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Jesper Marklund 
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Chalmers University of Technology 

 

Abstract 
Energy efficient vehicles will be required to meet future emission and fuel 

consumption requirements. Customers require reduced fuel consumption due to 

increasing fuel prices and the environmental issues, are drivers to reduce CO2. It is 

essential to improve the drivelines, but improving resistance forces of the vehicle is also 

an efficient and sustainable way to improve energy efficiency. Aerodynamic drag is the 

dominating resistance force for passenger and commercial vehicles at highway speeds.  

A passenger car is a bluff body aerodynamically, with pressure forces at the rear 

that dominate the aerodynamic drag. This is due to a relatively square shape, with a 

length / height ratio of approximately three, and a truncated rear-end that generates a 

wake. About 60 % of the aerodynamic drag forces of a passenger vehicle are related to 

the exterior body, upper and under-body; the rest being related to wheel, wheel house and 

cooling drag. 

This work focuses on the aerodynamics of the rear-end and under-body of bluff 

bodies in general, but also applied to passenger cars. Firstly, simplified bluff bodies, that 

represent different vehicle types, were used to study and map the general behaviour of the 

bodies. The findings were then tested and applied to full–size vehicles, with the focus on 

under-body flows and the effect of under-body diffusers. Both experimental and 

numerical tools were used, and scale model as well as full-size test bodies have been 

investigated.  

A unique feature with road vehicle aerodynamics are the boundary conditions: 

ground proximity and moving ground; relative the body. Also, rotating wheels and a 

cooling flow that re-distributes the flow around the body have to be considered. The 

Chalmers L2 wind tunnel is equipped with a moving ground system, and the simulations 

were set up with moving ground, rotating wheels and a cooling flow. The rotating wheels 

were simulated with the MRF approach and the cooling flow was tuned by measuring the 

cooling flow of a full-sized car and using this data in the simulations. 

A significant difference in the flow in an under-body diffuser, depending on upper 

body, was noticed in the bluff body experiments. In particular, drag was reduced more for 

a sedan or fastback upper body, compare to a wagon or square-back. This difference was 

confirmed in simulations of full–size vehicles, under road-vehicle boundary conditions, 

with under-body diffusers applied. It was found that it is very important to have flow 

symmetry around the vehicle and especially at the wake, to optimize pressure recovery at 

the rear end and reduce drag. 
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Nomenclature 
 

A Projected front area   [m
2
] 

m Mass of vehicle   [kg] 

p Pressure    [Pa] 

g Gravity    [m/s
2
] 

FD Aerodynamic drag force  [N] 

Fa Acceleration force   [N] 

FR Rolling resistance force  [N] 

Fx Tractive force    [N] 

FG Driving force due to gravity  [N] 

ρ Fluid density    [kg/m
3
] 

ν Kinematic viscosity   [m
2
/s] 

α Road inclination   [deg] 

U∞ Free stream velocity   [m/s] 

u Velocity    [m/s] 

t Time     [s] 

T Temperature    [K] 

L Length     [m] 

W Width     [m] 

 

CD Drag coefficient   [-] 

CL Lift coefficient   [-] 

Cp Pressure coefficient   [-] 

Cpd Diffuser pressure recovery constant  [-] 

Re Reynolds number   [-] 

fr Rolling resistance coefficient  [-] 

y+ Non-dimensional wall distance [-] 

 

 

 

Abbreviations 

RANS  Reynolds Averaged Navier Stokes 

CPU  Central Processing Unit 

CFD   Computational Fluid Dynamics 

LES  Large Eddy Simulation 

MRF  Multiple Reference Frame 

EPA  Environmental Protection Agency 

NHTSA  National Highway Traffic Safety Administration 

EU  European Union 

CAC  Charge Air Cooler 

SAE  Society of Automotive Engineers 

ASME  American Society of Mechanical Engineers 

NASA  National Aeronautical Space Administration 

NACA  National Advisory Committee for Aeronautics 

OEM  Original Equipment Manufacturer 
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ICE  Internal Combustion Engine 

FEV  Full Electric Vehicle 

CRFM  Condenser Radiator and Fan Module 

CAFE  Corporate Average Fuel Economy
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1. Introduction 
Increased fuel prices and environmental issues are the biggest incentives for 

reducing the fuel consumption of passenger vehicles. With increased wealth the demand 

for personal transportation grows and the need of road, sea, and air transport increases. 

The production of cars has continually increased over the past 15 years, but commercial 

vehicles have been more constant. The financial crisis starting in 2008 and the concurrent 

increase in oil price made a strong impact on society and vehicle production decreased.  

A plot of production statistics for the past 15 years, Figure 1 shows that the market has 

regained the losses and continues to grow again.  

 

Figure 1 Statistics of vehicle production from OICA [1]. 

At the time of writing, China is the largest manufacturer of cars and responsible 

for the long term growth, followed by India. The increase for China was 6% in 2012 and 

has slowed down from previous years. Other regions have been constant or decreased 

over this period. North American production increased 17% last year and in Europe the 

fall continued. Europe has a large part of car production with 26% of total production in 

2011, and North America has a large part of the commercial vehicle production with 

39%. This is partly due to a large percentage of light trucks that are defined as 

commercial vehicle in the statistics. Sales do not always follow the production statistics, 

but Asia was the largest market with 42%, followed by North and South America 28% 

and Europe 21% in 2011 [2]. OICA estimates that sales of vehicles will grow 3% during 

2013 due to good forecasts in China and USA. 
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Figure 2 Regional vehicle production in 2012 and the change from 2011 [1].  

Global energy consumption grew 2.5% in 2011 and the primary fuels were, Oil 

33.1%, coal 30.3% and natural gas approximately 30% [3]. Exxon Mobile concludes in 

their energy outlook for 2040 that energy demand in developing countries will increase 

65% due to growing prosperity and growing economies. Growth will come in the demand 

for electricity and the transport sector. The number of cars are predicted to double by 

2040, and the total transport sector, car, truck, planes, ships and trains will increase 40% 

[4]. Germany has announced their intention to close their nuclear power plants by 2030, 

and Japan has said their intention is to close all nuclear power plants by 2040 [5]. Public 

opinion in Japan has changed after the Fukushima accident even though nuclear power 

represents 30% of total energy usage. The intention being to replace it with renewable 

energy both in Japan and Germany. These two together has applied pressure for new 

efficient technology, so that deficiency will not be replaced with fossil fuel. Global road 

transport is responsible for approximately 16% of the man-made CO2 emissions [1], so to 

make a significant change, the problems must be more widely addressed. As the vehicle 

industry is still a significant proportion, the pressure for more energy-efficient vehicles is 

large. 

There are many challenges to developing sustainable mobility. The most 

sustainable way is to reduce resistance forces needed to move the vehicles by improved 

technique and minimal losses during the transport. For CO2 reduction the propulsion 

system must also be improved and preferably replaced by other technologies than the 

combustion of fossil fuel. This is partly done by hybrid and fully electric vehicles, but a 

sustainable solution also requires that the total energy consumption is reduced. It is 

important that the source of electricity is not produced with fossil fuel, and to have an 

efficient battery technology that is re-usable. It is also important to reduce power needed 

for accessories such as air condition system, power steering and electrical systems 

because that is a substantial part of parasitic drag of the vehicle.   

The energy density in diesel fuel is 11.85 kWh/kg and energy storage in a battery 

is 0.029-0.265 kWh/kg (lead - Li-Ion). The best rechargeable batteries for energy storage 
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are Lithium Ion and Lithium Polymer [6]. The energy density in diesel is 45-60 times the 

energy in batteries. The volumetric ratio is better for batteries due to its higher density 

compared to the liquids. Density of diesel (according to EN590) is 0.84kg/l and for 

gasoline (with 5% ethanol) it is 0.752kg/l, which means that the same volume of diesel 

contains almost 10% more energy than gasoline. A graph of energy density of selected 

batteries and diesel/gasoline is shown in Figure 3.  

 

Figure 3 Energy density of electric batteries compared to diesel and gasoline [7]. 

The efficiency of an electric motor is 85-90% but for a diesel engine around 40%. 

Thus the usable energy in Lithium-Ion batteries is 5% of diesel fuel, or that the same 

amount of energy in batteries would have 20 times the mass of diesel. This has a large 

impact on vehicle resistance forces and would require even more energy for propulsion. 

Currently it is not possible for an electrical vehicle to have the same performance as an 

ICE vehicle and still have the same range with the available battery technology. Tesla 

cars [8] use Lithium-Ion battery technology and offer a full electric sport vehicle with a 

power of 215kW a mass of 1235kg and a range of 400km. Battery energy density is 

claimed to be 174Wh/kg.  

The method of specifying the CO2 target to the vehicle manufacturers used today, 

is an average emission value for the complete fleet of cars sold, by the manufacturer. In 

Europe this is regulated by the EC regulation  and in the USA by the CAFE standard. The 

cars are tested in defined test cycles and in Europe that is the NEDC (New European 

Driving Cycle) [9]. The new CO2 requirement for Europe from 2020 is 95g CO2/100km 

and there are penalties defined for not fulfilling them. If the vehicle manufacturer sells 

full-electric vehicles with zero emissions, the average CO2 emissions of the fleet will be 

reduced. Many car manufacturers have started to provide full-electric vehicles and the 

main challenges are sufficient range and high purchase price of the vehicles. 

There is no doubt that future CO2 emission requirements will be very challenging 

for the vehicle manufacturers in EU and in the USA. Europe has already taken a large 

step by moving towards energy-efficient diesel cars. Improving the aerodynamics of a 

vehicle gives a direct reduction of the vehicle resistance and will be one method to reduce 
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CO2 emissions. More changes, especially to the drivelines, must also be made to reach 

these new targets.   

1.1. Background 

It is well known by all vehicle manufacturers that legislation will require a 

reduction of the CO2 emissions in the near future. It is also a fact that customer demands 

will require reduced fuel consumption because of increased fuel prices. Figure 4 shows 

the rolling resistance, and the aerodynamic resistance relative to vehicle speed. The 

vehicle is a generic passenger car with a mass of 1600kg, front area of 2.2m
2
 and a CD of 

0.30. The rolling resistance is nearly linear, and at 60-80 km/h the aerodynamic drag will 

be the dominant resistance force due to its increase by the square of vehicle speed. 

Acceleration in normal city driving is typically around 1m/s
2
 and in the NEDC the 

accelerations are specified to this magnitude or less. The resistance force from the inertia 

will be peak loads and depending on mass of the vehicle. It is a force to be overcome 

during positive acceleration, and it is a force that can be regained if the vehicle is 

equipped with a brake regeneration system. The line 1m/s
2 

acceleration also represent the 

force required to drive the same vehicle uphill in a 9.8% slope. 

 
Figure 4 Plot of resistance forces for a generic passenger car at constant speed and on level 

road, versus vehicle speed. 

Improving the aerodynamic drag is important because it is the single biggest 

driving resistance at higher speeds, and new techniques can be effective at a relatively 

low cost. The key areas are the exterior body shape, the under-body and the wheelhouse 

airflows; but also the cooling air flows have significant effects on drag. 

