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Abstract 

Spray dried particles of the perovskite material CaMn0.9Mg0.1O3-δ have been examined as oxygen 

carrier for chemical-looping combustion of natural gas. The experiments have been conducted in 

a continuously operating reactor with the nominal size 10 kWth. The oxygen carrier particles 

showed excellent ability to convert fuel and complete combustion was reached at certain 

conditions. In general, the CO2 yield increased with increased fuel reactor temperature and with 

increased circulation rate. The oxygen carrier was able to release gaseous oxygen through the so 

called CLOU-mechanism (Chemical-Looping with Oxygen Uncoupling). When the fuel reactor 

was fluidized by inert gas, there was oxygen release at temperatures above 700°C, reaching a 

maximum of more than 3% for temperatures above 850°C. Gas phase oxygen was also measured 

during operation with fuel, as long as the fuel conversion was complete. When the fuel reactor 

temperature was above 900°C and a high enough circulation rate was maintained, complete 

combustion of the fuel was achieved with an oxygen concentration in the outlet stream from the 

fuel reactor of more than 1%. This suggests that a substantial part of the fuel is converted by 

gaseous oxygen released from the particles. The oxygen carrier particles were subject to more 

than 350 h of fluidization, of which more than 175 h was at high temperature and more than 55 h 

with addition of fuel. The particles did not show any tendencies to form hard agglomerations or 

break down to fines due to attrition during the experiments. Operational problems included high 

rate of particle elutriation, which was likely an effect of a mismatch between the size and density 

of the particles, the air flow and the cyclone. 

Keywords: chemical-looping combustion, chemical-looping with oxygen uncoupling, carbon 

capture and storage, fluidized bed combustion, perovskites 
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Nomenclature 

AR  air reactor 

CCS  carbon capture and storage 

CI  circulation index (kg/min) 

CLC  chemical-looping combustion 

CLOU chemical-looping with oxygen uncoupling 

Far  inlet flow to air reactor (LN/min) 

Ffr  inlet flow to fuel reactor (LN/min) 

(  )     flow of carbon in fuel (LN/min) 

(  )     flow of hydrogen in fuel (LN/min) 

(   )    flow of oxygen in air (LN/min) 

(   )     flow of oxygen in fuel (LN/min) 

FR  fuel reactor 

Gs  net solid flux (kg/m
2
min) 

Me  reduced oxygen carrier 

MeO  oxidized oxygen carrier 

u  superficial velocity (m/s) 

ut  terminal velocity of an average sized particle (m/s) 

    gas concentration, i = CO, CO2, CH4 (%) 

      CO2 yield (-) 

δ  degree of oxygen deficiency in a perovskite structure (-) 

      air ratio (-) 

ρexit  solids concentration at the riser exit (kg/m
3
) 
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Introduction 

Carbon dioxide capture and storage (CCS) is often mentioned as an important strategy to 

mitigate climate change. CCS is a method to reduce emissions of CO2 to the atmosphere which 

consists of the separation of CO2 from point-sources such as industries and power plants, i.e. the 

capture, transport to a storage location and long-term storage, for example in depleted gas fields 

or deep saline aquifers. 

The most commonly proposed carbon dioxide capture technologies are pre-combustion capture, 

post-combustion capture and oxy-fuel combustion. In pre-combustion capture the fuel is 

reformed to carbon monoxide and hydrogen prior to combustion. The carbon monoxide is then 

reacted with steam to form carbon dioxide and more hydrogen. A gas separation unit is then 

necessary to separate the carbon dioxide and the hydrogen. In post-combustion capture the 

carbon dioxide is separated from the flue gases after combustion in a gas separation unit. In oxy-

fuel combustion the fuel is burned in oxygen and recycled flue gases. An air separation unit is 

needed to produce pure oxygen from air. 
1
 

Chemical-looping combustion (CLC) is a carbon dioxide capture technology that has developed 

very fast during the last ten years, see recent review articles by Lyngfelt et.al. and Adanez et.al. 
2
 

3
 It is often categorized as an oxy-fuel combustion technology, but it should rather be in a 

category of its own. 

Background 

In chemical-looping combustion, the oxygen needed for combustion of the fuel is supplied by a 

solid oxygen carrier. The oxygen carrier is oxidized by air in one reactor and reduced by the fuel 

in another reactor. The oxygen carrier particles are continuously circulated between the two 

reactors. In this way the carbon dioxide is inherently captured since the exhaust gas from the air 

reactor (AR) consists of oxygen depleted air and the exhaust gas from the fuel reactor (FR) 

ideally only consists of carbon dioxide and steam, of which the latter can easily be condensed to 

obtain an almost pure stream of carbon dioxide, see Figure 1. 

