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ABSTRACT 

This master thesis work is dedicated to gene expression analysis in order to identify genes involved in 

temporal cell fate determination in the developing hindbrain. An embryonic stem cell-based 

differentiation protocol was used for the derivation of neural stem cells competent to produce hindbrain 

specific neuronal cell types: visceral motor neurons and serotonergic neurons. mRNA isolated from the 

neural progenitors was subjected to deep sequencing. The experiments were carried out at Cell and 

Molecular Biology department, Karolinska Institute, and Science for Life Laboratory, Stockholm. This 

work is based on the concepts of developmental and stem-cell biology, statistical and computational 

analysis.  

An important mechanism in the emergence of neuronal diversity of central nervous system is temporal 

patterning, i.e. time-ordered generation of distinct cell types from a common pool of progenitors. In the 

hindbrain, a progenitor domain that expresses the transcription factor Nkx2.2 sequentially gives rise to 

visceral motor neurons (VMNs), serotonergic neurons (5HTNs) and oligodendrocyte precursor cells 

(OLPs). Understanding the molecular mechanism that underlies the temporal changes in the progenitor 

competence of Nkx2.2 progenitor cells has a potential clinical value since these neural cells are 

associated with neurodegenerative or neurological disorders.  

This study is based on the analysis of gene expression changes during VMN, 5HTN and OLP 

generation from mouse embryonic stem cells in a series of transcriptome snapshots after experimental 

perturbations, such as gene knock-outs and blocking of the TGFβ2 signaling. The differential 

expression analysis on RNA-seq data raised an additional challenge since the read-based expression 

values, unlike those from microarrays, are not subject to traditional statistical methods (such as t-test or 

linear models). Further, to characterize the molecular mechanisms behind the transcriptome response 

the method of Network Enrichment Analysis (NEA) was applied. Here, we report genes and signaling 

pathways involved in the temporal patterning in the embryonic hindbrain. 

 

Key words: Sonic hedgehog, visceral motor neurons, serotonergic neurons, oligodendrocyte 

precursors, RNA-Seq, statistical analysis, Network Enrichment Analysis.  
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1  INTRODUCTION 

The central nervous system is a major control center of the body which allows an individual to perform 

many tasks from sensory perception and motor coordination to behavior and memory. All these 

functions are being carried out by hundreds of functionally distinct neuronal subtypes that establish 

specific synaptic connections with other neurons. In addition to neurons, the adult brain contains 

astrocytes and oligodendrocytes together called macroglial/glial cells, which provide supportive 

functions to neurons. During vertebrate embryonic development, neurons are generated from pools of 

progenitor cells. In the ventral hindbrain, a pool of progenitor cells that express the transcription factor 

Nkx2.2
+
 generates in a defined temporal order visceral motor neurons, serotonergic neurons and 

oligodendrocyte precursors [1,2]. Uncovering the molecular mechanisms that regulate temporal 

changes in progenitor competence of Nkx2.2
+ 

progenitor cells have a clinical value. These hindbrain 

neural subtypes have been associated with severe neurodegenerative and neurological disorders. For 

example, serotonergic neurons are involved in the synthesis of the neurotransmitter serotonin and 

alterations in serotonergic neuron function have been related to neurodevelopment disorders such as 

depression, anxiety, autism, disorders of energy balance, schizophrenia, and sudden infant death 

syndrome. Visceral motor neurons are involved in the activity of smooth muscle fibers, cardiac muscles 

and glands. VMNs degeneration results in the muscle movement disorders such as amyotrophic lateral 

sclerosis, primary lateral sclerosis and progressive muscular atrophy [3,4,5,6].  

 Embryonic stem cells are a powerful tool to study neural development where CNS progenitor 

cells can be generated from ES cells and from these cells it is possible to generate the neurons in the 

presence of specific mitogen and signaling molecules [7]. Identification and selection of differentially 

expressed genes from the RNA-seq data is quite challenging. As the data is of count nature, which is 

different from the micro-array intensity data, the traditional methods inherited from the micro-array 

toolbox could not be applied directly. The methods such as DESeq, Edge R used to analyze the RNA-

seq data were not reliable to current data, as the samples do not contain biological replicates. This 

analysis uses bioinformatics, statistical and systems biology approaches to carefully evaluate and select 

the methods that are more relevant to the situation. Further in order to understand the molecular 

mechanism behind the transcriptional response that enables the temporal switch, enrichment analysis 

was performed to access the relationship between differentially expressed genes and known gene-sets 

representing biological pathways. Enrichment analysis was carried by Gene Set Enrichment Analysis 
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and Network Enrichment Analysis. GSEA gives a list of ranked genes from the Altered Gene Sets that 

are over represented in Functional Gene Sets. Moreover, GSEA ignores the functional relations 

between AGS genes themselves and between AGS and outside pathways. Whereas NEA, uses all 

available network links scattered over the network to test enrichment hypothesis of functional 

associations between AGS and FGS.  

 In the following, I describe the method we followed to analyze the RNA-seq data, statistical 

tests that were implemented to calculate the differential attributes such as p-adjusted (q-values) and 

fold-change values, cross-comparative analysis between wild-type and mutant samples used for the 

identification of the novel candidate genes associated with VMN-to-5HTN cell fate switch, 

visualization of identified differential expressed (DE) genes and description of functional relations by 

NEA.   

1.1 AIMS AND OBJECTIVES 

The aim of the work presented in this master thesis was to understand the concrete mechanisms that 

underlie the switch in a series of global transcriptome measurements using wild-type differentiated ES 

cells or mutant ES cells for key transcription factors which are essential for VMN-to-5HTN fate switch. 

Specific aims 

1. To investigate the method to deal with RNA-seq data in the absence of biological replicates and 

to obtain robust and statistically significant estimates of gene differential expression for both 

high and low abundant transcripts. 

2. To perform higher level cross-comparisons between different pairwise contrasts of wild-type 

and mutant samples to identify novel genes associated with cell-fate switch and 5HTN 

generation.  

3. To evaluate applicability and performance of different methods of enrichment analysis, to 

analyze the lists of DE genes, to interpret how these genes are involved in biologically relevant 

functional pathways and processes. 
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2     BACKGROUND 

During the early stages of CNS development, individual progenitor cells acquire distinct properties in 

the accordance to their spatial positions along the anterior/posterior (A/P) and dorsal/ventral (D/V) axes 

of the neural tube and generate different neural cell types. The anterior part of the neural tube develops 

into forebrain that adjoins the midbrain, followed by the hindbrain, and the posterior part of neural tube 

develops into the spinal cord (Figure 1A). In the dorso-ventral patterning, the neural tube is divided 

into a defined set of compartments, each containing distinct progenitor cells. Later on, each progenitor 

pool gives rise to a molecularly and functionally distinct class of interneurons or motor neurons. The 

patterning along the DV axis is initiated by activities provided by two signaling centers (Figure 1B). 

