input and output VSWR, gain flatness and low NF simultaneously for a large bandwidth the use of balanced amplifiers is a practical method. This means connecting two individual amplifiers by 3-dB hybrid couplers like Lange couplers or branch-line couplers. Figure 3 displays the topology of balanced amplifiers and a branch-line coupler is seen in Figure 4.

![Figure 3. Topology of balanced amplifiers to achieve good input and output VSWR, gain flatness and low NF simultaneously for a large bandwidth](image-url)
The input coupler of balanced amplifiers acts as a 3-dB power divider and the output coupler as a 3-dB power combiner. Those hybrid junctions are usually designed to have 90° phase shift between the output ports (port 2 and 3). This phase shift, together with having port 4 terminated to the characteristic impedance of the system, makes reflections of the incident signal to cancel out (if the two amplifiers are identical). It is then possible to design matching networks for good NF and flat gain without bothering about the individual amplifier VSWR.

Other advantages of the balanced amplifier topology is stability, twice the output power compared to the single amplifier, the unit can still operate even if one amplifier fails (but with reduced gain) and the units are easy to cascade. The disadvantages of a balanced design are that two transistors are needed in each amplifier unit, it consumes more dc power and it becomes large at the frequency range of interest due to the λ/4-lines in the couplers.

The other alternative, negative feedback, can also be used to obtain flat gain and to improve input and output impedance matching in broadband amplifiers. It is usually implemented by adding shunt and/or series resistors. Using negative feedback, microwave transistor amplifiers can be designed to have small gain variations for a very wide bandwidth. However, the disadvantages of negative feedback are degradation of the NF and reduced maximum available power gain from the transistor [2].

2.4 Multi transistor amplifiers

2.4.1 Transistors in parallel
Adding transistors in parallel is the same as using a larger device. A larger gate width provides a lower input impedance of the amplifier which helps on designing wideband input matching networks. [5]

2.4.2 Transistors in cascade
Several amplifier steps can be cascaded in an amplifier chain to achieve enough gain. When designing a two-stage amplifier focus is usually put on optimizing one of following properties: overall high gain, overall low NF, or overall high power. Also stability must be considered for each individual stage as well as for the complete amplifier. As the overall NF mostly depends on the first amplifier stage a compromise between noise and gain can be obtained by designing the first stage for low NF, while
a higher NF is allowed in the second stage. Of course the first stage still needs to have significant gain according to equation (2) to make use of the low NF. [2]

2.4.3 Transistors in cascode

When transistors are put in cascode one transistor operates as a common-source and the other as a common-gate. It means that the drain of one transistor is connected to the source of the other transistor. This improves the input-output isolation as there is no direct coupling between the output and the input. The cascode topology is popular due to advantages like large bandwidth, high gain and high reverse isolation. [4] However, a drawback of this configuration compared to a simple common-source amplifier is slightly higher noise figure. [6]
3 FABRICATION TECHNOLOGIES

3.1 Building practice

There are different options for building practice when designing LNAs. (1) Except from passive components such as transmission lines implemented on printed circuit board (PCB) one alternative is to build the circuit with discrete, packaged components connected by soldering. (2) Another alternative is to build with bare-die chips (transistors) connected by bond wires. (3) A third alternative is to design a Monolithic Microwave Integrated Circuit (MMIC) including the transistor together with matching and parts of bias networks. For alternative 2 and 3 additional packaging of the circuit is needed because of the bare-die chips. For alternative 2, with bare-die transistors, bias networks are often combined with the circuit board for matching networks. For alternative 3, designing a MMIC, also external bias networks are needed.

The existing LNA-design, used for GNSS receiver applications at RUAG, utilizes a balanced amplifier topology including two separately packaged transistors connected by 90° hybrid couplers. It is realized as a hardback PCB with Duroid 6002 substrate according to building alternative 1, seen in Figure 5. Duroid 6002 is a PTFE (Polytetrafluoroethylene or “Teflon”) high frequency laminate with low loss and low dielectric constant ($\varepsilon_r = 2.94$).

![Figure 5. Existing LNA-design at RUAG used for GNSS receiver applications](image)

Another option is to build a circuit which is a mix of building alternatives 1 and 2 or 1 and 3, making a hybrid. In the rest of this thesis a hybrid is referred to a circuit including a mix of discrete, distributed and bare-die chip components. Because of the bare-die chips the complete hybrid needs to be enclosed by a metal package to provide a hermetic environment satisfying space qualifications. A hybrid circuit can be realized in Low temperature co-fired ceramic (LTCC) materials like Dupont 951 ($\varepsilon_r = 7.8$) or thin film materials like Alumina 99.6% ($\varepsilon_r = 9.5$). LTCC and thin film materials can provide a size reduction of the circuit compared to Duroid substrates due to their higher dielectric constants and different substrate thickness. An example of a packaged LTCC hybrid is seen in Figure 6.
3.2 Choice of building practice, substrate and transistor

There were already some proposals for alternative transistors and possible building options prior to this thesis work. Two suggestions for the transistor were a chip called FPD750 from the company RF Micro Devices and a dual transistor chip called CGY2107 from the company Omnic. Those two components were suggested as they are available at RUAG. The FPD750 chip is already used in other products at RUAG today and new components must go through expensive and time-consuming qualifications to be allowed to be used in the company’s products. After discussions and considerations together with co-workers and the supervisor at RUAG five possible building alternatives in excess of the existing design were listed.

