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Abstract. Infinite one-dimensional cellular automata are studied us-
ing information theory. The average information per cell is divided
into contributions from different correlation lengths and random vari-
ations (measure entropy). It is shown that the measure entropy is
non-increasing in time for deterministic rules, and constant for rules
which are one-to-one mappings of their first or last argument (almost
reversible rules). For probabilistic rules, there is no such general law,
but for almost reversible rules where the states are randomly shifted,
it is proven that the system evolves towards the maximally disordered
state, independent of initial conditions.

It is discussed how some of the information-theoretical concepts
are related to analogous concepts in algorithmic information theory,
and an equality between algorithmic information and measure entropy
is proved.

Numerical and analytical examples are given for specific rules.

1. Introduction

Cellular automata have been used to simulate a variety of physical systems
[1], such as the microscopic motion in fluids [2], the macroscopic concen-
trations in chemical self-organizing systems [3], the growth of crystals [4],
and abstract models for phase transitions [5,6]. Self-organizing systems or
dissipative structures [7,8] have the property of evolving into spatially or tem-
porally ordered states, but we do not know much about evolutionary criteria
for such processes. The study of evolutionary rules and other mathematical
properties of cellular automata may yield results which can be applied to
more specific (e.g. chemical) self-organizing systems. Investigations of com-
plexity measures and related concepts for cellular automata have revealed
interesting properties of their spatial organization and temporal behavior
[9-14].

In algorithmic information theory, concepts for measuring structure and
complexity are defined [15] which have the advantage of being generally ap-
plicable, but they are usually not computable. It will be shown that these
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concepts are identical to or related to computable information-theoretical
measures [16] for infinite one-dimensional cellular automata at finite times.
An equality between algorithmic information (Kolmogorov complexity or
Chaitin complexity) and measure entropy has been stated [17], and a re-
lation between these concepts has been proved for finite systems [18]. In
section 3, a proof of this equality is given for a system which is the outcome
of an infinite stationary stochastic process.

The second law of thermodynamics tells us that the entropy of a closed
system cannot decrease. In a one-dimensional cellular automaton, the system
can for most rules not be considered as closed in the thermodynamical sense.
In a thermodynamical system, reversible microscopic rules, which may be
influenced by noise, govern the time evolution of the system, which leads
to a maximization of the entropy. However, the rules which are responsible
for the time evolution in cellular automata are not generally reversible. In
cellular automata correlations are often built up and the (measure) entropy
decreases [9].

In a cellular automaton, the randomness, expressed by the measure en-
tropy, may (partially) be irreversibly transformed to correlational informa-
tion when complex structures evolve. The system is either closed or open
with respect to random information (noise), giving deterministic or proba-
bilistic rules. When the system is influenced by noise, correlations can be
destroyed leading to an increase of the randomness. Only if the rules are
probabilistic we can have a “second law” for cellular automata, and in sec-
tion 4, it is shown that if an almost reversible rule is influenced by noise, the
measure entropy increases until the system is completely randomized.

In sections 2 and 4, we apply concepts from information theory [13,16,
19,20] to cellular automata. The average information per cell is divided into
contributions from different correlation lengths and random variations. Laws
concerning the change of measure entropy in time for different classes of rules
are proven. In section 5, this is applied to numerical and analytical examples
for specific rules. Complex long-range behavior can be understood in terms
of the concepts presented in section 2.

2. Information-theoretical concepts for lattice distributions

In this section, a summary of some concepts in [16] is given. Let p(k) be a
normalized probability distribution,

p(k) =0
dop(k) =1 (2.1)

and let po(k) be a reference distribution which is positive everywhere,

po(k) >0
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Ek:po(k) =1 (2.2)

Then the contrast (Kullback-information, relative information) of p with re-
spect to po (log denotes base two logarithm),

K([po, p] = Ek_fp(k) log ;T((k/c_))' (2.3)

is the information gain when an a priori distribution pq is replaced by an a
posteriori distribution p.
The contrast has the property

K{po,p] 2 0 (2.4)

where equality holds only if p and po are identical.

Consider a one-dimensional discrete system with an infinite number of
lattice sites. Each site can be in either of two states: 0 or 1. (A higher
number of states can be handled by binary coding.) The total information
per site, one bit, can be decomposed into chemical, correlational, and tex-
tual contrast. The chemical contrast is the information due to an average
density of zeroes and ones differing from 1/2. The correlational contrast is
the amount of information present in all correlations within the system. The
textual contrast is the random information or, if the system is produced by
a language, the amount of information conveyed through the text [19,20].
The textual contrast is identical to the measure entropy [10]. (In the theory
of dynamical systems, measure entropy (Kolmogorov-Sinai entropy) is the
mean rate of creation of information in time [21], but here it is the spatial -
counterpart.)