Ventrally, the notochord and floor-plate cells secrete the molecule sonic hedgehog (Shh). The 

concentration of Shh varies from ventral to dorsal axes. It induces the ventral subtypes and represses 

dorsal fates. Dorsally the roof plate secretes BMPs and Wnt which repress ventral identities and induce 

dorsal cell fates. At intermediate regions of the neural tube, retinoid signaling emanating from the 

somites adjacent to neural tube induces the generation of interneuron subtypes at this level [8]. 

 

Figure 1A) Mouse embryo is subdivided along the AP axis: forebrain (FB), midbrain (MB), hindbrain 

(HB) and spinal cord (SC) and B) The neural tube is patterned along the DV axis: notochord (NT) and 

floor plate (FP) produce Shh; roof plate (RP) produces BMPs and Wnts [33] 

In the ventral hindbrain, the high levels of Shh signaling establish a progenitor domain located dorsally 

to the floor plate, which expresses the homeodomain transcription factor Nkx2.2. During development, 

Nkx2.2 progenitors sequentially generate visceral motor neurons, serotonergic neurons and 

oligodendrocyte precursors in a time defined manner (Figure 2) [1,2]. During the period of VMN 

neurogenesis, Nkx2.2
+
 expresses the paired-like homeodomain transcription factor Phox2b. This is an 



 

4 

 

important determinant of VMN fate [1]. At later stages, Nkx2.2
+
 progenitors cease to generate VMNs 

and begin to produce 5HTNs. This is accompanied by the down-regulation of Phox2b and expression 

of high levels of Foxa2 [1,9]. Loss-of-function experiments revealed that loss of Phox2b results in the 

premature generation of 5HTNs [1]. In loss of Nkx2.2 mutants, 5HTN are not generated which is 

associated with an unexpected prolongation in the production of VMNs and a failure to suppress the 

progenitor expression of Phox2b and Nkx2.9 [1]. Shh also induces the expression of Tgfβ2 in Nkx2.2
+
 

progenitors at later stages. Tgfβ2 and Phox2b establish cross-repressive interactions which are 

important to establish a period of VMN generation at early stages and a robust repression of VMN 

production later [10]. This process can be recapitulated in ES cell bases in-vitro systems (Figure 2). 

Compared to in-vivo, in-vitro systems offers wide benefits to perform experiments for genome wide 

studies. Mouse ES cells are pluripotent cells obtained from the inner cell mass of a 3.5 day old embryo 

(the blastocyst). They can be maintained in vitro for extended periods without loss of their capacity to 

contribute to cell lineages when re-implemented back into blastocysts. ES cells have the ability to 

maintain a normal karyotype for innumerable cell divisions. The possibility to extract large amounts of 

mRNA from ES cells in vitro compared to in vivo makes ES cells an attractive model for genome wide 

analysis.     

 

Figure 2 A)Sequential generation of visceral motor neurons, serotonergic neurons and oligodendrocyte 

precursors in temporal order B) Expression of Nkx2.2 and Phox2b at d3 (yellow), Down-regulation of 

Phox2b at d5  C) Generation of VMN (d5) from post-mitotic neurons detected by Isl 1/2 and generation 

of  5HTN at d7 detected by Pet1markers[10] 
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2.1   RNA-seq 

High throughput sequencing technologies have recently become a popular methodology, commonly 

used among other applications to measure global expression with high accuracy. The technology of 

sequencing transcribed RNA followed by transcript mapping and quantification is known as RNA-seq. 

It has several solid advantages over micro-arrays and other previously developed methods. It is the first 

sequencing method that potentially allows the entire transcriptome to be surveyed in a very quantitative 

and high-throughput manner [11]. RNA-seq enables investigation of the complex aspects of 

transcriptomics, e.g. discovery of novel RNA entities, transcript isoforms, allele specific gene 

expression, verification of candidate mutations in RNA-coding regions, identification of DE genes 

between two conditions such as treated versus non-treated cells, cancer versus normal cells and 

between wild type and mutant strains.  

The procedure of RNA-sequencing includes taking samples of purified RNA, shearing it, converting to 

cDNA, and sequencing on high throughput platforms such as Illumina Genome Analyzer, Applied 

Biosystems Solid or Roche 454 Life-sciences sequencing systems. This process can generate millions 

of short reads (25-700 bp) taken from one end of the cDNA fragments. Short reads could also be 

generated from both ends of each cDNA fragments (paired-end reads).  After sequencing, the reads are 

mapped to the reference genome or transcriptome. The task at this step is to find the genomic location 

where each short read best matches to the reference genome, while allowing errors and structural 

variation. Next, the mapped reads are assembled into gene-level, exon level or transcript level 

summaries depending on the aim of the study. Later the summarized data are normalized for gene 

length and total transcript amount in the sample. Then the expression differences are compared with 

statistical tests, leading to a ranked list of genes with associated p-values, false discovery and fold 

changes estimates (discovery of differential expression). Further, biological insight from these lists can 

be gained by systems biology approaches [12]. 

2.2   Pathway/Enrichment Analysis 

Comprehensive and insightful characterization of gene sets altered in specific conditions (AGS) is a 

challenging task. One of the most common approaches is to access the functional associations between 

a gene set of interest such as differentially expressed genes and known gene sets representing 

biological processes (e.g. GO terms) or pathways, generally termed as FGS, i.e. lists of genes that were 

previously assigned a common biological annotation. To identify and rank such associations, a wide 
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range of enrichment analysis tools have been developed in recent years. The term enrichment analysis 

refers to examination of the list of genes to determine if they are over-represented among any set of 

certain processes or pathways members. Various enrichment analysis tools such as GSEA, DAVID, 

GoToolbox, and FATIGO etc address various challenges of functionally analyzing large gene lists. All 

these methods systematically evaluate the relationships between AGS and FGS, then statistically 

highlights the most enriched (over/under represented) biological annotations out of thousands of linked 

terms and contents.  

Problem 

The GO and KEGG databases do not encompass all functionally coherent groups and if the information 

about the differential expressed genes is not present in such databases, then it  results in poor overlap 

between two sets and the analysis gives false negatives. 