Alternative (1) was to use a packaged FPD750 transistor and realize the circuit in Duroid substrate (or similar) like the existing design, with other matching networks to make it smaller than the balanced amplifier configuration.

As a size reduction of the LNA was of interest alternative (2) suggested to build a hybrid with the FPD750 as a bare-die chip and to make use of a metal capsule already used for other products at RUAG.

Alternative (3) was a packaged CGY2107 dual transistor chip, realizing the design in Duroid substrate (or similar). A balanced amplifier is favorable in this case due to the dual transistor topology of the chip.

Alternative (4) was to use CGY2107 as a naked chip in the same kind of hybrid capsule as in alternative (2).

Another idea, alternative (5), was to actually design a MMIC and make use of the hybrid capsule in alternative (2).

The alternatives were compared to each other and to the existing design regarding RF performance, flexibility and costs. A MMIC is expensive to design and to fabricate initially. As a size reduction was desired the balanced topology had to be avoided. As...
the dual transistor chip from Ommic preferably is used in a balanced design, to actually utilize the advantage of having two transistors in the same chip, it was also discarded. It was decided that this work was about to progress with focus on the FPD750 transistor used as a bare-die chip, realizing the LNA as a hybrid design. For breadboard fabrication high frequency laminates called TMM6 ($\varepsilon_r = 6$) and TMM10 ($\varepsilon_r = 9.20$) can be used to mimic LTCC and thin film materials. Only TMM6 material was available at RUAG at the moment and it was chosen as substrate for breadboard fabrication of the LNA.

3.3 Chosen transistor

FPD750 is an AlGaAs/InGaAs 0.5 Watt power pHEMT. It is preferably used in power amplifiers but at relatively low frequencies, such as the L-band, it is probably applicable also in LNAs. An objective of the prospective work was to determine if this actually is suitable. Except from being a practical choice as an existing component at RUAG, another advantage of this transistor is that it tolerates high input power (overdrive). Pad layout for the FPD750 die is seen in Figure 7.

![Figure 7. FPD750 transistor, die size 470x340 µm. (A) Gate pad, (B) Drain pad, (C) Source pad](image)

3.4 Benchmarks and comparison to other works

The LNA needs to be stable and have sufficient gain, low NF and good input return loss. Benchmarks for NF and input return loss was < 1dB and > 20 dB respectively over the frequency range of interest, 1.164-1.610 GHz, which means a bandwidth of almost 450 MHz or 32 %. Not as much focus was put on output return loss as on input return loss and the benchmark was set to > 10 dB. Input and output return loss is presented as reflection coefficients, S_{11} and S_{22}, in plots from simulations in following chapters. A benchmark for sufficient gain was thought of as > 10 dB.

The existing LNA-design at RUAG consists of three stages where a balanced amplifier is used for the first stage to obtain low NF and good input return loss simultaneously. It is designed for the frequency ranges of 1200.5 ± 40 MHz and 1575.42 ± 8 MHz. Design specifications for this LNA were NF ≤ 1.35 dB, input/output return loss ≥ 20 dB and gain of 30-36 dB within those frequency bands.

Table 1 compares other works of wideband LNAs, based on InP, GaN and GaAs technologies. The InP-based HEMT technology is commonly used for LNAs as it
gives excellent microwave low-noise performance [7]-[12]. Lately, much research in this area has been focused on ultra low-noise amplifiers at cryogenic temperatures, like the works of [10]-[12], presenting extremely low NF numbers. Today a lot of work is also done in the area of GaN technology, which approaches the noise performance of GaAs and InP HEMT. The works of [13] and [14] with GaN present NF numbers comparable to the ones presented in [7] and [8] based on InP technology. An advantage of GaN is the high voltage breakdown which contributes to robustness and survivability which is useful in some applications. [13]

Seen from those works, commonly used topologies for such LNAs are two- and three-stage common source amplifiers with inductive source degeneration, implemented as MMICs or hybrid circuits. The objective of this work is not to design for as low NF as possible, but rather to come up with a smaller design with lower NF compared to the existing design at RUAG, using this available commercial FPD750 transistor. Choice of building practice also needed to be suitable regarding space qualifications, costs, mounting, interface, flexibility and time to market.

