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[1] There remains large disagreement between ice-water path (IWP) in observational data
sets, largely because the sensors observe different parts of the ice particle size distribution.
A detailed comparison of retrieved IWP from satellite observations in the Tropics (�30� latitude)
in 2007 was made using collocated measurements. The radio detection and ranging(radar)/light
detection and ranging (lidar) (DARDAR) IWP data set, based on combined radar/lidar
measurements, is used as a reference because it provides arguably the best estimate of the total
column IWP. For each data set, usable IWP dynamic ranges are inferred from this comparison.
IWP retrievals based on solar reflectance measurements, in the moderate resolution imaging
spectroradiometer (MODIS), advanced very high resolution radiometer–based Climate
Monitoring Satellite Applications Facility (CMSAF), and Pathfinder Atmospheres-Extended
(PATMOS-x) datasets, were found to be correlated with DARDAR over a large IWP range
(~20–7000g m-2). The random errors of the collocated data sets have a close to lognormal
distribution, and the combined random error of MODIS and DARDAR is less than a factor of 2,
which also sets the upper limit forMODIS alone. In the sameway, the upper limit for the random
error of all considered data sets is determined. Data sets based on passive microwave
measurements, microwave surface and precipitation products system (MSPPS), microwave
integrated retrieval system (MiRS), and collocated microwave only (CMO), are largely
correlated with DARDAR for IWP values larger than approximately 700g m-2. The combined
uncertainty between these data sets and DARDAR in this range is slightly less MODIS-
DARDAR, but the systematic bias is nearly an order of magnitude.

Citation: Eliasson, S., G. Holl, S. A. Buehler, T. Kuhn, M. Stengel, F. Iturbide-Sanchez, and M. Johnston (2013),
Systematic and random errors between collocated satellite ice water path observations, J. Geophys. Res. Atmos., 118,
2629–2642, doi:10.1029/2012JD018381.

1. Introduction

[2] Clouds have a dominant effect on the radiation entering
and leaving the atmosphere [Hartmann et al., 1992]. Better
understanding of the impact of ice clouds on the radiation
budget and the hydrological cycle is paramount to improving
climate models [e.g., Stephens et al., 1990]. Climate models

are the most important tools for understanding long-term
atmospheric processes and simulating climate scenarios.
However, fundamental ice-cloud properties such as ice-water
path (IWP) are difficult to measure accurately, making them
poorly constrained. This leads to large differences of globally
averaged IWP between models [Waliser et al., 2009].
Depending on their, e.g., microphysical properties, ice clouds
may either cool or warm the atmosphere. The average radia-
tive impact of all ice clouds is thought to be a net cooling
effect, although semitransparent ice clouds, which may cover
large areas, have a mostly warming effect on the atmosphere
[Khvorostyanov and Sassen, 2002].
[3] In situ techniques used on aircraft and balloon

campaigns provide the most detailed measurements of ice-
water content (IWC), which, integrated by height, becomes
IWP. However, the global coverage of such campaigns is
sparse and limited. Ice-cloud retrievals based on satellite
measurements are, in contrast, abundant. They provide macro-
physical information on ice clouds such as their temporal
variation and their spatial distribution, and are the most
important source of validation of clouds in climate models.
However, the uncertainties in satellite ice-cloud retrievals are
still considerable, depending on the cloud characteristics and
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the instrument sensitivities [e.g., Zhao and Weng, 2002;
Cooper et al., 2003; Austin et al., 2009]).
[4] IWP [g m-2] is one of the most important ice-cloud

properties [Buehler et al., 2007, 2012, and references therein].
Previous studies have shown that the climate models show a
very large spread in their reported cloud ice amounts [Waliser
et al., 2009; John and Soden, 2006; Wyant et al., 2006;
Eliasson et al., 2011]. However, the models are in good agree-
ment with observations in terms of one of the most fundamen-
tal quantities, top of atmosphere net radiative flux [Smith
et al., 1994]. This implies that the models may be adjusting
poorly constrained parameters, such as clouds, to achieve
the correct top of atmosphere radiative flux, thus leading to
unrealistic cloud characteristics in the models [Stephens
et al., 2002; Li et al., 2012]
[5] Atmospheric column integrated quantities, such as

IWP, can be retrieved from radiances from passive down-
looking sensors. Retrievals from passive sensors use two
or more channels at microwave (MW), infra-red (IR), near-
infra-red (NIR), or visible (VIS) wavelengths [e.g.,Heymsfield
et al., 2003]. Since June 2006, measurements from active
instruments, a cloud profiling radar (CPR) on the CloudSat
satellite, and a Cloud-Aerosol Light Detection and Ranging
(Lidar) with Orthogonal Polarization (CALIOP) on the
Cloud-Aeroso Lidar and Infrared Pathfinder Satellite Observa-
tion (CALIPSO) satellite, have greatly increased our knowl-
edge of ice clouds [Heymsfield et al., 2008]. These instruments
measure detailed information on the vertical structure of
clouds and can detect multilayered clouds. This can, for
example, provide valuable information on how the radiation
is distributed in the atmospheric column, because it depends
strongly on the vertical structure of clouds [L’Ecuyer et al.,
2008; Mace and Benson, 2008].
[6] In earlier studies [Waliser et al., 2009; Eliasson et al.,

2011], a subset of climate models in the Fourth Assessment
Report (AR4) of the Intergovernmental Panel on Climate
Change were intercompared and compared with observa-
tional data sets. The models were in large disagreement on
IWP (cloud ice). Not only were there large differences in
magnitude, their spatial distribution were in poor agreement
as well. The observational data sets were in good spatial
agreement, but the differences in IWP magnitude was as
large as the intramodel difference. This was also expected
mainly because the observational data sets were based on
measurements that (1) are made at different wavelengths,
and thus sensitive to different parts of the particle size distri-
bution (PSD) [Comstock et al., 2007; Waliser et al., 2009];
and (2) have different resolutions.
[7] Retrievals from passive instruments (nadir viewing)

are much more limited in terms of information on the vertical
structure of clouds, and most have a much coarser measure-
ment resolution (footprint). Despite their limitations, records
from passive instruments cover 10 (moderate resolution
imaging spectroradiometer [MODIS]) to 30 years (AVHRR),
meaning that only these records can be used for actual climate
studies. Data from CloudSat and CALIPSO are limited to ap-
proximately 6 years (at the time of writing) and are therefore
more suitable for process studies. Furthermore, because
passive instruments also have large swath widths, passive
instruments provide a much better spatial coverage than active
instruments, which measure only at nadir. These advantages
motivate the inclusion of passive instrument retrievals in this

study. However, passive instruments provide only IWP; there-
fore, vertical information from active instruments goes
unused.
[8] In practice, the longer the wavelength of the measure-

ments, the deeper into a cloud one can measure, but this is at
the cost of losing sensitivity to small particles, which are
generally present at the top of the ice clouds [Wu et. al.,
2009]. Therefore, ice-cloud retrievals based on, e.g., passive
microwave measurements can be made in deep clouds, but
generally not in shallow clouds, which are mostly made up
of small ice particles. In other words, microwave retrievals
are only sensitive to the precipitation-sized ice particles
(>~0.25 mm) in the IWP total column [Zhao and Weng,
2002]. Also, although CloudSat CPR measurements can be
used to retrieve information deep into most clouds, it is insen-
sitive to small particles. CALIOP, in contrast, is even sensitive
to very small ice particles. Because the satellites are always in
close proximity to one another, CALIOP can be complemen-
tary to CPR. CALIOP by itself is limited for retrieving IWP
because the measurements are attenuated for moderately thick
clouds [e.g.,Delanoë and Hogan, 2010]. In summary, satellite
retrievals based on a single measurement technique cannot
measure the whole depth of the ice cloud [Wu et. al., 2009],
which would be desirable from a climate model perspective.
[9] The models participating in the upcoming Fifth

