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Abstract

This report studies implications of chemical and magnetical contributions to a Fe-Cr alloy
using Monte Carlo simulations of a modified Ising Model. Through order parameter the
properties of the alloy has been characterised and the phase diagram of Fe-Cr , which exhibits
the main characteristics of the experimentally obtained phase diagram has been constructed.
.
For low temperatures and intermediate concentrations a new ordered phase, which resembles
the ternary Heusler alloy, has been found together with the corresponding phase boundary.
.
The Variance Constrained Semi-Grand Canonical ensemble was successfully applied to com-
pute the interface free energy as a function of concentration and the value of the interface free
energy in the [100]-direction has been computed.
.
From the interface free energy the miscibility gap, where phase separation between chromium-
rich and iron-rich clusters form, has been constructed. Also the spinodal, the limit of where
metastable phases can exist, has been found. A pronounced size dependence of the difference
between spinodals and binodals has been found and the assumption that the difference at
system size of 203 is negligible is proven to be wrong.

Keywords: Ising model, Monte Carlo simulations, Thermodynamics, Interface Free Energy,
Fe-Cr
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Preface

This is the final report of the bachelors project ”Hands-on statistical mechanics: A primer in
free energy calculation” supervised by Paul Erhart at the institution of Applied Physics at
Chalmers University of Technology.
.
Two significant parts of the project, which are not mentioned further in the report, have
consisted of literature studies and the writing of a working program code in the C++.
.
The report is written under the assumption that the reader is familiar with basic thermody-
namics, statistical physics and solid state physics, but a short summary can be found in the
appendix. Chapters 2 and 3 are intended for a junior reader and explains the theory behind
interface free energy and Monte Carlo simulations respectively. The project has been split in
two parts, chapter 4 deals with order parameters and chapter 5 the interface free energy. In
chapter 6 and 7 the results are discussed and summarised.
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1 Introduction

Steel manufacturing has formed the backbone of Swedish industry for more than a century
and stainless steels in particular have seen Sweden rise to world prominence in materials
engineering and design. Traditionally steels have been developed by phenomenological means
but the advent of powerful computers has made theoretical and computational means of steel
development possible, often by the Calphad approach [1]. Theoretical understanding of phase
equilibria and knowledge and development of computational methods in thermodynamics are
thus of paramount importance for the development of new steel grades and for the continued
prosperity of Sweden.

The Iron-Chromium system, which forms the basis of all stainless steels, has attracted an
increasing amount of attention lately owing partly to the high cost of nickel [2] which has
favoured nickel free ferritic stainless steels, but also due to its low thermal expansion making it
suitable for high temperature applications. In particular they are used in the nuclear industry
due to the low swelling and high corrosion resistance under extreme conditions [3].

In addition to being a vital part of Swedish industry and interesting in engineering applications
the Fe-Cr alloy also shows some features of great theoretical interest and significance. The
phase diagram of Fe-Cr exhibits a miscibility gap at low temperatures where Fe-Cr decom-
poses into Fe-rich and Cr-rich fractions [4], a decomposition which often occurs via spinodal
decomposition [5]. As a consequence high-chromium steels, with more than 12 wt% Cr, are
known to suffer from 475◦C embrittlement [6].

Another most interesting and unusual feature is the large asymmetry between the Fe and
Cr-rich sides of the miscibility gap, with the Fe-rich side exhibiting a much larger solubility.
This behaviour has been traced to a negative enthalpy of mixing for moderate concentrations
of chromium in the ferromagnetic model [7, 8, 9]. However, this has been pursued further by
Korzhavyi et al. [10] who claim that the ferromagnetic model cannot be used at temperatures
above the Curie temperature, and have applied more sophisticated methods. However, below
the Curie temperature, their results are still in good agreement despite the use of different
methods.

Many of the interesting properties of the Fe-Cr system stem from the ferromagnetic nature
of iron and the antiferromagnetic nature of chromium and do not require advanced ab initio
calculations but can, at least qualitatively be understood from a simple Ising Model [11], but
also within a moderate error margin computed with a modified Ising Model [12].
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1.1 Purpose

The purpose of the present work is to study how the simple Ising model can explain many of
the most important features of a ferromagnetic model and to obtain the interface free energy
of a binary alloy using the Monte Carlo Metropolis algorithm [13] in a finite size system.

1.2 Limitations

This work focuses its attention to the Ising model due to its simplicity and wide applicability
to a variety of phenomena. However, the Ising model is a lattice based model and does
not take lattice vibrations into account, nor does it account for misfits due to different lattice
parameters of the different phases nor to thermal expansion. Being a ferromagnetic model, the
Ising model cannot explain paramagnetic interactions and only phenomena below the critical
temperatures can be described. Further more, the Ising model is a classical, as opposed to
quantum mechanical, mean field approximation and since magnetism is a purely quantum
mechanical phenomenon certain correlation effects as well as local disordered moments are
disregarded.

2



2 Theory

Every thermodynamic system strives to minimise its free energy.1 But since there is a con-
tribution both from the enthalpy H and the entropy S, the free energy does not assume a
minimum value for the lowest possible enthalpy other than at T = 0. With increasing temper-
ature the entropy contribution increases and a solid substance at a high enough temperature
even dissolves into liquid phase in order to increase its entropy.