 

Figure 1. A schematic overview of the CLC process. 
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The fuel will react with the oxygen carrier according to: 

(    )          (    )                (1) 

The oxygen carrier will then be reoxidized in the air reactor according to: 

   
 

 
                (2) 

The amount of energy released in the two reactions is equal to that for normal combustion of the 

same fuel. This is evident since the sum of reaction (1) and reaction (2) is normal combustion of 

the fuel with oxygen. 

The most common approach to chemical-looping combustion is to use two interconnected 

fluidized beds. The oxygen carrier has the form of small particles and is circulated between the 

two beds. By using this method the gathered knowledge and experience from fluidized bed 

boilers (CFB) can be utilized. 

Chemical-looping combustion was first thought of as a technology to produce carbon dioxide in 

a patent application in 1954. 
4
 Later, the idea of using the process to capture carbon dioxide from 

combustion of fossil fuels was formed. 
5
 The concept was proven feasible in 2004, when 

Lyngfelt and Thunman 
6
 constructed and operated a 10 kW chemical-looping combustor for 

more than 100 h. 

The development of oxygen carrier material is crucial to the progress of chemical-looping 

combustion. Some important criteria for oxygen carriers are: 
7
 

 High rates of oxidation and reduction. 

 High oxygen transfer capacity. 

 High mechanical integrity (low tendency for fragmentation and attrition). 

 No tendency for agglomeration. 

 Low cost. 

 No harmful environmental or health effects. 

Materials used as oxygen carriers are typically oxides based on nickel, copper, iron, manganese 

and cobalt. Suitable oxygen carriers were identified in a thermodynamic analysis. 
8
 A 

comprehensive overview of investigated oxygen carrier materials can be found in the review 

articles by Lyngfelt and Mattisson 
9
 and Adanez, Abad, Garcia-Labiano, Gayan and de Diego 

3
. 

Chemical-looping with oxygen uncoupling (CLOU) is a process closely related to chemical-

looping combustion, which has been investigated by Mattisson, Lyngfelt and Leion 
10

.  The 

combustion of the fuel takes place in two steps. First the oxygen carrier releases gas phase 

oxygen according to: 

              
 

 
           (3) 

The fuel can then be oxidized by gaseous oxygen instead of directly by the oxygen carrier. This 

is especially beneficial for solid fuels where char otherwise needs to be gasified to be able to 

react with the oxygen carrier. This is because char gasification is usually much slower compared 

to direct reaction between char and oxygen. CLOU could also prove to be favourable for gaseous 
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fuels, since the presence of gas phase O2 could be expected to facilitate full combustion also 

without perfect mixing of gases and solids. In chemical-looping with oxygen uncoupling the char 

can instead react directly with gaseous oxygen released by the oxygen carrier. This process 

imposes some additional criteria for the oxygen carrier: 
11

 

 Be capable to take up and release oxygen under relevant conditions. 

 Have sufficiently high rate of oxygen release. 

 Have sufficiently high oxygen ratio. 

Oxygen carrier materials based on copper oxide 
12,13

, manganese oxides 
14,15

 and combined 

materials such as CaMnO3 
11,16

 and (MnyFe1-y)O 
17,18

 have been investigated for chemical-

looping with oxygen uncoupling. 

CaMnO3- δ has a perovskite structure, i.e. it has a unit cell which can be written ABO3-δ in which 

A represents the large cations and B the smaller cations. The δ-factor expresses the degree of 

oxygen deficiency in the structure and is zero for an ideal perovskite. This family of materials is 

interesting for chemical-looping applications because δ can be increased or reduced by altering 

factors in the surroundings such as temperature, pressure or O2 partial pressure. 
19

 The 

surroundings in a chemical-looping air reactor are oxidizing, while they are reducing in the fuel 

reactor. Therefore δar will be smaller and δfr will be larger. The amount of O2 available for 

oxidation of fuel can be written as (δfr - δar): 

CaMnO3-δar ↔ CaMnO3-δfr   ½(δfr-δar) O2       (4) 

With respect to direct release of gas phase O2 in inert atmosphere, different dynamics could be 

expected compared to materials which undergo distinct phase changes such as CuO. The latter is 

capable of providing constant O2 concentration during reduction in inert gas, corresponding to 

equilibrium partial pressure of O2 over CuO-Cu2O which is a function of temperature. In the case 

of CaMnO3-δ, the O2 is released without distinct phase change according to reaction 4. 