Table 1. Performance comparison of other wideband LNAs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[7]</td>
<td>0.5</td>
<td>35</td>
<td>2.25-2.50</td>
<td>InP HEMT MMIC</td>
</tr>
<tr>
<td>[8]</td>
<td>0.45</td>
<td>26</td>
<td>0.3-2</td>
<td>InP pHEMT MMIC</td>
</tr>
<tr>
<td>[9]</td>
<td>1.1</td>
<td>17</td>
<td>4-24</td>
<td>InP pHEMT MMIC</td>
</tr>
<tr>
<td>[10]</td>
<td>0.06</td>
<td>25</td>
<td>4-8</td>
<td>Cryogenic InP HEMT Hybrid circ.</td>
</tr>
<tr>
<td>[11]</td>
<td>0.02</td>
<td>30</td>
<td>2-4</td>
<td>Cryogenic InP HEMT Hybrid circ.</td>
</tr>
<tr>
<td>[12]</td>
<td>0.02</td>
<td>44</td>
<td>4-8</td>
<td>Cryogenic InP HEMT Hybrid circ.</td>
</tr>
<tr>
<td>[13]</td>
<td>0.55</td>
<td>10</td>
<td>2-6</td>
<td>GaN HEMT MMIC</td>
</tr>
<tr>
<td>[14]</td>
<td>0.15</td>
<td>6</td>
<td>2-8</td>
<td>-30 °C GaN HEMT MMIC</td>
</tr>
<tr>
<td>[15]</td>
<td>1.8</td>
<td>31/18/11</td>
<td>1/2/3</td>
<td>GaN HEMT Hybrid circ.</td>
</tr>
<tr>
<td>[16]</td>
<td>1.7</td>
<td>22</td>
<td>1-2</td>
<td>GaN HEMT Hybrid circ.</td>
</tr>
<tr>
<td>[17]</td>
<td>1.5</td>
<td>12.5</td>
<td>1-8</td>
<td>GaAs HEMT MMIC</td>
</tr>
</tbody>
</table>
4 INVESTIGATION OF AMPLIFIER TOPOLOGIES

As it was of interest to avoid a balanced amplifier other designs had to be considered. Different configurations and simple matching networks were simulated using ADS to see if there was any topology more advantageous than the others. Analyzed topologies were a single transistor, putting two transistors in cascode or in parallel and with or without inductive source degeneration. Available FPD750 transistor data, from RF Micro Devices, are S-parameters and noise parameters measured up to 6 GHz for a packaged transistor chip and S-parameters measured up to 26.5 GHz for a bare-die transistor chip. The available data was measured for a DC bias of \(V_d = 3.3 \) V and \(I_d = 50 \) mA.

4.1 Simulations of topologies and matching networks

To start with the data file with S-parameters and noise parameters measured up to 6 GHz was used to plot S-parameters, \(F_{\min} \) and NF for a single transistor and later for the different topologies and simple matching networks. Only ideal component models were used for inductances and capacitors in the matching networks at this point.

4.1.1 Characteristics of single transistor

Figure 8-Figure 10 presents S-parameter and noise characteristics from simulations of a single FPD750 transistor without any matching networks (only 50 Ohm terminations). Simulations were performed for the frequency range 0.5-2.5 GHz.

![S-parameters from simulation of a single FPD750 without any matching](image-url)
Figure 9. NF from simulation of a single FPD750 without any matching

Figure 10. Smith chart representation of S_{11}, S_{22} and $S_{\text{opt}} (\Gamma_{\text{opt}})$ from simulation of a single FPD750 without any matching
4.1.2 Single transistor with inductive source degeneration

Simulations schematic for a single transistor with inductive source degeneration and input and output matching networks is seen in Figure 11. With inductive source degeneration curves for $S_{11}^* (= \Gamma_{\text{IN}}^*$ if S_{12} is approximated to zero) and S_{OPT}^* (Γ_{OPT}) come closer to each other, seen in the smith chart plot in Figure 14. The NF is good, see Figure 13, but despite matching networks at input and output the specifications on S_{11} and S_{22} are still not fulfilled in the complete L-band, see Figure 12.

![Simulations schematic of single transistor with inductive source degeneration](image)

Figure 11. Simulations schematic of single transistor with inductive source degeneration

![S-parameters](image)

Figure 12. S-parameters of single transistor with inductive source degeneration
Figure 13. NF of single transistor with inductive source degeneration

Figure 14. Smith chart representation of S11, S22 and S_{OPT} (Γ_{OPT}) of single transistor with inductive source degeneration
4.1.3 Two transistors in cascode with inductive source degeneration

Simulations schematic of two transistors in cascode with inductive source degeneration at the lower transistor, and some input and output matching, is seen in Figure 15. Good input match is obtained but only for a narrow frequency band, see S_{11} in Figure 16. The NF is good, below 1 dB in band, see Figure 17. The reverse isolation, see S_{12} in Figure 16, between input and output is good but it didn’t simplify the design of matching networks as predicted. Smith chart representation of S_{11}, S_{22} and S_{OPT} (Γ_{OPT}) is seen in Figure 18.

