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Sensor selection in magnetic tracking based
on convex optimization

O. Talcoth and T. Rylander

The performance of a magnetic tracking system is substantially influenced
by the positions of its sensors. In order to optimize these sensor positions,
we exploit a performance metric based on the Fisher information matrix
and a convex relaxation of a sensor selection problem. Optimized sensor
positions are presented for a magnetic tracking system with a planar
sensor array and a measurement domain consisting of one point.

Introduction: Magnetic tracking, where the position and orientation of an
object is determined by means of a quasi-magnetostatic sensor system, has
numerous applications in biomedical engineering due to the transparency
of the human body to low-frequency magnetic fields. For example,
applications include tracking of the human eye [1], catheter tracking [2]
and real-time organ positioning during radiotherapy of cancer tumors [3].

The performance of a magnetic tracking system is substantially
influenced by its sensor positions. Shafrir et al. [4] used a two-step
evolutionary algorithm to optimize the sensor positions of a magnetic
tracking system. However, their algorithm suffers from long simulation
times as “[they] had to run 103 iterations of the tracking algorithm” for
each transmitter position in order to assess the impact of measurement
noise.

In this work, we follow the method in [5] and formulate an optimization
problem that exploits the Fisher information matrix. In order to solve
the optimization problem, we express it as a sensor selection problem
that, after relaxation of the integer constraints, is turned into a convex
optimization problem. Our approach assesses the impact of measurement
noise without having to build statistics by running a tracking algorithm.
Furthermore, the results are valid for all unbiased estimators instead of a
particular tracking algorithm as in [4].

Modeling: The quasi-magnetostatic tracking system in [3] includes
a transmitting coil positioned at

(
x̃t, ỹt, z̃t

)
with its orientation

described by the unit vector m̂t aligned with its magnetic dipole
moment. Equivalently, m̂t can be defined by the two angles θt and
φt in spherical coordinates. The magnetic field of the transmitting
coil is measured with a set of Nr identical receiving coils with
known locations

(
x̃r
k, ỹ

r
k, z̃

r
k

)
and orientations m̂r

k, where k= 1, . . . , Nr.

The purpose of the system is to estimate p̃=
[
x̃t, ỹt, z̃t, θt, φt

]T ,
where we assume that the magnitude of each magnetic dipole
moment is known. We normalize the spatial coordinates with the
distance h, which gives r⃗ t =

(
xt, yt, zt

)
=
(
x̃t/h, ỹt/h, z̃t/h

)
and p=[

xt, yt, zt, θt, φt
]T . Similarly, the position of the receivers are normalized

to be r⃗k
r =
(
xr
k, y

r
k, z

r
k

)
=
(
x̃r
k/h, ỹ

r
k/h, z̃

r
k/h
)
.

The induced voltage in the receiving coil k can be expressed as

Vk =−jωα
µ0

4π

(
3(m̂t · R⃗k)(m̂

r
k · R⃗k)

R5
k

−
m̂t · m̂r

k

R3
k

)
(1)

where R⃗k = r⃗k
r − r⃗ t is the vector of length Rk from the transmitting

dipole to the receiving dipole. The constant α depends on the coils’
characteristics (number of turns, cross-section area, etc.) as well as the
current flowing in the transmitting coil. We use ωα= 4.33 · 106 Am/s in
the tests that follow. Clearly, the induced voltage is non-linear with respect
to the position of the transmitter.

Performance metric: Let Vk(p) denote the induced voltage in the
receiving coil k, and let ∇pVk(p0) denote the gradient of Vk(p) with
respect to the parameters in p at the point p0. Under the assumption
of additive Gaussian measurement noise that has variance σ2 and is
independent between measurements, the Fisher information matrix

M=

Nr∑
k=1

Mk =

Nr∑
k=1

[∇pVk(p0)] [∇pVk(p0)]
T

σ2
(2)

provides a metric for the performance of the parameter estimation. The
Cramér-Rao inequality [6], cov p̂≽M−1, gives a lower bound for the
covariance of the estimate p̂ for an unbiased estimator. Therefore, one way

of optimizing the performance of a measurement system is to maximize M
in some sense.

Here, we seek to find the so-called D-optimal sensor positions [6] for the
magnetic tracking system given that p belongs to the measurement domain
Ωp, which is a limited part of the parameter space. Thus, we wish to

minimize
r⃗k

r
− log det

(
M(p; r⃗1r, . . . , r⃗Nrr )

Nr

)
subject to p∈Ωp

(3)

where we have normalized the cost function with respect to the number of
sensors.

Sensor selection and convex relaxation: Following the approach in [5],
we express the optimization problem (3) as a sensor selection problem:
find which Nr sensors to use (wk = 1) among K candidates. The
corresponding mathematical formulation is

minimize
wk

− log det

(∑K
k=1 wkMk(p)

Nr

)

subject to p∈Ωp

wk ∈ {0, 1}, k= 1, . . . ,K

K∑
k=1

wk =Nr.