1.2. Objectives 

This project focuses on the rear part of the exterior body and under-body. The 

objectives were to understand the flow field in the close wake and to be able to use the 

knowledge to reduce the drag of the vehicle. This meant knowing how to design the rear 

end, including the under-body, for low-drag under road-vehicle boundary conditions such 

as ground proximity, rotating wheels and moving ground. The goal was to understand 

what parameters are important and how to use them for a design of low-drag passenger 

cars. 
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2. Vehicle Aerodynamics 
There are many aerodynamic properties that affect a passenger car besides the 

performance effect such as fuel consumption. Lift and side-forces are important to the 

stability and safety of the vehicle, and have a major effect on directional stability and 

cross-wind sensitivity. Wind noise and contamination are comfort issues, and cooling of 

components are function-related properties. All requirements have to be considered in the 

design process of a passenger car and in the end it will be a compromise between styling 

and the many functional parameters. Lately the focus on reducing fuel consumption and 

CO2-emissions has increased the importance of aerodynamic drag. More than half of the 

drag originates from the exterior body and under-body, and the rest is related to the 

wheels and cooling flows. As stated earlier the most important part in this work is to 

reduce drag of the vehicle focusing on the exterior body and under-body. 

2.1. Bluff and Slender Bodies 

The Reynolds number is a ratio of the inertia forces and the viscous forces. It can 

also be interpreted as the ratio of the pressure and shear force that act on the body 

according to Eq. ( 1) [10]. Viscosity is due to the molecular friction between the fluid 

particles. The shear stress is proportional to the velocity gradient close to the surface,  

τ = μ(δu/δy). 
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ν = μ/ρ is the kinematic viscosity of the fluid. If the Reynolds number increases, 

the pressure forces, or air speed, will be more important, and consequently the viscous 

effects become less important. The higher the Reynolds number is, the thinner the 

boundary layer will be, relative to the body. A thinner boundary layer makes the flow 

behave more as inviscid flow. When the Reynolds number is large enough the lift forces 

and moments will be Reynolds number independent i.e. independent of viscosity. Drag 

will not be Reynolds number independent. This assumption is only valid for streamlined 

bodies that are aligned with the free-stream flow. For bluff bodies with a large rear face 

and separated flows the forces and moments are always related to the viscosity. Separated 

flow is when the boundary layer detaches from the surface and creates a wake behind the 

body. 

The drag force can be divided into friction drag and pressure drag. The friction 

drag comes from the friction between the fluid and the surface of the body and will be the 

sum of the shear forces in the fluid, as discussed above. This will appear in the boundary 

layer and be dominant for slender bodies. Friction drag is important for attached flows 

and is related to the surface area it affects. Pressure drag is due to the wakes and vortices 
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in the flow and will be the sum of forces acting normal to all the surfaces. Pressure drag 

is dominating for separated flows and is related to the surface area of the model in flow 

direction. A model is called streamlined, or slender, when the friction drag is dominating, 

and is called bluff when the pressure drag is dominating [11]. A streamlined model will 

always have lower drag then a bluff body of the same size [12]. Illustrations of bluff body 

and streamlined body with the same drag force can be seen in Figure 5. 

 

Figure 5 Comparison of streamlined body and circular rod with the same drag force [13]. 

Most of the pressure drag of a bluff body is generated at the rear end. When the 

flow separate at the rear end it will leave a large wake that generate a low pressure over a 

large base area. A body such as a passenger car in full scale, with a length/height ratio of 

about 3 and sharp corner radius, generally has a small dependency of Reynolds number. 

But for rounded rear end shapes the separation is not fixed in time and the boundary layer 

separation may vary with Reynolds number. This generates side, lift and drag forces that 

are time dependant and create instability in the flow. This is not desired for passenger 

cars and for this reason big radiuses at the rear end should be avoided. In the front, radius 

should be large enough to provide attached flow independent of Reynolds number.  

Drag has a dependency to the lift forces of the body. The pressure difference of 

the low pressure areas, such as backlight of a fastback car, generates longitudinal 

vortices. With the starting point that the induced drag, from wing theory is defined as: 

        
 
 (3) 

where CL is the lift coefficient and KV is a vortex drag factor. KV is approximately 

given by k(πAR)
-1

, where AR is the aspect ratio and is defined as b
2
/S, where b is the 

span and S is the wing plan area. 

A parabolic relationship between lift and drag is clear, with an optimum drag in 

relation to lift, the conclusion being that the vortex component gives this relation. The 

vortex drag factor, Kv, reduces with reduced ground clearance and even more with a 

moving ground. The vortex drag factor is heavily dependent on the body width and is 

also a function of the body bluffness.  
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Figure 6 Drag and lift relationship depending on backlight angle, for two different diffuser 

angles. Left: CD to CL relationship. Right: CD to CL
2
 relationship. 

The relationship between drag and lift from bluff body measurements [14] is 

plotted in Figure 6. The backlight angle varied from 0º to 21º and it was tested for two 

different diffuser angles of 0º and 3º. Drag is normalized with drag minimum and lift is 

normalized with lift at the same point to make the curves pass origo. Drag reduces in a 

parabolic curve relative to lift until 15 º backlight angle, and then increases again for 

larger backlight angles. The drag reduction is linear relative to CL
2 

until 15º backlight 

angle. Higher backlight angles increase drag but the relationship to CL
2
 is lost and CD 

increases more relative to CL
2
. The drag is no longer vortex induced since there is 

separated flow at the backlight. Similar results were found by Howell et al. [15][16] were 

there was also found to be a dependence on the aspect ratio of the backlight. Wickern et 

al. performed a study [17] of drag/lift ratio, from vortex induced drag, with full-size 

passenger cars. A parabolic relationship was also the conclusion here. The vehicles were 

equipped with spoilers to generate the forces, and the experiments showed that there was 

an impact if the spoiler was flush to the body or not. With the spoiler attached above the 

body, with a gap, the aspect ratio was related to the aspect ratio of the spoiler geometry, 

and not the vehicle body. An illustration of vortex cores and a vector plot of wake 

vortices is shown in Figure 7. 
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Figure 7 Illustration of wake vortices and vortex cores of a sedan car. 

There is a parabolic relationship between lift and drag for a bluff body, whether 

there is a rough or a smooth under-body [18]. Though the under-body drag has a linear 

increase with increased lift for both rough and smooth under-body.  

2.2. Aerodynamics of Passenger Cars 

The flow around a vehicle has a stagnation point at the nose and tends to flow 

over and around the vehicle rather the under, due to the proximity of the ground. How 

much flow goes under is dependant on the ground clearance, the shape at the nose, and 

the rear-end shape of the body. For drag, it is most important that the shapes are rounded 

enough to provide attached flow around the body. Separated flow will always generate 

more drag than attached flow. When a rounded front-end provides attached flow, the 

shape of the rear-end is what determines the bluffness. It is important to have a pressure 

recovery over the length of the body and avoid separated flow. Tapering body 

dimensions, backlight angle, and under-body diffuser angle, increases the pressure along 

the length and leaves a base pressure as high as possible. Lowest drag is achieved with a 

high base pressure and a small base area.  

The ultimate goals with improving the aerodynamic drag of a passenger vehicle 

are to reduce fuel consumption, or to increase top speed. The aerodynamic knowledge 

among engineers is not new, but the tools have become much better and the level of 

detail knowledge has increased. Also the demand for CO2 reduction has focused attention 

on reducing all kinds of resistance forces including aerodynamic drag. Wind tunnels are 

still being used to optimize the body shape for low drag. Equipment for flow 

measurement and force measurements has become more advanced and the wind tunnels 

have been adapted to simulate the moving ground better. The technique of using wool-

tufts and smoke is still employed in wind-tunnel work to visualize flow fields, but more 

advanced equipment is available for detailed boundary layer and wake flow analysis. The 

top priority for passenger cars is to minimize separated flows and have low lift forces at 

the rear end. Figure 8 illustrates the evolution of cars and aeroplanes with a strong 

influence of aerodynamics.  
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Figure 8 Evolution of cars and aeroplanes influenced by aerodynamics. Courtesy of 

Combitech AB. 

In this project the primary goal was to reduce CO2 emissions by reducing fuel 

consumption. A reduction of the aerodynamic drag is a fundamental source of resistance 

forces for the vehicle. Meaning reduced energy required for propulsion, and is 

independent of powertrain used. The forces a vehicle has to overcome in normal 

operation can be described by equation (4). 

 

                 
  

  
                 

 

 
      

  (4) 

FA is the force required for the acceleration of the vehicle. This term has a 

substantial effect on the total driving resistance, and the acceleration is very dependent on 

driving behaviour and the total mass of the vehicle. The mass is m and γ is a factor for the 

rotating masses. The FA is instantaneous and will have peaks of short intervals. The 

acceleration is specified in the driving cycles and can be positive or negative. A negative 

force can be re-used by brake regenerative systems in modern hybrid or electric vehicles. 

FR represents the rolling resistance, and is proportional to the normal force that the tyres 

apply to the road, that is, the mass of the vehicle. fR is a constant for rolling resistance but 

has very complex properties since it depends on tyre pressure and temperature as well as 

mechanical driveline losses. Also chassis properties such as wheel suspension geometry 

and more, that is vehicle unique. FG is the force required to go uphill or downhill 

dependant on vehicle usage. And lastly the aerodynamic drag force that is dependent on 

air density, the form factor CD, the frontal area of the vehicle, and the square of the 

vehicle speed. CD is a form factor and a measure of the quality of aerodynamic shape 

with regard to drag, and the main focus in this project. The product of CD x A is 

proportional to the drag force and thereby the fuel consumption, since the size of the 

vehicle is also considered.   
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Figure 9 Illustrative picture of resistance forces. 

The driving cycles for fuel consumption in the EU (NEDC) are defined using a 

level road with specified accelerations, velocity and driving distance. Consequently the 

third term (FG) will disappear and the acceleration term will be dominant at low speed, 

and the velocity term (aerodynamic drag) will be dominant at high speed. For a passenger 

car at constant speed the rolling resistance will be dominant up to 60-80km/h and above 

that the aerodynamic drag will be dominant.  

 

Figure 10 NEDC for certification and fuel consumption test in EU [19]. 

With hybrid and electrical vehicles there is the possibility to re-use the negative 

acceleration forces for brake re-generation. This converts the kinetic energy from the 

vehicle to electrical energy and can be used for propulsion. This system reduces the 

losses in acceleration forces and makes the aerodynamic drag even more important for 

fuel economy. A mild hybrid can provide 7% improved fuel economy by brake energy 

regeneration according to GM [20].  
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2.3. Aerodynamic optimization of passenger cars 

When the aerodynamics are being optimized on a passenger car there are many 

areas to consider. A summary of the general and detail information, based on experience 

from Saab Automobile AB and official aerodynamic research [13] [21]. is presented in 

this section. The focus here is mostly drag, that is, energy related, but also areas of top 

priority safety and comfort will be discussed. The drag-related aerodynamics can be split 

into four areas, even if they all affect each other. These areas are: the exterior body, the 

under-body, the wheels and wheel houses, and the cooling air flow. The overall vehicle 

preferences will give opportunity to reduce drag by optimizing: 

 Total front area as small as possible. Will directly affect the drag force. 

 Ride height 

 Vehicle pitch angle 

 Active control of cooling inlet 

 Rear boot-lid profile and under-body upsweep 

 Wheel to body relationship and wheel-house opening 

 Low drag mirrors 

The aerodynamic drag force is directly proportional to CD x A and this makes the 

frontal area of the vehicle very important for fuel consumption. The ride height and pitch 

angle will affect the total flow field around the vehicle and also change the front area. 