2.1 Free Energy of a Binary Mixture

For a real solid solution the enthalpy H is usually positive and the typical behaviour of H and
−TS as functions of concentration for a symmetric solution are seen in Figure 2.1. For high
temperature the case is simple. The solution assumes the homogeneous configuration that
minimises the free energy at the given concentration. For lower temperature the situation
is more subtle. The free energy of a homogeneous solution (dashed circle in Figure 2.2) is
not the lowest possible free energy of the system. A lower free energy may be attained by
formation of two different phases (filled circles), one α-phase rich in A with a solution of B
and one β-phase rich in B with a solution of A (Figure 2.2). The free energy thus attained
will be ΔGv less than the random solution.

2.2 Interface Free Energy

However, not all the energy in the random solution ΔGv is available to the system since phase
separation involves interface formation which is associated with an energy cost. For a system
containing an interface of area A and interface free energy per unit area γ the total free energy
is given by

G = G0 + Aγ (2.1)

where G0 is the free energy of the system assuming all the material in the system has bulk
properties. ΔG = Aγ is thus the excess free energy due to the fact that some material lies
in or close to an interface. It is also the work that has to be done to create such an interface.
One can show that the free energy γ [Jm−2] exerts a surface tension of γ [Nm−1].

In a solid the free energy associated with the formation of an interface from a random solution
will have three different contributions: (i) the creation of a precipitate of volume V will cause
a reduction of the free energy by VΔgv, (ii) the creation of an interface will increase the free
energy by Aγ and (iii) if the precipitate does not have the same structure or lattice parameter

1We will generally not make a distinction between the Helmholtz free energy F = E − TS and the Gibbs
free energy G = E + PV − TS since we assume that the change in volume is negligible and simply refer to
the free energy F = G. In this section however, we will write G since the Gibbs free energy is more general in
this context.
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and does not fit perfectly into the space there will be an increase of the free energy by VΔgs.
This gives a total free energy change of

ΔG = −VΔgv + Aγ + VΔgs (2.2)

The interface free energy γ is of great importance for the understanding of nucleation and
precipitation growth in solids. In general the interface free energy γ is not isotropic but will
be different in different direction, e.g. γ[100] �= γ[110] �= γ[111].

Ignoring this variation of γ with orientation and assuming a spherical precipitate with radius
r equation (2.2) can be written

ΔG = −4πr3

3
(Δgv −Δgs) + 4πr2γ (2.3)

This is plotted in Figure 2.3. Note that the effect of misfit strain gs is to reduce the effective
driving force for the transformation. Straight-forward differentiation of (2.3) yields the critical
radius of nucleation

r∗ =
2γ

Δgv −Δgs
(2.4)

and the threshold energy of nucleation

ΔG∗ =
16πγ3

3(Δgv −Δgs)
(2.5)

The process of nucleation and growth prevails inside the miscibility gap in the region where
the second derivative of the free energy is positive. A small perturbation in local concentration
increases the total free energy and the formation of a precipitate is only possible if the thermal
energy of the system is high enough to overcome the activation energy barrier. This process
of uphill diffusion is shown in Figure 2.4.

Beyond the point where the second derivative of the free energy changes sign even the slightest
perturbation in local concentration will lower the free energy and precipitation occurs without
barrier of nucleation. This process is called spinodal decomposition and the concentrations
where ∂2G

∂c2
= 0 are called spinodals.

The criterion usually applied for obtaining the miscibility gap is that ∂ΔG/∂c = 0 on the
boundary. The concentrations where the first derivative of the free energy is zero are called
the binodals. The region between the binodals and the spinodals is a metastable phase and
nuclei will constantly form and dissolve.
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Figure 2.1: The free energy at high temperature (a) and low temperature (b)
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Figure 2.2: A homogeneous solution (dashed circle) can lower its free energy by ΔGRS by
separation of phases (filled circles). However, if the formation of interfaces is taken into
account there is a cost of ΔGγ = Aγ in formation of a precipitate and the free energy can only
be lowered by ΔGRS − Aγ.
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∂c2

> 0 even the slightest perturbation will generate a decrease
of the total free energy and there is no barrier against precipitation.
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3 Method

3.1 The Ising Model

The Ising model is one of the simplest models used in the study of magnetisation in materials
[15, 16]. The atoms are assumed frozen in a lattice and assigned a magnetic spin σ restricted
to be either up (+1) or down (−1). Although the Ising model in itself does not prohibit
long range interaction, we will only be considering nearest and second nearest neighbours
interaction. If σi = ±1 represents the spin of the atom, the original Ising model simply states
that, for an interaction energy ε the energy of certain site i is given by

Hi = −ε
∑
j

σiσj (3.1)

where the sum over j is carried out over the neighbours. The total energy of the system is
then given as one half of the sum over all lattice sites i. The coefficient ε is determined by the
choice of units and can be calibrated from experimental data. In general the temperature T
will be measured in units of ε/kB. We will for simplicity choose ε = 1 and kB = 1.

3.1.1 Modified Ising model

The original Ising model only allows for one type of atom and in order to take the interaction
between iron and chromium into account we will use the modified and extended Ising model
proposed by Ackland [11]. In order to take the ferromagnetic nature of iron (ε > 0) and the
antiferromagnetic nature of chromium (ε < 0) into account we assign to every lattice point an
atom and a spin labelled Si and σi respectively, where Si represents the type of atom, −1 for
iron and +1 for chromium, and σi = ±1 represents the spin of the atom.

The Hamiltonian (3.2) of this model is given by a ferromagnetic or antiferromagnetic first part
and a second part of Fe-Cr interaction where the sum goes over all neighbours j. As before
the total energy of the system is given by one half of the sum over all lattice sites i.