Equilibrium O2 partial pressure over CaMnO3-δ is a function of the non-stoichiometry factor δ. 

With fully oxidized particles (δ=0), O2 can be released at comparably high concentrations. But as 

O2 is removed from the perovskite structure and δ increases, the equilibrium O2 partial pressure 

is continuously reduced in a logarithmic fashion. While it is possible to determine equilibrium 

curves for this kind of materials as function of temperature and δ-factor, this is complicated and 

outside the scoop of this article. See the article by Leonidova et al. 
20

 for a general discussion 

about this topic, and the paper by Rydén et al. 
19

 for a discussion about the implications for 

chemical-looping combustion. 

It has previously been shown that materials based on CaMnO3- δ are capable of releasing gas 

phase oxygen at temperatures and oxygen partial pressures relevant for chemical-looping with 

oxygen uncoupling. 
21

 A similar material, CaMn0.875Ti0.125O3- δ, has successfully been used as 

oxygen carrier for chemical-looping combustion experiments. 
11,16

 

The aim of this study was to improve and develop the CLOU process by examining an oxygen 

carrier with low cost and no harmful environmental effects. 
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Experimental 

Oxygen Carrier 

The oxygen carrier material used in this work was a perovskite structured material with the 

chemical formula CaMn0.9Mg0.1O3-δ and was manufactured by VITO in Belgium. The raw 

materials were 46.8% manganese oxide, 50.5% calcium hydroxide and 2.7% magnesium oxide 

of commercial grades. Particles were produced by spray drying, followed by calcination at 

1300°C for 4 h.  

The crushing strength of the fresh particles was 1.38 N, which is the average force needed to 

crush a particle in the size span 180-250 µm. An XRD scan identified CaMnO3 and MgO as the 

present phases in the fresh particles and the bulk density was measured to 1932 kg/m
3
. The size 

distribution of the fresh particles can be seen in Figure 2. 

 

Figure 2. The size distribution of the fresh oxygen carrier particles. 

Experimental Setup 

The experiments were carried out in a 10 kWth CLC pilot plant for gaseous fuels. It was designed 

and built in the EU-project GRACE in 2002-2003. 
22

 Natural gas with a composition equivalent 

of C1.14H4.25O0.01N0.005 was used as fuel, see Table 1 for the species composition. 
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Table 1. The annual average composition for 2012 of the natural gas as reported by the gas 

supplier. 

Species Mole% 

Methane 88.84 

Ethane 6.11 

Propane 2.44 

Isobutane 0.37 

n-Butane 0.54 

Isopentane 0.13 

n-Pentane 0.08 

Hexane+ 0.06 

Nitrogen 0.36 

Carbon Dioxide 1.06 

 

The reactor system consists of two interconnected fluidized beds, one of which constitutes the air 

reactor and the other one the fuel reactor. A schematic picture of the experimental setup can be 

seen in Figure 3. This experimental setup has previously been used by Lyngfelt, Kronberger, 

Adanez, Morin and Hurst 
22

, Lyngfelt and Thunman 
6
, Linderholm, Abad, Mattisson and 

Lyngfelt 
23

 and Linderholm, Mattisson and Lyngfelt 
24

 using nickel-based oxygen carrier 

materials. 

The air reactor has an inner diameter of 150 mm. A riser is connected to the air reactor and it is 

the gas velocity in the air reactor and the riser which creates the driving force for the circulation. 

The separation of gas and particles is managed by a cyclone after the riser. The particles are 

brought from the cyclone to the fuel reactor through a downcomer and a loop seal. This assures 

that no gas will leak into the fuel reactor. The fuel reactor consists of a bubbling fluidized bed 

which is fluidized by the gaseous fuel. The lower part of the fuel reactor has an inner diameter of 

150 mm and the higher part has an inner diameter of 260 mm. Particles leave the fuel reactor via 

an overflow exit, and fall down into a second particle seal leading back in to the air reactor. 