![Simulations schematic of two transistors in cascode with inductive source degeneration](image1)

Figure 15. Simulations schematic of two transistors in cascode with inductive source degeneration

![S-parameters of two transistors in cascode with inductive source degeneration](image2)

Figure 16. S-parameters of two transistors in cascode with inductive source degeneration
Figure 17. NF of two transistors in cascode with inductive source degeneration

Figure 18. Smith chart representation of S_{11}, S_{22} and S_{opt} (Γ_{opt}) of two transistors in cascode with inductive source degeneration
4.1.3.1 Two transistors in cascode with inductive source degeneration and higher order matching networks

Using the higher-order-matching-network-tool in ADS it is shown that with some more complex input and output matching networks (third order) it is possible to obtain acceptable input matching and good noise figure simultaneously in the complete L-band for the cascode setup, see Figure 19 and Figure 20. A disadvantage of higher order matching network at the input is that it might introduce more losses.

![S-parameters graph](image1)

Figure 19. S-parameters of cascode setup with higher order matching networks

![NF graph](image2)

Figure 20. NF of cascode setup with higher order matching networks
4.1.4 Two transistors with inductive source degeneration in parallel

Simulations schematic for two transistors, with inductive source degeneration, in parallel is seen in Figure 21. Two transistors connected in parallel are comparable to one transistor with the double gate width. This results in lower input impedance of the amplifier and two transistors in parallel in combination with inductive source degeneration seem beneficial for wideband matching.

The input matching, see S_{11} in Figure 22, is satisfied (< -20 dB) in the complete L-band, even though the matching network at the input might need some consideration to be able to realize it (a large inductance). NF is very good, very close to F_{min}, in band, see Figure 23. In the smith chart in Figure 24 curves for S_{11}^* and $S_{\text{OPT}}(\Gamma_{\text{OPT}})$ are close to each other and to 50 Ohm (the center of the chart).
Figure 22. S-parameters of two transistors with inductive source degeneration in parallel

Figure 23. NF of two transistors with inductive source degeneration in parallel
4.1.4.1 Two transistors with inductive source degeneration in parallel plus a third transistor in cascode

As a last experiment two transistors in parallel, with inductive source degeneration, was combined with a third transistor in cascode. This didn’t improve the results compared to the other cases. The input match was still narrow band and the noise figure was worse.

4.1.5 Choice of topology

The alternative with two transistors connected in parallel, in combination with inductive source degeneration, showed promising results for simultaneous noise and input matching and it was decided to focus on this setup in the future work.
5 DETAILED LNA DESIGN AND LAYOUT

The idea was to realize the LNA as a hybrid design, fabricating a hardback PCB breadboard of TMM6 substrate with bare-die transistor chips connected with bond wires. This technique is not space qualified, as a package providing a hermetic environment is needed, but convenient for breadboard fabrication just to analyze the topology of parallel transistors and surrounding design. The transistors are supposed to be connected with bond wires at the gate, drain and source. Bond wires used at RUAG has the diameter of 25 µm. Part of the idea was to use extra long bond wires at the source to achieve the inductance needed for source degeneration.

5.1 Two transistors with inductive source degeneration in parallel

The available transistor data are S-parameters and noise parameters measured up to 6 GHz for a packaged transistor chip and S-parameters measured up to 26.5 GHz for a bare-die transistor chip. The data was used to simulate the chosen topology of two transistors in parallel with inductive source degeneration to design stability and matching networks. Substrate definition used in ADS during simulations is seen in Table 2.

<table>
<thead>
<tr>
<th>Substrate: TMM6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>εr</td>
<td>6</td>
</tr>
<tr>
<td>H (substrate thickness)</td>
<td>15 mil</td>
</tr>
<tr>
<td>T (conductor thickness)</td>
<td>25 µm</td>
</tr>
<tr>
<td>tan δ</td>
<td>0.0023</td>
</tr>
<tr>
<td>Conductivity (Cu)</td>
<td>5.9e+7 [S/m]</td>
</tr>
</tbody>
</table>

5.1.1 Stability network

The file with S-parameter data up to 26.5 GHz was used initially to simulate and design a stability network to make the circuit unconditionally stable at high frequencies (to at least 20 GHz). Bond wire models, acting as inductive source degenerations needed for simultaneous noise and input matching, were added as they tended to affect the stability at higher frequencies quite a lot. The inductance of a physical bond wire is approximated to 1 nH per mm (from experience at RUAG). The length of the bond wire models was initially set to 1.7 mm per transistor, as inductances of 1.7 nH were used in previous simulations for parallel transistors, but adjusted to 1.4 mm as it seemed enough for simultaneous noise and input match. Also pieces of microstrip lines working as pads for future physical bond wires were added, according to simulations schematic in Figure 25. To determine the level of stability the µ-factor was plotted in ADS during simulations.
The stability network, seen in Figure 26, was implemented at the output not to affect the noise figure too much. The stability network consists of a series resistance (R5 in figure), a shunt resistance (R4 in figure) followed by an open stub and then a parallel resonance circuit followed by a shunt resistance (R6 in figure). The series resistance provides some general stabilization. The shunt resistance followed by the open stub stabilizes at 19-20 GHz. The last shunt resistance is used to stabilize between 14-18 GHz. The parallel resonance circuit is supposed to be resonant in the L-band and the R6 resistance should not affect the RF performance so much in the band. For realization the inductance in the resonance circuit was replaced by a very thin microstrip line. Also a DC-blocking capacitor of 1 nF (low-ohmic in the L-band) was added in series with R6. The stability network for realization is seen in Figure 27 and a plot of the μ-factor, which is > 1 up to 20 GHz, is seen in Figure 28.
Figure 27. Stability network for realization (the resonance circuit is mirrored around the x-axis compared to the network with only ideal components)
5.1.2 De-embedding
The other data file, including noise parameters, was measured for a packaged transistor chip. A little effort was made to design a network that de-embedded the effects of the package in the frequency range 1.160-1.620 GHz. The de-embedding network consisted of capacitors and inductors seen in Figure 29. Values of the components in the de-embedding network were adjusted until S_{11} and S_{22} for the de-embedded chip and the naked chip were as close to each other as possible. See Appendix A for smith chart representations of the S-parameters for bare-die chip, packaged and de-embedded versions.