Hi =
∑
j

[(Si + Sj)σiσj/2 + (1− SiSj)σiσj/2] (3.2)
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3.2 The Monte Carlo Method

To compute the partition function Z =
∑

e−βU , which is the sum over all possible configu-
rations, is a formidable task. Only the one-dimensional case, solved by Ernst Ising and the
two-dimensional case, solved by Lars Onsager, are analytically solvable [17]. However, there
are numerical methods available. One numerical method which has proven efficient is the
Monte Carlo method introduced by John von Neumann and refined by Metropolis et al. [13].

3.2.1 The original Monte Carlo Method

In the original Monte Carlo method the partition function is approximated by randomly
sampling as many states as possible and computing the Boltzmann factor for these states.
However, this brute force method is bound to fail since only a tiny number of possible states
can be computed.

3.2.2 Importance Sampling

The Metropolis method is a numerically cheaper and faster way to find the most likely config-
urations. The idea is to sample only states which have a reasonable probability of occurring.
To illustrate this let us study the one dimensional integral I =

∫ 1

0
f(x) dx = 〈f(x)〉 which can

be evaluated as the average value of the function computed at points uniformly distributed
along the interval times the length of the interval. Now, if f is a rapidly varying function it
can be advantageous to rewrite I through the identity

I =

1∫
0

f(x) dx =

1∫
0

f(x)

w(x)
w(x) dx =

1∫
0

f(x)

w(x)
du (3.3)

where w = du/ dx is a non-negative function implying that u is monotonically increasing. If
w is chosen so that f(x) ≈ w(x) the integral can be evaluated through N random values of u
randomly distributed in the interval [0, 1].

I =

1∫
0

f(x) dx =

〈
f(x)

w(x)

〉
≈ 1

N

N∑
i=1

f(x)

w(x)
(3.4)

To stress the advantage of this method let us construct the variance σ2
I defined as

σ2
I =

1

N

[〈(
f

w

)2
〉

−
〈
f

w

〉2
]

(3.5)

Equation (3.5) shows that (i) the variance goes as 1/N , implying that better accuracy can be
achieved through a greater number of samplings and (ii) that if we could choose w = f the
variance would vanish altogether.
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Unfortunately there is no equivalent to the transformation (3.3) in higher dimension configu-
ration space, in fact we don’t even know the function we want to sample since we don’t know
the multiplicity of each configuration. Otherwise there would hardly be any need for computer
simulations.

3.2.3 The Metropolis algorithm

The Metropolis algorithm does not provide a solution to this problem but handles the fact
that the integral of interest is the mean value of the type

〈E〉 =
∫
E(xd)e[−βU(xd)] dx∫

e[−βU(xd)] dx
(3.6)

i.e. the ratio of two integrals. Let us as customary denote the denominator as Z. Then the
ratio e(−βU)/Z is just the probability density of finding the system in configuration xd. If we
thus can generate random numbers ni that follow this distribution we can approximate the
integral as

〈E〉 ≈ 1

N

N∑
i=1

niE(xd
i ) (3.7)

The problem is that Z is still unknown, because the number of configurations, xd, which
correspond to the same energy is unknown. However, since Z is a common term the relative
probabilities of visiting different points in configuration space can be computed. This way the
factors Z cancel each other and the relative probability being the Boltzmann factor e−βΔU .
This is the basic idea of the Metropolis scheme.

First a random initial configuration xN
o with subindex o for old has to be generated. Then a

new configuration xN
n is generated by adding a small random displacement. This is called a

trial move. The corresponding Boltzmann factors are e−βU(xN
o ) and e−βU(xN

n ). To determine
whether or not to keep the new configuration the average probability of finding a configuration
n should be proportional to the probability distribution ni.

If a very large number of simulations is carried out, very large being a number well above the
number of accessible states, the number of simulations m that sample a configuration i should
be proportional to the thermodynamic probability n of finding the state in that configuration,
that is mi ∝ ni = e−βUi/Z. In addition, when such a state is reached, that state should not be
destroyed. In practise this means that in equilibrium the average number of accepted moves
from one state i to another f should exactly equal the number of moves from state f to state
i. This condition

niPi→f = nfPf→i (3.8)

is called detailed balance. Let us denote the probability of accepting a single trial move Ai→f

then the acceptance probability of one trial move has to be proportional to the probability of
moving in a sequence, called a Markov chain between these states Pi→f ∝ Ai→f such that

niAi→f = nfAf→i (3.9)
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Ai→f

Af→i
=

nf

ni
= e−(βUi−βUf) = e−βΔU (3.10)

Clearly the probability cannot exceed unity so if ΔU > 0 the probability has to be set to 1.
The acceptance probability of a new state is thus computed as min{1, e−βΔU}, where ΔU is
the difference in energy between the old and the new configuration.

If the system consists of N particles a trial move consists of either a random displacement
or a compositional change of one particle. N such trial moves comprise a Monte Carlo step.
After each MC step the value Ai of some parameter, e.g. the total energy, the concentration
or, as in the case with the magnetic model, the magnetisation order parameter is recorded.
The macroscopic thermodynamic quantity is computed as the mean value

〈A〉 = 1

MC

MC∑
i=1

Ai (3.11)

where MC is the number of MC steps.