2.2.1 Network Enrichment Analysis  

The idea behind NEA is to overcome the above mentioned limitations and consider the whole list of 

differentially expressed genes which are not necessarily to be the members of any already known 

functional category, but could be connected to such members in a network (Figure 3). Comparing to 

other tools, NEA [13], provides a network-based approach to illustrate novel gene sets with its 

biological functional categories. This method provides the interactions between AGS and FGS along 

with the comprehensive statistical evaluation. NEA is implemented in Perl (in preparation), R [13] and 

C++ [14]. The tool generates the statistics about the significant number of connections between two 

given gene sets.  

The network enrichment was estimated with NEA z-scores. The standard z-score for the biological 

network connectivity between differential expressed gene list (A) and genes of a known functional 

group (F) was computed from the observed and expected link counts and their standard deviation as 

follows  

z-score =  

In the given network, nAF represents the total number of links between any genes of A and any genes of 

F, is the mean and σAF is the standard deviation. A default statistic counts the direct links between 

two gene sets. Under the true null hypothesis, i.e. in absence of any systematic functional links between 
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gene groups, the z-scores should be approximately normally distributed. The z-scores could be 

converted to specific NEA p-values (the probability of a non-existing FGS-AGS relationship to be 

detected as existing by the NEA test) and to FDR (the probability of the detected FGS-AGS 

relationship to be genuinely false) by standard procedures. For both direct and indirect links, false 

discovery rates (FDR) were determined by adjustment for Benjamini and Hochberg multiple testing 

method [15]. Alternatively, the false discovery proportion was controlled by permutation tests on 

random gene sets of matching size and topological properties, which did not show any strong deviation 

from the Benjamini and Hochberg method. 

 

Figure 3: Figure illustrating the idea of GSEA and NEA [13] 

For comparison with NEA, the GSEA scores were also calculated using the same AGS and FGS lists as 

in NEA with the hyper-geometric test, also known as Odds ratio test [16]. These z-scores were also 

converted to p-values and adjusted for multiple testing using Benjamini and Hochberg method.   

The gene regulation and functional coupling (relation between gene/proteins in a network) in general is 

not limited to the transcription factor activity and there are various molecular mechanisms such as 

protein phosphrylation, mRNA coexpression, miRNA regulation etc. Funcoup [17] enables data 

integration from various experimental platforms which convey information about this variety of 

mechanisms to predict network links between nearly all genes and proteins in the global biological 

network. The latter thus includes differential expressed genes and pathways that determine different 

functional responses.  
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3 METHOD 

The project is divided into two sections 1) Gene expression analysis of RNA-seq data 2) Enrichment 

Analysis. All the analysis was performed under the UNIX environment and programming languages 

used in this project were Perl, html and R-a statistical tool along with Bioconductor packages. 

 

 

Figure 4:  The overall view of the data analysis. Boxes in grey are the ones described in this work. 

3.1     RNA-Extraction  

To determine the overall transcriptional changes associated with the temporal shifts in neural 

progenitor cells, loss-of-function experiments were done with mouse ES cells in vitro [Figure 5]. 

Analysis of Nkx2.2 mutants reveals genome wide transcriptional alterations of cells which fail to 

execute the temporal switch and thereby inappropriately continue to produce MNs at the expense of 

5HTNs during late stages. Conversely, loss of Phox2b results in loss of VMNs and early generation of 

5HTNs. In addition to Nkx2.2
+
 and Phox2b transcription factors, the role of signaling molecule Tgfβ2 

was also studied using an inhibitor of this signaling pathway, SB-505124 [18].  It is a small inhibitory 

molecule which binds to the kinase domain of Tgfβ2 receptor (Tgfβr1) thereby blocking Tgfβ2 
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signaling.  Inhibition of this signaling pathway results in a prolongation of Phox2b expression and 

generation of VMNs at the expense of 5HTN. 

Extraction of RNA samples for NGS experiments 

mRNA samples were extracted by performing individual experiments on ES cells. First, in normal 

scenario (WT) Shh and RA were added to the culture medium which will induce the expression of 

Nkx2.2 progenitors around day 2.5-3.5. VMNs and 5-HTN were formed at day 3.5 and day 5.5 

respectively. By applying magnetic cell sorting (MACS), Nkx2.2 progenitors were separated from the 

post-mitotic neurons and mRNA was extracted from the cells through standard methodologies. 

Similarly, mRNA samples were collected individually from the Nkx2.2 mutant, Phox2b mutant and 

SB-treated progenitor cells using MACS. These samples were subsequently subjected to deep 

sequencing. Culturing of ES cells and extraction of mRNA samples were done in the Department of 

Cell and Molecular Biology, Karolinska Institute.  

 

 

 

 

 

 

 

 

 

 

Figure 5: In vitro analysis of ESC differentiation. Differentiation of ES cells, appearance of VMNs 

around day 3.5, 5HTN (red) around day 5.5 and OLPs(pink) at day 9.5. Cells extracted from progenitor 

cells by MACS. [10] 
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3.2 RNA-seq Experiments 

RNA–sequencing experiments were carried out on the second generation Illumina HiSeq-2000 

machine at Science for Life Laboratory, Stockholm. The 12 samples extracted at different time points 

and experimental conditions were multiplexed and loaded into one lane of the sequencing machine 

[19].  The raw reads (~100 bases long) were analyzed with the tool Tophat to map them to the mouse 

reference genome as transcripts, taking into account exon-exon splice junctions [20]. This program 

takes the raw reads (fastQ files) as an input and produces BAM files. The BAM files (the aligned 

reads) can be viewed with the help of SAM tools. After the mapping procedure, a tool HT-Seq-Count 

[21] was used to obtain count values for genes, i.e. numbers of mapped raw reads. These gene-

expression values were not normalized for the gene length, hence could not be interpreted directly as 

mRNA expression levels. E.g. longer transcripts have higher read counts at the same expression level 

than shorter ones. Furthermore, the samples differed in the total number of sequences (Table 1). 

Highest number of reads (around 18 million) was observed for Nkx2.2 mutant sample at day 3.5 

whereas lowest number of reads (around 11 million) was noted for embryonic wild-type sample at day 

1. In order to eliminate the gene length and sample biases, normalization was done by software 

Cufflinks [12,22]. The transcript abundances were represented as Fragment Per Kilobase of exon per 

Million fragments mapped (FPKM), i.e. values normalized by transcript length and total number of 

reads per sample. 

 

Table 1: Output of Illumina HiSeq-2000 machine. Column 1: lane number; column 2: sample index. 

Reads that had lost the sample indexing fragment (hence not matched) are given as unmatched. 