The cooling flow through the engine-bay will also affect the global flow-field around the 

vehicle, since the outlet of the cooling flow normally exit to the under-body and front 

wheel-house. The major part of the cooling drag losses comes from the affect of the 

downstream flow from the cooling outlets. To actively control the cooling flow by 

closing them when there is no need to cool the engine, is effective. The boot-lid and rear 

under-body angle will control the total pressure recovery of the vehicle body and have a 

major impact on the bluffness and thereby the CD. The wheels are protruding into the 

airflow and create a lot of turbulence due to the fact that they are rotating. To keep the 

outer edge flush to the body and the wheel house openings as small as possible generally 

reduces losses. Wheels and wheel houses are very complex areas aerodynamically with 

many factors interacting. Detailed study of wheel aerodynamics has been carried out by 

Landström [22]. The mirrors are also protruding into the air flow and should be 

optimized for low drag, and as small as possible in general. They must also be optimized 

for low wind-noise and low contamination of the side windows due to their location close 

to the driver and visibility requirements. 
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Figure 11  Picture of Saab 9-3 for illustration. 

General recommendations for the main body: 

1. Avoid sharp leading edge at the front. Radius >10mm should be used. 

2. A-pillar radius should be bigger than r/w=0.05, at least 60-80mm. 

3. Roof leading edge should be at least 60mm. 

4. Vehicle highest point should be above the driver. 

5. Front end plan view sweep should be small to decrease exposure of the front 

wheels. 

6. Plan view front corner should start with a relative small radius that increases to 

blend with the side.  

7. Wipers parked position should be hidden below the hood line to reduce wind 

noise. 

8. Vehicle widest point should be just in front of the driver location. 

It is recommended that a sharp leading edge is avoided to prevent a separation 

bubble over the hood. The slope of the hood does not have a large effect and the same 

applies to the angle of the front windscreen. This is valid as long as the radius at the roof 

and A-pillar are sufficiently large. On the sides and roof there should be attached flow all 

the way to the rear. It is best if the shape tapers both in side view and plan view, to allow 

a pressure recovery as much as possible, and leave a base pressure as high as possible. 

Thus: 

 Plan view taper angle to the rear-end should be 10-15°. 

 Tyres should be as narrow as possible. 

 The backlight angle should be around 12 - 15°. 

 The lower sill or rocker panel should be as far out as the tyre to cover the rear 

wheel and to prevent gravel from the front wheel damaging the vehicle rear end. 

 The trailing edge should have a sharp radius to enable a distinct separation point. 

This will increase stability. 

 Use under-body covers to give a flat under-body. 

1 

2 

3 

5,6 

7 
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A passenger car is a bluff body aerodynamically and the majority of the drag is 

pressure drag that comes from the formation of wakes and vortices [23]. BMW [24] say 

that approximately 40 % of aerodynamic drag comes from the basic shape and 

proportions of the body, 20 % from the under-body, 30 % from the wheel arches, and 

10 % from the air intakes. 

The exterior body of a modern passenger car is smooth, and edges and gaps are 

generally considered acceptable. The major wakes are related to the wheel arches and the 

rear-end of the car. The under-body and its interaction with the rear-end has not been as 

extensively investigated as the upper body. This work focuses in these areas for this 

reason. Unique to this work is the effect of under-body shape including under-body 

diffuser, on drag reduction. It is explored regarding automobile applications and in 

combination with different car rear-end types.    

2.4. Diffuser of a passenger car 

An automobile diffuser is traditionally used as a downforce generator, but it can 

also be effective for drag reduction for some type of bodies. The overall idea and function 

is that a cross-sectional area increases in the flow direction, producing a decrease in fluid 

velocity from inlet to outlet; with a corresponding increase in static pressure, see Figure 

12. The increase in static pressure at the exit will lead to a higher base pressure that is 

desirable for drag reduction. The effect of the diffuser, used at an under-body, in external 

aerodynamics is complex. It will work with several fluid dynamic mechanisms. In a 

summary of diffuser theory by Cooper [25] the mechanism are described in three parts: 

 Ground Interaction 

 Upsweep 

 Diffuser Pumping 

 

Ground interaction - A symmetrical body in free stream has no lift force. Placing 

this body in proximity to the ground will result in an asymmetrical flow which will 

accelerate underneath the body. The flow around the body will be cambered. Static 

pressure at the under-body will be reduced. 

Upsweep - The rear-end of the under-body will camber the flow around the body 

and make it act similar to an upside down wing, close to ground. 

Diffuser pumping - The cross-sectional area in a diffuser increases downstream 

and this leads to a reduction of the air velocity. If no separation of the flow occurs, the 

more the cross-section increases the better pressure recovery. Most of the pressure 

increase will be seen as a decrease in the inlet pressure. This will increase the pressure 

difference from the start of the under-body to the start of the diffuser, and will increase 

the flow of the under-body. 

The geometry, such as diffuser length and angle, will determine the pressure 

recovery and the relationship is well mapped for 2D diffusers [26]. In automobile 

applications the diffuser will be unsymmetrical and open-sided.  
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Figure 12 Schematic picture of under-body pressure with a diffuser. 

The performances are not that well mapped and effect will vary with ground 

clearance. The function as a drag reduction device is a result of the static pressure 

increase of the base. The drag reduction function is depending of several parameters and 

is not fully known. This work includes studies in this subject applied to passenger car. 

The static pressure recovery coefficient of a diffuser is defined as: 

    
     
 
     

 
 (5) 

Where p1 is the inlet pressure, p2 the outlet pressure ρ is the fluid density and U1 is 

the velocity at the inlet. The aspect ratio of the diffuser is h2/h1 and N is the diffuser 

length, see Figure 13. 

 

Figure 13 Schematic picture of an under-body diffuser. 
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2.5. Aerodynamic devices 

Many different spoilers are used to control the aerodynamics of road vehicles. 

Exterior spoilers are located at the trunk or the rear of the roof, or at the front bumper. 

Reducing drag or reducing lift force are primary purposes, but they also used to improve 

cooling flows, comfort and function issues. Cooling flows are necessary but generate 

losses and additional drag for a passenger car. The total loss will come from the inlet, 

ducting, heat exchangers and outlet. The location and direction of outlet flows generate 

disturbances to the surrounding flow that will generate additional drag for the vehicle. A 

good design of the cooling flow outlet is desired for low cooling losses. Grille shutters 

temporarily block the cooling flow at low engine loads, when cooling is not needed, and 

actively control the flow via an actuator. The benefit is that the cooling losses are totally 

eliminated when it is active, and this means a 10% drag reduction in some cases. 

Drawbacks are that additional weight is added to the vehicle, and relative high cost. The 

use of active devices instead of passive devices is a balance between benefit and cost 

(price, mass, energy usage, packaging). 

2.5.1 NACA ducts 

A passive aerodynamic device for reduced drag can be to provide a desirable shape for 

the purpose. A NACA duct inlet is used as an inlet with high efficiency and very low 

additional drag for the vehicle. It must be located in an area with thin boundary layer and 

it should be oriented parallel to the flow direction. The idea is that air flowing towards 

the narrow opening flows down the ramp of the intake, and the air that approach from the 

outside flows over the edges of these diverging duct walls. Two counter-rotating vortices 

are generated when the air flows over an edge at an angle, and air will be drawn into the 

inlet from a diffuser effect. The edges of the duct need to be sharp to encourage the 

vortex formation that will draw more air into the inlet. The front edge is important and 

should have a radius to minimize losses and wake creation at the inlet.  

The benefits are low cost and a robust design that do not need maintenance. As an 

air inlet it may provide a possibility to have an inlet close to the area where the air is 

needed and avoid long ducting. These types of inlets are used by a few car manufacturers 

and more widely used in race-car applications. It has been shown [27] that for automotive 

boundary condition, that is, low Mach numbers and a relative bluff body, the impact of 

the side wall radius and the inlet aspect ratio is negligible, but the lip shape, slant angle, 

cross-flow angle and boundary layer thickness has a great impact. 

 
Figure 14 Illustration of submerged NACA inlet duct. 
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2.6. Partial drag 

A moving body can be detectable over a large region by the wake flow far 

downstream. The distribution of pressure, velocities and vortices will be present in the 

wake and the losses in the flow can be measured. Conclusions can be drawn about the 

forces, particularly drag, by using momentum theorem and comparing energy before and 

after. Theories derived, for example by Onorato et al., Hackett et al. and Cogotti et.al. 

[28][29][30][31] divides the wake flow into three parts, containing pressure, velocity and 

vorticity. Eq.( 6) expresses the relationship analytically: 

          
      

 

     
 

 
 
 

      
 

 
 
 

  
 

 
 
 

   
  

 
( 7) 

Where S is the wake-plane measured, U is the free-stream velocity and u,v,w are 

the velocity vector components. The first term is the total pressure losses and the second 

is the velocity profile deflects and the third is the vorticity. This technique provides the 

possibility to visualize the origin of the drag, and the possibility of identifying the 

contribution of vortices-related drag 
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3. Method  
Wind tunnel experiments are normally the base for aerodynamic research and 

development work. In this work the focus of the experiments was to measure forces and 

flow fields and surface pressure of four simplified bodies. Modern wind tunnels are 

equipped with advanced ground-simulation systems to simulate the moving ground. The 

Chalmers L2 scale-model wind tunnel can be operated with a static floor or with a full-

width single belt moving-ground system that is described in detail in [22]. In this work 

moving ground was used and compared with static ground. The experiments were 

compared to simulated results in CFD. Results from bluff bodies were compared to 

results from full size vehicles.   

3.1. Experimental method 

 The main experimental work of bluff bodies was carried out in the Chalmers L2 

wind tunnel using small-scale models. Full size vehicle test were carried out in the Volvo 

aerodynamic wind tunnel. A brief description of the Chalmers wind tunnel follows. 

3.1.1 The wind tunnel 

The Chalmers L2 wind tunnel is a closed loop (vertical), closed test-section wind 

tunnel, with an octagonal test-section of 2.08 m
2
 and dimensions of 3.00m x 1.80m x 1.25 

m (L x W x H). The contraction ratio is 5.86:1 and the speed range is 0-60 m/s. It can be 

used with a static floor or a full-width moving belt. The main fan has a power of 170 kW. 

The main fan is 2 metres in diameter with 6 wooden rotors followed by 7 stator blades 

which also work as flow straighteners and motor support. The main fan is air cooled and 

the cooling air is evacuated through channels inside the support blades. In order to 

compensate for this flow loss and other flow losses occurring in the test section a 

secondary fan unit injects air through a manifold. This air is also temperature controlled 

by an external heat-exchanger in order to maintain constant tunnel temperature during 

testing. The cooling fan has a 50 kW motor and injects fresh air into the circuit. An air-

conditioning unit cools the injected air to be able to maintain a temperature control of 21 

± 1ºC. 

 
Figure 15 Chalmers L2 scale-model wind tunnel. 

 



 

 

20 

The test section has a divergence angle to reduce the effect of boundary layer 

growth along the length of the test section. The start of the test section has a boundary 

layer suction slot across the width of the floor, 50 mm in-front of the start of the belt. The 

belt is a full-width belt with a length of 1690 mm and a width of 975 mm. The rear end of 

the test-section has a 20 mm breather slot to equalize the pressure in the wind tunnel. The 

test speed in the experiments was 35 m/s unless otherelse stated. A higher test speed was 

possible but it was chosen as a nominal speed for the stability and repeatability of the 

moving ground system. A fully-automated control system using Labview is operated by 

the wind-tunnel computer. 

3.1.2 The test models 

The overall dimensions of the test models were 720 x 280 x 200 mm. The shapes 

were of vehicle proportions, of approximately 1:6 scale, and can be seen in Figure 16. 

They were generated in a free-form rapid-prototype machine at Saab Automobile using 

SLA (stereo-lithography). The machine was an SLA7000 from 3dsystems [32]. The 

models were created in three parts, with a nose section and a centre section. The rear 

section was comprised of four exchangeable parts that resembled four different vehicle 

rear-end types. The surface of the models were polished, and painted with a primer and 

three layers of paint, and finished with a sealing wax. The procedure was the same as 

normally used for prototype models and scale-model car models. 