(4)

There are
(
K
Nr

)
combinations wherefore an exhaustive search is tractable

only for small problems.
An approximate solution to the sensor selection problem (4) can be

obtained as follows. Allow the sensors to perform multiple measurements
and let wk denote the number of measurements performed by sensor k.
The quantity Nr thus corresponds to the total number of measurements.
Introduce λk =wk/N

r which is the fraction of the total number of
measurements that are performed by sensor k. If the total number of
measurements is large, a relaxation of the constraint λk ∈Q into λk ∈R
can be easily motivated. Thus, we obtain the relaxed problem

minimize
λk

− log det

(
K∑

k=1

λkMk(p)

)

subject to p∈Ωp

λk ≥ 0, k= 1, . . . ,K

K∑
k=1

λk = 1

(5)

which is convex [7] and therefore can be readily solved. Furthermore, the
relaxed problem provides a lower bound [5] on the optimal value of the cost
function for the non-relaxed problem (4). The introduction of the weights
λk comes with the benefit of not having to specify the number of sensors a
priori. Instead, a threshold λ0 can be used to investigate how many sensors
that should be used.

Results: Consider a planar sensor array in the xy-plane with m̂r
k =

(0, 0, 1) ∀k. The transmitter is fixed and we choose h= z̃t, which gives
a measurement domain Ωp described by the vector [x0, y0, 1, θ0, φ0]T .
To solve the relaxed problem (5) for this sensor array and measurement
domain, we use CVX, a package for specifying and solving convex
programs [8, 9]. The problems considered in this letter are solved in less
than a minute on a conventional desktop computer.

We start by considering the case where the magnetic dipole moment of
the transmitter is perpendicular to the sensor plane. Because of the circular
symmetry of the magnetic dipole field in the sensor plane, the optimal
sensor pattern should also show circular symmetry. We therefore consider
a sensor array consisting of 3000× 4 + 1= 12001 sensors uniformly
distributed along four radial lines expressed in polar coordinates as 0≤
ρ≤ 1.5 and ϕ∈ {0, π/2, π, 3π/2}. Here, ρ is the dimension-less radius
ρ= ρ̃/h and the spacing in ρ is 1/2000. The four sensors at a radial
distance ρ obtain equal weights. Fig. 1 shows the sum of these weights
as a function of ρ. For the discretization described above, the largest
weights are obtained at ρ1 = 0.2665 and ρ2 = 0.9150. It should be noted
that these values do not depend on the number of radial lines with sensors
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Fig. 1 Sensor weights as a function of the normalized radius ρ for sensors in a
polar grid when the magnetic moment of the transmitter is perpendicular to the
sensor plane.

as long as it exceeds two. These results should be compared to the values
ρ= 0.26649 and ρ= 0.91540 that are obtained by an exhaustive search
of the corresponding original problem (3), i.e. optimizing the radii of two
circles with four sensors each. The cost function value at the optimum is
12.59 for the relaxed problem (5) and 12.69 for the problem (3) with two
circles. For comparison, the cost function value is 14.04 for the relaxed
problem (5) with uniform weights, i.e. λk = 1/K ∀k.

We now turn to the case θ ̸= 0◦ and consider a sensor array that consists
of 81× 86 = 6966 sensors placed on a uniform Cartesian grid with |xr| ≤
0.8, |yr| ≤ 0.85 and the cell size 1/50. Fig. 2 shows by black areas the
sensor positions that yield λk >λ0 = 10−3 for Ωp = [0, 0, 1, θ, 90◦]T and
different values of θ. The pattern is left-right symmetrical due the same
symmetry of the dipole field. The threshold λ0 was arbitrarily chosen after
examining the distribution of λk for a number of test cases. In these test
cases, all λk <λ0 were considerably smaller than λ0.

θ = 90° θ = 75° θ = 60°

θ = 45° θ = 30° θ = 15°

Fig. 2 Contour plot with λk >λ0 = 10−3 represented by black areas, for
Ωp = [0, 0, 1, θ, 90◦]T . The rectangle corresponds to the bounds of the
rectangular sensor array. The gray circles correspond to the optimized radii
ρ1 = 0.2665 and ρ2 = 0.9150 shown in Fig. 1 for θ= 0◦.

The sensor selection scheme introduces a spatial discretization of the
allowed sensor positions. Sensor positions with large weights should
therefore be regarded as indicators of favorable regions rather than exact
locations for optimal measurements. A translation of the measurement
point in the x- and y-directions and an azimuthal rotation result in a
similar transformation of the weights and sensor positions provided that
edge effects are avoided at the bounding edges of the sensor array. If the
sensor array is extended by enlarging its dimensions while keeping the cell
size constant, the positions of the sensors with λk >λ0 do not change.

Conclusion: In this letter, we have presented a computationally efficient
method for optimizing the sensor positions in a magnetic tracking system.
A performance metric based on the Fisher information matrix is exploited
to formulate a sensor selection problem. The resulting optimization
problem is then relaxed into a convex problem.

The presented results provide basic insights in optimal sensor positions
for a measurement domain consisting of one point, which can be
exploited during the design of a magnetic tracking system. Furthermore,
the proposed method can be used to easily obtain a starting guess for

an optimization method that attempts to solve the non-relaxed problem
or a problem where the sensor positions are not limited to a set of
predetermined positions.
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