5.1.3 Input and output matching networks
The transistor model in the stabilized block was replaced by the de-embedded transistor model. It was now possible to use noise parameters and S-parameters from the data file up to 6 GHz trying to match for both good NF and return loss simultaneously. Input and output matching networks were added according to the simulations schematic of the complete LNA in Figure 30.

![Figure 29. Package de-embedding network](image)
Figure 30. Simulations schematic for the complete LNA, the FPD750_dual_model box includes the parallel transistors with inductive source degenerations.

The matching networks were first designed with ideal components for inductances and capacitances, seen in Figure 31 and Figure 32. Later the ideal components were replaced by microstrip lines and lumped component models for realization, seen in Figure 33 and Figure 34. Inductances are realized with very thin microstrip lines. The small capacitors in input and output matching networks are realized as stubs while the DC-blocking capacitors (1 nF) are lumped components.

Figure 31. Input matching network with ideal components.
Figure 32. Output matching network with ideal components

Figure 33. Input matching network for realization
Higher order matching networks are needed to achieve enough bandwidth but more components might introduce more losses. The input matching network is most critical regarding losses and the noise figure. One suggestion was to have a simpler matching network at the input to get less loss but this didn’t give enough bandwidth.

5.2 Simulated performance of the complete LNA

Input and output matching networks were optimized in the frequency band of interest (1.160-1.620 GHz) using the optimization tool in ADS. figure 35-Figure 37 presents the simulated performance of the complete LNA model with two transistors in parallel utilizing inductive source degeneration. The input match, S_{11} seen in Figure 35, is well below -20 dB in the complete band. The output match, S_{22}, is about -10 dB. NF is close to F_{min} and < 1 dB almost in the entire band, seen in Figure 36. In the smith chart in Figure 37 it is seen that curves for S_{11}^* and S_{OPT} (Γ_{OPT}) are close together and located in the center of the chart.
Figure 35. Simulated S-parameters of the complete LNA

Figure 36. Simulated NF of the complete LNA
Figure 37. Smith chart representation of simulated S_{11}, S_{22} and S_{OPT} (Γ_{OPT}) of the complete LNA

5.3 Layout

The complete LNA schematic with 50 Ohm lines added at input and output for RF connections was converted to a layout file in ADS, seen in Figure 38. The two transistor chips are supposed to be mounted close to each other on individual heat sinks. The idea was to connect the source bond wires, working as inductive source degenerations, directly to the heat sinks for RF ground. See Figure 39 for a zoomed picture of the circuit center for a sketch of transistors and bond wires.
Figure 38. Layout of the complete LNA

Figure 39. Sketch of the circuit center displaying location of transistors and bond wires
5.4 DC bias

From beginning DC bias networks were neglected during matching networks design and the plan was to use external bias T's for measurements. However, during the layout work it was decided to make a version including self bias networks as well. A self biased amplifier uses only an applied positive voltage at the drain while the gate is grounded. A desired negative potential difference between gate and source is obtained by a voltage drop over source resistors. Gate and drain bias networks were connected at suitable points in the input and output matching networks of the design. The chosen points are RF short circuits to ground (for L-band frequencies) and a $\lambda/4$ line, transforming short circuit to open circuit, makes the bias network not affecting the RF performance in the frequency band of interest. The rest of the design was kept unchanged. The gate bias network provides DC ground via a 100 Ohm resistor. The drain bias network has a series resistance of 30 Ohm and a pad for voltage supply is included. The source resistors, needed to obtain the correct drain current, are connected to the transistors via bond wires and capacitors (capacitors provide RF ground). The idea was to tune the total value of source resistance with an external variable resistor to obtain the correct drain current and pads for contacts were included at one side. Layout of the LNA including self bias networks is seen in Figure 40. A new sketch of the circuit center is shown in Figure 41 displaying transistors, bond wires and capacitors.

![Figure 40. Layout of the complete LNA including self bias networks](image-url)
5.5 Fabrication and assembling

A panel of TMM6 material was used for fabrication. Both self biased and non self biased versions of the amplifier were included in the panel layout. Layout files were prepared and converted to Gerber files. The panel was sent together with Gerber files to a company named Cogra Pro AB for etching. Then the panel was send to Rationell NC-Teknik for cutting and then to Provexa for electrolytic gold plating.