 

 

Figure 16 Simplified bluff bodies used 1. Square-back 2. Boat-tail 3. Fastback-21  

4. Fastback-30. 

The models were initially tested in smaller scale, 360 x 140 x 100 mm. These 

were made in aluminium with machine tolerances and were similarly divided into three 

parts with inter-changeable rear ends. The common geometric shapes and labelling is 

show in Table 1.  

Table 1 Geometric description of the simplified test models 

Case Test body                Geometry               Size 

Label Model Backlight Diffuser Taper Length/Width/Height 

bt Boattail 21º 10º 15º 3.6/1.4/1 

fb21 Fastback-21 21º 0º 0º 3.6/1.4/1 

fb30 Fastback-30 30º 0º 0º 3.6/1.4/1 

sb Squareback 0º 0º 0º 3.6/1.4/1 
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The frontal area of the larger model was 0.056m
2
 and this led to a blockage of 

2.7% in the test section. Frontal area of the smaller models was 0.014m
2
 that led to a 

blockage of 0.7%. Front and side view of the models in the tunnel section is shown in 

Figure 17.  

As stated, each model consisted of three parts: the nose of the model, rounded 

enough to provide attached flow along the model; the centre part, that attached to the 

balance; and the rear part, that consisted of four exchangeable parts. The four rear-end 

models shown in the right-hand picture were: fastback (30 º backlight angle), boat-tail, 

fastback (21 º backlight angle) and squareback. 

 

Figure 17 Front and side view of the bluff-body models in Chalmers L2 Wind tunnel. 

 All models were prepared with 1mm diameter pressure holes along the centre-

line of the models. The rear-end models had multiple holes at the backlight and at the 

base, to be able to measure average surface pressures. The test model was attached from 

above by a streamlined sting via the balance. A sketch of the boat-tailed model with main 

dimensions can be seen in Figure 18.     

 

Figure 18 Sketch of boat-tail model. 
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3.1.3 Force measurements 

The aerodynamic forces were measured with the balance mounted inside the 

model. A six component strain-gauge balance from RUAG, type 196-6C, was used. It 

was load limited to Fz 1200N Fx 350N Fy 250N, and attached to the sting in the wind 

tunnel. The cables were routed via a hole through the centre of the sting, up to the roof.  

For data acquisition there was a SCXI1600 DAQ (data acquisition) device to receive the 

analogue signal, amplify and digitize them. An SCXI1520 module was used for 

interfacing to the strain-gauge bridges simultaneously with 8-channels. The excitation 

voltage was 10V DC. The balance carried seven full-bridges to measure all six degree of 

freedoms. The measurements were carried out at 1000 Hz, and 3000 samples that gave 3 

seconds per measurement point. The calibration matrix of the balance was installed with 

the correction method specified by RUAG in the set-up. A summary of maximum 

specified calibration error is listed in Table 2. 

Table 2 Calibration error in all directions specified by RUAG 

 FX FY FZ MX MY MZ 

Max error in ‰  6.7034 8.7341 4.0650 -2.1689 2.7040 -1.8051 

Standard deviation in ‰ 1.7731 2.4374 0.7355 0.4257 0.5308 0.4232 

3.1.4 Pressure measurements 

The pressure measurements were carried out with PSI equipment of ESP pressure 

scanners and DTC Initium data acquisition. The best accuracy was achieved with 

averaged result over 64 samples, as recommended by the manufacturer. Sampling rate 

was set to 100 Hz and the result was averaged over 64 samples, 4 times. This produced 4 

blocks of measurement with 256 samples for each measurement,. This was repeated 5 

times with 30 seconds delay which meant that a total of 20 measurements were averaged 

for post-processing. 

The ESP pressure scanners were miniature electronic differential-pressure 

measurement equipment, and maintained a static error within ±0.03% full-scale or better. 

The measurements series were started with a calibration, and the scanners incorporate a 

two position calibration manifold actuated by momentary pulses of control pressures. The 

manifold automatically switched between two common reference pressures to ensure a 

stable reference during calibration. The scanners were placed inside the models so the 

tubes from the pressure taps were not more than 0.2m long. The models were prepared 

with pressure taps that were glued to each hole in shell of the body. The reference 

pressure was taken from the wind-tunnel laboratory with a tube routed through the sting. 

Pressurized air for calibration required tubes from an external source to be routed through 

the sting together with the electrical cables.  

The DAQ was a DTC Initium data acquisition system for ESP scanner series from 

MEAS. It used an analogue-circuit design with Digital Temperature Compensation 

(DTC). The scanner had a static accuracy of ±0.05% full scale, and this included 

combined errors due to non-linearity, hysteresis and non-repeatability. It had a total 

thermal error of ±0.002% full-scale/°C, and a measurement resolution of ±0.003% full 

scale; according to the manufacturer. Scanner and set-up is shown in Figure 19. 
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Figure 20 Pressure scanners in test model. 
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3.2. Numerical method 

Numerical simulations were performed during this project. The simulations were 

carried out in RANS mode, in the commercial code FLUENT. Mainly one computational 

fluid dynamics (CFD) software was used and a brief description follows.  

3.2.1 RANS 

There are three equations governing the flow in fluid dynamics, and these are the 

continuity, momentum, and the energy equation. Since road vehicle aerodynamics is 

operating at low flow speed (<0.3Ma) and constant temperatures, this flow is assumed to 

be incompressible and isothermal. The equations can then be written in incompressible 

form and the energy equation can be neglected. Tensor formalism is used to describe the 

equations below: 

Continuity equation: 

       (8) 

Momentum equation: 

             
 

 
            (9) 

These two equations and the energy equation are commonly referred to as the 

Navier-Stokes equations. They are non-linear partial differential equations that are not 

analytically solvable except for some special cases at low Reynolds numbers. The 

simplest engineering approach is the Reynolds decomposition where the instantaneous 

velocity is split into a mean part and a fluctuating part. This decomposition used for 

velocity and pressure will look like the following: 

                  
 
       (10) 

Here the capital letters refer to the mean quantities and the lower case denoted 

with a prime refers to turbulent fluctuations. The mean velocity is defined as the time 

average for a period T that is long enough to get an accurate value. 

       
 

 
           

 

 

 ( 11) 

The decomposed terms are inserted into the governing equations and time 

averaged. The resulting equations are known as Reynolds Averaged Navier-Stokes 

equations and normally referred to as RANS equations. 

                          ( 12) 

 

                 
    

                      ( 13) 

This momentum equation governs the time-averaged properties of the flow. It 

contains a new effect,      
    

        , called the Reynolds stresses. New unknowns have been 

generated and the number of equations is not enough to solve the problem. This is called 

the closure problem and it is the reason for modelling the Reynolds stresses with 
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turbulence models. There are several different methods to model the Reynolds stresses. A 

common method is the Eddy Viscosity model: that links the velocity gradients via the 

turbulent viscosity. The model is simple, stable and works well for many engineering 

purposes. The k-ε model is an eddy-viscosity model where the modelled transport 

equation for the turbulent kinetic energy, k, and dissipation, ε, are solved. In the 

derivation of the k-ε model the assumption is that the flow is fully turbulent, and the 

effect of molecular viscosity is negligible. The standard k-ε model is therefore valid only 

for fully turbulent flows. The realizable k-ε contains a new formulation for turbulent 

viscosity involving Cμ and a new transport equation for the dissipation rate. An 

immediate benefit of the realizable model is that it more accurately predicts the spreading 

rate of both planar and round jets. It provides better performance for flow involving 

rotation, boundary layers under strong adverse pressure gradients, separation and 

recirculation [33]. The k-ε realizable has been used for simulations performed in this 

work.  

3.2.2 CFD approach 

The simulations were performed to the simplified models and to full scale 

passenger vehicle models. The surfaces and the surface meshes were prepared in the 

commercial code ANSA for all cases. The volume mesh was generated in Tgrid and the 

simulations were carried out in Fluent. Post processing was done in FLUENT, FieldView 

and Matlab. The same software of different versions was used during the project. 

3.2.3 Boundary conditions 

The boundary conditions differed depending on whether simplified models or 

full-size cars were simulated. The bluff bodies were compared with wind tunnel 

measurements carried out in the Chalmers wind tunnel L2, and therefore the geometry of 

the wind tunnel domain was used as Digital Wind Tunnel. For the full-size cars a more 

conventional oversized wind tunnel domain was used.  

The boundary condition of the wind tunnel domain for bluff bodies was a moving 

ground, and solid walls and roof. The inlet was a velocity inlet set to 5.75 m/s that made 

the air speed at the Prandtl tube 35 m/s. The breather slot of the wind tunnel was 

simulated as a part of the domain, and the wind tunnel laboratory was used as a volume to 

provide the reference pressure. The boundary conditions of the volume in the wind tunnel 

laboratory were pressure outlet defined as 0 Pa, except for the floor that was defined as a 

wall. The belt was assigned a translational speed of the same magnitude as the free 

stream air: 35m/s. The wind tunnel outlet was assigned with a pressure outlet specified at 

550 Pa. The solver used was Fluent V14. Simulations were carried out in RANS 

(Reynolds Averaged Navier Stokes) mode, pressure based with the k-epsilon realizable 

turbulence model. Non-equilibrium wall functions and a simple pressure-velocity 

coupling were used. First 500 iterations of first order upwind differential scheme was 

used, then 2500 iterations of second order upwind. 3000 iterations were performed for 

each case and it was considered converged when the variation was ± 1 drag count and the 

residuals where stable below 10
-3

. The presented coefficients are an average from the last 

200 iterations.  

The test model and sting in the wind tunnel domain is shown in Figure 21. The 

breather slot is visible as a gap in the wind tunnel behind the test body. Location of the 
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Prandtl tube for air speed and reference pressure in the wind tunnel was used for 

reference speed to the coefficients.  

 

Figure 21. Simulation domain and test model 

3.2.4 Simplified models 

The surfaces and the surface mesh were prepared in the commercial code ANSA. 

The resolution of the surface mesh was approximately 2mm to give the right geometry 

for the prism layer. The volume mesh was generated in Tgrid 13.0, with a prism layer of 

15 layers and an aspect ratio of 5 from the surface mesh. The size was selected to 

maintain a y+ of more than 30, as recommended by Fluent [33]. The prism layer was 

applied to the models and the sting. The walls, roof and floor of the wind tunnel also had 

a prism layer but only 5 layer were used here. The size of the surface triangles was from 

5 mm to 100 mm, with the smaller used at the floor close to the model, and the larger at 

the wind tunnel walls and roof. The volume mesh was a hexcore mesh with refinement 

zones for the under-body and wake region. The simulation domain in the outlet diffuser 

area of the wind tunnel domain was elongated by the length of 1 tunnel diameter to 

stabilize the flow at the outlet. The total mesh size was 55 million cells; the mesh close to 

the model can be seen in Figure 22.  

   

Figure 22 Example of surface mesh and volume mesh of the simplified body. 

3.2.5 Vehicle models 

For the full-sized vehicle models an oversized and rectangular wind tunnel 

domain was used. The simulation domain had a length of approximately 13 vehicle 

lengths, a width of 11 vehicle widths and a height of 8 car heights: to remove the need for 

corrections for blockage. Boundary condition of the wind tunnel was a moving ground 

Location of  

prandtl tube 
Wind tunnel 

laboratory 

Wind 
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where the complete ground was moving. Walls and roof were set to symmetry. Final 

mesh size was approximately 65-70 million cells dominated by hexahedrals.  