Assessment Report (AR5) have undergone some improve-
ments in terms of cloud amount and distribution, but there
still remains large differences in IWP [Jiang et al., 2012].
A similar study by Li et al. [2012] reports that climate models
do not perform particularly well despite generally simulating
cloud ice better in Coupled Model Intercomparison Project
Phase 5 (CMIP5) than they did in CMIP3 (included in
AR4). This is an added incentive to further improve the
understanding of IWP.
[10] This article can be seen as continuation of the work

presented in Eliasson et al. [2011] and Waliser et al. [2009].
It builds on their findings but evaluates the discrepancies in
the retrieval schemes rather than of averaged products. The
latter, called level 3 monthly mean (L3), are representations
that have already undergone a conversion from level 2 (L2)
to L3, which, because different approaches and filters are
applied, can contribute significantly to the differences between
data sets. For instance, one important decision is the scan
angle and solar zenith angle cutoffs one applies when creating
the L3 data set, because there might be quality/bias dependen-
cies of the IWP retrievals on these angles. The decision
made in each of these approaches significantly alters the L3
product. Thus, this new study will once again survey satel-
lite-observed IWP, but instead of comparing monthly mean
values, we compared collocated measurements directly. By
doing so, the same “cloud” is measured from different instru-
ments, without the added complexity of different L2 to L3
conversions. This is not a validation study of any particular
data set. The IWP retrievals assessed here, being from different
sensors, are inherently different and difficult to compare in the
rigorous manner a validation study requires [e.g., Stein et al.,
2011; Zhang et al., 2009].
[11] As reference for the satellite IWP data sets, the radar/

lidar (DARDAR) data set, which is based on CALIOP and
CPR, was chosen [Delanoë and Hogan, 2010]. Data sets
compared with this reference are from active sensors, two
products from CloudSat’s L2 radio detection and ranging
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(radar) only (RO) data set (called 2B-CWC-RO), in this
article called RO and ice only radar only (IORO) [Austin
et al., 2009], and from passive sensors; three data sets
retrieved from solar reflectivities in the VIS and NIR spectral
regions (MODIS [King et al., 2003], the advanced very high
resolution radiometer [AVHRR] climate monitoring satellite
applications facility [CMSAF] data set [Roebeling et al.,
2006], and Pathfinder Atmospheres-Extended [PATMOS-
x] [Walther and Heidinger, 2012]); and three data sets that
are based on MW channels (microwave surface and precipi-
tation products system [MSPPS] [Ferraro et al., 2005], mi-
crowave integrated retrieval system [MiRS] [Boukabara
et al., 2011], and collocated microwave only [CMO] Holl
et al. [2010]). An overview of all the data sets used in this
study is given in Table 1.
[12] Because of the combination of radar and lidar,

DARDAR has a very large IWP value range that covers the
range of all IWP data sets in this study. Except for DARDAR,
it is assumed that each data set contributes information for
certain IWP value ranges. These IWP retrievals from different
techniques are compared “out of the box.”We do not attempt
to make the best possible comparisons between data sets
such as by limiting comparisons with optical depths that both
data sets are sensitive to, as done in Stein et al. [2011] for
DARDAR and MODIS. Instead, we acknowledge that all
retrieval techniques have their merits and limitations, and
compare them as they are, restricted only by the collocation
rules described in section 3.
[13] In this article, IWP measurements are compared at the

smallest possible temporal and spatial scales by stringently
collocating measurements using a flexible collocations
toolbox based on work first described in Holl et al. [2010]
and later expanded in John et al. [2012]. The main aim is
to quantify which measurement techniques work for which
IWP value ranges and to separate the systematic and random
errors of the collocated data sets. The data sets are described
in more detail in section 2. The collocation and comparison
methodologies, including the systematic and random errors,
are described in section 3. In section 4, first the uncertainty
of DARDAR IWP is investigated before identifying the
valid IWP ranges of the collocated data sets and finding their
systematic and random errors. Section 5 gives a recollection
and states our main conclusions.

2. Description of Data Sets

[14] The data sets chosen for this study cover a wide
range of measurement and retrieval techniques that are used
to determine IWP. They are expected to report varying IWP

magnitudes because they are sensitive to different ice particle
sizes and shapes, and therefore are generally sensitive to
different altitudes of the cloud. The data sets are based on
instruments found on satellites flying in or near the afternoon
train (A-train) [Stephens et al., 2002], so that a large number
of collocated measurements can be found. For data sets that
rely on visible reflectance measurements, only data from the
daytime exist. Common to all data sets are the large uncertain-
ties because of the assumptions on cloud microphysical
properties that must be made to complete the cloud retrieval.
Although these assumptions are best guesses mostly based
on knowledge gained from in situ campaigns, many cloud
properties, such as particle habit, are very variable [e.g.,
Heymsfield and McFarquahar, 2002]. Several studies [e.g.,
Zhang et al., 2009] have shown that different but widely
accepted assumptions on the microphysical properties of ice
particles lead to very large deviations in the retrieved IWP.
In addition, the uncertainty because of the cloud particle phase,
as the distinction between liquid and ice clouds, has a signifi-
cant impact on the retrieved IWP as described later.

2.1. IWP From Active Instruments

[15] Three data sets in this comparison originate from active
measurements and are all based on CPR measurements from
the CloudSat satellite.

2.1.1. DARDAR

[16] The DARDAR data set is based on a combination
of CPR, CALIOP, and MODIS measurements [Delanoë and
Hogan, 2010]. By combining these techniques using the
variational method described therein, DARDAR uses the very
different particle size sensitivities of radar and lidar measure-
ments. The retrieval is seamless and works as long as at least
one of CPR or CALIOP detects a cloud. If the cloud is detected
by both instruments, the cloud properties are retrieved using
both measurements. Delanoë and Hogan [2010] showed that
this combined retrieval approach is less sensitive to changes
to assumed microphysical properties than retrievals based on
CPR or CALIOP alone. The footprint size is the same as
CPR because the CALIOP measurements are averaged hori-
zontally in the CPR footprint. Further details on the retrieval
technique are given in Delanoë and Hogan [2008], and a
comparison of the DARDAR ice-cloud retrieval algorithms
was performed in Stein et al. [2011]. The specific product used
in this study is called DARDAR-cloud and is derived from
CPR and CALIOP only.
[17] DARDARwas chosen as the reference data set because

it currently provides the best estimate of the total column IWP.