Column 3: number of sequences in each sample.  
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3.3 Gene-Expression Analysis  

The first step of gene-expression analysis is to check statistics for all the samples. The data shown 

below is an example of fpkm table (normalized counts). The first column is Ensemble Id, second 

column is gene name and following columns represent the count value for all samples. While mapping, 

few genes were not properly assigned to the reference genome such gene values across the samples 

were given as 0 and some of the genes were expressed in low measure. Such genes were not considered 

for further analysis and were pruned from the list of DE genes.  

 

3.4 Clustering 

The Clustering is a common statistical technique for exploratory data analysis. Clustering methods are 

divided into Hierarchical Clustering and Partitioning. The former is based on assumption of the 

hierarchical data i.e. genes/samples can be ranked based on their similarity whereas partitioning 

methods (like K-means) iteratively converges k-random initial clusters and assigning patterns to the 

nearest cluster [23]. Hierarchical clustering [24] was used for analysis. This method is based on 

calculating the distances between each data value. The distance measure used is called Pearson 

correlation, it captures similarity of the expression curves of two items (genes or samples). The 

similarity measure (rij) is given as equation 1 

    rij =   ------------------------------------------ (1) 

The similarity score (rij) closer to 1 indicates a perfect correlation. Hierarchical clustering includes 

several methods, namely single linkage, complete-linkage, average-linkage, wards etc. The distinction 

among them depends on how the distances between clusters are calculated. Average method was used 

to calculate the distances between clusters; this method uses the average distance between objects from 

the first cluster and objects from the second cluster.  
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3.5 Differential Expression Detection  

Although RNA-seq experiments are claimed to generate highly reproducible results (hence no 

replicates in many RNA-seq projects) it is difficult to eliminate the non-biological experimental 

variability from the true biological differences. To better infer true expression values, appropriate 

modeling of the variability is important. The formal aim of statistical testing is to try rejecting the so 

called null hypothesis, i.e. an assumption of no difference between the expression levels of two 

samples. The differential expression of a particular gene is reported as significant if the observed 

difference in expression levels is greater than what is expected just due to natural random variation 

with a certain probability. 

There are numerous methods to measure gene expression from micro-array experiments. All 

those methods could not be applied directly to RNA-seq experiments because it gives count 

measurements (discrete nature), whereas micro-array experiments gives continuous intensity values. In 

micro-array experiments, the fluorescent intensity values are log transformed and then analyzed as 

normally distributed random variables, while transformation of count data is not well approximated by 

continuous distribution especially when dealing with lower count range or with small samples [12]. 

Hence, statistical methods such as t-test and linear models cannot be applied directly to analyze the 

micro-array data; indeed such methods are most suitable when dealing with replicates.  In this study, 

genes of our particular interest were transcription factors that often have genuinely low expression 

levels and hence low counts which make differential expression less sensitive.  

DESeq [25] is one of the most commonly used packages to do differential expression analysis for 

sequence count data. It assumes a non-linear relationship between the variance and mean expression 

levels which allows the variance to be fitted using pooled data with similar expression levels. This is 

done since low number of replicates make the estimation of variance difficult when using just the data 

available for a particular gene. It produces test p-values based on approximation of exact test (similar to 

fishers-exact test with changed calculations) [25]. By using the DESeq package only very few DE 

genes were discovered. Barplots, MA plots describing the p-value distribution obtained by DESeq is 

discussed in the Results Section (Figure 9A-C). It is important to note that the samples analyzed were 

without biological replicates. Hence, for this project we used binomial z-scores that employ odds ratios 

of observed fold changes to calculate the p-values and false discovery rates (Figure 9D-F). This 

scenario was different from the general cases, where the p-values can be calculated by applying linear 

models or t-test/ANOVA test.   
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3.5.1 Odd's (binomial) z-score 

Odd's method yields very good results in addressing various biological questions. The odds is defined 

as ratio of probability that the event of interest occurs to the probability that it does not occur. It 

provides an estimate with confidence interval for relationship between the two binary (Absent/present) 

variables. Generally, Odds Ratio (Equation 2) is explained by 2x2 tables [16]. The zero counts of genes 

in all samples were removed by adding a pseudocount „0.5‟ which reduces the number of tests to 

perform and false discovery rates. 

 Experimental Control 

Gene i a b 

Remaining genes c d 

 

L =     --------------- (2) 

L represents samples log odds ratio, a, b represent gene expression value for particular gene i and c, d 

represent summation of gene expression values for  the remaining genes in mutant and WT samples 

respectively.  

The distribution of log odds ratio is approximately normally distributed. 

X ~ N (log (OR), σ
2
) 

In order to test whether these odd ratios calculated were significant, standard error of log odds ratio 

were calculated as follows  

SE = dcba /1/1/1/1  

The z-scores (standardized log-odds ratio) =  

Using R function for two-sided test, p-values were calculated from z-scores by the formula, 2*(1-

pnorm (abs (z-score))) 

p-value 

The p-value is defined as an estimated probability of rejecting null hypothesis (Ho) of a study question 
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when that hypothesis is true. In our context, null hypothesis was no differences between the wild-type 

and mutant samples for a particular gene i. If the p-value is less than significance level (<0.05), then we 

rejected the null hypothesis i.e. accepted a difference exists between two samples for a particular gene 

i. In order to avoid low counts, the genes with count sum for a pair (si, sj) greater than 5 were 

considered to calculate the p-values from their binomial z-scores.   

Multiple Testing Problem (False Discovery Rate) 

When we set a p-value threshold of 0.05, it means there is 5% chance that the result is a false positive. 

While 5% was acceptable for one test; if we had done multiple tests, then this 5% would result in a 

large number of false positives which is called multiple testing problem. We applied Benjamini-

Hochberg method [15] to control FDR and accepted the cutoff 0.05 of this adjusted p-value (q-value), 

which implies that 5% of DE cases might be false positives in reality. 

Fold change 

Fold change estimates represents the biological significance and is often used in gene expression 

analysis of micro-array, RT-PCR and RNA-seq experiments to measure the change in mRNA/gene 

expression level. It is a number in logarithm based 2 showing how many folds the gene expression has 

gained from wild-type(x) to mutant condition(y).  

Fold-changei=       

Log2-Fold-changes Up-regulated Down-regulated 

1.5 fold +1 -1 

2-fold +0.585 -0.585 

Log2-fold change values 

The genes with fpkm sum and count sum for a pair (si,sj) greater than 5 (to avoid very low counts) 

were further considered for the fold-change estimation. In some situations for a gene, fpkm fold-change 

was high (high gene expression) and corresponding q-value was also high indicating lower statistical 

significance. E.g. gene Wdr17 has high fpkm log2-foldchange (1.938) between SB treated at day 

3.5(x6) and wild-type at day 3.5(x5), but the q-value is 0.69. The count values of x5 and x6 were 11 

and 14, indicating almost same gene expression. So, the binomial z-score will be close to 0, hence q-

value is high. There exist many such cases in the data which leads to inconsistent results. The genes 
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whose normalized and raw count fold-change values greater than threshold were considered for further 

analysis. The reason to consider both the normalized and raw counts is to make the analysis too strict. 