The mesh was prepared so that the only changes between the different set-ups 

were the under-body geometry with a variation of the diffuser angle. The resolution of 

the surface mesh was between 4 and 10mm to resolve suitable details and have required 

quality for the prism layer. The volume mesh was generated in Tgrid 14.0 with a prism 

layer of either 5 or 15 layers and an aspect ratio of 5 from the surface mesh, to maintain a 

y+ of more than 30, as recommended by Fluent [33]. The prism layer was applied to the 

exterior body and the smooth under-body covers. The volume mesh was a hexcore mesh 

with refinement zones for the under-body, wheels and wake region. An overview of the 

volume mesh can be seen in Figure 23. The cooling module, condenser, charge-air 

cooler, radiator and fan shroud were simplified to one volume, and the mass flow was 

tuned by adjusting openings to the correct flow through the cooling pack and the engine 

bay. The simulations were carried out at 38.89 m/s to represent the wind tunnel test speed 

140 km/h. 

 

 
Figure 23 Mesh close to the car and digital wind tunnel domain. 

The solver used was FLUENT and the simulations were specified as pressure 

based with the k-epsilon realizable turbulence model. Non-equilibrium wall functions and 

a simple pressure-velocity coupling were used. 3000 iterations were performed for each 

case and it was considered converged when the variation was ± 1 drag count and the 

residuals where stable below 10
-3

. The presented coefficients are an average from the last 

200 iterations and the reference area was the same standard values as used in the tests. 

The wheel rotation was simulated with MRF (multiple reference frame) and the wheel 

dimension and camber angles were the same as the test car. Wheel geometry, such as 

radial and axial expansion, will change with wheel rotation speed. This was not corrected 

for in this study and instead the original shape supplied from the supplier was used. The 
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tread of the tyre was simplified as flat surfaces since it was more important to have the 

same wheel geometry for all simulations. 

3.3. Comparing CFD and measurements 

Aerodynamic properties of passenger vehicles are determined from mainly three 

methods: Wind tunnel measurements, CFD simulations, and road tests. For detailed 

analysis, data from the first two are mainly used. There are different benefits with the 

selected methods, and the best is a combination of all of them. There is always a question 

about the pros and cons between wind tunnel and CFD in vehicle development. Both 

offer a variety of possibilities and opportunities, and a summary is therefore proposed in 

Table 3. Additionally, what is not included here is cost for operation and investment. This 

was intentionally left out because it depends on what level of detail and performance is 

being compared. Assuming equal total cost and comparing general properties the 

following is valid: 

The main differences are that, in CFD the flow physics are modelled and include 

errors due to software, mesh, user set-up and numerical accuracy. In a wind tunnel the 

flow is measured but has errors due to geometry, boundary conditions, and wind tunnel 

properties. Measuring flow properties is dependent on test equipment, for both accuracy 

and output speed, but generally only done for selected locations and properties. A CFD 

simulation on the other hand, has unlimited flow information about the specific case, 

once a simulation is done. A CFD simulation works with exact geometry from CAD and 

it is relatively easy to model boundary conditions, such as moving ground and open-road 

environment, including rotating wheels. A wind tunnel measurement requires more effort 

and equipment to model moving ground and rotating wheels, even though that is now 

standard practice. There are also problems with accurate open-road conditions, to reduce 

wind tunnel effects like blockage and buoyancy effects. On the other hand a wind tunnel 

has the correct physics of the flow, and naturally handles fluid structure interaction, such 

as deformation of body part or wheel deformation, due to flow or kinetics. It tends to be 

time consuming and expensive to build a test model, but on the other hand relatively 

quick to measure forces and make several design iterations, once the test objects are 

available. At the time of writing, there is still higher credibility from wind tunnel 

measurements and it is therefore often used for validation, especially for drag and lift. 

The location of the wind tunnel can makes it more of a problem to transport test models 

and staff, while simulation tools are more portable and thereby also the staff. All in all, it 

could be concluded that simulations are better in the early phases of a vehicle 

development program, and the wind tunnel is more useful in later phases. Both 

complement each other and are very much needed together. 

 

 

 

 

 

 

 

 



 

 

30 

Table 3 Comparison of Wind tunnel test and CFD simulation 

CFD Wind tunnel 

Physics are modelled Physics are measured 

Unlimited flow information Selected information about airflow 

Quick to build first model (relatively) Quick to make design changes 

Exact geometry (CAD design) Mockup and clay designs 

Any operating condition (incl. b.c.) Limited to laboratory capability 

Portable tools and staff Difficult to transport equipment 

Analyze concepts Analyze details 

Development for aero Validation, high credibility for aero 

More usable in early phase More usable in later phase 
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4. Results 
This chapter is a summary of the most relevant results in the appended papers of 

this thesis, with some complementary results. First results regarding bluff bodies from 

paper III are discussed including measurements and simulations. Then the most relevant 

result of the full-size vehicle and their relevance to bluff body result. Full-size wind 

tunnel test results are limited in this work so the comparison to CFD results of full–size 

vehicles is only briefly discussed. Attention is given to the under-body, rear end and the 

wake of all the bodies.  

Different rear-end types of vehicles have different flow characteristics and vortex 

formations. This work started with the measurement and simulation of the bluff bodies to 

identify the local flow-field and aerodynamic characteristics. The improvements were 

tested on the body and finally tried on full–size vehicle simulations. With this 

information there were several combinations to test in simulations and evaluated for drag 

reduction. All simulations and wind tunnel tests were carried out with moving ground 

unless otherwise stated. 

4.1. Characteristics of bluff body rear-end models 

If a symmetrical body is brought close to the ground, the drag of the body will 

increase. The reason for this is that the flow loses its symmetry around the body as the 

gap between the ground and body blocks the flow. The stagnation point in the front is 

moved down and separation occurs earlier on the upper side. The flow around the body is 

cambered and the effective thickness h/l of the body increases [34]. The corresponding 

length to height ratio of a passenger car is approximately l/h=3, which is within a range 

where pressure drag dominates. Drag and lift depend not only on ground clearance but 

also on the angle of attack and yaw angle. For drag there is normally one minimum for 

both angle of attack and yaw. Lift is reduced with increased ground proximity but the 

gradient for different angles of attack has a non-linear relationship to the shape of the 

body. 

The four rear-end models were measured with regard to drag and lift in several 

operating conditions and different boundary conditions. Examples from these 

measurements are discussed in this section. The bodies were tested in two different scales 

with static ground. The small scale had a length of 360 mm and was tested at a Reynolds 

number of 1.32 million. The larger models were double the size and were tested at a 

Reynolds number of 2 million based on model length. The difference between the 

measurements was that the larger models were attached from the top and had the balance 

placed inside the test body, and the smaller models were attached from underneath and 

had the balance located under the floor. They were measured with the same type of 

balance. Results for drag and lift are presented in Figure 24. The Reynolds effects 

affected the results and the result spreads for the models. It was therefore difficult to 

extract one trend from one single effect. The most obvious difference was the fastback-30 

with higher drag and lift for the larger model. The smaller models generated separated 

flow over the backlight and the larger models had attached flow due to higher Reynolds 

number. This again highlights the importance of Reynolds number for scale-model 

testing, and the result was extreme in this case. The 30° backlight angle is known to be a 

critical angle [35] and produced different result in this Reynolds range. Another influence 
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was the boundary layer of the wind tunnel floor. The same geometric ratio of a ground 

clearance 0.2 of model height, as used in this example, had a larger part of the under-

body flow affected by the boundary layer for the small models. When the ground 

clearance of the large model was reduced, the drag reduced to some extent, but not close 

to the difference of boundary layer separation from the backlight. A reduced Reynolds 

number for the larger models, by reduced wind tunnel speed, did not generate separated 

flow at the backlight so the conclusion was that it was a combination of the two. The 

boat-tail and fastback-21 had reduced drag and lift with increased Reynolds number, as 

expected, and the square back only had very little scale-effects. The difference in lift 

forces of the boat-tail model was due the boundary layer of the wind tunnel and the 

diffuser effect.    

 

Figure 24 Measurement result of small and large bluff bodies  in CWT with static ground 

Left: Drag. Right: Lift. 

The large models were measured with static and moving ground and the drag was 

always higher for static ground. The difference was not the same for the different rear-

ends, and clearly the wake flow had a significant impact. The largest difference was 

found for the fastback-30 model due to the very cambered flow, and the increased under-

body flow, due to moving ground, straightened the wake. The moving ground lowered 

the lift for all rear-ends, but it had the smallest effect to the square-back since the wake 

flow was relatively symmetrical for the base model.  

The boat-tail had the largest lift effect from the ground simulation. This being 

related to the diffuser on the under-body and the boundary layer of the floor. With a static 

ground there is a boundary layer at the floor that is not there with the ideal moving-

ground. The boundary layer will be compressed under the body but it will increase again 

after the body. The diffuser will increase the static pressure over its length and direct the 

flow upward. This will cause the boundary layer to grow even more and eventually it will 

merge with the wake flow. This has a large impact from the diffuser upsweep, and the 

flow will have a big camber difference around the body that will generate a larger 

difference in lift. Figure 25 shows the CP of total pressure in the symmetry plane from a 

CFD simulation with optimum boundary conditions: that is, an oversized wind tunnel 

domain with no blockage, and a moving ground over the complete domain length, that 

generated no boundary layer.  
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Figure 25 Cp of total pressure in symmetry plane with and without moving ground. 

Upper: With moving ground. Lower: Without moving ground 

The results in Figure 26 are averaged from three different measurements where 

the bodies were dismounted and re-installed in-between. The average standard deviation 

of the result was CD 0.001 and CL 0.009, for the static ground. For the moving ground the 

standard deviation was 0.002 for CD and 0.012 for CL. The deviations were higher for the 

moving ground situation, but the effects for lift is more obvious. The errors were 

measurement uncertainties from electrical and mechanical systems and included the 

geometrical set-up. The importance of the pitch-angle accuracy was greater for lift 

compared to drag. There errors from the coefficients were larger due to the geometric 

ratio between frontal area and plan view area. Lift forces act relative to the plan view 

areas, and pressure drag relative to the front view area. The plan view area was 3.6 times 

larger than the front view area and all the coefficients are normalized with the same 

frontal area. 

 
 

Figure 26 Drag and lift of the four bodies with static and moving ground. 

The bluff body measurements were compared to simulated results in CFD. 

Traditionally the prediction of drag in RANS simulations, relative to measured results, is 

acceptable for bluff bodies and passenger vehicles. Results within 5% are good for 

absolute result. But prediction of lift forces are more difficult and have a larger spread in 
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general. Wind tunnel result is not compensated for wind tunnel effects here. The wind 

tunnel effects has an impact, and for that reason the wind tunnel domain is modeled in 

CFD. Simulations of the same models are also carried out with an oversized wind tunnel 

domain for comparsion. Simplifeid bluff bodies as used here has minimum deviation 

from test models and will give no input to a comparsion. In simulations the numerical 

effects are critical since the physics is modeled and detail resolution is individual and 

user defined. RANS simulation with k-ε turbulenc models and wall functions has a 

tendency to overpredict attached flow [14] in critical angles. One effect of this will be an 

over-predicted lift force, especially if the critical angle is on the upper side of the body. 