Table 1. List of Data Sets Used in This Studya

Short Name Technique Long Name Satellite

DARDAR Active: combined radar and lidar DARDAR-cloud CloudSat and CALIPSO
IORO Active: radar Ice only radar only ice water path CloudSat
RO Active: radar Radar only ice water path CloudSat
MODIS Passive: SRBS MODIS Aqua
CMSAF Passive: SRBS CMSAF NOAA-18
PATMOS-x Passive: SRBS PATMOS-x NOAA-18
MSPPS Passive: Microwave MSPPS NOAA-18
MiRS Passive: Microwave MiRS NOAA-18
CMO Passive: Microwave CMO NOAA-18

aData sets are further referred by the “short names” given here.
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It is expected to cover a larger IWP range than any other data
set assessed here. For details on the uncertainty associated with
DARDAR IWP, see section 4.1.

2.1.2. CPR (RO and IORO)

[18] The CloudSat satellite carries a CPR that measures at
94 GHz [Stephens et al., 2002]. Measurements are made at a
vertical resolution of 250 m, and the measurement footprint
size is about 1.4� 3.5 km, with the long axis along the satellite
flight path. CloudSat is less sensitive to small ice particles than
lidar, but it is not saturated unless the clouds are very thick and
there is heavy precipitation.
[19] One of the two CloudSat products assessed in the

study allows IWC and liquid-water content (LWC) to coexist
between -20 �C and 0 �C (but only the IWC part is included
in the integration), and in this study, this data set is called
RO (field name: RO_ice_water_path) [Austin et al., 2009].
RO was also the reference data set in Eliasson et al. [2011].
[20] CloudSat also provides a combined radar and visible

optical depth (RVOD) product with presumably better
constrained retrievals. However, Protat et al. [2010] state
that RO and RVOD are statistically virtually identical, and
therefore only the RO data set is used here. The uncertainty
of IWC retrievals using simulated CPR was determined to be
about 40% [Austin et al., 2009]. If this were the only uncertain-
ties in the retrieval, 40% would be the upper limit of the uncer-
tainty for a column integrated RO IWP product. For RO data
set, there is a substantial additional uncertainty because of
the assumed cloud phase. A linear combination of IWC and
LWC is used between the temperature range 0�C to –20�C,
where the fractional ice phase increases from 0 to 1 (liquid-
water path [LWP]: 1 to 0). Devasthale and Thomas [2012]
showed that other realistic ice to liquid phase relationships in
this temperature range lead to very different IWP retrievals.
[21] The other CloudSat product used in this study does

not attempt to separate IWP and LWP, and instead reports
the whole column in the above temperature range as IWP;
we have called this product IORO (field name: IO_RO_ice_-
water_path). As mentioned earlier, the IORO data set does
not suffer from cloud-phase uncertainties caused by the above
rigid approach, but by assuming the whole layer contains only
ice, the IWP is overestimated. The a priori temperature infor-
mation that both data sets rely on is model auxiliary data from
European Centre for Medium-range Weather Forecasting.
Further uncertainties for both data sets are inherited from the
a priori input used in the retrieval [Austin et al., 2009].

2.2. IWP From Solar Reflectances

[22] The data sets in this section are derived from solar
reflectance and share the same retrieval technique. This
method is called solar reflectance bispectral (SRBS) and is
described in Nakajima and King [1990]. The method uses
passive measurements of reflected solar radiation to retrieve
visible cloud optical depth (tv) and �re simultaneously, where
�re is the mean effective radius. The solar reflectance of the
nearly nonabsorbing wavelengths is used to retrieve tv, and
moderately absorbing solar reflectance measurements are
used to retrieve �re. This is done in conjunction with a lookup
table of simulated reflectances.
[23] In SRBS retrievals, assumptions have to be made about

the horizontal and vertical structure of the cloud, i.e., constant

IWC and constant particle effective radius (re) throughout
the cloud [Stein et al., 2011, and references therein]. These
assumptions lead to uncertainties, because inhomogeneities
in the vertical structure of clouds have a strong influence on
the retrieved cloud properties [Zhang et al., 2010]. Also, the
retrieved �re is biased toward the top of the thick clouds,
because only the top four or five optical depths contribute
to the reflectance in the moderately absorbing channel
[McFarquhar and Heymsfield, 1998]. Because the smallest
ice particles are generally at the top of the cloud, this may cre-
ate systematic errors by underestimating �re for thick clouds.
[24] Nonetheless, from the retrieved tv and �re, IWP can be

derived using the following relationship:

IWP ¼ 4tv�rerice
3Qe

(1)

where rice is the density of ice, and Qe is the average extinc-
tion efficiency for ice at a wavelength of 0.66 mm (Qe� 2)
[e.g., Meyer et al., 2006]. We have used rice = 930 kg m-3,
because this is the value used in the MODIS retrievals [King
et al., 2006].

2.2.1. MODIS

[25] The MODIS cloud retrieval products are based on
daytime measurements from 36 channels in the VIS, NIR,
and IR spectral ranges from the MODIS instrument on
board two polar-orbiting satellites, Terra and Aqua. However,
only a subset of four channels is used to ultimately retrieve
IWP, namely, either channel 1 (0.645 mm), 2 (0.858 mm), or
5 (1.24 mm), depending on the underlying surface, and channel
7 (2.13 mm) [King et al., 1997]. The lookup table used in the
MODIS retrieval algorithm is based on the ice particle model
by Baum et al. [2005] (Baum05).
[26] The MODIS L3 monthly mean IWP data set (called

MYD08_M3) was assessed in Eliasson et al. [2011]. This
article assesses the L2 data set (called MYD06_L2) collection
005 [King et al., 2003], which is from only the Aqua satellite.
The IWP is extracted using thefields cloud_water_path, Cloud_-
Phase_Optical_Properties, and Quality_Assurance_1km. The
resulting IWP data set is a 1� 1 km pixel (footprint) product
and, therefore, is of a similar size as the DARDAR retrieved
footprint. MODIS data used in this study are described in
documentation available through the MODIS Web site
(http://modis-atmos.gsfc.nasa.gov/).

2.2.2. AVHRR PATMOS-x

[27] PATMOS-x IWP is derived from the PATMOS
Daytime Cloud Optical Microphysical Properties (DCOMP),
based on passive measurements in the VIS and NIR spectral
ranges from AVHRR global area coverage (GAC) data
[Walther and Heidinger, 2012]. The lookup table is based on
Baum05. GAC data are a reduced resolution data set based
on AVHRR. Four adjacent footprints in every scan are
averaged together; then the next three scan lines are skipped.
The AVHRR instrument is installed on the polar-orbiting
operational environmental satellites from National Oceanic
and Atmospheric Administration (NOAA). In this study, the
L2b cloud parameter product (version 5) is further sampled
onto a 0.1� x 0.1� grid. The gridded data points are
treated as “pseudo footprints” that are largest at the equator
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(roughly 10� 10 km), shrinking laterally toward the poles.
The product does not contain an IWP product, but contains
tv and �re. Therefore, IWP is extracted using equation 1 from
these quantities from cloud types considered ice phase (called
opaque_ice, cirrus, overlapping, and overshooting in this
data set, but slightly different terms are used in Walther and
Heidinger [2012].
[28] PATMOS-x has only two solar reflectance channels for

the tv and particle effective radius (re) retrievals: channels 1
(0.6 mm) and 3b (3.7 mm). The PATMOS-x L3 IWP data set
(version 4) was assessed inEliasson et al. [2011]. In this study,
the L2b data set is based on measurements from NOAA-18,
which flies close to the A-train; hence, the PATMOS-x
measurements are often collocated with DARDAR. The
PATMOS-x data used in this study are described and made
available online at http://cimss.ssec.wisc.edu/patmosx/.