Correlation 

To find the degree of similarity between fpkm and count values, correlation analysis was done. 

Correlation values between fpkm and count values for each gene were calculated with an R function 

using Pearson method (Equation 4). Figure 6 represents the correlation histogram, where each bin 

corresponds to total number of the genes and x-axis represents the degree of correlation. In correlation 

analysis +1 indicates strong correlation, whereas -1 indicates negative relation between the fpkm and 

count variables. The bins below 0.0 were genes whose fpkm and count values were not related, Table 2 

gives the information of such unrelated genes. E.g: gene Sez6, for sample 2 the values of fpkm and 

counts were 2.068 and 32 respectively, whereas for sample 3 values were 1.9052 and 55 respectively. 

This shows the disagreement between two variables. In reality count value of sample 2 should be 

greater than samples 3 since the fpkm value of sample 2 is greater than sample 3. This variability is 

explained as read mapping problem in RNA-seq experiments where mapping was done by two 

different programs which have different policies. The correlation factor was taken in account to 

eliminate count-fpkm bias and only the genes with correlation value greater than 0.5 were considered 

for further analysis. 

r = 
– –

    --------------- (4) 

Sez6 1.0031 2.068 1.9052 2.4272 0.4973 0.861 0.7223 0.114 1.407 0.7164 0.471 0.0294

Sez6 13 32 55 34 18 22 25 4 45 26 18 1

Wnt10b 0 0 1.019 0.607 1.3177 0.6458 0.0546 0.312 0.075 0 0 0.2861

Wnt10b 0 2 20 6 31 11 1 5 1 1 2

Neurog1 0.14954 0.0802 1.8546 3.2383 1.8539 1.7575 1.671 0.118 0.387 1.5753 2.118 0

Neurog1 2 1 25 46 30 26 33 2 6 24 37 0

Pax6 11.5398 51.428 52.55 17.089 18.705 29.655 18.852 7.888 1.954 3.7145 15.47 0.7374

Pax6 172 648 725 255 301 464 393 152 42 64 303 11  

Table 2: Values in red represent uncorrelated fpkm and Counts. 2-13 columns represent the various 

samples at particular condition. Fractional values represent fpkm values whereas numeric values 

represent count values. 



 

16 

 

 

Figure 6:  Correlation between fpkm and count data. Height (y-axis) of bar represents number of 

genes, x-axis represents degree of correlation 

Fpkm Sum 

Some of the genes across samples had very low fpkm values i.e. 0 to 10. It might be due to a 

sequencing artifact where reads were not properly mapped to the genes. Instead of eliminating all the 

genes with low fpkm values, genes that had sum of fpkm values greater than cut-off and genes with 

good correlation between fpkm-counts were considered. From (figure 7 c), the cut-off value was 

defined as 10 since bins showed a positive correlation (greater than 0) 

 

Figure 7: Histograms plotted against fpkm_sum and fpkm-count correlation 
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3.6 Cross-comparisons between WT and mutant samples (Quadruplet 

Comparisons) 

The Venn-diagrams give a clear representation of data, like how many genes were differentially 

expressed and if there were any overlapping genes between pairs of samples (e.g. x9x5, x8x5, etc). 

'VennDiagram' package in R was used for plotting; it is a flexible package for making two to five 

comparisons. In order to identify the differentially expressed genes across samples, quadruplet 

comparisons were done. The DE genes which passed the above mentioned criteria were selected and 

Venn-diagrams were generated. Venn-diagrams just give numerical representation of data, but it does 

not give information of which genes were expressed. Further in-order to access the gene information in 

particular comparison, an R code was written to generate two separate text files for 1.5 fold difference 

and two-fold difference, which can be easily accessed to visualize the genes of interest based on their 

fold-change values. The files contain information about the Ensemble Id, gene names and its 

description, normalized expression values, correlation value, p-adjusted values, fold-change values, so 

on. Besides these, there is column with condition. For example in a quadruplet comparison between 

four cases (x6x5,x9x10,x11x8,x8x5), the genes which pass the criteria in a particular case was assigned 

as “+” , those genes which did not pass was set to “.” . If a gene is passed in all four cases, the 

condition was given as “++++”. So with this condition as key, it is possible to extract the genes and its 

information for a particular case from the text file.  

3.6.1 High-level cross comparisons between WT and mutant samples 

From the above analysis, an approach to represent the DE genes was identified. Applying the same 

protocol, high-level cross comparisons were done to identify novel genes involved in VMN-to-5HTN 

fate switch.  

The block of TGFβ2 signaling by SB inhibitor as well as knockout of Nkx2.2 should extend the period 

of VMN generation in the WT neural progenitors and delay the 5HTN generation. By the selection of 

genes „up-regulated‟ during differentiation in the control conditions and the same time not changing the 

expression level in the SB treated samples or Nkx2.2 knockout cells , the important regulators of 5HTN 

generation can be targeted. Conversely, the genes showing „down-regulation‟ during the differentiation 

but maintaining high expression level upon TGFβ2 inhibitor treatment or in Nkx2.2-deficient cells 

assumed to be important for the generation of VMN (Figure 8A). Phox2b mutant progenitors are not 

able to produce VMN at any stage of differentiation. In the mutant cells at the time, when neurogenesis 
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is initiated, 5HTN are generated instead of VMN.  Thereby the genes „upregulated' in the Phox2b 

mutant progenitors in comparison with the WT progenitors at d3.5 could be involved in 5HTN 

generation. The same time these genes should show significant up-regulation in the WT cells from d3.5 

to d5.5 of differentiation – with the changes in the WT progenitor cell competence from VMN to 5HTN 

generation. Comparing the opposing list of genes down-regulated in the WT cells during the 

differentiation and the same time showing low expression level in the Phox2b mutant progenitors in 

comparison with WT cells at d3.5, the aim is to find genes important for the VMN fate (Figure 8B).      

 

A                                                                                  B 

 

 

 

 

 

 

Figure 8: Formation of neurons on defined time points. Circles with light grey indicate 'VMNs' and 

circles with dark grey indicate '5-HTN'. Arrow represents pattern of regulation (up/down).A) 

Comparison of wild-type with SB-treated/Nkx2.2 samples and B) Comparison of wild-type samples with 

Phox2b samples. 