All simulations over-predicted lift forces and the results are shown in Figure 27. Smallest 

deviation was found for the squareback due to no critical angles. The wind tunnel effects 

had a significant impact and the result with Chalmers Wind Tunnel (CWT) geometry as 

digital wind tunnel domain was closer to measured result. s(CWT) was simulation with 

the digital wind tunnel domain as geometry of Chalmers Wind Tunnel.  s(sq) was 

simulation in over sized rectangular digital wind tunnel. Results from the fastback-30 has 

a big deviation and was considered unreliable. In simulations the residuals were high and 

convergence criteria is not fulfilled. The spread within the last 200 iterations was more 

than 20 drag counts and for lift even more. Acceptable simulation result with 30 º 

backlight angle can not be reach with this simulation method.  

 
Figure 27 Measurement and simulation result of the large bluff bodies with moving ground. 

Left: Drag. Right: Lift. 

The drag force arises from the friction in the fluid and is seen as pressure and 

friction forces. The division can be written as; CD=CDf+CDp where CDf  is the friction-

induced drag and CDp is the pressure-induced drag. The viscosity affects the body as 

friction, and generates tangential forces to the body, in the flow direction. The pressure 

forces also exist due to viscosity, but relate to other phenomena and will be generated by 

different velocity in the fluid and flow separation. The forces act normal to the surfaces in 

any direction. Figure 28 shows the division of friction and pressure forces for the four 

models in the simulations. The friction forces were approximately CD 0.05 regardless of 

rear-end shape of the model, but the pressure forces increased with size of wake and 

vortices. 
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Figure 28 Pressure and friction coefficients of the four models from CFD  

with CWT as digital wind tunnel. 

Left: Absolute result. Right: Relative result. 

A square-back model as reference was not the geometry of highest drag but it 

represented the boxiest shape. To reduce the pressure drag it is important to enable a 

pressure recovery both in side view and plan view. A demonstration using bluff bodies is 

plotted in Figure 29. A backlight angle of 21° will reduce drag 10%. Additional plan 

view angles such as taper angles of 15° enables pressure recovery of the sides and 

reduces drag 30% more. If a 10 degree diffuser is added, the drag is reduced another 

20%, in total giving 40% of the square-back. A small change in the geometry, by adding 

a diffuser, will have a big effect on the drag. It makes the wake more symmetrical at the 

same time as it creates a pressure recovery on the under-body. Straightening the wake 

reduces vortex induced drag by reducing longitudinal vortices. The effect of the diffuser 

will not be the same for another ground clearance or a smaller backlight angle due to a 

different wake asymmetry. 

 

 
Figure 29 CD relative to the square back model from CFD simulation with moving ground. 

In paper III the simplified models were tested for wind tunnel effects, geometric 

impacts and ground proximities. The ground proximity changes the flow field around a 

body and the behaviour for drag and lift is different for different rear ends. Typically 

being caused by the difference in how the flow cambers around the body. From Figure 30 

it is shown that the fastback models had reduced drag with increased ground proximity. 

The ground accelerates the air under the body and reduces the asymmetry of the wake. 
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The square-back and the boat-tail had increased drag with increase ground proximity 

because the flow asymmetry. The lowest drag is achieved when the wake is most 

balanced behind the body. The relationship for lift was simpler, with reduced lift for 

increased ground proximity, as presented in Figure 31. The exception being for very 

small ground clearances where viscous effects at the under-body becomes significant. 

The lift decreased almost linearly with more cambered flow around the body. The boat-

tail model had a stronger gradient of lift reduction with increased ground proximity 

compared to the other models, due to the diffuser shaped rear under-body. The diffuser 

pumping effect was increasing the under-body flow and reducing the under-body 

pressure with increased ground proximity.  

 

 
Figure 30 Drag as a function of ground clearance for the four models. Ground clearance h/H 0.2 is 

high-lighted because it represents the range of passenger vehicles.  

Measured with moving ground. 

 
Figure 31 Lift as a function of ground clearance for the four models. Ground clearance h/H 0.2 is 

high-lighted because it represents the range of passenger vehicles.  

Measured with moving ground. 

Pitch and yaw angles have a major effect on the aerodynamic forces. The bluff 

bodies were tested at ±2 º pitch angle, to measure the effect of pitch angle to drag, lift and 

ground clearance. This range was chosen to represent the variation of passenger vehicles 
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due to type and loads. The rotation point was chosen to be at the nose of the model, and 

the reference ground clearance was h/H= 0.2. Positive pitch angle was defined as nose-up 

attitude. In Figure 32 the effect of pitch angle to each model type is shown. All the bodies 

had increased lift with increased nose-up, pitch angle. This follows wing theory in free 

stream, meaning increased lift with increased angle of attack. Drag was systematically 

increased with increased angle of attack (nose-up). This meant that drag always drops 

with reduced angle of attack, within this span, regardless of rear-end shape. From 

aviation theory this would not necessarily be the case for the square-back, but the 

proximity of the ground changes the flow field around the body and changes the flow 

behaviour. The main body of a conventional passenger car always benefits from a nose-

down pitch but the total vehicle effects are also dependent on the impact of the wheels 

and cooling flows.  

 

Figure 32 Drag and lift of the four models depending on pitch angle. Measurement in Chalmers wind 

tunnel L2 with moving ground. 

Decreased pitch angle of up to 2º nose down decreased the drag force for all 

models. An increased nose-up pitch had a linear increase of the lift force. The different 

rear end types reacted differently to ground proximity for 2 º nose up attitude. The drag 

was reduced for the square back around nominal ground clearance but had an un-linear 

trend. The fastback-21 reduced drag until h/H 0.2 and from there unchanged with 

increased ground proximity. The drag of the boat-tail is lower than the others and it 

increases with increased ground proximity around nominal ride height. The ground 

effects become very un-linear because the rear end will come very close to ground and 

block the under-body flow. For the 2º nose-down attitude the fastback models had an 

almost constant drag, for increased ground proximity, and a strong increase at small ride 

heights. The square-back and the boat-tail had a drag increase around nominal ride 

height, with increased ground proximity. The lift had a simpler relationship for ground 

proximity for various pitch angles. All models had increased ground proximity effects 

and reduced lift forces with more nose-down pitch. The boat-tail followed a different 

behaviour with smaller lift effects due to changed pitch angle. A smaller base wake and 

reduced impact of the diffuser effects for different body pitch being the reason. The 

diffuser pumping effect was reduced significantly due to the reduced area ratio of the 

diffuser, while at the same time the under-body of all the other models had a diffuser 

effect.. 
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Figure 33 The effect of ground proximity for various pitch angle of the four bodies. 

From top to bottom: Boat-tail, Fastback21, Fastback30 and Square back. 

Left column: Drag. Right Column: Lift. 
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In paper III the general effect of small yaw angles was discussed from a bluff 

body point of view. The effect of yaw, depending on rear-end type, was studied for the 

same models. The range of yaw angles was chosen because it represented the average 

wind during day-time in the USA. The average wind was 2.05m/s at 2.1m above the road 

surface, [13] and this is considered side-wind. At normal driving at 30m/s, this resulted in 

a side-wind angle of 4º. The drag was increased more with larger base wake, such as the 

square-back, compared to the others. The increase for the square-back was up to 12 % 

and for the others less than 5 %. The opposite result was found for lift forces, where the 

square-back had significantly less lift effects than the others. This had more to do with 

the lack of backlight angle and diffuser angle of the square-back, that led to a smaller 

variation in up-sweep or down-sweep due to yaw. The results are shown in Figure 34. 

 

 

Figure 34 The effect of ±4.1º yaw angle to the rear end types.  

Left: Drag. Right: Lift. 

The surface pressure of the under-body was reduced with increased ground 

proximity, and the under-body pressure of the boat-tail model was significantly reduced 

by the diffuser.  Also, the effect of increased ground proximity was more obvious at the 

rear-end of the boat-tail which meant a reduced rear axle lift of a car. The upper-body 

pressure was also reduced with increased ground proximity but the magnitude was 

smaller. The reduced lift from reduced ground clearance was an effect of lower under-

body pressure rather than any change in the flow of the upper body. The upper body was 

also affected since the stagnation point at the front was moved down with reduced ground 

clearance. The base pressure was the mean pressure of all probes at the base and the same 

mean pressure was used for the upper and under-body for all models. 3-D effects from 

longitudinal vortices were not captured at the symmetry plane but are included in the base 

pressure since it covered part of the base area. The surface pressure in the symmetry 

plane is shown in Figure 35. 

 



 

 

40 

 

 
Figure 35 Surface pressure at symmetry plane from measurements. 

Upper: Upper body pressure. Lower: Under-body pressure. 

The variation of the average base pressure due to ground proximity is shown in 

Figure 36. The curves follow the inverted drag curve relative to ground proximity. 

Meaning that when the base pressure is increased, the drag is reduced and vice versa. The 

curves do not have the same shape between the different bodies since the ground effect 

changed the wake in different ways. When the Boat-tail had a reduced base pressure from 

increased ground proximity, the fastback21 had an increased base pressure. The boat-tail 

had an increased wake assymetry from reduced ground clearance due to the diffuser 

pumping effects. The fastback21 had better pressure recovery and smaller wake with 

reduced ground clearance. The drag of the body will also come from the projected area of 

the backlight. All models except the square-back had a backlight that was an additional 

part of the drag force. 
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Figure 36 Average base pressure variation by ride height, with moving ground.  

The surface pressure from the test data correlates well with result from 

simulations using the Chalmers wind tunnel domain as digital wind tunnel. In Figure 37 

pressure of the symmetry plane, in the simulation extracted and plotted in matlab relative 

to test data, is shown for comparison. The curves for the boat-tail correlate well. The 

larger peaks at the start of the backlight and start of diffuser are related to the fact that the 

simulations provide pressure data with a very dense mesh, and the test result is limited to 

probe position. The distance between probe positions was between 40-60mm. There was 

a deviation at the last probe, of the front part, of the upper body for all the models. The 

radius at the front did not provide fully attached flow and the flow attachment was over-

predicted in the simulations. The base pressure of the square-back was over-predicted in 

the simulation and is the reason that the drag of the model was under-predicted, as could 

be seen in Figure 27. Over prediction of the base pressure is related to the time average of 

the wake in the RANS since there was no critical separation angle. From the centre-line 

pressure of the upper body and under-body the results correlated well, except close to the 

base. As mentioned previously, the last point in the measurement was an average value of 

all the probes in the base. For the simulation it was only the surface pressure of the upper 

or under-body. The base pressure is compared in Figure 38 and the simulated results 

reveal an over-prediction for all models, but the difference was largest for the square-

back. The results from the simulation are taken from identical probe locations as for the 

measurements. For the CP, the dynamic pressure comes from the identical position as in 

the physical wind-tunnel. The boat-tail and the fastback21 used 10 probe positions each, 

and the square-back had 21 points. The result of the probe locations were extracted from 

the simulations and plotted in matlab. 

 



 

 

42 

 

 

 

Figure 37 Surface pressure at symmetry plane from measurement and CFD simulation. From top to 

bottom: Boat-tail, Fastback21, Square back. 

Left: Upper body pressure. Lower: Under-body pressure. 

The results from the simulations are symmetrical around the symmetry plane but 

the measurements include some assymetry. This was due to the model in the wind tunnel 

having small geometric deviations in installation angles.
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Figure 38 Comparison of base pressure CP from measurement and simulation 

Left: Measurement. Right: CFD. 

Flow field from symmetry plane in CFD is presented in Figure 39. The model was 

fixed from the top and the sting was included in the simulation. The moving belt and 

boundary-layer suction plate is visible on the floor of the wind tunnel. The breather slot is 

included in the figures at the end of the test section as a 20 mm slot. It functions as a 

pressure equalisation in the test section and opened into the wind-tunnel laboratory hall. 