3.3 Monte Carlo sampling in Thermodynamic Ensem-

bles

Assuming a system in thermal equilibrium, the physical quantities describing the system macro-
scopically or controlling the system externally are called system parameters. Every set of
system parameters correspond to a set of allowed microscopic states. Different experimental
circumstances correspond to different system parameters being fixed. These correspond to
different ensembles.1 The fundamental postulate of statistical physics is that all microscopic
states corresponding to a certain value of the system parameters are equally probable and that
every configuration is equally likely to be visited in the course of time (the ergodic hypothesis),

which leads to the conclusion that the time average Ā = lim
T→∞

1
T

∫ T

0
A(t) dt is identical to the

expectation value 〈A〉 =∑iAiP(Ai). In order to determine the probability distribution P(Ai),
we now consider a system of N particles with volume V , where each particle has a spin of value
0 or 1. Denote a configuration of this system (x3N , σN), where x3N is the 3N -dimensional vec-
tor describing the position of each particle and σN is the corresponding N -dimensional spin.
The number of particles with spin 1 is then n =

∑N
i=1 σi and their concentration is c = n/N .

The energy of the system can be written U(x3N , σN).

3.3.1 Canonical Ensemble

For a system of two types of particles the partition function for the canonical ensemble at
temperature T with continuous degrees of freedom is defined as

ZC(c,N ) = λ
−3(N−n)
1 λ−3n

2

1

n!(N − n)!

∫
e−βU(x3N ,σN ) d3Nx (3.12)

1The system parameters defining different ensembles are discussed in appendix A.
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where β = 1/kBT , λi =
√

2π�2/mikBT and N = {N, V, T} is the set of independent ther-
modynamic variables. The probability distribution ni for a Monte Carlo simulation in this
ensemble is then

PC(x
3N , σN) ∝ e−βU(x3N ,σN ) (3.13)

An efficient Metropolis sampling in this ensemble consists of two types of trial moves with
subindex o for old and n for new configuration: (i) particle displacement x3N

o → x3N
n , e.g.

interchanging two random atoms or (ii) compositional change σN
o → σN

n , e.g. changing the
spin on one random site. The acceptance likelihood of these trial moves is then (with U
computed using a suitable Hamiltonian)

AC = min
{
1, e−βΔU

}
(3.14)

ΔU = U(x3N
n , σN

n )− U(x3N
o , σN

o ) (3.15)

3.3.2 Semi-Grand Canonical Ensemble

The partition function of the semi-grand canonical (SGC) ensemble can be expressed in terms
of the canonical partition function ZC as

ZS(Δμ,N ) =

∫
ZC(c,N )e−βΔμNc dc (3.16)

The corresponding probability distribution is thus

PS(x
3N , σN ; Δμ,N ) ∝ e−β[U(x3N ,σN )+ΔμNc] (3.17)

which implies an acceptance probability of

AS = min
{
1, e−β[ΔU+ΔμNΔc]

}
(3.18)

with ΔU defined above. The trial moves in the SGC ensemble consist of, apart from the trial
moves mentioned for the canonical ensemble also the possibility of a change of species. In
practise the particle displacement trial move, i.e. the interchanging two random atoms, is
replaced by the change of species trial move, i.e. the species of a random atom is changed.

A most useful relationship that is derived in section A.4 is

Δμ(c) = − 1

N

(
∂FC

∂c

)
V,T

(3.19)

The extent of its usefulness will be made clear in section 5 but also its shortcomings.

3.3.3 Variance Constrained Semi-Grand Canonical Ensemble

Due to the fact that the second derivative of the free energy is negative inside the miscibility
gap the relation (3.19) is not a one-to-one function and knowledge of Δμ is not enough to
determine c and through integration obtain the free energy F . These shortcomings can be
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remedied by the variance constrained semi-grand canonical (VC-SGC) ensemble which can be
defined, in terms of the canonical ensemble, through the partition function as

ZV (φ, κ,N ) =

∫
ZC(c,N )e−βNc (φ+κNc) dc (3.20)

where φ and κ are independent Lagrangian multipliers defining the constraint on the concen-
tration. The derivation of this relation is beyond the scope of the present text but can be
found in [18]. The corresponding probability density for the VC-SGC ensemble is then

PV (x
3N , σN ;φ, κ,N ) ∝ e−βU(x3N ,σN ) · e−βNc(φ+κNc) (3.21)

The VC-SGC ensemble can be regarded as a generalisation of the SGC and canonical ensembles.
The former can be obtained by letting κ → 0 and identifying φ with Δμ. The latter can be
obtained by first completing the square and rewriting (3.21) as

PV ∝ e−βU · e−βNc(φ+κNc) ∝ e−βU · e−βκ(Nc+ φ
2κ

)2 (3.22)

and then letting κ, φ → ∞ while keeping the ratio φ/κ = −2Nc. What one thus obtains
is basically equation (3.20) with the exponential replaced with a delta function that keeps
the concentration constant. The VC-SGC ensemble is thus a generalisation of the canonical
ensemble with the delta function replaced with a Gaussian with adjustable width determined
by the parameter κ.

Due to the similarity of the VC-SCG to the canonical ensemble an efficient Metropolis algo-
rithm is easily formulated in analogy with the previous section, where a trial move consists
of selecting a random site, performing either a compositional change σN

o → σN
n or a particle

displacement x3N
o → x3N

n , computing the change in energy ΔU , concentration Δc = cn − co
as well as c̃ = 1

2
(cn + co). The acceptance likelihood for the trial move is

AV = min
{
1, e−β[ΔU+NΔc(φ+2κNc̃)]

}
(3.23)

The energy change associated with the trial move thus gets two contributions, one from the
change in the interatomic potential ΔU and one from concentration dependent force described
by the harmonic potential NΔc(φ + 2κNc̃). To see that this is in fact a harmonic potential
refer to equation (3.22). The advantage of this additional concentration dependent potential
is readily seen in figures 5.1 in section 5.2.1 where the SGC cannot sample the free energy
inside the miscibility gap, where the second derivative of the free energy is negative, whereas
the VC-SGC can due to the fact that we can constrain the sampling to within a certain region
in concentration space.