2.2.3. AVHRR CMSAF

[29] CMSAF IWP retrieval data are based on the
cloud physical properties (CPP) algorithm developed at
Koninklijk Nederlands Meteorologisch Instituut (KNMI)
[Roebeling et al., 2006], which is used to retrieve cloud ther-
modynamic phase, cloud optical thickness, cloud particle
effective radius, and LWP/IWP from AVHRR GAC data.
Therefore, the CMSAF cloud products have a pseudo footprint
of about 4� 1km. The CPP scheme, based on the SRBS
method, uses lookup tables of water and ice-cloud reflectance
simulated by the Doubling Adding KNMI radiative transfer
model [Stammes, 2001]. Although MODIS and PATMOS-x
both use the Baum05 ice particle model, for CMSAF IWP, ice
particles as given inHess et al. [1998] were used. Cloud proper-
ties are retrieved by iteratively matching observed and simulated
reflectance. The IWP is derived using equation 1 for all cloudy
pixels, which were identified using the Polar Platform System
cloud processing package developed by SwedishMeteorological
and Hydrological Institute [Dybbroe et al., 2005a, 2005b], and
which were diagnosed to contain ice clouds (internally done in
CPP). Also, notably, the AVHRR reflectances are recalibrated
followingHeidinger et al. [2010]. As PATMOS-x, and CMSAF
IWP retrievals are based on the 3.7 mm channel of AVHRR, the
availability of different NIR channels might significantly affect
the IWP retrieval, because of different penetration depth of, e.g.,
3.7 and 1.6 mm. This might explain some of the differences seen
between MODIS and the AVHRR data sets later in this article.

2.3. IWP From Passive Microwave

[30] Retrieving IWP from passive microwave sensors
is analogous to retrieving the IWP of the particles with a
radius between approximately 250 and 1500 mm. These are
precipitation-sized particles, which should be considered
when comparing with other data sets that have sensitivity to
small particles. In general, comparisons of microwave data
sets where DARDAR IWP is relatively low will not be made,
because such “clouds” are likely made up of small particles
that are beyond the sensitivity of passive microwave
measurements. The three data sets used in this study use mea-
surements from the microwave humidity sounder (MHS) in-
strument, which has a footprint diameter of around 15 km at
nadir on the ground.

2.3.1. MSPPS

[31] MSPPS provides a data set of IWP derived from the
ratio of the amount of radiation at 89 and 150 GHz that is
scattered out of the line of sight by large ice particles [Ferraro
et al., 2005]. These two frequencies are measured by MHS
channels 1 and 2. The particle-induced scattering intensifies
with increasing frequency and is detected as a depression in
brightness temperature [Vivekanandan et al., 1991]. Assumptions
are made on the PSD and bulk volume density, and accurate
knowledge on the surface temperature and its emissivity must
be available [Zhao andWeng, 2002]. As described therein, errors
in assumptions can lead to large errors in the IWP retrieval.

2.3.2. MiRS

[32] MiRS is a one-dimensional variational satellite data
assimilation retrieval system that uses microwave observa-
tions for the retrievals of several atmospheric and surface geo-
physical parameters simultaneously, among them IWP [Bou-
kabara et al., 2011]. Like MSPPS, MiRS is based on MHS
sensor observations, but the MiRS retrievals are additionally
constrained by measurements from the Advanced Microwave
Sounding Unit A (AMSU-A). Because AMSU-A has a nadir
footprint of 48 km, the MHS measurements made inside the
larger footprint are averaged, so the footprint of MiRS is that
of AMSU-A. MiRS is described in detail in Boukabara
et al. [2011]. The MiRS version used in this study provides
an IWP product called graupel water path, which indicates by
name alone that only precipitating sized particles are retrieved.
In MiRS, the IWP product is used as a predictor for the
estimation of rainfall rate intensities in mm h-1. As described
in Iturbide-Sanchez et al. [2011], the validation/assessment of
the MiRS rainfall rate is an indirect method to assess the quality
of the retrieved MiRS hydrometeors, including the IWP.

2.3.3. CMO

[33] CMO is a data set based on a technique first introduced
in Holl et al. [2010]. It is currently under development and
will be described in detail in a paper that is in preparation.
High-frequency measurements from MHS channels 3 to 5 l-
ocated at 183(1) GHz, 183(3) GHz, and 190GHz, which are
traditionally used for water vapor retrievals, form the basis of
this data set. This sets it apart from the other microwave-based
data sets that use lower frequencies. Therefore, the CMO data
set should be able to detect smaller ice particles and retrieve
smaller IWP, a hypothesis that can be tested by including it
in this study.
[34] Artificial neural networks are used for the retrieval of

IWP rather than the depression of brightness temperature
directly. The training database is obtained by collocating
CloudSat with NOAA-18 MHS, using the collocation toolbox
described inHoll et al. [2010] and later in section 3.Holl et al.
[2010] showed that the MHS channels 3 to 5 are not sensitive
to clouds with RO IWP less than 100 g m-1, and the data set is
planned to include radiances from IR measurements to
potentially increase sensitivity to lower IWP values. However,
this study uses CMO version 0.4, which does not yet include
IR radiances.

3. Methodology

[35] To compare simultaneous measurements of the same
cloud situation using several instruments, the measurements
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need to be stringently collocated in time and space. To find
such collocated measurements, we have used the collocation
toolbox, a highly flexible toolkit that allows for easy
collocation between different data sets, first presented in Holl
et al. [2010]. The software, some precalculated collocated data
sets, and detailed documentation can be accessed online at
http://www.sat.ltu.se/docs/data/collocations. The toolbox has
been used in several studies and continues to be developed
further (V. O. John, G. Holl, N. Atkinson, and S. A. Buehler,
Monitoring scan asymmetry of microwave humidity sounding
channels using simultaneous all angle collocations [SAACs],
Journal of Geophysical Research, in press 2013).
[36] One very important consideration to take into

account when collocating measurements that use different
techniques is their different horizontal resolutions given by
their “footprints.” Figure 1 illustrates footprint sizes for the
instruments that the data sets in this study are based on. Tech-
nically, to collocate data sets, usually the one with the smallest
footprints (secondary) is collocated to the other (primary).
All the small-footprint measurements from the secondary
data set that are close enough to the center of a larger footprint
from the primary data set are found and are considered
collocated. The user defines what “close enough” means in
space and time in the presets (see later). Each collocated data
set contains information such as distances, number of second-
ary measurements, and the statistics of each subset of small-
footprint measurements such as standard deviation, mean,
number of elements, or other user-defined functions such as
“cloud amount.”
[37] Comparing measurements with large footprints

with measurements with small footprints introduces a
sampling problem. For instance, a single CPR measurement
(and DARDAR retrieval) covers around 0.65% of the area of
an MHS footprint, and even the maximum possible number
of DARDAR retrievals collocated with one MHS measure-
ment cover less than 10% of its footprint [Holl et al., 2010].
In this article, large-footprint measurements are considered
collocated with a set of small-footprint measurements only if
the following two conditions are met, to mitigate this sampling
problem: First, the number of smaller footprints inside the
larger footprint must be at least 70% of the maximum possible
collocations of small footprints to one large footprint within