The left-hand pictures show the total pressure coefficients and the right-hand pictures 

show the velocity magnitude. Differences in size of the wake are evident and the 

asymmetric wake of the fastback21 indicates that it was blocking the under-body flow.  
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Figure 39 Flow field from CFD simulation with Chalmers wind tunnel domain as digital wind tunnel. 

Flow field in symmetry plane. From top to bottom: Boat-tail, Fastback21, Square back. 

Left: Cp of total pressure. Right: Velocity magnitude. 

4.2. Passenger vehicle applications 

The vehicle geometry was prepared to be identical with exception of the rear-end 

upper body. The same base geometry was used in paper I and paper II, but paper II had 

more detailed grid resolution. Front end, wheels, under-body, and engine compartment 

were the same and so were ride-height and pitch-angles. The wagon has a higher roof-

line and thereby a larger frontal area. The taper angles at the rear were smaller for the 

wagon and the rear bumper was 20 mm longer for the wagon. This was all according to 

the actual geometry of the base vehicle according to their definition. The geometry was 

selected to exclude all geometry differences between vehicle types except for the upper 

body. The approach was to keep the benefit of bluff body aerodynamics, that is, well 

defined geometries, and combine the results with passenger-car geometries and boundary 

conditions. All the results from the vehicle simulations were carried out with moving 

ground, cooling flows and rotating wheels unless otherwise stated. 
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Figure 40 The sedan and wagon vehicle models overlaid. Only difference is at the rear end. 

The flow around the vehicle was re-distributed depending on the rear-end shape. 

The notchback rear-end will accelerate the flow at the upper body and have a smaller 

wake. At the same time the flow at the under-body will be reduced and the wake flow is 

directed into the ground. Consequently there is a higher under-body flow of the wagon 

and a larger wake. Figure 41 shows the difference in velocity magnitude between a sedan 

and a wagon in symmetry plane. The red section is the higher air-speed in the down-

stream flow and blue shows the lower speed at the under body.  

 

Figure 41 Difference in flow around sedan and wagon vehicle symmetry plane. Colour show relative 

velocity magnitude from wagon. Cyan colour is the cut out for the wagon body. 

The cooling flow will change with different rear-ends due to the stagnation point 

at the front will be lower for the sedan. It was seen in this work that the sedan had slightly 

higher cooling flow relative to the wagon. To determine and extract the cooling drag is 

difficult but an accepted method is to measure the drag of the car with open and closed 

cooling-inlet, and extract the difference. This method will not only include the cooling 

system, since blocking the cooling inlet will generate flow re-distribution around the 

vehicle. The cooling drag will therefore be affected by vehicle type and rear-end shape.  

Another method, as proposed by Wiedemann et al., is to measure the momentum fluxes, 

and using conservation theorems [23] extract flow energy losses from cooling flow only. 

This is actually a more correct description of cooling drag by the cooling components, 

but more time-consuming measurements and higher complexity make the method less 

used in engineering. The cooling air of passenger cars is usually discharged to the under-

body and wheel house for practical reason, and will generate some lift. Sports and race-

cars have cooling outlets on the upper-side of the body for increased downforce or 

optimized cooling flow through the radiators.  
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The wake is significantly smaller for the sedan due to attached flow over the 

backlight that gave a smaller base area. The rear wheel wakes interacted with the base 

wake for both sedan and wagon rear-ends. Since a reduced drag comes from an increased 

base pressure, to a large extend, it is desirable to have attached flow as much as possible 

and reduce the separated region. Since the wheels and the wheel wake interacts with the 

base wake this will go hand in hand. The size of the separated region is reduced with a 

smooth under-body and a diffuser at the under-body. The upsweep generates a pressure 

recovery and guides the flow in an upward direction. The wake is represented by the iso-

surface of the total pressure equal to 0 in Figure 42. It is clear that the base wake 

including wheel wake is reduced for the sedan. For the wagon the lower part of the centre 

is shorter and the wheel wakes are smaller with diffuser, though it is not so evident. 

 

Figure 42 Wake formations behind a sedan and a wagon vehicle from paper IV.  

Upper: Reference vehicles. Lower: With under-body panel and diffuser. 

Drag reduction by reduced wake is achieved with a high pressure recovery at the 

rear end. When viewed from the side, angles such as backlight and under-body diffuser 

angles are important, but the plan view angles are also important. Taper angles of the 

rear-end generate a pressure recovery and reduce drag. Since the flow field around the 

wheel is highly turbulent, the flow behind the wheel is often separated from the body. 

This leads to the taper angles having no effect and producing no pressure recovery behind 

the wheel. A test carried out on a full–size clay model at FKFS wind tunnel by Saab 

automobile [36], resulted in no improvement in drag by increased taper angles behind the 

wheel. Figure 43 shows the test car and the location of tested taper angles. Successful 

pressure recovery requires flow to be attached to the body behind the wheel. A covered 

wheel will improve the possibility of attached flow behind the wheel, and enable a 

pressure recovery by a taper angle in the lower region. 



 

 

47 

  

Figure 43 Experiment carried out on a full size car at FKFS wind tunnel, by Saab Automobile. 

Under-body covers with an under-body diffuser will reduce drag and lift of 

passenger cars, but the effect varies with upper body geometry. It is important to have 

undisturbed and attached upstream flow of the under-body. If the flow upstream of the 

diffuser has a thick boundary layer or is unattached to the floor, there will be very little or 

no pressure recovery over the length of the diffuser. An under-body cover with diffuser 

was applied to a Saab 9-3 car and tested on a sedan and wagon type for drag and lift 

effects. The simulated results are shown in Figure 44 as relative drag and lift from a 

reference car with non-flat floor. More information and details from the simulations can 

be found in paper II. Lift forces were significantly reduced and the reduction was larger 

for the sedan. Drag is reduced for the wagon with an optimum at 5 º diffuser angle but 

drag reduction of the sedan was much higher. Optimum diffuser angle for the sedan was 

higher and approximately 8º.  

 

Figure 44 Reduced drag and lift by diffusers at sedan and wagon cars. 

Drag reduction by an under-body diffuser is all about generating a pressure 

recovery to increase the base pressure. The panels including diffuser will increase the 

base pressure but the magnitude is not the same for the two body types. The pressure 

increase for the sedan is significantly higher and this is the reason for better drag 

reduction. The change relative to the reference car is made at the under-body but pressure 

recovery at the sides and trunk was also increased by the diffuser. Since the total size of 

the wake is reduced, as could be seen in Figure 42, the pressure also increases at the 
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sides. A plot of Cp of the sedan with 8º diffuser relative to the reference sedan, and 

wagon with 5º diffuser relative to the reference wagon is shown in Figure 45. For the 

wagon the effect of the base pressure was not of the same magnitude, and this followed 

the result of the drag reduction. The flow around the sedan will be cambered with the 

wake directed towards ground and the diffuser upsweep steering the flow to a more 

symmetric wake flow. The wagon already has a near symmetric wake flow so the 

upsweep enables a pressure recovery but it does not straighten the wake. This is the 

reason for the better drag reduction of the sedan. The sedan has higher lift than the wagon 

and this comes from the cambered flow, which is a result of the cambered shape of the 

body. The relation between drag and lift is parabolic, with a drag minimum relative to 

lift. 

 

Figure 45 ΔCP from reference vehicle. Left: Sedan. Right: Wagon [37].  

The better pressure recovery from the diffuser of the sedan has to do with the 

symmetry of the wake. The flow around the sedan is cambered, in side view, and the 

wake flow is directed towards ground but for the wagon it is symmetrical for the 

reference vehicles. The diffuser generates a pressure recovery for both sedan and wagon, 

but for the sedan it also made the wake more symmetric. This combined effect is why the 

diffuser generates better drag reduction for the sedan. The sedan generates a significant 

amount of lift and the reference vehicle is far from optimum in the drag/lift curve 

discussed in Figure 6. A reduction of lift forces has a large impact on the drag. The 

wagon reference on the other hand is close to the optimum in the drag/lift ratio and has a 

smaller drag reduction by the diffuser. Lift increases until 10 degrees diffuser angle but 

the reduction then becomes smaller, for both vehicle types. There was a separation at the 

diffuser that no longer increased the under-body flow and reduced the under-body 

pressure. At full separation, the wake will start at the diffuser inlet and drag will 

thereafter be increased. 
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Figure 46 Velocity magnitude at symmetry plane for sedan and wagon vehicles. 

Upper: Reference vehicle.  Lower: With under-body cover and diffuser. 

The pressure recovery at the diffuser varies over the width of the vehicle due to 

disturbed upstream flow. The panels do not cover the exhaust tunnel and there was 

turbulent flow from the wheels and from the cooling air. The variation in flow 

distribution was clear and the under-body pressure in four sections is shown in Figure 47. 

The flow in the outer sections is affected by the turbulence from the wheels, and the 

center section has more impact from the exhaust tunnel and cooling flows. The pressure 

recovery by the diffuser is relatively uniformed, even if the flow in the outer section is 

partly blocket by components from the wheel suspension.  

 
Figure 47 Under-body pressure of the sedan in four longitudinal sections. 

An under-body diffuser requires attached flow to enable pressure recovery. A 

demostration of this was made by removing the under-body covers and only retaining the 

diffuser itself. The surface pressure of the vehicle without under-body cover is shown in 

Figure 48 relative to the result of the vehicle with under-body cover. The importance of 

attached flow is visible and the base pressure recovery of the sedan is lost. The drag was 

higher than the reference vehicles, for the sedan CD +0.006 and for the wagon CD +0.008. 

The difference in base pressure was also here not as large for the wagon, but the diffuser 

itself had reduced pressure and the rearward projected area contributed to the drag 

increase. 
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Figure 48 ΔCP from best diffuser model to diffuser model without under-body cover.  

Sedan 8º diffuser, wagon 5º diffuser. Left: Sedan. Right: Wagon. 

 

The cooling flow through radiator and engine bay is important for the drag of the 

car and for the under-body flow. Since the cooling air flow will exit at the under-body 

and wheel houses, it is important to predict this right for simulations of the under-body 

and diffuser flow. The full size reference car was tested in a wind tunnel with an 

anemometer rack mounted in the cooling module to determine the amount of flow going 

through the CRFM. The simulation reference model was tuned to have the same through-

flow. Figure 49 show a illustration of the cooling flow, and how it will exit at the wheel 

houses and at the under-body. The cooling flow will have a major impact of the under-

body flow and will eventually affect the wake. 

 

 
Figure 49 Streamlines to and from the cooling system coloured by velocity magnitude. Surface planes 

in wake flow also coloured by velocity magnitude. 
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The wagon vehicle has got higher under-body flow than the sedan due to the 

different rear ends. The under-body flow downstream of the front wheels is not 

uniformed due to the exit of the cooling flow. Adding smooth floor covers with diffuser 

increase the flow at the under-body, for both sedan and wagon, and generate an upsweep. 

Figure 50 is a plot of the under-body velocity magnitude; 0.1m above ground under the 

reference vehicles.  Lower plot shows the relative difference in velocity magnitude when 

the diffuser is added. The wake is narrower for the wagon because the flow is directed 

more upward for the reference vehicle. Adding the diffuser to both models increases the 

upsweep of both models, but in total, the upsweep is stronger for the wagon. The plots 

make a clear view of the increased under-body flow due to the smoother under-body. 

 

Figure 50 Under-body velocity magnitude of reference vehicles, upper. Relative velocity magnitude 

between reference vehicle and vehicle with under-body cover and diffuser, lower. 

Left: Sedan. Right: Wagon. 