When receiving the gold plated circuits a self biased version of the LNA was assembled with capacitors, resistors and contacts. Heat sinks, transistors, capacitors for bias networks and bond wires were mounted in the clean room, according to the sketch in Figure 41. Heat sinks and transistors were mounted with conducting epoxy (heat sink is grounded). Source bond wires from transistors to capacitors on the heat sink were made to be approximately 1.4 mm, to add the source inductance needed for matching. Those heat sinks and transistors are already used in other products at RUAG but only for a single transistor case. The chip is usually mounted centralized on the heat sink with a capacitor on each side of the chip. In this case with two parallel transistors a capacitor is mounted only at one side of each transistor and the chips are instead connected by bond wires in the middle to provide some symmetry. Photography (magnification) of the complete circuit is shown in Figure 42. The physical size of the circuit board is 4.5×5 cm. A microscope photography of the two parallel transistors, with only gate and drain bond wires visible, is shown in Figure 43.
Figure 42. Photography of the complete LNA circuit (magnification)

Figure 43. Photography of the two parallel transistors with gate and drain bond wires visible
5.6 Bond wire uncertainties

The exact length of each physical bond wire is an uncertain factor and may not give exactly the desired inductance. Also the bond wire models in ADS might not be in agreement with reality. During simulations some effort was made to investigate the effects of variations in bond wire lengths. According to ADS a source bond wire length of 1.4 mm is satisfying due to noise figure and return loss and this is further mentioned as the desired length. If both bond wires are made 0.2 mm shorter/longer than desired S_{11} is still <-17.5 dB in band and the NF is almost unchanged. This holds also if only one of them becomes 0.2 mm longer/shorter than the desired length. If both wires become 0.3 mm longer than desired the stability of the circuit around 14 GHz is affected. Those simulations give a hint about how the bond wire lengths affects the NF and the return loss but what actually happens in reality for each individual bond wire is uncertain.
6 MEASUREMENTS AND RESULTS

6.1 Bias tuning

During simulations transistor data for DC bias $V_d=3.3$ V and $I_d=50$ mA per transistor was used. As two transistors are put in parallel the total current is supposed to be $I_d=100$ mA when the LNA is in use (and during measurements). A total series resistance of 40 Ohm at the drain gives a voltage drop of 4 V for $I_d=100$ mA and the applied voltage should be $3.3+4=7.3$ V. The strategy was to tune the total source resistance using an external variable resistor to obtain $I_d=100$ mA. This voltage drop over the source resistors should result in a negative potential difference between gate and source as the gate is grounded. According to transistor data V_p is approximately -0.6 V.

When trying to tune the source resistance, to obtain the correct bias, stability problems were discovered. The LNA was unstable at approximately 17 GHz and it was not possible to obtain $I_d=100$ mA. The oscillation problem resulted in a negative potential at the gate even though the gate is supposed to have zero potential. Because of uncertainties with the combination of long source bond wires and capacitors, connecting transistors and source resistors, the circuit was modified a bit. Sources of the transistors were grounded without resistors and an external bias T was used instead to apply a negative voltage at the gate.

Pieces of a field absorbing material, Eccosorb, was placed on different parts of the circuit to see if there were any critical areas regarding the stability problem. No obvious effects were seen and the hypothesis was that reasons for the stability problem were coupled to the area close to the transistors. To exclude any problems with broken transistors and breakdown phenomena DC parameters were measured and compared with tables. The transistors seemed intact anyhow.

After going back doing some simulations in ADS it was decided to remove the source-to-source bond wires connecting the two transistors as they tended to affect the stability. According to simulations also the length of gate and drain bond wires affected the stability quite a lot. Even though the source-to-source bond wires were removed there were still some stability problems at 10 and 18-19 GHz when trying to biasing the amplifier. It was only possible to reach $I_d=10$ mA before oscillations appeared. As an experiment one of the transistors was disabled by means of removing gate, drain and source bond wires for this chip. It was now possible to bias the circuit with $V_d=3.3$ V and $I_d=25$ mA for this single transistor case. Anyhow the situation was not satisfying and the length of the source bond wires (the inductive source degenerations) was up for discussion as a critical factor due to stability. It was seen already during simulations that long source bond wires, needed for simultaneous noise and input match, can become a problem regarding high frequency stability. This was considered during design of the stability network but perhaps it was not working sufficiently enough in reality. The remaining source bond wire was removed and a new, shorter one was connected to the source and attached directly to the heat sink providing RF and DC ground, like in the original design. The capacitors were not necessary anyway as the circuit was no longer self biased and an external bias T was used at the gate. With a shorter source bond wire improved stability was predicted, but also degraded NF and input match.
Finally the LNA was stable also at higher frequencies and possible to bias correctly ($V_d=3.3$ V and $I_d=50$ mA) and $V_{gs} \approx -0.73$ V. If measurements from this single transistor version of the LNA showed promising results the plan was to connect the other transistor chip again, also with a shorter source bond wire directly to the heat sink to maintain stability.