There is a vertical plate attached inside the fuel reactor which prevents particles entering the bed 

to by-pass the bed to the overflow exit. Thus, the solids flow will first go downwards on one side 

of this plate, turn and go upwards on the other side. This plate was not present in previous 

experimental campaigns with this unit. The height from the bottom of the air reactor to the top of 

the riser is 2230 mm. 



 8 

 

Figure 3. A schematic picture of the experimental setup. 

The air reactor is fluidized by air preheated to 1000°C and both particle seals are fluidized by 

nitrogen. The nitrogen used to fluidize the particle seals will escape through both the air reactor 

and the fuel reactor and thus dilute both exhaust gas streams. To avoid the nitrogen dilution, the 

particle seals can be fluidized by steam instead. This option was not utilized during these 

experiments though. 

The exhaust gas stream leaving the cyclone is first led through finned pipes for passive cooling, 

then a part of the stream is led on to the gas conditioning system and the gas analysers, and the 

remaining gas is led through a bag filter. The exhaust gas stream from the fuel reactor is also led 

through finned pipes before a part of the stream is led to the gas conditioning system and the gas 

analysers, and the remaining gas passes a water seal, where the steam condensate is collected and 

elutriated particles are captured. 

The gas analysers measure the concentration of CO2, CO, CH4 and O2 from the fuel reactor and 

the concentrations of O2 and CO2 from the air reactor. The carbon containing species are 

measured with IR instruments and the oxygen is measured with paramagnetic technique. The 

temperature is measured with thermocouples at eight points in the reactor system, three in the air 

reactor, one in the riser, one in the cyclone, one in the higher particle seal and two in the fuel 

reactor. Pressure drops in the reactor systems are measured by 20 pressure transducers. The 
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pressure drops are measured in order to be able to assess the fluidization behaviour and the 

particle inventory in different parts of the reactor system. Gas concentrations, temperatures and 

pressure drops are logged every ten seconds. 

A supervision system is used to be able to operate the system during nights. If temperature or gas 

concentrations are not kept within certain accepted intervals, the supervision system will shut off 

the fuel flow to the fuel reactor and replace it with nitrogen. 

Data Evaluation 

The exhaust gas concentrations were measured on dry basis since steam is condensed prior to 

measurement. In order to facilitate the analysis, an estimated value of the concentration of H2 in 

dry gas, xH2,fr, was calculated. This was done by solving the species balance over the reactor, 

assuming that there was no formation of solid carbon and that the gas composition from the fuel 

reactor corresponded to thermodynamic equilibrium for the water-gas shift reaction. A detailed 

description of the methodology for these calculations can be found elsewhere. 
25

 The cited study 

involved highly catalytically active NiO-based oxygen carrier particles. It shall be acknowledged 

that it is not obvious that the gas concentrations will be at perfect equilibrium in the current 

study. The examined oxygen carrier could be expected to be slightly more reactive with H2 

compared to CO. However, previous experiments with similar materials in a high-temperature 

steel reactor, in which gas composition was double checked with a gas chromatograph, indicated 

that results close to equilibrium was reached anyway. 
11

 

The circulation rate has been calculated to evaluate the operating conditions in the system. The 

following expression, previously used by Linderholm, Abad, Mattisson and Lyngfelt 
23

 for this 

unit, has been used to calculate the net solid flux: 

        (    )   
 

 

  

  
(    )       (5) 

The net solids flux calculated by this expression is believed to be a slight overestimation, but it is 

still a useful measure for comparing particle circulations. The net solid flux multiplied with the 

cross sectional area of the riser is referred to as circulation index (CI) expressed in kg/min. 

To evaluate the experiments the CO2 yield was calculated. The CO2 yield is defined as the 

amount of carbon dioxide formed divided by the total amount of carbon species in the outlet flow 

according to: 

     
    

             
         (6) 

The CO2 yield is very close to the combustion efficiency when using natural gas as fuel. This is 

because the heating value of natural gas is almost equal to that for carbon monoxide and the 

corresponding amount of hydrogen. 

Results and Discussion 

The CaMn0.9Mg0.1O3-δ particles have been fluidized for more than 350 h in the reactor system. 

120 h of these were under hot conditions, i.e. the temperature in the fuel reactor was over 600°C. 

The experiments with fuel were conducted during 55 h of the 120h in hot conditions. An 

overview of the experiments can be seen in Table 2. 
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Table 2. An overview of the performed experiments. 