The sedan vehicle will have lift forces and the wagon car will have a down force 

after the panels and diffuser are added. The upper part of the flow generated longitudinal 

vortices that were directed down in the symmetry plane. The under-body generates 

vortices in the opposite direction, but the upper vortices were stronger and dominated 

further downstream in the wake. The wagon car generated the same vortices but the 

strength of the lower vortices were stronger and dominated. The result being vortices in 

the opposite direction relative to the sedan, further downstream. The flow around the 

sedan and wagon was cambered in opposite directions and thereby generated longitudinal 

vortices in opposite directions and of different heights from the ground. The longitudinal 

vortices are illustrated in Figure 51 by a vector plot 4 m behind the vehicles and 

streamlines released from the upper and under-body.  
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Figure 51 Vortex vectors 4m behind sedan and wagon vehicles.  

Streamlines released from upper body (dark) and from under-body (lighter). 

Left: Sedan. Right: Wagon. 

Low pressure drag is achieved with the base wake as small as possible and the 

base area as small as possible. The best way to achieve is to enable maximum pressure 

recovery, and to do that a balanced wake is required. There is a drag minimum relative to 

lift forces and this is related to the balanced wake, and a minimum of vortex drag. This 

does not correlate with a symmetrical body since the ground will change the flow 

distribution above, and under, the vehicle and effectively change the camber of the body. 

4.2.1 Energy usage 

The power a vehicle requires for propulsion must be equal to all the driving 

resistance that the vehicle has to overcome, plus losses. The total driving resistance is 

described by equation (4). The ultimate goal with reducing the aerodynamic drag of a 

passenger car is to reduce the fuel consumption of the vehicle. To test the effect of 

reduced drag and measure the reduced fuel consumption for the customer, there are 

specified driving cycles defined. The NEDC (New European Driving Cycle) is specified 

on level roads and used in Europe. The cycle is approximately 11 km in length and the 

average speed is 33.6 km/h. Figure 10 is a plot of the driving speed relative time, 

including acceleration and idle times. Similar driving cycles are available in the U.S. 

defined by NHTSA and EPA. 

The energy required to run the vehicle through the NEDC driving cycle was 

measured by simulating the driving cycles. This is an example of the energy saving by 

the reduced drag generated by the diffusers, in the vehicle propulsion phase. The result 

does not consider efficiency of driveline or any mechanical system but gives a 

quantitative energy requirement for the defined driving behaviour and vehicle speed. For 

the friction resistance, a constant friction coefficient of 0.01 is used and a gravity of 9.81 

m/s2. The sedan and wagon had different mass and frontal areas and the inputs are 

specified in Table 4. The reference CD was the CD of the reference vehicles in the 

simulations and the ΔCD was the improvement for the best diffuser model. 
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Table 4 Data used in driving cycles 

   Sedan  Wagon 
Mass m [kg] 1600   1660  

Front area A [m2] 2.168   2.218  
Gravity g [m/s2] 9.81   9.81  

Friction coefficient fr [-] 0.01  0.01 
Drag coefficient CD [-] -  - 

Delta drag coefficient ΔCD [-] -0.038  -0.009 

The energy required to drive the vehicles around the driving cycles was simulated 

and the data was normalized with the result from the reference vehicle. The test cycle 

included accelerations, idle times, driving speeds, driving distance and speed. The 

required energy was the power required integrated over the time of the driving cycle, 

E=P*t. The power required is the resistance forces multiplied by vehicle speed P=Fx*V. 

The idling times was set to zero energy required as well as the deceleration. The energy 

saved by the under-body panels and diffuser is shown in Figure 52. The improvement for 

the sedan was approximately 4%, from 13 % reduction of the drag coefficient CD. The 

relatively low energy saving from improved aerodynamics is due to the low average 

speed in the driving cycle. The total added mass of the under-body covers with diffuser 

will be very dependent on the individual design. The panels will add mass to the vehicle 

but the integration to the vehicle may end up in removal of components that reduces 

mass. Adding mass leads to increased energy usage for the vehicle in the test cycle due to 

additional acceleration and friction forces. An additional 30 kg added by the panels, 

approximately 1.8%, results in 1.2% loss in energy and would lead to a reduction of the 

total energy improvement to 3%. The same for the wagon shows that the total energy 

saved by the panels was 1% in the NEDC. If 30 kg was added by the under-body covers 

the improvement was lost. A linear adding of mass results in a near linear additional 

energy requirment in the driving cycle. 

 

Figure 52 Energy required for the sedan and wagon vehicles  

to run the NEDC relative to energy required  

by the reference vehicles. 

The aerodynamic drag has a relatively small effect in the NEDC due to a low 

average vehicle speed. In constant speed driving, at highway speeds and urban road 

driving speeds, the effect was larger. The power required to drive the sedan vehicle was 

reduced 9.5 % by the under-body panels, at 120 km/h; at 80 km/h it was a near 7% power 
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reduction. Also at constant speed driving an added mass had an impact of increased 

power required due to additional rolling resistance. The increased power required by 30 

kg added mass was less than 0.5%. The added panels to the wagon resulted in reduced 

power consumption by 2.5% at 120 km/h and 1.8% at 80 km/h. An added mass of 30 kg 

still leads to a reduction of the engine power needed. The results are presented in Figure 

53. 

The effect of the aerodynamic drag is more noticable at higher vehicle speed due 

to the square of velocity dependance of the aerodynamic drag force term, and the reduced 

impact of mass. Even though the reduced power for propulsion is large, this does not lead 

to the same magnitude of reduced fuel consumption. Reduction of fuel consumption will 

be dependent on the efficiency of the powertrain and driveline, idling power needed, and 

more  rolling resistance. But it is clear that the more effective the powertrain and 

driveline is, the closer to this result it will be. Reduced power requirement means that the 

powertrain can be reduced, and this leads to the possibility to reduce mass of chassis and 

body. The weight spiral is an important factor.   

 

Figure 53 Power required for propelling the vehicles at constant speed driving relative to reference 

vehicles. 
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5. Concluding remarks 
Passenger cars are bluff bodies aerodynamically, with the pressure drag 

dominating the friction drag. Reducing the pressure drag has the greatest potential and the 

focus should be at this. The exterior body of a passenger vehicle, such as the upper and 

under-body, is responsible for more than 60 % of the drag. The rest is related to cooling 

flows and wheels. It is therefore relevant to study the vehicle body alone, and do so with 

simplified models of vehicle proportions. Simplified bluff bodies were used to study the 

overall effects of the body shape with regard to ground proximity, ground simulation, 

yaw and pitch angles.  

 

o The rear-end shape was seen to have a major effect on the flow 

distribution around the body. The effect of drag and lift dependence on 

ground proximity is very different depending on rear-end shape.  

o A body of vehicle proportions will have reduced drag by a nose-down 

pitch as long as the flow does not generate a negative camber.  

o There is an optimum drag relative pitch angle and yaw angle of a body.  

o A square back model will have a larger drag increase by a yaw angle than 

other shapes.  

o Drag reduction of an under-body diffuser, applied to a simplified bluff 

body is depending on the upper body. A model with large backlight angle 

will have better drag reduction by a diffuser than a square back model.  

o Diffusers applied to passenger vehicles, with road vehicle boundary 

conditions, follow the same trend as diffusers applied to simplified bluff 

bodies. The main part of lift and drag of a passenger car is related to the 

main body. 

o The sedan vehicle has greater potential to reduce drag by using a smooth 

floor and under-body diffuser than the wagon. The diffuser generates an 

upsweep and makes the wake more symmetrical in side view, for the 

sedan. For the wagon the wake is already symmetrical and the diffuser can 

even generate an asymmetric wake.  

o Wake symmetry is very important for optimum pressure recovery of 

passenger vehicles.  

o The effect of correct ground simulation is shown to be important since the 

flow around the body will be re-distributed to have more flow under the 

body.  

. 

 

 

 

 

  



 

 

56 

6. Future outlook 
This work would benefit to have comparable measurement of full scale vehicles 

in a wind tunnel, for validation. A full scale test was planned but had to be cancelled due 

to the Saab Automobile bankruptcy. Another approach with the simulations is 

recommended. Conducting studies with transient simulations, and finer refinement of the 

boundary layer is out of interest. More detailed studies of the absolute agreement between 

measurement and simulation, especially for lift. Another recommendation is to extend the 

study of diffusers applied to passenger vehicles with test and simulations in yaw 

conditions. This would increase detail knowledge in diffuser function at real life 

operation.  
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7. Summary of papers 
This chapter presents a brief summary of the papers appended to this thesis. The 

summary is a quick overview of the key findings and a description of the objective of the 

study. 

 

Paper I. 

 

Marklund J. Löfdahl L. Influence of a Diffuser To The Wake Flow of a Passenger Car, 

ASME Summer Meeting FESM2012, 8-12 July 2012, Rio Grande, Puerto Rico, USA. 

 

Varying effect of a diffuser, depending on upper body, was found in bluff body 

experiments and the objective was to test this idea at full scale vehicles. The study was 

formed to test a diffuser applied to cars under road vehicle boundary conditions in CFD. 

The simulation models were setup to a sedan and a wagon car and tuned to road vehicle 

boundaries. The result was that there was a significant difference in the drag reduction 

improvement between the sedan and the wagon vehicle. The difference was seen to be 

related to the base pressure recovery and the wagon vehicle does not have the same 

potential as the sedan.  

 

 

Paper II. 
 

Marklund, J., Lofdahl, L., Danielsson, H. and Olsson, G., "Performance of an 

Automotive Under-Body Diffuser Applied to a Sedan and a Wagon Vehicle," SAE Int. J. 

Passeng. Cars - Mech. Syst. 6(1):2013, doi:10.4271/2013-01-0952. 

 

 

This paper extends and expands the study in Paper I. More details and 3D effects 

were studied. Similar simulations were carried out with a more detailed computational 

grid. The better drag reduction potential of the sedan was confirmed and lift forces were 

shown to be reduced with increased diffuser angle. This is not valid for high diffuser 

angles due to flow separation. Changed flow distribution above and under the vehicle 

depending upper body, that is, higher under-body flow for wagon body. Also, an 

increased under-body flow due to the diffusers. Undisturbed upstream flow of the 

diffusers was shown important. The wheel wakes were shown to interact with the base 

wake and covered wheels reduces drag, also in combination with a diffuser. 
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Paper III. 

 

Marklund, J., Lofdahl, L., “The Influence of Ground Proximity on the Flow Field around 

Different Bluff Bodies”, Submitted to Journal of Fluids Engineering. 

 

This study was an extensive study of bluff body models with different rear end 

shapes and the effect of drag and lift. The study was both experimental and numerical 

where forces and surface pressures were compared. Simulations correlate well with 

measurements and the wind tunnel effects were seen to be very important.  Different rear 

end shapes were seen to have a big variation in lift and drag depending on pitch-, yaw 

angles and ground proximity.  

 

 

 

 

Paper IV. 

 

Marklund, J., Lofdahl, L., “Effect of an Under-body Diffuser to the Aerodynamic 

Performance of Sedan and Wagon Type Cars”, Submitted to Journal of Fluids 

Engineering. 

 

This paper compares the effects of a diffuser applied to a simplified bluff body 

and passenger vehicles. The drag reduction by the diffuser follows the same trend for the 

vehicles as for the simplified bodies. The drag reduction is relatively larger for the 

simplified bluff body compare to the passenger cars. Effects from the wheels and 

separated regions are only affected by the diffuser to a small extent. The result from this 

is that the full potential of the diffuser is bigger on the simplified body.  
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