 

3.7 Enrichment Analysis 

3.7.1 Gene Set Enrichment Analysis  

GSEA [26] is one of the popular methodologies to identify previously known functional gene sets (GO 

terms) from the list of differential expression genes that are over-represented either in top or bottom of 

the ranked list based upon enrichment scores. Enrichment scores were given by walking down the 

ranked list of genes, increasing a running sum when a gene is in the gene-set and decreasing when it is 

not present. A positive ES score indicates gene-set enrichment at the top of the ranked list and negative 



 

19 

 

ES score indicates gene set enrichment at the bottom of the ranked list. In the study, GSEA was 

performed using Pre-ranked mode, where the list of genes was ranked according to the fpkm log2 fold 

change values. Rather than p/q-values, fold-change values were considered to detect the enrichment 

peak.  

3.7.2 Network Analysis 

The idea of NEA is to find relationship between the AGS and FGS by providing the number of links 

between two gene sets.  

AGS: List of differential expressed genes, whose function has to be identified  

FGS: List of known biological pathways, 8024 groups from KEGG pathways [27] and Gene Ontology 

terms (biological process domain) [28] were considered. 

Network: Funcoup‟s mouse network was considered as default network. For the analysis, it was 

merged with KEGG pathway links, members of protein complexes (CORUM database) and a smaller 

network of gene regulation which was reverse-engineered from a data set of transcription factor knock-

down [29]. In total, it contained 1007449 links between 18141 genes. The network tool generated links 

with default parameters - 3 iterations, no cut-off value. The output is number of connections between 

the two gene sets and respective statistical confidence p-values and FDR. The output was given as an 

input text network file for Cytoscape [30], setting both network edges and edge attributes. Cytoscape is 

network visualization and analysis software which provides a basic functionality to layout and query 

network. In Cytoscape genes are represented as nodes and interactions between two genes were 

represented as links (edges) 
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4 RESULTS  

Initially 37682 genes (raw counts) were identified as differentially expressed from the RNA-seq 

experiments, but after data normalization (fpkm) and removing duplicates, it was narrowed to 37514 

genes. All this data were stored in TAB- delimited text file (.TXT) and can be accessed via Microsoft 

Excel or any other spreadsheet application. Figure 9, shows how the samples were clustered well based 

on their time points i.e. X1...X4 belongs to one cluster and samples from day 3.5 (X5...X8). Among 

samples from day 5.5, X12 looks different which indicates that Phox2b sample on day 5.5 has different 

expression level compared to the other samples on day 5.5. 

 

Figure 9: Hierarchical sample clustering  

4.1 Comparison of Binomial z-score method and DESeq 

The differential expression attributes such as p-values, fdr and fold change values from fpkm and count 

data were calculated using DESeq package, implemented within R Bioconductor. The first plot (Figure 

10A), describes the variance (dispersion) distribution. If the means across the genes were equally 

distributed, the dispersion trend (red line) fits the dispersion dots and will be a straight line, but in the 

dataset there exists dispersion for the genes with counts above 100. The second plot (Figure 10B) 

displays the p-value distribution. In theory given an adequate statistics and complete absence of 

differential expression, a p-value distribution should be uniform, i.e. have bins of nearly equal height 

from 0 to 1. Given some differential expression, it should have a peak in the region close to 0, and rest 
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of the distribution should be flat. However, in the DESeq case, it showed an opposite behavior which 

means that the statistical test was not correct, or a wrong variance model was used.  

 

Figure 10:  A-C:  DE analysis by DESeq package; D-F: DE analysis by Odds method 

The third plot (Figure 10c) is the scatter plot of log2 ratio (fold change) versus means. The red dots 

represent genes detected as differentially expressed, so only very few differentially expressed genes 

were detected for the dataset. In other words, this method was not appropriate for this data; instead the 
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binomial z-test (Odds method) was used. Figure 10D, represents the p-value distribution plot and MA 

plot (Figure 10E) where p-values were calculated by Odds method as described in the methodology. 

The distribution follows real distribution order, where more significant p-values were found at 0. A 

comparative analysis of DESeq and Odds methods was made and generated p-values with respect to 

counts (Figure 10F). It clearly shows that genes with lower counts values were detected by both the 

methods, whereas higher count genes (count=16384...65536) were not detected by DESeq package. 

4.2 Selection of Differential Expressed genes  

The statistically and biologically significant genes were selected by considering all the factors as 

mentioned in METHODS. In the analysis, a particular gene „i' is defined as differentially expressed (+) 

either up-regulated or down-regulated, if it satisfied the following set of criteria 

1. Correlation greater than 0.5, to overcome fpkm-count correlation bias. 

2. Pairwise sum of FPKM values (si, sj) greater than 10, because fpkm values having 0 and low 

values indicates low expression, hence were of less interest. 

3. FDR (p-adjusted) <=0.05; to avoid false positive estimation. 

4. log2-foldchange (fpkm) > 1.5 or 2-fold and log2-foldchange (counts) > 1.5 or 2-fold to take into 

account biological significance 

Based on the set of criteria, quadruplet comparisons across WT and mutant samples at various time 

points were done (Appendix C). Venn-representation of the number of genes identified across the WT 

and SB treated samples is shown in figure 11. 

 

 

Figure 11: Venn representing quadruplet comparisons a) 1.5 fold b) 2-fold 
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4.2.1 Web-Page  

In order to make the analysis more clear and accessible to biologists, an interactive web page was 

developed based on html and java functions. The webpage [31] contains information about quadruplet 

comparisons of differentially expressed genes represented as interactive Venn-diagrams. When user 

clicks on the number, it gives the genes that are expressed in that context. The information about a gene 

can be viewed by clicking on it which further redirects to Mouse Genome Informatics (MGI). 

Moreover, gene expression can be known from the small color boxes (red: down-regulated, green: up-

regulated) adjacent to the gene name which corresponds to fpkm log2foldchange values. 

4.3 Genes associated with VMN and 5HTN generation 

High-level cross comparisons as described in METHODS chapter was analyzed on the WT and mutant 

samples and potential DE genes associated with the VMN/5HTN were narrowed down with statistical 

and biological significance. From the list of identified genes, those genes which were associated with 

the regulatory functions such as DNA binding, transcription events were highlighted. 

4.3.1 Comparisons between WT and Nkx2.2 samples 

97 genes were found to be associated with 5HTN generation by cross-comparative analysis between the 

genes that were upregulated during differentiation in WT cells over time and downregulation in Nkx2.2 

mutant cells. Contrary, by cross-comparative analysis between genes those were downregulated in WT 

progenitors and upregulated in Nkx2.2 mutant cells to WT cells at d5.5 identified 43 genes that were 

related to VMN generation. Among the 43 genes, two genes Nkx2-9 and Nkx6-2 were linked to the 

potential regulatory terms, and from 97 genes stat2, Gfra2, Npy2r, and Lrn1 were found to be 

associated with the regulatory activities. 