Let (¢1...%,,) be a certain sequence of zeroes and ones and P (i1 i)
be the probability that a randomly chosen m-length sequence coincides with
(¢1...%m). Suppose that the system is large scale homogenous, i.e. the result
of a stationary stochastic process, so that p,(iy...%,) is well defined. Fur-
ther, let p(%1...%n) be the estimated (maximum entropy method) probability
if correlations only up to m — 1 are known,

pm—l(il v 7:m—l)pm—-l(i2 ce Zm)
Pm—z(iz oo im—l)

The chemical contrast kq, is the contrast of mean concentrations p; with
respect to the reference distribution p{® = {1/2,1/2},

ko = K[p{; pi] (2.6)

The correlational contrast k.. can then be written as a sum of contributions
from different correlation lengths,
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kcorr = Z km (27)
m=2
where kp, is the contrast of p, with respect to pn,

km = K[Pm; pm) (2.8)

The remaining part, 1 — ke — Kcorr, is the textual contrast kyy [19,20], which
is an average over local textual contrasts [16], or the measure entropy s w

sy = lim_ %Sm = lim ASn, ‘ (2.9)
where

Sm = — Z pm(zlzm) lngm(il...im) (210)

AS, =85, —Sn (2.11)

The limes of AS,, should be used for numerical estimates of the measure
entropy (2.9) since it converges faster than S,,/m. One can define a mean
correlation length 7, where length is defined so that the distance between
adjacent cells is 1,

m = Z m km+1/kcon‘ (2.12)
, m=1

and if it is multiplied with the correlational contrast, one gets
N = M keorr (2.13)

which is the “effective measure complexity” defined by Grassberger [13]. Nu-
merical calculations of AS,, and 5 have been performed for different cellular
automaton rules [13,14].

3. Algorithmic information theory

The concepts of correlational and textual contrast are closely related to con-
cepts in algorithmic information theory. The algorithmic information H(c,,)
of a sequence «,, of m zeroes and ones is defined as the minimal program for a
general-purpose computer that generates the sequence [15]. Consider an infi-
nite sequence a., which is the outcome of a stationary stochastic process and
has s, > 0. Let h(an,) be the average algorithmic information per symbol of
the sequence o, h(am) = H(a,)/m. The correlational part, including the
chemical contrast, of the total information is possible to describe, at least
approximately, by a finite program, i.e. a finite amount of algorithmic infor-
mation. However, since almost all sequences are “algorithmically random”
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[22], the textual contrast must either be given explicitly, if the exact sequence
is to be generated, or be available as the information in random numbers, if
it is enough that the probabilities for all sequences are correctly generated.
In both cases, the amount of information needed is infinite—in average, s,
per lattice site. Thus, for almost all infinite sequences with s,, > 0 we can
conclude that the average algorithmic information is equal to the measure
entropy,

1

Al_rgo EH(am) = h(@eo) = Su(Aco) (3.1)
We prove equation (3.1) by showing how to construct an algorithm with
average length h(a,,) which generates the sequence o,,.  The algorithm con-
sists of one part which is a code for the sequence a,,, and another part
which serves as a decoder. We divide the sequence ., into n-length se-
quences (n € m), where each n-length sequence is denoted by a new symbol
Y, ¥ € {7,...,7n; N = 2"}, so that a new sequence I',,,, of y-symbols is
formed. Given the symbol f, the probability for the next symbol «; is the
conditional probability ps(v:) = p(Bv:)/(p(8), where p(By;) and p(B) are the
probabilities (defined as in section 2) for the sequences Bv; and B respec-
tively. The code words for the symbols v; depend on the previous sequence

B, and are chosen so that their lengths l5(7y;) fulfill

—log pp(v:) < lp(7:i) < —logps(yi) +1 (3.2)

Since ¥-;27!81i) < 1, we know from coding theory (e.g. [23]) that there
exists an “instantaneous” code with the given lengths. In an instantaneous
code, no word is prefix of another one so that the end of each word is given by
the word itself. This is important since the coding depends on the previous
symbol 3. The average code word length [ is

l= Xﬁ:p(ﬂ) Zpﬁ(%‘)lﬂ(’ﬁ)