6.2 RF measurements

6.2.1 Single transistor version

S-parameters of the single transistor version of the LNA were measured with a power network analyzer (PNA). Also NF was measured with the PNA (cold source measurement). Noise is relevant to measure in band and so the NF was measured for 1-2 GHz, while S-parameters were measured for 100 MHz-20 GHz. During measurements bias was applied through the PNA. Plots of simulated and measured S_{11}, gain (S_{21}), NF and F_{\min} are shown in Figure 44-Figure 46. S-parameters are plotted up to 2.6 GHz to display where the gain is decreasing. The length of the source bond wire in simulation was shortened to 0.6 mm as the physical wire was now much shorter than before (shortest possible length to the heat sink). Since matching networks are optimized for the dual transistor case and higher source inductance the input return loss is only $S_{11} \approx -5$dB. Number of points used during NF measurements turned out to be too few and the curves are not really smooth, but the level is still comparable to the simulated NF. The measured gain is actually higher than the simulated. See Appendix B for extended S-parameters and stability characteristics.

![S11 measurement vs simulation](image)

Figure 44. Simulated (red) and measured (blue) S_{11} of the single transistor version of the LNA (simulated is with the de-embedded model)
Figure 45. Simulated (red) and measured (blue) gain of the single transistor version of the LNA (simulated is with the de-embedded model)

Figure 46. Simulated (red and blue) and measured (pink and light blue) NF and F_{min} of the single transistor version of the LNA (simulated is with the de-embedded model)
6.2.2 Dual transistor version

Measurement results from the single transistor version were promising and the other transistor was connected again with bond wires at gate, drain and source. Also this source wire was kept short and connected directly to the heat sink. The LNA was stable and it was possible to bias the circuit correctly ($V_d=3.3$ V and $I_d=100$ mA). In simulation both source bond wires were set to 0.6 mm. S-parameters were measured with a PNA for 200 MHz-20 GHz. The same PNA used for NF measurements of the single transistor version was not available and the NF of this dual transistor version was measured for 1-2 GHz using the Y-factor method and a noise source of known NF. Plots of simulated and measured S_{11}, gain (S_{21}), NF and F_{min} are shown in Figure 47-Figure 49. The return loss is about 3 dB better than compared to the single transistor case, but not as good as the benchmark of $S_{11} < -20$ dB due to mismatch because of too low source inductance. The measured NF is < 1 dB in the complete frequency band of interest. The peak at 1.8 GHz of the measured NF curve (pink) is due to disturbance from cell phones during measurement. The measured gain is about 20 dB in band which is approximately 6 dB higher than simulated. Simulated data is for the de-embedded model, modeling a bare-die chip, described in section 5.1.2. Appendix C includes additional plots of measured S-parameters compared to simulations where transistor data of the actual bare-die chip is used. In that case the measured and simulated gain agrees better. This indicates that there are uncertainties with the de-embedded model. Also see Appendix C for extended S-parameters and stability characteristics.

Finally the short source bond wires were replaced with longer wires as a try to obtain the desired source inductance and better input return loss. Unfortunately oscillations problem occurred again, due to the long source bond wires, and no more measurements were performed.
Figure 47. Simulated (red) and measured (blue) S_{11} of the dual transistor version of the LNA (simulated is with the de-embedded model)

Figure 48. Simulated (red) and measured (blue) gain of the dual transistor version of the LNA (simulated is with the de-embedded model)
Figure 49. Simulated (red and blue) and measured (pink) NF and F_{min} of the dual transistor version of the LNA (simulated is with the de-embedded model)

6.3 Comparison to existing balanced design

Figure 50 displays a comparison of measured NF for the new LNA and RUAG’s existing balanced design. For the balanced design only measurements data in the design frequency bands were available. There is an improvement of the NF of approximately 0.2-0.3 dB. Measured NF and input return loss for the new design and the balanced design are compared in Table 3. Avoiding a balanced amplifier design and using a different substrate makes a size reduction possible compared to the existing design, seen in figure.
Figure 50. Comparison of measured NF for the new LNA (pink) and the existing balanced design (blue and red). For the balanced design only measurements data in the design frequency bands were available.

Table 3. Measured NF and input return loss for new design and existing balanced design

<table>
<thead>
<tr>
<th></th>
<th>New design</th>
<th>Balanced design</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>< 1 dB</td>
<td>< 1.3 dB</td>
</tr>
<tr>
<td>Input return loss</td>
<td>8 dB</td>
<td>18 dB</td>
</tr>
</tbody>
</table>

Figure 51. Size comparison of the existing balanced design (left) and the new LNA (right). The size of the new design is 4.5×5 cm.
7 CONCLUSIONS AND FUTURE WORK

A LNA with two parallel AlGaAs/InGaAs pHEMT FPD750 transistors has been designed and fabricated. It has a measured NF < 1 dB, gain of almost 20 dB and an input return loss of approximately 8 dB over the frequency band of interest (1.164-1.610 GHz). Consequently, the FPD750 transistor has potential to give low NF for L-band frequencies and is possible to use in this type of receiver application. Objectives for improved NF and reduced circuit size compared to the existing balanced design are fulfilled. Improved input return loss of the new design should be possible to achieve with modified matching networks.