Day Time 

fluidized [h] 

Time under hot 

conditions [h] 

Time with 

fuel [h] 

Particle 

inventory [kg] 

Air flow 

[LN/min] 

Fuel flow 

[LN/min] 

1 1.0 0.0 0.0 13 600 0 

2 6.2 0.0 0.0 15 200 0 

3 29.5 0.0 0.0 15 200 0 

4 8.5 6.5 0.0 15 100-260 0 

5 27.6 7.1 3.2 15 180-200 7.5–12 

6 41.7 8.5 4.1 15 200 9-12 

7 32.2 2.3 0.0 15 200 0 

8 31.3 19.5 8.0 15 200 12 

9 40.2 20.0 16.8 17 150-200 9-12 

10 42.4 24.0 13.7 17 160 7.5–12 

11 30.7 5.2 0.9 17 200 12 

12 11.7 6.1 2.8 17 120-200 6-9 

13 47.4 20.3 6.4 17 200 15 

Sum: 350.2 119.5 55.8 

 

The particle inventory has been varied between 13 and 17 kg. At the time the system was 

opened, 5 kg of particles were found in the fuel reactor. As the fuel reactor has an overflow exit, 

the fuel reactor inventory is believed to have been fairly constant during the experiments. 

Oxygen Release 

The oxygen carrier particles were capable of releasing gas phase oxygen above certain 

temperatures when the fuel reactor was fluidized with nitrogen gas. This is demonstrated in 

Figure 4, where the oxygen concentration in the fuel reactor is shown as a function of the 

temperature in the fuel reactor. In Figure 4 it can be seen that the O2 uncoupling is increased at 

higher temperature. This is believed to be the effect of two mechanisms. Firstly, the 

thermodynamic equilibrium moves towards higher oxygen partial pressure at higher 

temperatures and secondly, the kinetics for chemical reactions will generally be faster at higher 

temperatures. 
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Figure 4. O2 concentration in the fuel reactor as a function of the fuel reactor temperature with 

Far = 150 LN/min, Far = 160 LN/min and Far = 170 LN/min and Ffr = 35 LN/min N2. These results 

were obtained during day 9, 10 and 12. 

Combustion Experiments 

The experimental campaign was performed under a number of continuous series summarized in 

Table 2. The longest continuous experiment with fuel lasted for more than 16 h. The gas 

concentrations at the outlet from the fuel reactor, fuel rector temperature and CO2 yield during 

this experiment can be seen in Figure 5. Fuel operation was started at time = 0 in the figure and 

the dashed, vertical line indicates a change of the fuel flow from 12 LN/min to 9 LN/min and a 

change of the air flow from 150 LN/min to 200 LN/min. Although stable operation is reached, the 

CO2 yield and fuel reactor temperature are slowly decreasing. The reason is that the particle 

inventory is gradually decreasing because particles are elutriated to the filter. As can be seen in 

the figure, the decreased CO2 yield involves increasing concentrations of CO, H2 and CH4. A 

magnification of the concentration profiles for CO, CH4 and O2 can be seen in Figure 6. 
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Figure 5. Gas concentrations at the outlet of the fuel reactor, fuel reactor temperature and CO2 

yield as a function of time with Far = 150 LN/min and Ffr = 12 LN/min (8.8 kW) before the dashed 

line and Far = 200 LN/min and Ffr = 9 LN/min (6.6 kW) after the dashed line. Note that the fuel 

reactor temperature has a separate y-axis. These results were obtained during day 9. 

 

Figure 6. Gas concentrations at the outlet of the fuel reactor as a function of time with Far = 150 

LN/min and Ffr = 12 LN/min (8.8 kW) before the dashed line and Far = 200 LN/min and Ffr = 9 

LN/min (6.6 kW) after the dashed line. These results were obtained during day 9. 

After approximately 16.7 h, the CO concentration was higher than the accepted interval and the 

supervision system shut the fuel flow and started fluidizing of the fuel reactor with nitrogen. This 

caused instantaneous drops in gas concentrations and fuel reactor temperature. As can be seen in 

the right corner of Figure 6, the oxygen concentration in the fuel reactor increased to almost 4%. 
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This is due to oxygen release from the oxygen carrier particles when oxygen was no longer 

consumed in the combustion reactions. 

The decrease in CO2 yield and thus the increase in hydrogen and carbon monoxide 

concentrations are caused by a steady decrease in particle inventory in the whole reactor system. 

The particles are elutriated to the filter after the cyclone which results in a lower solids 

circulation. The circulation rate is steadily decreasing during experiment, which can be seen in 

Figure 7. 