Taking the average of the inequality (3.2), we get for the logarithmic terms

_Zp(ﬁ Zpﬁ(% ) log ps(:) Zp(ﬂ%) log 1(’23)) _

= 52(Fm,n) - Sl(rm,n) = AS?(men)

where S and S, are entropies defined as in equation (2.10). To make the
algorithm self-delimiting, we add a prefix to each code word, which is one if
the present symbol is the last one in the sequence I, , and zero otherwise.
Then, the average code length per symbol in a,, is I, , = (I +1)/n, and the
inequality (3.2) can be written

(ASy(Thn) +2)

SIP—‘

%(Asz(rm,n) +1) <l
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Writing the entropies as functions of the original sequence o,,, we get

S A8xTim) = +(San(am) — Sulem)) = s(ato)

if n,m — 0o as n K m.

The length of the decoder grows exponentially with n and depends on the
distributions pg(y;), but is independent of the length m of «,,. Thus, if we
let m, n, log(m)/n — oo, then I, , — h(aw) and 1., — s,(a.), which
gives equation (3.1).

Chaitin [15] has proposed a definition of structure at different levels us-
ing algorithmic information theory as follows. Divide the sequence a,, into
sequences of length d, and let Hy(a,,) be the sum of the algorithmic informa-
tion of these sequences, where mutual information between disjoint sequences
is not used. Thus, the difference AyHy(on) = Hy(m) — Hy—1(am) measures
the structure at level d, which corresponds to the contribution to the corre-
lational contrast from d-point distributions (2.8),

.1 . '
— lim ——-Ade(am) ~ kd = K[pd;pd] . (3.3)

m-—00 m

4. Information theory of cellular automata

Let us apply the information-theoretical concepts to the evolution of an infi-
nite one-dimensional cellular automaton. The extension to higher dimensions
is straightforward. The initial state is generated by a stochastic stationary
process giving spatially independent probabilities for all possible sequences.
Consider a rule R that depends on neighbors up to the finite distance r > 0.
A sequence of m + 2r sites with the state amy9, = (317 ... %m4,) then deter-
mines the state in a sequence of m sites B, = Rpn(t1—r -+ - tinir) = (J1 -+ - Jm)-
The probabilities for sequences at times ¢t and ¢ + 1 are then related as

pm(/}m;t + ]-) = Z TR(am+2r, /Bm)pm+2r(am+2r; t) (41)
TR(am+2ry .Bm) = 6(Rm(am+2,.), ,Bm) (42)

which gives the entropy at time ¢ + 1,

Sm(t+1) == pm(Bm;t +1)10g pm(Bm; t + 1) < Sinpar(t) (4.3)
om

The increase of measure entropy for one timestep, Ays,(t) = s, (t+1)—s,(%),
is then




Correlations and Random Information in Cellular Automata 335

) 1 1
Ags,u(t) = A%(;Sm(t +1) - —— 2r5m+2r(t)) =
) 1
= Jlim (e (Salt 4 1) = Sga(0) +
1 1

+(=~

- m+2r)5m(t+1)) <0 (4.4)

since, in the second line, the first term in the limes is negative or zero and
the second term goes to zero as m — co. Thus, the measure entropy cannot
increase when a deterministic rule is applied, a fact that has been observed
in numerous simulations [9,10].

Assume that the rule R is a one-to-one mapping of its last argument (a
one-to-one mapping of the first argument is treated analogously); i.e., the
rule is of the form

R(i_,...%) =14+ f(i_r...3,_1) mod 2 (4.5)

where f is a mapping from {0,1}? to {0,1}. These rules are surjective; i.e.,
for all sequences B, there is a sequence 42, such that Ro(amszr) = Bm,
all m. (If f is a sum over (not necessarily all) elements in {i_,,...,7,_y,1},
R is additive.) As before, we have that Ry(t1-r...0my,) = (J1---Jm), but
now we also have an inverse rule R that gives the state 7, = (4147 ... 0m4r) at
time ¢, if the state v5, = ({1-r...%,) at time ¢ and the state 8, = (J1---Jm)
at time ¢ + 1 are known,

Mm = R(72r;,3m) (46)

Thus, knowing the state at time ¢ + 1, it is possible to reconstruct the state
at time ¢, using only a finite amount of information (at most, 2r bits) at time
t. These rules are not reversible in the sense discussed in [9], so we call them
almost reversible. The transfer matrix of (4.1) then has the properties