Samples 

Up-regulated Down-regulated 

1.5 fold 2-fold 1.5 fold 2-fold 

Wild-type (day3.5->day 5.5) 805 330 466 84 

Nkx2.2-/- (day5.5->wild-type 5.5) 245 145 234 102 

 

Table 3: Over-expressed genes identified by wild-type and Nkx2.2
 
-/- comparisons 
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4.3.2 Comparison between WT and SB treated samples 

Cross-comparisons between the WT and SB-treated samples identified 58 common DE genes that were 

associated with the 5HTN generation and 7 common DE genes related to VMN generation. Very few 

genes were identified between downregulated genes during differentiation in WT and upregulated 

genes in Tgfβ2 inhibitor treatment samples. Among the 58 genes that were found to be associated with 

5HTN generation, 4 genes (Table 4B) show connection with the potential regulatory functions.   

 (A)         (B) 

Sample Up-regulated Down-regulated 

1.5 fold 2-fold 1.5 fold 2-fold 

Wild-type (day3.5 to 5.5) 805 330 466 145 

SB-treated (day 5.5/ wildtype 5.5) 27 1 127 30 

 

Table 4: A) Overview of total number of DE genes expressed by cross-comparisons between wildtype and SB 

treated samples. Colors indicate one set of analysis for pairwise comparisons B) Potential regulatory genes 

identified from 58 common DE genes 

4.3.3 Comparison between WT and Phox2b samples 

The cross-comparisons done between the upregulated genes in Phox2b mutants with the WT 

progenitors at d3.5 and genes that were significantly upregulated in the WT cells over time gave 102 

DE genes (1.5 fold). Conversely the analysis done on opposite list of genes showed 53 DE genes (1.5 

fold). 102 and 53 identified genes were associated with the generation of 5HTN and VMN respectively.  

Samples 

Up-regulated Down-regulated 

1.5 fold 2-fold 1.5 fold 2-fold 

Wild-type (day3.5->day 5.5) 805 330 466 145 

Phox2b-/- (day3.5->wild-type 3.5) 236 79 305 101 

Table 5: Total number of over-expressed genes identified by wild-type type and Phox2b -/- comparison 

 

Eno2 Enolase 2,gamma neuronal 

Npas3 Neuronal PAS domain protein 3 

Nbl1 Neuroblastoma, suppression of 

tumorigenicity 1 

Hoxb3 Homeo box B3 
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A                                                                                                     B                                                  

Eno2 enolase 2, gamma neuronal 
Slc6a15 solute carrier family 6 (neurotransmitter 

transporter), member 15 
Nrcam neuron-glia-CAM-related cell adhesion 

molecule  
  Optn  Optineurin 

Foxa2 forkhead box A2 
Nos1ap nitric oxide synthase 1 (neuronal) adaptor 

protein 
Ncald neurocalcin delta 
Hist3h2ba  histone cluster 3, H2ba 
Table 6:  List of potential regulatory genes identified among A) 102 DE genes associated with B) 53 DE genes 

4.4 Pathway Analysis 

Different approaches of GSEA and NEA were tested to find an appropriate and suitable method among 

them to analyze the data. 

 

4.4.1 GSEA Pre-ranked tool  

The 203 genes that were up-regulated between Phox2b-/- at d3.5 and WT at d3.5 were tested using 

GSEA Pre-ranked tool. The analysis gave two enrichment lists based on their enrichment scores. Out of 

83 gene-sets, 45 and 38 gene sets show positive and negative enrichment scores respectively. The 

ranked list obtained does not give proper statistical significant p-values (see appendix B).  

Drawback: This tool is not suitable for sophisticated (more than pairwise) comparisons, because only 

one list of fold change values can be given for ranking. 

4.4.2 Network Enrichment Analysis  

To illustrate the biological significance from the pairwise analysis, NEA was applied to 257 common 

DE genes that are found to be associated with 5-HTN generation. The KEGG terms were filtered from 

NEA output and significant ones were extracted using the chi-square fdr< 0.05 and visualized in 

cytoscape [figure12]. When we look at the signaling pathways, mapk, wnt , calcium and  gnrh signaling 

Olig3 oligodendrocyte transcription 

factor 3  

Six1 sine oculis-related homeobox 1 

homolog (Drosophila)  

Barx2 BarH-like homeobox 2  
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pathways were found to be associated with all three comparisons (red circles). Similarly, 103 common 

DE genes that are responsible for the formation of VMN identity were subjected to NEA (appendix D). 

Tgfβ2 signaling pathway was associated with the genes that were down-regulated in wild-type (x9x5), 

Phox2b mutant (x8x5) samples and down-regulated genes in wild-type (x9x5), up-regulated genes in 

Nkx2.2 mutant samples (x11x9). This analysis helps in the identification of signaling pathways that 

were regulated by the overrepresented genes in particular comparison or in mixed comparisons.  

 

Figure 12:  Comparison of genes associated with 5HTN fate. The diamonds represents number of genes in ags, 

circular nodes represents number of genes in fgs, edge (links) color represents the chi-square fdr, edge line with 

represents the number of links between ags and fgs. Circles in red show enrichment with all three comparisons, 

circles in green show enrichment with wild-type VS Nkx2.2 and wild-type Vs Phox2b comparison. Circles in 

yellow show enrichment with WT Vs Nkx2.2  

4.4.3 Funcoup Analysis 

The genes in the system are also influenced by other interactions such as mRNA co-expression, 

protein-protein interactions which are involved the fate switch from VMN-to-5HTN. To find such links 

funcoup analysis was done on 13 TGFβ2 signaling related genes identified by NEA. The result (Figure 

13) shows that all the 13 genes related to TGFβ2 (yellow nodes) was not interacting with each other, 

though the signal is collected at TGFβ2. The analysis helps to identify the nearby genes that were 

related to differential expressed gene. 
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Figure 13:  Yellow, pink diamonds, AGS, FGS genes related to TGFβ2 signaling pathway. Blue lines 

represent mRNA co-expression; Redlines represent protein-protein interactions; Green line represent 

protein co-expression.  

 

 

 

 

 

 

 

 

 

 

 



 

28 

 

5 DISCUSSION AND CONCLUSION 

With the advancement of high-throughput sequencing methods, gene-expression analysis by micro-

arrays are being replaced by RNA-seq technology. In this project 12 samples were used to determine 

expression changes between wild-type cells and cells knocked out for specific transcription factors. 