Long source bond wires, acting as inductive source degenerations, are shown to be critical regarding high frequency stability. Bond wire models for simulations and design of stability network need more careful consideration.

More exhaustive stability analysis concerning the loop of parallel transistors is needed. A suggestion for future work is to divide the output, where drain bond wires from both transistors are connected, into separate stabilization networks introducing loss for each transistor.

For future work it would be useful to have noise parameters from measurements of a bare-die FPD750 transistor chip and not only from measurements of a packaged transistor, preferably also for different bias levels of $I_d < 50$ mA per transistor. This will provide a more accurate transistor model during simulations and avoid uncertainties of the de-embedding made in this work. If the supplier can’t provide the data, noise parameters of a bare-die chip can be measured from a single transistor amplifier. Design of such an amplifier was included in the panel layout for fabrication to provide this opportunity.
REFERENCES

APPENDIX A

Smith chart representations of S-parameters for bare-die chip, packaged and de-embedded model of the FPD750 transistor.

Figure 51. Single FPD750 bare-die chip data (noise data doesn’t exist)

Figure 52. De-embedded model of single packaged FPD750 (to model a bare-die chip)
Figure 53. Single packaged FPD750

Figure 54. Two de-embedded FPD750 in parallel to model two bare-die chips in parallel (without any matching or source inductance)
Figure 55. Two packaged FPD750 in parallel (without any matching or source inductance)
APPENDIX B

Plots of S-parameters and stability characteristics from measurements and simulations of the single transistor version of the fabricated LNA (short source bond wire to the heat sink).

Figure 56. Simulated (red) and measured (blue) S_{12} of the single transistor version of the LNA
(simulated is with the de-embedded model)

Figure 57. Simulated (red) and measured (blue) S_{22} of the single transistor version of the LNA
(simulated is with the de-embedded model)
Figure 58. Measured (blue) and simulated (red) μ-factor at the input of single transistor version of the LNA (simulated is with the actual bare-die chip data)

Figure 59. Measured (blue) and simulated (red) μ-factor at the output of single transistor version of the LNA (simulated is with the actual bare-die chip data)
Figure 60. Simulated (red) and measured (blue) S_{11} of the single transistor version of the LNA, simulation with actual bare-die chip data.

Figure 61. Simulated (red) and measured (blue) S_{12} of the single transistor version of the LNA, simulation with actual bare-die chip data.
Figure 62. Simulated (red) and measured (blue) S_{21} of the single transistor version of the LNA, simulation with actual bare-die chip data

Figure 63. Simulated (red) and measured (blue) S_{22} of the single transistor version of the LNA, simulation with actual bare-die chip data
APPENDIX C

Plots of S-parameters and stability characteristics from measurements and simulations of the dual transistor version of the fabricated LNA (short source bond wires to the heat sink).

Figure 64. Simulated (red) and measured (blue) S₁₂ of the dual transistor version of the LNA (simulated is with the de-embedded model)
Figure 65. Simulated (red) and measured (blue) S_{22} of the dual transistor version of the LNA (simulated is with the de-embedded model)

Figure 66. Measured (blue) and simulated (red) μ-factor at the input of dual transistor version of the LNA (simulated is with the actual bare-die chip data)
Figure 67. Measured (blue) and simulated (red) μ-factor at the output of dual transistor version of the LNA (simulated is with the actual bare-die chip data)

Figure 68. Simulated (red) and measured (blue) S11 of the dual transistor version of the LNA, simulation with actual bare-die chip data
Figure 69. Simulated (red) and measured (blue) S_{12} of the dual transistor version of the LNA, simulation with actual bare-die chip data.

Figure 70. Simulated (red) and measured (blue) S_{21} of the dual transistor version of the LNA, simulation with actual bare-die chip data.
Figure 71. Simulated (red) and measured (blue) S_{22} of the dual transistor version of the LNA, simulation with actual bare-die chip data.
Measured S-parameters compared to simulations where actual bare-die chip data is used, for dual transistor version of the LNA, plotted in a more narrow frequency band (see S_{21} regarding the gain discussion in section 6.2.2):

Figure 72. Simulated (red) and measured (blue) S_{11} of the dual transistor version of the LNA, simulation with actual bare-die chip data

Figure 73. Simulated (red) and measured (blue) S_{12} of the dual transistor version of the LNA, simulation with actual bare-die chip data
Figure 74. Simulated (red) and measured (blue) S_{21} of the dual transistor version of the LNA, simulation with actual bare-die chip data (gain discussion in section 6.2.2)

Figure 75. Simulated (red) and measured (blue) S_{22} of the dual transistor version of the LNA, simulation with actual bare-die chip data