When ensemble averaged, the equilibrium chemical driving force which correspond to the Δμ
parameter in the SGC ensemble becomes

− ∂F

∂c
= φ+ 2κN 〈c〉V (3.24)

This very important relation, the derivation of which can be found in [18], allows us to sample
the free energy inside the miscibility gap.
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3.3.4 Interface Free Energy in Simulations

The free energy obtained in this work does not correspond to a random solution since the
trial moves in a VC-SGC ensemble together with the detailed balance criterion are designed
to produce the most likely configurations of the solution. The volume term Δgv from equation
(2.2) is still the driving force, but since decomposition is allowed to occur this term Δgv is
effectively taken out of the equation. Furthermore, no misfit strain is possible in the lattice
model used and the misfit term Δgs = 0. Neglecting of volume change also implies that
ΔF = ΔG. What remains of equation (2.2) is then

ΔF = Aγ (3.25)

In order to obtain a precise value of γ the shape of the precipitate and direction of the interface
is important. If the variation of γ with direction is neglected for the moment it is obvious
that the precipitate will take the form which minimises the ratio between interface area and
precipitate volume, i.e. the sphere. When the concentration increases the volume of the
precipitate increases. When the diameter of the spherical precipitate equals the size of the
(cubic) system L the interface area will be 4πr2 = 4π(L/2)2 = πL2. However, due to periodic
boundary conditions, the sphere is then no longer the shape with the smallest interface area
since a flat interface will have an area of 2L2. A further increase in concentration will then only
move the interface in the direction perpendicular to the interface and the interface area will
remain constant until the point is reached where the precipitate and the matrix interchange
functions.

Since γ is different in different directions it is desirable to constrain the interface to only flat
interfaces in order to facilitate calculations. One way to achieve flat interfaces is to run the
simulation in a system of size Lx = Ly < Lz as shown in Figure 3.1. The interface will then
form perpendicular to the z-direction and the interface area will be A = 2LxLy. The quantity
obtained in the simulations ΔF/N is the free energy per atom where, since a bcc structure
with two atoms per unit cell is assumed, N = 2 · LxLyLz. The interface free energy per unit
volume Δf is then

Δf

2
=

ΔF

N
=

Aγ

2LxLyLz

=
2LxLyγ

2LxLyLz

=
γ

Lz

(3.26)

and a plot of ΔF/N vs. 1/Lz would yield a straight line, where γ is the slope. Note also that
the interface free energy per unit volume will go to zero when the system size goes to infinity.
This can be understood intuitively since the ratio of the interface area over the volume of the
precipitate which will go as 1/L.

LZ

Figure 3.1: Illustration of a flat interface
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4 Order Parameters

4.1 Definition of Order Parameters

A phase diagram is a map of which phases of properties a system has under different system
parameters. Often the system parameter on the abscissa is the concentration and on the
ordinate the temperature. The boundaries in the phase diagram show equilibrium between
different phases.1 On the boundary between two phases small changes in the system param-
eters lead to big changes in order parameters. If the order parameters are being recorded
throughout the sampling, the mean value will give a measure of the type of order, a measure
that will change rather abruptly at the phase boundary. Since the sampling process at or near
the phase boundaries samples states which alternate between the sides of the phase boundary
the variance defined as σ2 = 〈E2〉 − 〈E〉2 will peak at the phase boundary. The quantity σ,
which is the square root of the variance, is referred to as the standard deviation.2 There are
two main groups of order parameters used to characterise the phases, short range order (SRO)
parameters and system averages. The magnetisation is an example of the latter kind.

4.1.1 Critical Temperatures

The magnetisation is computed as

M =
1

N

N∑
i=1

σi (4.1)

and 〈M〉 is the magnetisation during the course of the simulation, see equation (3.7). A
characteristic feature of a ferromagnetic material is that there is a net magnetisation for low
temperatures while at higher temperatures the net magnetisation disappears and the material
becomes paramagnetic. The critical temperature at which this happens is called the Curie
temperature. For iron the Curie temperature is 1043 K.

While iron is ferromagnetic chromium is antiferromagnetic, meaning that there is no net mag-
netisation. In contrast to a paramagnetic state there is order in the material, the magnetic
moments are aligned antiparallel. The critical temperature at which the antiferromagnetic
order disappears is called the Néel temperature. The Néel temperature for chromium is 308 K.
Since neither an antiferromagnetic material nor a paramagnetic material has a net magnetisa-
tion there is no discontinuity of the mean magnetisation at the critical temperature and the
magnetisation cannot be used as the order parameter to study phase transitions between anti-
ferromagnetic and paramagnetic regions. However, since antiferromagnetic material possesses
short range order (the magnetic moments are antiparallel) while the paramagnetic does not
(the order is random) the transition can be studied through short range order parameters.