the set collocation criteria. Second, because partly cloudy
atmospheric conditions can lead to large inhomogeneities in
the measured IWP, only collocations where all measurements
from the small-footprint data set are ice cloud filled (i.e., not
cloud free and not liquid cloud) are assessed. The collocated
data sets are compared using the retrieved IWP from the
large-footprint data set and mean retrieved IWP from the
small-footprint data set. For collocated data sets with similar-
sized footprints, the comparison is done directly; that is, only
the closest collocated measurements are considered.
[38] The data sets assessed in this study are from sun-

synchronous polar-orbiting satellites on a similar orbit,
being either in the A-train or close to it. As a consequence,
all collocation pairs contain collocations across all latitudes
(global collocations). The collocations where both data sets
are from satellite platforms in the A-train (MODIS fromAqua,
RO and IORO from CloudSat, and DARDAR from CloudSat
and CALIPSO) contain only measurements made at nadir.
However, collocations including data sets from NOAA-18
(PATMOS-x, CMSAF, MiRS, MSPPS, and CMO) may
include measurements made off-nadir. Deviations may
occur because of comparing off-nadir with nadir measure-
ments, but should be limited assuming that all data sets take
angular dependencies into account. In addition, all problem-
atic measurements are assumed to be flagged, and hence
are not included. All collocations in this study are limited
to the Tropics defined as within �30� latitude, where the
atmospheric conditions are assumed to be more homogeneous
than if higher latitudes were included. For practical reasons
such as data storage, the study is limited to 1 year. The period
1 January 2007 to 31 December 2007 was chosen because it is
the first full year of CloudSat data.
[39] In this article, measurements are considered

collocated if their footprints are overlapping each other. The
specific limitations applied to each collocated data set depend
on the size of the larger footprint. Each data set’s measurement
resolution is described in section 2. For simplicity, footprints
are assumed circular, and the random errors introduced by
this assumption are assumed to be minor by comparison
with the other sources of random error, such as a rapidly
changing atmospheric state, or because of the varying
distances between individual collocated measurements. The
maximum distance that the center of a small footprint is
allowed to be away from the center of the large footprint is
the radius of that footprint. For example, for data sets based
on MHS measurements, the footprint size is approximately
15 km in diameter at nadir. Only DARDAR footprints that
are a maximum distance of 7.5 km away from the center of
the large footprint are collocated.
[40] The temporal limit chosen is the time for advection

to move by the radius of the footprint, so that at most half
the footprint’s condition is changing. In this study, it is
estimated that the air mass will be replaced at roughly a rate
of 1 km min-1 (16.7 m s-1), which is a fairly conservative
estimate for the Tropics [Koh et al., 2011]. Changes caused
by other atmospheric processes such as convection, which,
in most cases, will take much more than 10minutes to change
conditions completely, are also taken into account. Therefore,
the largest permitted temporal difference between data sets
is either the footprint radius [km] in minutes or 10 min, which-
ever value is smallest. The exact limitations used for each
collocated data set are given in Table 2.

km50403020100

MHS

AMSU−A

AVHRR/3 GAC

CloudSat

Figure 1. Illustration of footprint sizes for a selection
of instruments.
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3.1. Systematic and Random Errors of Collocated IWP

[41] The errors are split into systematic and random errors.
What constitutes a random error or a systematic one depends
on context. In this study, the systematic error is defined as
the mean difference between the measurements (e.g., the
bias, if one is taken as a reference) and the random error as
the residual after subtracting the mean (e.g., the variance).
Both may be a function of IWP or of other quantities. As
an example of an expected systematic error, a product based
exclusively on radar should retrieve systematically less
IWP than a product based on combined radar and lidar, if
all other factors (such as microphysical assumptions) are
the same. Random errors between collocated data sets
originate from a number of different sources. These include,
but are not limited to, the representation error (poor colloca-
tion in space and time) and the random errors within each
data set (such as noise). If the random errors of two data sets
errors are Gaussian and uncorrelated, variances (square of
the standard deviation) add up to the total variance for the
collocated data set,

s2 Y � Xð Þ ¼ s2 Xð Þ þ s2 Yð Þ þ s2r ; (2)

where Y and X are collocated measurements with uncorre-
lated random errors, and sr is the representation error caused
by imperfect collocation. In this study, Y is log10(IWPdataset)
and X is log10(IWPDARDAR). Thus, the observed random
error in the comparison puts an upper bound on the random
error of the individual data sets. All active data sets and the
CMO data set are based on the same CloudSat data, so that it
would be wrong to assume the data sets have noncorrelated
random errors. Therefore, approximating random errors for
these collocated data sets (RO, IORO, CO) -DARDAR cannot
be done in the above manner but can be considered applicable
for the comparison of the other passive instruments with
DARDAR. Further investigation on whether the IWP distribu-
tions are, in fact, Gaussian in logarithmic space (i.e., lognormal)
is made in section 4.2.3.

4. Results and Discussion

4.1. DARDAR Uncertainties in IWP

[42] DARDAR retrievals use the optimal estimation
method; hence, the errors are retrieved for each IWC value
[Delanoë and Hogan, 2008]. 1-sigma errors of lognormal
quantities mean that the errors are also given in log space;
therefore, the uncertainty is a fractional uncertainty (where,

e.g., a 50% uncertainty for the value 100 g m-2 means a
value range between 100/1.5 and 100*1.5). However, it is
not easy to assign an error to the column integrated IWP
using only the fractional errors of each IWC, because the
vertical autocorrelation of IWC errors is unknown. The error
on the logarithm of IWP can be estimated using the provided
fractional error (1-sigma random error in the natural loga-
rithm of IWC called “ln_iwc_error”) and assuming that the
IWC uncertainties are correlated throughout the column.
The �1-sigma values of IWC can be used,

IWCþ ¼ IWC0eþlniwcerror

IWC� ¼ IWC0e�lniwcerror;

where IWC0 is the retrieved IWC, to get the corresponding
column integrated quantities IWP+ and IWP-. From IWP+,
IWP-, and IWP0 (integrated from IWC0), we can find the
fractional errors, ln(IWP+/IWP0) and ln(IWP0/IWP�), and
their average,

sIWP ¼ ln IWPþ

IWP�
� �

2
:

[43] This error sIWP is assigned to every IWP0 value such
that the � 1� sIWP limits (in log space) can be estimated as

IWP0 � e�sIWP :

[44] Hence, a sIWP of, e.g., 0.4, constitutes a fractional error
of 50% (e0.4 = 1.5). Figure 2 shows the IWP uncertainty given
by sIWP expressed as fractional error (100� esIWP � 1½ � [%]).
In a similar way as Austin et al. [2009] assigned an uncertainty
of 40% to IWC retrievals from CloudSat’s RO product, the
uncertainty of DARDAR IWP is assigned to approximately
20 to 50%, with the uncertainty generally increasing with
decreasing IWP.