1< Z TR(am+2ra :Bm) < 22r

Uy 42r

ETR(am+2ra ﬂm) =1 (47)
Bm

The difference in entropy between time ¢ 4 1 and ¢ is

Sm(t +1) = Spyar(t) = =Y Pn(Brms t + 1) 10g pru(Brmy t + 1) +
Bm

+ Z pm+2r(am+2r, t) log pm+2r(am+2r, t) Z =2r (48)

Am4-2r

where (4.7) is used. Thus,
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) 2r
Aygsy(t) > n&x_g’rgo—; =0

But we have already shown that A;s,(¢) < 0, and hence, for almost reversible
rules (4.5),

Ags,(t) =0 (4.9)

These rules conserve randomness independent of initial state.

Assume that the rule R at every site has the probability ¢ of making
an error, i.e. the conjugate rule R = 1 — R is accidentally applied. The
probabilistic rule formed in this way is denoted by (R,g). Then, the change
in entropy for one time-step can be divided into one part coming from the
deterministic rule R, as in equation (4.4), and another part due to the noise.
The system is open to random information and, as will be shown below, the
influence of noise gives a non-negative contribution to the change in measure
entropy. When the states in randomly chosen lattice sites are shifted, the
probabilities p,, (o) for sequences a,, = (1. . .1,,) are transformed according
to

ﬁm(am) = ZTerr(aman)pm(ﬁm) (4.10)
Bm

The transfer matrix is
Texr(Ctrm, Brn) = ¢ (@mPm)(1 — q)m=H(em.fim) (4.11)
where H(am,fm) is the Hamming distance between o, and 3, (the number

of positions in which the sequences differ). Thus, the transfer matrix is
symmetric and normalized,

ZTerr(ama ,Bm) = ZTerr(ama /Bm.) =1 (412)
Bm am

The entropy of p,,, then, is

Spm] = — Zﬁm(am)logﬁm(am) >
> — me(ﬁm) log pm(Bm) = S[pm] (4.13)
Bm

where the unequality comes from equation (4.12) and the convexity of S. If
the entropy increase due to the noise ASpeise is Written as

ASnoise = S[ﬁm] " S[pm] =

=3 bl @m)K[T(@m,); T(@ms )Pm(-) [ Brm(@m)] = 0 (4.14)




Correlations and Random Information in Cellular Automata 537

Deterministic | Probabilistic (R, q)
Not almost reversible | Ays,(t) <0 —

Almost reversible As,(t) =0 Ags,(t) >0

Table 1: The change of measure entropy in time for different classes
of rules.

we immediately see that ASps. vanishes only if p,,(m) = pm(Bm) for all
Qm and B,; that is, p, = p, = (1/2)™. For an almost reversible rule, this
means that the system evolves to the maximally disordered state with spatial
entropy s, = 1 and chemical and correlational contrast kg, = kcom = 0.

The results concerning the change of s, in time are summarized in table
1. '

To find Am(t) = n(t + 1) — n(¢) for almost reversible rules, we write
equation (2.12) as

n(t) = "ll_géo Sm(t) — ms,(t) (4.15)
which together with equation (4.9) gives
Am(t) = ,li_rgo[‘s’m(t +1) = Smear(t) + 2rs,]

Equations (4.3) and (4.8) then give the following limits for A.n(t) for almost
reversible rules.

t
Su-ISA;nr()SSu

(4.16)

It is easy to construct an example where An(t) is negative, and a case in
which Grassberger’s complexity 5 increases is shown in section 5.

5. Examples and discussion

In this section, we consider rules that are depending on nearest neighbors
only. The rules are numbered according to Wolfram’s notation [9].

The fact that s,(t) is time-independent for almost reversible rules implies
that, starting with a completely random sequence with s, = 1, all sequences
will remain equally probable [9-13,24]. If an initial state without correlations
but with different densities of zeroes and onmes, kg, > 0 and ke = 0, is
chosen, the measure entropy, s, < 1, will stay at the initial level. The
dynamics may, however, allow for changes between chemical and different
correlational contrasts.