 

Figure 7. The circulation index as a function of time with Far = 150 LN/min and Ffr = 12 LN/min 

(8.8 kW) before the dashed line and Far = 200 LN/min and Ffr = 9 LN/min (6.6 kW) after the 

dashed line. The line represents the moving average for 100 points. These results were obtained 

during day 9. 

Effect of Fuel Reactor Temperature 

Experiments with fuel were performed with varying air and fuel flow as shown in Table 2. The 

CO2 yield as a function of fuel reactor temperature for different air and fuel flows can be seen in 

Figure 8. All three experiments were performed during heat up with fuel. Note that the 

temperature level is lower for Figure 8a. 
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Figure 8. CO2 yield as a function of fuel reactor temperature with a) Far = 200 LN/min and Ffr = 

7.5 LN/min (5.5 kW) during day 5 b) Far = 200 LN/min and Ffr = 9 LN/min (6.6 kW) during day 6 

c) Far = 150 LN/min and Ffr = 12 LN/min (8.8 kW) during day 9. 

Figure 8 clearly shows the CO2 yield dependence on fuel reactor temperature. When comparing 

Figure 8b) and Figure 8c) it can also be seen that the gas flows affect the CO2 yield. Whereas the 

CO2 yield reaches 1 at 930°C for an air flow of 200 LN/min and a fuel flow of 9 LN/min, the CO2 
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yield is only 0.94 at the same temperature for an air flow of 149 LN/min and a fuel flow of 12 

LN/min. A variation in air flow will give a variation in solids circulation and a variation in fuel 

flow will give a variation in solids inventory in the fuel reactor related to fuel power. 

Effect of Fuel Flow and Circulation Rate 

In Figure 9, the gas concentrations at the outlet from the fuel reactor are shown as a function of 

time. The experiment was conducted at stable operation and the changes in gas concentration are 

due to changes of the fuel flow only. The fuel flows for the respective periods are shown in the 

figure. It can be seen in the figure that a fuel flow of 9 LN/min results in oxygen release in the 

fuel reactor and that higher fuel flows do not give a surplus of oxygen in the fuel reactor. When 

no gaseous oxygen is measured in the fuel reactor, the combustion is not complete. As can be 

seen in Figure 9, the concentrations of carbon monoxide and methane are above zero for higher 

fuel flows. The changes in fuel flow do also change the air ratio as the air flow is kept constant. 

In this experiment a fuel flow of 9 LN/min correspond to an air ratio of 2.1, a fuel flow of 11 

LN/min to an air ratio of 1.8 and a fuel flow of 12 LN/min to an air ratio of 1.6. In this case the air 

flow was kept constant in order to keep the circulation rate constant as well. 

The relationship between CO2 yield and fuel flow is investigated in Figure 10. The figure shows 

that an increased fuel flow will give lower CO2 yield. By comparing Figure 9 and Figure 10, it 

can be seen that when the air flow is 200 LN/min, the combustion is complete for a fuel flow of 9 

LN/min, whereas when the air flow is 160 LN/min, the CO2 yield reaches only 98% for the same 

fuel flow. 

 

Figure 9. The gas concentrations at the outlet of the fuel reactor as a function of time with Far = 

200 LN/min, Ffr = 9-12 LN/min (6.6-8.8 kW) and Tfr = 935-955ºC. Note that the concentrations of 

CO2 have a separate y-axis. These results were obtained during day 6. 
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Figure 10. CO2 yield as a function of fuel flow for a fuel reactor temperature of 930-950°C and 

Far = 160 LN/min. These results were obtained during day 10. 

This effect of the air flow can be explained by that the circulation rate in the system is dependent 

on the air flow. In Figure 11 the CO2 yield is expressed as a function of circulation index. As can 

be seen in the figure, a higher circulation index gives a higher CO2 yield. 

 

Figure 11. CO2 yield as a function of circulation index with Far = 170 LN/min and Ffr = 9 LN/min 

at a fuel rector temperature of 930-950°C. These results were obtained during day 9. 
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As can be seen in Figure 7, the circulation index reached a maximum at around 150 min during 

day 9. This peak coincides with full fuel conversion and release of oxygen, as can be seen in 

Figure 6. The gas concentration during the time period for this peak is shown in greater detail in 

Figure 12. As the moving average of the circulation index reached a maximum of 35 kg/min at 

around 150 min, the methane is fully converted and an excess oxygen gas concentration is 

measured in the fuel reactor. Worth noting is also that there is a short time period after 140 min 

where the concentrations of methane and oxygen are zero and the concentration of carbon 

monoxide is below 0.5%. This is desirable, since these conditions would give an exhaust stream 

of very pure carbon dioxide after steam condensation if all loop seals are fluidized with steam. 