4.2. Collocated Data Set Comparisons

[45] In this section, collocated data sets are compared in
log space in the IWP range from around 0.6 to 16,000 g m-2

(10� 0.2� 104.2). The measurements are binned into 50� 50
equally spaced log10(IWP) bins using DARDAR as the
reference.
[46] The comparison is made by first identifying the

IWP value ranges where both the compared data sets and
DARDAR are sensitive to clouds, and second by comparing
similar data sets with one another within the determined valid

Table 2. Collocation Rules (from left to right): Data Set, Maximum Allowed Distance, Maximum Allowed Time Difference, Minimum
Required Number of Collocated DARDAR to Each (larger) Footprint, Maximum Number of Small Footprints per Large Footprints, and
Some Additional Commentsa

Data Set Distance [km] Time [min] N Required N Maximum Notes

RO — — — — Already collocated
IORO — — — — Already collocated
MODIS 2 2 — — Pick closest only
CMSAF 2.5 5 4 5 CA=100%
PATMOS-x 4 8 6 8 CA=100%
MSPPS 7.5 7.5 10 14 CA=100%
MiRS 25 10 33 46 CA=100%
CMO 7.5 7.5 10 14 CA=100%

aCA refers to cloud amount, and this means, in practice, that only collocations that have at least “CA” number of cloudy DARDAR footprints are
considered.
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ranges from which statements about their systematic and ran-
dom errors aremade. Themedian and the 16th/84th percentiles
are used to describe the distribution of IWP.
[47] The median is used instead of log-mean because

the IWP distributions are not quite lognormal, albeit nearly
(see section 4.2.3). The choice of 16th/84th percentiles
(“pseudo 1-sigma”) corresponds to �1 standard deviation in
log space if the IWP distribution would be lognormal. Further-
more, because the comparisons are made in log space, all
measurements where the compared data sets report IWP=0
are removed. Cases where DARDAR has cloud-free measure-
ments have already been discarded to minimize the number of
partly cloudy footprints (see section 3). The comparisons of
collocated data sets reported in the following sections are
grouped in active data sets, SRBS data sets, andMW data sets.

4.2.1. IWP Valid Ranges

[48] By comparing collocated measurements directly
against each other, one can approximately read out the actual
overlap in IWP sensitivities for the different techniques
against the reference data set, DARDAR. Figures 4, 6, and
8 (described in sections 4.3, 4.4, and 4.5) show the two-
dimensional histogram distributions of IWP for each collo-
cated data set. The median and spread (16th/84th percentiles)
of the compared data sets in each DARDAR bin are shown in
gray, and the median and spread of DARDAR IWP inside the
bins of the compared data set are shown in black. To clarify,
in each of the bins (along the x axis) there is a distribution of
IWP values from the compared data set. For example, for all
collocated measurements with DARDAR IWP in the bin
between 50 and 70 g m-2, the compared data set may have
values ranging from 1 to 1000 g m-2, but with most values
centered in a fairly lognormal way around 40 g m-2. This dis-
tribution can be viewed as a probability distribution function
(PDF) of likely values that this observational data set may re-
port when DARDAR values are between 50 and 70 g m-2. By
the same reasoning, the bins of the y axis also have a PDF of
DARDAR IWP values.

[49] The color scale common to Figures 4, 6, and 8 shows
the number of collocations per bin normalized by the largest
bin value, and the total number of collocations is reported in
each figure. For each group of comparisons (active, SRBS,
and MW), the number of collocations that matches the data
set with the fewest collocations are randomly selected to
avoid data sets with fewer collocations appearing noisier.
[50] Because the data sets are based on instruments with

different sensitivities, it only makes sense to discuss compar-
isons in IWP ranges where both the compared data set and
DARDAR are sensitive to clouds. In IWP value ranges where
either the compared data set or DARDAR are not sensitive to
or cannot retrieve the cloud, the data sets are expected to be
uncorrelated. Using Figure 6 (described in section 4.4), we
show that the median IWP of the observed three data sets
and the median of DARDAR values (shown as thick gray
and black lines, respectively) appear to rapidly diverge for
IWP values less than approximately 30 g m-2 and diverge
slightly again for values greater than approximately 2000 g
m-2. On one extreme, if the median lines are near perpendicular
to one another, the measurements are uncorrelated within that
IWP range, whereas if the median lines are parallel to each
other, the measurements are correlated. For very low IWP
values (<20 g m-2), all data set comparisons are uncorrelated.
However, the median lines always converge at some point
for increasing IWP values. Therefore, for each data set, the
decision on the valid IWP ranges is based on where the me-
dian lines converge to being very close to each other and
end at high IWP values if the median lines strongly diverge
from each other again. The results of this IWP dynamic
range analysis are summarized in Table 3.

4.2.2. Systematic and Random Errors

[51] For easier comparison among the various data
sets, the median and percentiles of the log ratio of IWP and
DARDAR IWP are displayed together in Figures 5, 7, and 9
(described in sections 4.3, 4.4, and 4.5) as a function of
DARDAR IWP. Thick lines show the median, and the same
colored thin lines depict the random spread using the 16th/
84th percentiles (see section 3.1 for description on random
errors). Solid lines are drawn in the IWP ranges deemed valid
to compare the two data sets (Table 3), and the lines become
dashed outside this range. Horizontal thin gray lines showing
factor of 2 steps in systematic error and a thick line showing
equality are added for clarity.
[52] The 16th/84th percentiles shown in Figures 5, 7, and 9

represent the random error in each comparison. As mentioned
earlier, the chosen percentiles match the standard deviation if
the distribution is Gaussian.

4.2.3. Are IWP Distributions Lognormal?

[53] In fact, the log-ratio distributions are often found to
be close to Gaussian, as illustrated for the PATMOS-x
versus DARDAR comparison in Figure 3. It shows the
median and percentiles, as well as the mean and standard
deviation in terms of log ratio between PATMOS-x and
DARDAR. As Figure 3 shows, the log distribution of IWP
is nearly Gaussian across the whole IWP range. This applies
to most data sets in this study (data not shown). The fact that
the log distributions are nearly Gaussian justifies using the
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standard deviation (or percentiles) of the log ratio as a ran-
dom error estimate (see section 3.1). Nonetheless, because
the distributions are not exactly Gaussian, the median/
percentile approach is chosen for better robustness. It means
that the errors generally scale with the IWP value, and
relative errors are more appropriate than absolute errors to
characterize IWP.

4.3. Active Sensors

[54] Using the median lines in the two-dimensional
histogram of IWP in Figure 4, DARDAR is determined
comparable with the active data sets in the IWP range of
approximately 10 to 9000 g m-1, i.e., a large part of the range

retrieved by DARDAR. However, the expected close level of
agreement in terms of IWP of RO and IORO to DARDAR is
due to large ice particles dominating the IWP (column
integrated IWC). In terms of IWC, especially where there is
low IWC, the CloudSat data sets diverge from DARDAR
[Stein et al., 2011].
[55] When comparing active data sets, one needs to note that