For most rules, starting with s, = 1, the measure entropy will decrease to
a stationary level 5§, < 1 [10]. In these cases, correlations are built up, and
random information is transformed to chemical and correlational contrast.
An example of this is shown in figure 1, where rule 110 (see figure 2) leads
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Figure 1: The evolution of chemical and correlational contrast for rule
110. At each time, the chemical contrast and contributions to the cor-
relational contrast from sequences of length m < 6 are calculated and
drawn on top of each other. The contrasts are represented by different
grayness, from black for chemical contrast to light gray for correla-
tional contrast from length 6. Initially, no correlations are present,
but as the system evolves the correlational contrast increases, espe-
cially from lengths 5 and 6. The system approaches a pattern with
periodicity 14 in space and 7 in time. In the periodic state, the only
contribution to the correlational contrast comes from sequences of
length m < 6. A system of 5000 lattice sites has been used.

Figure 2: The space-time pattern of rule 110 clearly shows how cor-
relations are built up. The periodic pattern mentioned in figure 1 is
visible. (A system of 200 time steps and 400 lattice sites was used.)
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to an increase in correlational contrast. In some cases, it can be shown that
the rule at the stationary level simulates an almost reversible rule—e.g., rule
182 simulates rule 195.

We have shown that if noise may influence the evolution and the rule is
almost reversible, the system reaches the maximally disordered state, inde-
pendent of its initial state. This case is analogous to the time evolution in
thermodynamical systems. One example is the simulation of particle mo-
tions in a fluid [2], if noise is added. Another example is found in a study
of phase transitions in two-dimensional stochastic cellular automata, where
an additive rule performing “turbulence” was observed [6]. For other rules,
however, a balance is reached between entropy increase due to noise and
entropy decrease due to irreversibility. ‘

The evolution of the almost reversible rule 195 is studied numerically to
show the dynamical behavior. We choose an initial state which is uncorre-
lated with a density p = 0.1 of zeroes. Since this is an additive rule, it is
possible to find analytical expressions for probabilities of different sequences.
For time steps t* = 2"(n = 1,2,...), the chemical contrast is kg = 0.320,
and one finds that the only contribution to correlational contrast comes from
correlation lengths which are multiples of the time ¢* [9], giving a correla-
tional contrast kcorr & 0.211. Since the rule is almost reversible, the measure
entropy is constant, s, =~ 0.469. In figure 3, the evolution of chemical con-
trast and m-sequence correlational contrasts are shown for m = 2,3, ...,6.
The distance between the level 1 — s, and the shaded contrasts below it cor-
responds to correlational contrasts of order greater than 6. At the time steps
t*, the chemical contrast is relatively high and no correlations of lengths less
than ¢* are present. The mean correlation length 7(t*), equation (2.12), is
proportional to ¢* leading to an ever increasing 7, equation (2.13). At these
times, if correlations of higher order (> t*) are neglected, the state can be
regarded as an uncorrelated (initial) state, which explains the self-similarity
in the figure. Obviously, the probabilities p,(am,) do not converge in the
time evolution, which has been proven to be a general feature of additive
rules if p # 1/2 [24]. Because of the self-similarity, we conjecture that, for
almost all times as ¢ — oo, there is no correlational information from finite
lengths. Although s, < 1, the system appears to be completely random.

In figure 4, it is illustrated how noise destroys the correlations, so that
a maximally disordered state is reached. Each time the rule 195 is applied,
the probability for making an error is ¢ = 0.01, giving a probabilistic rule.
The initial state has the same properties as the initial state of the system
in figure 3, and a comparison between the figures reveals how sensitive the
correlations are to random perturbations. The space-time patterns created
by the deterministic and the probabilistic rule are shown in figure 5.

The two-dimensional space-time pattern of a one-dimensional determin-
istic rule always has measure entropy equal to zero, since it is sufficient to
specify the states in lattice sites near the border of a space-time rectangle to
achieve the state of the whole rectangle [10].
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Figure 3: The evolution of chemical and correlational contrast, as
in figure 1 (the distance that remains to level 1 — s, corresponds to
the information in correlations of higher order), for the additive rule
195. Although the measure entropy is constant, information may flow
between different correlation lengths if the initial uncorrelated state
has a density of zeroes p differing from 1/2 (here p = 0.1). A system
of 2000 lattice sites has been used.

Figure 4: If the evolution of figure 3 is modified by noise, the correla-
tions will be destroyed. Here, on average, the state in every hundredth
lattice site is shifted.
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Figure 5: The space-time patterns formed by the rules of figures 3 and
4. In 5a, the deterministic rule is applied, and in 5b, noise is added.
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The necessity of probabilistic rules for an increase of algorithmic infor-
mation has been discussed by Bennett [25]. This corresponds to equations
(4.4) and (4.14) since the algorithmic information is equal to the measure
entropy, equation (3.1).
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