1Phase diagrams are discussed in appendix B
2Due to the close relation between the variance and the standard deviation both are in this work referred

to as the fluctuations.
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4.1.2 Short Range Order Parameters

Short range order (SRO) can be studied through the Warren-Cowley [19] or atomic SRO
parameter (ASRO) defined as

α
(i)
A = 1− ZFe

Ztot(1− cCr)
(4.2)

where ZFe is the number of iron neighbours of a studied chromium atom, Ztot is the total
number of neighbours and cCr is the total concentration of chromium in the material.

For low concentrations chromium will mix with Fe leading to ZFe ≈ Ztot which leads to α =
−c/(1− c) < 0 where we have dropped the indices for simplicity. For very high concentrations
of chromium ZFe → 0 while (1− c) → 0, but since we can write ZFe ≈ Ztot(1− c) we have

α
(i)
A = 1− ZFe

Ztot(1− c)
≈ 1− Ztot(1− c)

Ztot(1− c)
= 0 (4.3)

However, equation (4.3) is in fact more general and α = 0 whenever the expected number of
chromium neighbours consistent with the concentration c are encountered. Values of α(i) >
−c/(1 − c) and positive values in particular are found when there is an over representation
of chromium neighbours, i.e. when chromium forms clusters or precipitates. The sign of α(i)

will thus tell us if chromium mixes with iron or precipitates. The absolute value will tell us
to what extent this happens.

One can also define a magnetic SRO-parameter (MSRO) in analogy with (4.2) which measures
not the atomic ordering but the ordering of the magnetic moments.

α
(i)
M = 1− σ±

σtot
1
2
(1±M)

(4.4)

where σ± is the number of neighbours with parallel spins3, σtot is the total number neighbours
and σtot

1
2
(1±M) is the expected number of neighbours with parallel spins.4 Thus if the total

magnetisation is zero αM = 0 if there is no order and positive if there is order. In a perfect
antiferromagnetic state we can expect αM = 6/14.5

Note that α(i) is a local parameter and the SRO-parameter for the lattice as a whole is the
average of all local α(i) over all sites; in the case of the ASRO, all the chromium atoms and in
the case of the MSRO all atoms with parallel spin so that

αA =
1

#Cr

∑
Cr

α
(i)
A and αM =

1

#atoms

∑
atoms

α
(i)
M (4.5)

3If the atom of study has spin up, σ+ is the number of spin up, and consequently if the atom of study has
spin down, σ− is the number of spin down. The sign in the denominator corresponds to a similar index of σ.

4For example, if M = 1 only spin up (σ+) is allowed and the denominator takes the value of σtot which is
consistent with all spins being parallel while if M = 0 the denominator is 1

2σtot which means that half of the
spins are parallel and the other half antiparallel.

5This can be seen from the antiferromagnetic configuration in section D.2.
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4.1.3 Total Energy

The fourth quantity measured during the simulations, the total energy, does not provide any
new information about the system that is not already included in the previously mentioned
order parameters, but it does provide a qualitative understanding of the nature of the phase
transitions in addition to being a cross correlation reference. The total energy, often denoted
U , is the ensemble average of E so that U can be expressed through the well-known thermo-
dynamic relation

U = 〈E〉 =
∑

sEse
−βEs∑

s e
−βEs

= − ∂

∂β
lnZ (4.6)

where Z is the partition function. Through straight-forward differentiation one obtains

CV =

(
∂U

∂T

)
= −∂β

∂T

∂2

∂β2
lnZ =

1

kBT 2

(〈
E2
〉− 〈E〉2) = σ2

E

kBT 2
(4.7)

The heat capacity is thus proportional to the square of the standard deviation and the shape of
the graphs of the energy and the fluctuations of the energy will tell us what type of transition
there are, e.g. since the Curie temperature is a second order phase transition we can expect a
lambda type graph of the standard deviation. It is also apparent that the method of studying
the standard deviations for obtaining the phase boundaries used in this work is equivalent to
studying the heat capacity of a system.

4.1.4 Mean and Standard Deviation

During a simulation the quantities recorded after each Monte Carlo step were; the energy (E),
the magnetisation (M), the atomic SRO parameter (αA) and the magnetic SRO parameter
(αM) as well as acceptance probabilities, i.e. the number of accepted trial moves compared to
the total number of trial moves. After completing a simulation the average value 〈A〉 and the
standard deviation σA (indexed A for which parameter the standard deviation is taken) are
computed respectively as

〈A〉 = 1

MC

MC∑
i=1

Ai (4.8)

σ2 =
〈
A2
〉− 〈A〉2 = 1

MC

MC∑
i=1

A2
i −

(
1

MC

MC∑
i=1

Ai

)2

(4.9)

where Ai is the value recorded after each MC step and MC is the number of MC steps. If
the mean value is a thermodynamic quantity the standard deviation is closely related to the
derivative of that quantity, e.g. the standard deviation of the total energy is closely related
to the heat capacity.

4.1.5 Details of simulations

Monte Carlo simulations were carried out on an Fe-Cr alloy using the Metropolis algorithm
for the modified Ising model described in section 3.1.1. Since both iron and chromium form
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a bcc-lattice at moderate temperatures with almost the same lattice parameter (2.87 Å for
Fe and 2.88 Å for Cr [15]), the code was written under the assumption that the alloy forms
a bcc-structure with a common lattice parameter set to unity. The magnetic interactions
described by the Ising model were assumed to extend with the same magnitude to first and
second neighbours making the total number of interacting neighbours 14. Since the atoms
on the boundary have no neighbours and this would create an unwanted interface periodic
boundary conditions were used.