(mutant samples). RNA-seq experiments generate huge amounts of data and statistical analysis is 

required to reduce false positive estimations and get desired results. Microarray‟s, pioneer in the gene 

expression analysis has many packages and well-defined methods to deal with differential expression 

data. However, such methods cannot be directly applied to RNA-seq. Methods based on negative 

binomial distribution (DESeq, EdgeR) developed to deal with RNA-seq might not be applicable to all 

datasets. Indeed each method performs better under different circumstances and the choice for method 

needs to be done according to the data itself. The data did not contain any biological replicates due to 

high cost so performing linear modeling is not possible. We implemented a different approach where 

we calculated p-values from the binomial z-score (Odd method). This method identified significant 

differential attributes from low counts and no biological replicates situation compared to DESeq. For 

very small counts, the normality and variance used by the Odds method might not be efficient. So, in 

the analysis p-values were calculated from the raw counts greater than 5 to avoid very low counts. 

Further, we would like to perform the analysis with fisher‟s exact test and compare with the results of 

odds method. After data normalization 37514 genes were identified as differentially expressed. To filter 

the differentially expressed genes based on statistical and biological significance besides q-values and 

fold-change cutoff‟s we considered additional sets of criteria to overcome the read-mapping issues and 

avoid very low expressed genes.  The Venn-diagrams and tab-delimited text files give clear view on the 

differentially expressed genes and its related information. Further webpage that was developed based 

on the Venn-diagrams gives easy access to look at the differential expressed genes with respect to their 

fold-change expression values. High level cross comparisons performed across different combinations 

of wild-types and mutants helps in the investigation of new genes that are responsible for the VMN-to-

5HTN cell-fate switch. However, identified DE genes that are associated with the fate switch has to be 

investigated to pick genes for further analysis and perform in-vitro or in-vivo experiments to reveal 

their biological role in  the VMN-to-5HTN fate switch process. We compared our identified common 

DE genes with published clusters of genes known to be associated with Shh signaling [32], and the 

analysis gave some shared genes [Appendix A]. Such kind of analysis helps to pick genes associated 

with Shh, as it is an important signaling pathway that initiates the entire process in study. 
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The most relevant and suitable pathway analysis approach was chosen among GSEA and NEA. 

The results obtained by GSEA Pre-ranked were not statistically valid to rely upon. This approach is not 

suitable when we want to perform higher comparisons. GSEAbinomial method allows us to make any 

number of comparisons but the sensitivity of GSEA is less than NEA. NEA performed on the gene list 

obtained from cross-comparisons, gave stronger enrichment with signaling pathways involving MAPK, 

Hedgehog, TGFβ2, Wnt and neurotrophin. There exist some limitations for NEA as follows i) networks 

used as functional gene sets in NEA are not complete. This limits the scope of the analysis but can be 

overcome by combining all the related network resources ii) genes i.e. members of FGS often overlap 

across pathways which makes difficult to highlight on genes that constitute the pathways.  

 

CONCLUSION 

This master thesis work is only a part of a long term research focused in studying the mechanisms 

regulating temporal cell-fate generation. Further in-vitro/in-vivo experiments are required to identify 

and prove the novel candidate genes. Research is ongoing to overcome the problems dealing with the 

RNA-seq data. The new approach used in this project to identify differential expressed genes and 

visualize the differential expressed genes from RNA-seq is promising and efficient to obtain the 

solution. With the help of statistical analysis huge number of differentially expressed genes was narrow 

down and a significant number of genes associated with the fate switch from VMN-to-5HTN were 

emphasized. This allows biologists to focus on the short list of genes for further analysis and reduce the 

labor devoted to experiments. By enrichment analysis signaling pathways such as MAPK, TGFβ2, 

calcium signaling, Hedgehog were found to be associated to the cell-fate switch process.  
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APPENDIX A 

Common genes identified between our dataset and published dataset. 

Cluster1: Shh signaling down-regulated genes, Cluster4: Up-regulated genes by Shh signaling 

wt 5.5-wt3.5 Up Cluster 1 4 Enpp2,Ednra,Cbln1,Jam2 

Cluster4 16 Sulf2,Pltp,Slc18a2,Itm2c,Atp1b1, 

Ablim2,Plekha2,Foxj1,Spon1,Slc43a2,Igfbp2,Ttc9,Sdpr,Lrrc4

9,Cntn2,Sepp1  

Down Cluster 1 6 Gli3,Dusp1,Pax6,Akap12,Nexn,Rasl11b 

Cluster 4 11 Bid,Bcl2l1,Fst,Tle4,Anxa1,Bmp2,Cgnl1,Stra6,Cdk6,Cyp26b1

,Lgals1 

wt3.5-Phox3.5 Up Cluster1 1 Jam2 

Cluster 4 1 Ablim2 

Down Cluster 1 1 Pax6 

Cluster 4 2 Cyp26b1,Cgnl1 

wt5.5-SB5.5 Down Cluster1 1 Akap12 

 

Studies on Affymetrix Genechip in chick neural progenitors, the Shh signaling had been cell-

autonomously activated/blocked resulting in the identification of two interesting clusters of genes. 

Cluster 1 comprises of genes down-regulated by Shh signaling and other cluster 4 with genes that 

induced by Shh [32]. 
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APPENDIX B 

GSEA-Preranked tool output 

 List of the first 10 over-represented gene sets that have positive enrichment scores (top of the ranked 

list) 

 

 

The list of over-represented genes identified by GSEA-Preranked tool, showing negative enrichment 

scores (bottom of the ranked list)  
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APPENDIX C 

Quadrapulet comparisons between WT and mutant samples 

 

 

 

 

 

 

 

 

 Total number of significant differentially expressed genes identified by the quadruplet comparisons 

 

 

 

 

 

 

 

 

 

 

 

 

 

Condition Quadruplet Comparison One-Fold Two-Fold 

wild type Vs. Phox2b  x5x8,x5x9,x8x12,x9x12 2782 1024 

Nkx2.2 Vs. Phox2b x7x8,x7x11,xx8x12,x11x12 2516 894 

Nkx2.2 Vs. SB x6x7,x6x10,x7x11,x10x11 2019 779 

wild type Vs. Nkx2.2  x5x7,x5x9,x7x11,x9x11 1983 751 

wild type Vs.  SB x5x6,x5x9,x6x10,x9x10 1644 604 
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APPENDIX D 

Cytoscape visualization of NEA analysis for 103 DE genes associated with VMN 

generation 

 

 