DARDAR is based on the same radar measurements as the
CloudSat IWP products, so the random errors of these data sets
are likely correlated; therefore, nothing can be said about the
random errors of the individual data sets. However, because
DARDAR uses lidar measurements in the retrieval, and the
CloudSat data sets assume different particle phase assump-
tions, they are appreciably different from each other, as shown
in Figure 5. This figure also shows that for thin clouds in the
range of 30 to 40 g m-2, RO and IORO both report more than
a factor of 2 less IWP than DARDAR. This demonstrates the
strong impact of lidar measurements on DARDAR in this
range. This was corroborated using the instrument flags
of DARDAR. For instance, at 10 g m-2, on average, the
fraction of IWC values in each vertical profile retrieved solely
from lidar, radar, or from a mixture of both measurements is
approximately 55%, 20%, and 25%, respectively.
[56] The IORO and RO data sets converge with DARDAR

for clouds around 500 g m-2 as the influence of lidar mea-
surements becomes less dominating. The IORO data set
reports more IWP than DARDAR between approximately
100 and 800 g m-2, which likely is due to an overestimation
of IWP because all cloud water content where the tempera-
ture is colder than 0�C is assumed to be ice phase
(see section 2). For values larger than 800 g m-2, RO and
IORO report lower IWP than DARDAR, but RO decreases
more than IORO.
[57] DARDAR detects the cloud phase directly using the

intensive backscatter by supercooled water compared with
ice in the lidar signal. When the lidar signal is attenuated
before the liquid phase level, the radar echo is assumed to be
dominated by ice. Thus, only the IORO product was

Figure 4. Tropical IWP comparison 2007 for active techniques: CloudSat RO IWP (left) and CloudSat
IORO (right) are compared against DARDAR IWP. The measurements are collocated because they are
based on the same measurements from CPR. The color scale shows the normalized number of collocations
per bin against the maximum bin value. Median lines and percentiles are described in the text.

101 102 103 104

10−1

100

P
A

T
M

O
S

−
x 

R
at

io

DARDAR IWP [gm-2]

Figure 3. The median and 16th/84th percentiles shown
together with the mean and standard deviations of
log10ðIWPPATMOS-x

IWPDARDAR
Þ using the PATMOS-x versus DARDAR

comparison. Where the mean and median lines are close to
each other and the standard deviation and percentiles are close
to each other, the IWP distribution is close to lognormal.
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considered in the Stein et al. [2011] study because it is a closer
comparison with DARDAR.

4.4. Passive VIS/NIR Sensors

[58] When comparing passive measurements of IWP with
measurements from active instruments, one must bear in mind
the limitations of IWP retrievals from passive sensors. In
addition to the uncertainties introduced in assuming homoge-
neous clouds (see section 2.2), only measurements determined

to be ice phase are used to retrieve ice-cloud properties, and the
whole column is then assumed to be ice. These problems are
known to cause large uncertainties in SRBS retrievals [e.g.,
Stein et al., 2011]. By comparison, as mentioned earlier,
DARDAR profiles can contain both liquid and ice particles,
and only the vertical bins that contain ice (IWC) are consid-
ered in the integration.
[59] Three data sets using reflected solar measurements

to derive IWP are shown in Figure 6. Using the median lines
to find the IWP ranges where it may be valid to make compar-
isons with DARDAR, the SRBS data sets are determined to
cover a large range of IWP values. In general, the retrievals at
low IWP values (approximately ≤30 g m-2) are not correlated
at all between the compared data sets and DARDAR, meaning
that either neither is sensitive to such thin clouds or only one of
them is (probably DARDAR). There appears to be no clear
upper limit to the SRBS data sets, although the data sets
are slightly less correlated above approximately 2000 g m-2.
At greater than these values, the systematic errors between
the SRBS data sets and DARDAR rapidly increase. Because
all three data sets are based on similar instruments, the retrie-
vals also have approximately the same IWP ranges. However,
there are still some notable differences between these data sets,
which are best visualized in Figure 7.
[60] Figure 7 shows the median and percentiles of the ratio

between SRBS data sets and DARDAR IWP as a function of
DARDAR IWP. Curiously, within the valid ranges, MODIS
reports more IWP than DARDAR from approximately 20 to
100 g m-2, whereas CMSAF and PATMOS-x do not. In the
vicinity of 20 g m-2, MODIS has a factor of 2 higher
IWP values, and at the end of the range around 5500 g m-2,
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Figure 5. WP from active data sets. The median and
“pseudo 1-sigma” of the ratios of RO versus DARDAR and
IORO versus DARDAR are shown together. Thick lines indi-
cate medians; thin lines indicate “pseudo 1-sigma”; dashed
lines indicate IWP ranges where the data sets are uncorrelated.

Figure 6. Tropical IWP comparison 2007 for SRBS techniques: two-dimensional histograms as in
Figure 4. MODIS IWP (top left), CMSAF IWP (top right), and PATMOS-X IWP (bottom).
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MODIS reports IWP that is lower by around a factor of 4.
PATMOS-x and CMSAF have a systematic negative bias for
all DARDAR values, but from approximately 100 g m-2 the
bias of PATMOS-x is nearly the same as the bias of MODIS,
whereas CMSAF has nearly a factor of 2 more systematic bias
than MODIS and PATMOS-x for the whole IWP range.
[61] The combined random uncertainty (see section 3.1) of

MODIS-DARDAR, depicted as thin red lines in Figure 7, is
very constant and nearly parallel with the median throughout

the valid range and ranges from a factor of 1.5 to 2.
PATMOS-x-DARDAR has a somewhat larger but also quite
constant random uncertainty (approximately a factor of 2–3)
for the whole IWP range. CMSAF has a low random uncer-
tainty below approximately 200 g m-2 (approximately a factor
of 1.3), but then steadily increases to around a factor of 3 to 4
for the highest IWP values.
[62] Taking MODIS-DARDAR as an example, Cooper

et al. [2003, 2007] showed that the uncertainties in MODIS
retrievals of �re, used to derive IWP, are of the order of 30 to
40%, and DARDAR’s random uncertainty was shown to
have an overall random uncertainty of around 20 to 50%
(see section 4.1). However, such general uncertainty estimates
per data set are inadequate for IWP retrievals because they
are clearly not valid for all IWP ranges. Using the approach
described in this article (see section 3.1), the combined random
error for the entire valid IWP range can be estimated as a
function of IWP.
[63] Assuming that the random errors between these two

data sets are uncorrelated, the maximum random uncertainty
of either data set is concluded to be smaller than a factor of 2
(100%). Because the combined error of MODIS-DARDAR
is not too large, covering a wide range of IWP values, this
demonstrates the likely strength of both data sets. This also
helps to justify our choice of DARDAR as the reference data
set, because if it was a bad reference, the combined uncerta
inties between DARDAR and any other data set would always
be large. If both were assumed to have the same uncertainty,
using equation 2, their uncertainty would be smaller than
1.63. An uncertainty of 1.63 on the ratio corresponds to a
relative error of 63%, which is not too far from the earlier
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Figure 7. IWP from passive SRBS data sets. The median
and “pseudo 1-sigma” of the ratios of MODIS versus DAR-
DAR, PATMOS-x versus DARDAR, and CMSAF versus
DARDAR are shown together. Thick lines indicate medians;
think lines indicate “pseudo 1-sigma”; dashed lines indicate
IWP ranges where the data sets are uncorrelated.