The simulations were carried out in a 203 bcc supercell with periodic boundary conditions
using a canonical ensemble with a fixed temperature and concentration6 with trial moves of
either (i) a random displacement, i.e. two random atoms changing places, or (ii) a spin flip,
the spin of a random site is changed. The fraction of atom swaps were the same as the
concentration of the minority species. Initially the averaging was performed over 25000 MC
steps but to improve accuracy some figures are averaged over 1000 MC steps after a gradual
decrease of temperature had put the system in an equilibrium configuration.

During the simulation the values of the energy, magnetisation and the SRO parameters αA

defined in equation (4.2) and αM defined in equation (4.4) were recorded after each MC step.
The average values and standard deviations were computed after a rejection of the first non-
equilibrium configurations. The phase diagram for Fe-Cr was obtained through the analysis
of these three different order parameters, the magnetisation M , the two SRO-parameters αM

and αA and was cross correlated with the values obtained for the total energy.

4.1.6 Construction of Phase Diagram

The Curie temperature, the temperature at which the total magnetisation disappear, is a
second order phase transition and was taken as the point at which the standard deviation
peaked.

The Néel temperature cannot be obtained so easily since both the antiferromagnetic region
below the Néel temperature and the paramagnetic temperature above have a net magnetisation
equal to zero. However, the magnetic short range order parameter (MSRO) defined in section
4.1.2 takes a value of 6/14 for an antiferromagnetic material and zero for paramagnetic.7 The
Néel temperature was taken as the point at which the standard deviation of the MSRO peaked.

The Miscibility gap was generated through the atomic SRO-parameter (ASRO). After each
MC step the ASRO was recorded and the mean value was taken as the thermal equilibrium
value. The value of the system parameters that caused the standard deviation to peak was
taken as the boundary for the miscibility gap. The values for the ASRO as a function of
concentration were cross correlated with the values of the ASRO as a function of temperature.
From the simulations at each temperature two points were generated for the boundary of
the miscibility gap, one for the α-phase (solution of chromium in iron base) and for α′-phase
(solution of iron in chromium base).

6The simulations in a canonical ensemble can be regarded as semi-grand canonical ensemble simulations but
since the concentration is not allowed to vary and only relative probabilities can be computed, the concentration
factor only contributes with a multiplicative constant which cancels.

7See section D.2 for a discussion on antiferromagnetic configurations.
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4.2 Results

4.2.1 Acceptance Probabilities

Figure 4.1a shows the number of accepted trial moves divided by the total number of trial
moves for ΔU > 0 as a function of temperature for different concentrations. The non-trivial
behaviour of the acceptance probability AC = min

{
1, e−βΔU

}
is due to the fact that not

only does the acceptance probability depend explicitly on the temperature but also implicitly
through ΔU , where ΔU is the energy difference between the old and the new configuration.

The acceptance probability increases with concentration due to the decrease in ΔU associated
with a trial move. This can be understood from the higher multiplicity of a state at higher
concentration, i.e. at low concentrations the mean spin is high and all spins are aligned parallel.
A trial move consisting of a spin flip would then result in a high ΔU causing a low acceptance
probability.

The low acceptance probability for low temperatures is important. Specially, the acceptance
probability is less than 0.01 for some concentration for temperatures below T = 2. As a
consequence the time for the system to reach equilibrium at low temperatures is long. This
can be seen from Figure 4.1b which shows the total energy as a function of the number of MC
steps at different temperatures. The noise is due to thermal fluctuation around the average
value, the thermodynamic state.

Another consequence of the low acceptance probability at low temperatures is that the proba-
bility for the system to move from one local minimum to another is negligible since the thermal
energy is not enough to overcome the threshold barrier and even though a stable average is
reached there is no guarantee that the sampled state is the global minimum.

4.2.2 Magnetisation

Figure 4.2a shows the temperature dependence of the magnetisation for concentrations up to
an atomic fraction of 0.7 Cr. The graph shows a clear second order phase transition from
ferromagnetic to paramagnetic.

For low values of c, up to c < 0.25, the chromium atoms are soluble in the iron and there is a
1− 2c dependence on the magnetisation. This happens because for every chromium atom the
total spin reduces with 2σ; firstly because one iron atom is missing and the secondly because
it is replaced by a chromium atom which is aligned antiparallel.

For c = 0.3 a slight and unexpected increase in magnetisation with temperature can be seen.
Ackland [11] attributes this to formations of small clusters of Cr in ferromagnetic regions by
thermal fluctuation despite being energetically unfavourable. This behaviour would be difficult
to measure experimentally since a Curie temperature for pure iron of 11.8 in reduced units
corresponds to 1043K, the reduced temperature 2.5 would correspond to 220K, a temperature
at which thermal equilibrium is difficult to achieve in practise due to the low diffusion rate.
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Figure 4.1: (a) Acceptance probability as a function of temperature for different concentrations.
Note the logarithmic scales. For low temperatures the acceptance probability is very small and
good statistics is difficult to obtain. (b) The total energy at different temperatures plotted
versus the number of MC steps for a 203 bcc supercell at concentration 0.5.