 

 

Figure 12. The gas concentrations at the outlet of the fuel reactor with Far = 200 LN/min and Ffr = 

9 LN/min (6.6 kW) during a peak in circulation index. These results were obtained during day 9. 

Finally, it shall be mentioned that this campaign of experiments has been affected by the fact that 

the oxygen particles used where of a smaller size distribution than this reactor unit was designed 

for. The mean particle size interval was 90-125 µm, whereas the mean particle size interval has 

been 125-180 µm in earlier studies done in this reactor unit. Furthermore, the bulk density for the 

particles used in this study is lower than that for previously used particles. The main problem 

occurred in the cyclone, which gave a poor performance for the too small and light particles. 

Several attempts were made to run fuel experiments overnight, which caused more than a third of 

the particle inventory to end up in the filter after the cyclone. 

Particle Agglomeration and Attrition 

The oxygen carrier particles showed good fluidization properties throughout the experiments. 

During one experiment, the supervision system was triggered to stop the fuel flow due to a stop 

in circulation. Analysis of pressure measurements clearly indicated that the operation problem 
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approximately 4 h and the particles fluidized properly again. To be noted is that the material 

worked well despite being stuck a long period at high temperature. It is believed that no lasting 

agglomerates were formed. However, at the time the fuel reactor was opened, a smaller amount 

of agglomerates were found, see Figure 13. Some of the agglomerates had a reddish colour and 

all of them had a diameter of 1-2 cm and were easily crushed between the fingertips. 

 

Figure 13. Photo of some of the agglomerates found in the fuel reactor. 

There has been little evidence of particle attrition during the experiments. As very large amounts 

of oxygen carrier particles were elutriated to the particle filters, it was not possible to sieve all of 

them before reintroducing them to the system. Instead two samples of 300 g were sieved after 

each filter emptying and the particle size distribution was noted. The mass fraction of fines, i.e. 

particles smaller than 45 μm, at each filter cleaning can be seen in Figure 14. As can be seen in 

the figure, the production of fines was very low and decreased during the experimental 

campaign. 

 

Figure 14. The mass fraction of fines, <45μm, for the sieved samples of elutriated material. 

The material loss during operation with fuel was typically 0.32 kg/h and the mass fraction of 

fines was 0-0.4% from the first fuel addition on day 5. The highest mass fraction of fines 

obtained with fuel addition, i.e. 0.4%, would mean a loss of fines of 0.0085 mass%/h, which 

corresponds to a lifetime of 12 000 h. It should be noted that these numbers are indicative of a 

very low attrition, but that the exact numbers are uncertain due to the high elutriation combined 

with low fraction of fines. 

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

m
a

ss
%

 o
f 

el
u

tr
ia

te
d

 

m
a

te
r
ia

l 

Day 



 19 

Conclusions 

CaMn0.9Mg0.1O3-δ has been examined as oxygen carrier in chemical-looping combustion in a 

continuously operating test reactor with natural gas as fuel. The particles have been fluidized at 

hot conditions for 120 h and of which 55 h with fuel addition. The following conclusions can be 

drawn from the experiments: 

 CaMn0.9Mg0.1O3-δ shows great promise as an oxygen carrier for chemical-looping with 

oxygen uncoupling. The material did not show tendency for agglomeration or attrition 

and it releases oxygen (above 3% in oxygen concentration) at relevant conditions. 

 The CO2 yield is temperature dependent and increases with increased temperature. 

 The CO2 yield is also dependent on circulation rate and increases with increased 

circulation rate. 

 At stable operation above 900°C the CO2 yield is in the range of 0.98-1. Complete fuel 

conversion was only seen in presence of oxygen; the highest conversion without oxygen 

present was above 99.5%. 

 The formation of fines was very small, estimated to be below 0.01%, indicating that the 

lifetime of the particles could be very long. 

Compared to previous successful results in this unit with nickel-based materials, these results 

indicate higher conversion and similar low loss of fines. Moreover the material used in this study 

is based on less costly raw materials, and is also more benign with respect to health and 

environment. 
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