Figure 8. Tropical IWP comparison 2007 for passive microwave techniques: two-dimensional histograms
as in Figure 4. MSPPS IWP (top left), MiRS graupel water path (top right), and CMO IWP (bottom).
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uncertainties from Cooper et al. [2003] and Austin et al. [2009]
cited earlier for MODIS and DARDAR, respectively. Errors
caused by collocations are neglected in this argument.
[64] The differences between the SRBS data sets can be

explained by mainly three factors. First, although PATMOS-x
and CMSAF are based on the same measurements, the differ-
ence between them is systematic and large. This is due to the
choice of ice particle model (see section 2.2.3). The largest
uncertainties in these retrievals are a direct result of the as-
sumed microphysics [Zhang et al., 2009]. Second, because
MODIS IWP retrieval algorithm can use five channels com-
pared with two for CMSAF and PATMOS-x, it is
conceivable that it has better constrained retrievals. Third,
the different sizes of the pseudo footprints of roughly
10� 10 km, 4� 1 km, and 1� 1 km for PATMOS-x,
CMSAF, and MODIS, respectively, may also play a role,
and because larger footprints should have more collocation
errors (see section 3), this may be the reason PATMOS-x
has a larger random uncertainty than MODIS, although the
systematic errors are the same.

4.5. Passive Microwave Measurements

[65] Three data sets that retrieve IWP using passive
microwave data are shown in Figure 8. Using the medians as
before, comparisons of IWP can be made in the ranges from
approximately 900 g m-2 for MSPPS (left), from approxi-
mately 700 g m-2 for MiRS (right), and from approximately
10 g m-2 for CMO. There is no clear upper bound to valid
IWP ranges for these data sets. It is well established that
IWP retrievals using passive microwave are only sensitive to
clouds that have precipitation-sized ice particles, and this is
reflected in this comparison. As shown in the histogram of
CMO versus DARDAR in Figure 8, CMO reports IWP even
where DARDAR reports very low IWP values. This is purely
an artifact of this current version of the data set because the
retrieval will always retrieve IWP greater than 0.
[66] As shown in both Figures 8 and 9, the systematic

error between MSPPS versus DARDAR and the systematic
error between MiRS versus DARDAR is very large even for
clouds where both the DARDAR and these microwave
data sets have sensitivity to clouds. The MSPPS and MiRS
data sets are probably not suited for such a comparison,
but it is worth noting that when clouds have an IWP larger
than approximately 2000 g m-2, they do appear to be fairly
correlated with DARDAR, albeit offset to a factor of 5 to 6

lower IWP values. The correlation improves with increasing
IWP because of the steady increase of precipitation. Once
the IWP is larger than approximately 2000 g m-2, the random
error of the collocated microwave data sets is not particularly
large. MSPPS has a random error of mostly less than a factor
of 1.5, and MiRS has a larger random error. The increased
random error of MiRS is likely due to the much larger foot-
print sizes of MiRS compared with MSPPS (see section 3.1).
[67] The third microwave data set, CMO stands out because

of its different retrieval approach and higher frequency micro-
wave channels, and the valid IWP range defined here is very
large (see Figures 8 and 9). Note that CMO is developed based
on collocations with CPR; therefore, the random errors are not
assumed to be uncorrelated. CMO reports higher values than
DARDAR in the low IWP range. CMO is known not to be
retrieving clouds here because it is insensitive to clouds in this
range. The version compared in this study does not include
any cloud detection and retrieves IWP in logarithmic space.
Therefore, it retrieves a low value of IWP even when there is
no ice at all. A good way of cutting off those values is still
under development. Although the data set is still in a fairly
early development stage, it already looks promising.

5. Conclusions

[68] This article is a necessary continuation of the Eliasson
et al. [2011] study where the satellite observations were
compared in terms of monthly mean IWP. The results
presented in this article help explain the differences between
the L3 observational data sets found in Eliasson et al. [2011],
which could only be inferred using the monthly mean data.
However, comparing monthly mean products is problematic
because different approaches are used to go from an L2
(“footprint” resolution) to L3 (gridded monthly mean) prod-
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Figure 9. IWP from passive microwave data sets. The
median and “pseudo 1-sigma” of the ratios of MSPPS versus
DARDAR, MiRS versus DARDAR, and CMO versus
DARDAR are shown together. Thick lines indicate medians;
thin lines indicate “pseudo 1-sigma”; dashed lines indicate
IWP ranges where the data sets are uncorrelated. Note that
the y axis differs from Figures 5 and 7.

Table 3. Approximate Valid IWP Ranges: For Each Data Set
Based on the IWP Bins or DARDAR, and the Range Selection
Criteria Presented in Section 4.2.1a

Data Set Minimum IWP [g m-2] Maximum IWP [g m-2]

RO 10 9000
IORO 10 9000
MODIS 40 —
CMSAF 40 —
PATMOS-x 40 —
MSPPS 900 8000
MiRS 700 —
CMO 10 —

aThe missing upper bounds for CMO and MiRS indicate that a clear up-
per limit to their valid ranges was not found.
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uct. IWP derived from different techniques were compared
with DARDAR at a “footprint” resolution, using data from
2007 between �30� latitude. In this study, DARDAR is
assumed to provide the most accurate retrieval of IWP,
because of using the combination of CALIPSO and CloudSat
measurements. DARDAR IWP is further assumed to be valid
over a wide range of IWP, thus being ideal for the investiga-
tions presented. Using the fractional errors of DARDAR
IWC, we found that the 1-sigma fractional errors in column
integrated IWP range between 20 and 50% and are generally
decreasing with increasing IWP (see section 4.1).
[69] The range of IWP where both DARDAR and the

collocated data set are sensitive to clouds are first identified
for each collocated data set and summarized in Table 3. The
focus of this study is on the assessment of various available
IWP data sets, i.e., investigating their valid IWP range using
DARDAR as reference. In these IWP ranges, we have looked
at the systematic bias of IWP and the combined random errors.
These are then used to assess the quality of the data sets in
Figures 5, 7, and 9.
[70] The combined uncertainties in log space of the

collocated data sets are reported in section 4. It is shown that
data sets based on solar reflectances can be compared with
DARDAR over a large IWP range starting from approxi-
mately 30 g m-2. The combined uncertainty of DARDAR
and MODIS is less than a factor of 2, and this sets the upper
limit for the random error of either data set. CMSAF and
PATMOS-x have larger combined uncertainties (see Figure 7).
[71] All SRBS data sets’ systematic errors increase to a

factor of 4 negative bias as their signals start to attenuate at
high IWP values. CMSAF is biased low compared with
MODIS and PATMOS-x because of different assumptions
on the ice particle models in the retrievals (see section 2.2).
Data sets based on passive microwave measurements are
only comparable with DARDAR in ranges starting from
approximately 700 g m-2. In this range, their combined uncer-
tainty is not larger than the SRBS data sets despite their larger
footprints, but the systematic errors are very large. The bias of
MSPPS/MiRS compared with DARDAR ranges from a
factor of 5 to 7 and 8 to 10, respectively.
[72] We have concluded that all assessed data sets provide

valuable information on IWP. The results presented in
Table 3 suggest that a synergistic passive retrieval using
microwave and shortwave may be able to retrieve IWP for
a larger range of values than retrievals based on either alone.
Such a retrieval could be developed in a similar way to the
CMO data set with a DARDAR reference, therefore truly
exploiting the benefits of active and passive shortwave and
microwave, and thus constrain IWP as much as possible
from a spaceborne platform.
[73] It is encouraging that MODIS, CMSAF, and

PATMOS-x show reasonably good agreement over a large
IWP range despite the remaining large systematic biases. This
is especially encouraging because CMSAF and PATMOS-x
are based on AVHRR measurements that span over 30 years.
These data sets, are suitable for long-term climate applications.
Future work may also include comparing the data sets sepa-
rated into, e.g., cloud types or specific atmospheric scenarios.
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