0 2 4 6 8 10 12

0

0,5

1

Temperature (reduced units)

M
ag

ne
tis

at
io

n

0.2

0.0

0.1

0.7

0.4
0.3

0.6 0.5

(a)

0 2 4 6 8 10 12
0

0.1

0.2

0.3

Temperature (reduced units)

St
d 

.d
ev

.o
f 

m
ag

ne
tis

at
io

n 0.0

0.1
0.2

0.3
0.4

0.50.6
0.7

(b)

Figure 4.2: Magnetisation (a) and standard deviation of magnetisation (b) as a function of
temperature averaged over 25000 MC-steps. Results were obtained from a bcc crystal with 203

unit cells. Note the distinctive λ-type phase transition which makes determination of the Curie
temperature straight-forward.
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A similar behaviour is seen also for c = 0.4 and 0.5 above a pronounced minimum at a
particular temperature which increases with temperature. This minimum corresponds to the
miscibility gap inside which chromium rich precipitates form an antiferromagnetic structure
which increases the total magnetisation.

Also for c = 0.6 and 0.7 there is a clear dent in the graph although not a minimum. Above
c = 0.7 magnetisation can only occur below the temperature at which iron-rich precipitates
form in the otherwise chromium rich base.

Figure 4.2b shows the standard deviation of the magnetisation. The second order nature
of the phase transition at the critical temperature is here obvious. One observes that not
only does the temperature at which the standard deviation reaches a maximum decrease but
also the value at the maximum decreases with increasing amount of chromium just as the
magnetisation itself decreases making the critical temperature less pronounced. For higher
concentrations there is also a pronounced wiggliness for low temperatures in figure 4.2a. This
may have two reasons, for low temperatures the Boltzmann factor goes to 0 and the acceptance
probability for ΔU > 0 goes to 0. Thermal equilibrium would thus require a much longer time
to accomplish than the 25000 MC steps used here and detailed balance is not satisfied. But
since the wiggliness is only pronounced inside the miscibility gap the fluctuations may be
caused by formation of precipitates of different sizes by thermal fluctuations

4.2.3 Magnetic Short Range Order Parameter

The temperature dependence of the magnetic moment short range order parameter αM for
some different concentrations can be seen in Figure 4.3a and the corresponding standard
deviation in Figure 4.3b. It can be seen in Figure 4.3a that for pure chromium the MSRO
reaches a maximum value of 6/14 that is consistent with the theoretical maximum value for
an antiferromagnetic structure. The noise in the graph for c = 0.9 below T = 2 is most
likely caused by the formation of precipitates and disappears above the miscibility gap. It
also appears that one can see the transition between miscibility gap and the antiferromagnetic
region for c = 0.9 at a temperature T = 2.

Figure 4.3b shows that, similarly to the Curie temperature, the Néel temperature is a second
order phase transition and the critical temperature is easily determined from the peaks in the
fluctuation of the MSRO. The Néel temperature reaches a maximum value for pure chromium
and decreases slightly with decreasing chromium content which is consistent with the usual
behaviour of alloys, where impurities tend to destroy the order and increase the entropy thus
lowering the phase transition temperature compared to the pure substance.
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Figure 4.3: Magnetic SRO-parameter (a) and standard deviation of magnetic SRO-parameter
(b) as a function of temperature at different concentration averaged over 1000 MC steps where
the starting configuration was generated through a gradual decrease of temperature of dT = 0.01
from the previous configuration.
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Figure 4.4: ASRO-parameter as a function of concentration at different temperatures (a) av-
eraged over 1000 MC steps where the starting configuration was generated through a gradual
decrease of temperature of dT = 0.01 from the previous configuration. The relative distribu-
tion of the ASRO parameter for c = 0.5 at different temperatures (b) averaged over 10 000
MC steps.
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Figure 4.5: ASRO-parameter as a function of temperature at different concentrations (a) the
corresponding standard deviation (b). The values were averaged over 1000 MC steps where the
starting configuration was generated through a gradual decrease of temperature of dT = 0.01
from the previous configuration.

4.2.4 Atomic Short Range Order Parameter

Figure 4.4a shows the atomic SRO-parameter as a function of concentraion. The theoretical
minimum value of the ASRO parameter in is given by αA = −c/(1− c) for a perfect solution
of chromium in iron and one can see that T = 0 initially follows the theoretical minimum
since there are no thermal fluctuations.8

After an initial decrease of the ASRO-parameter the graph displays an increase associated
with the formation of precipitates. For temperature T = 2 this transition is particularly
pronounced. For T = 4 the ASRO in Figure 4.4a is close to zero regardless of concentration.
This implies that no precipitates form since the thermal fluctuations cause clusters to dissolve
immediately upon formation and that the miscibility gap does not extend up to T = 4. This
is also confirmed by Figure 4.4b, which shows the relative distribution of the ASRO for a
chromium concentration of 0.5 at different temperatures. It can be seen that for temperature
T = 4 the distribution of the ASRO-parameter exhibits a clear gaussian shape around zero,
whereas for temperatures T = 0 and T = 2 the chromium atoms appear either as clusters
with αA ≈ 1 or in solution with αA ≈ −1. The small peak for mid-range ASRO corresponds
to an interface.

For T = 1 in Figure 4.4a there are two changes in direction before the onset of precipitation.
In Figure 4.8a the reason for this becomes apparent. An area of high fluctuations of the
ASRO parameter between the points c = 0.2 and T = 1 to c = 0.3 and T = 1.5 is seen. From

8Some careful analysis shows that the maximum concentration at which the theoretical minimum can be
reached is c = 0.25, which is the highest concentration where no two chromium atoms are first or second
nearest neighbour. One configuration that satisfies this is two chessboard layers on top of each other, shifted
such that iron is always above chromium and vice versa, interlaced with a pure iron layer.
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Figure 4.5a, which show the ASRO as a function of temperature for fixed concentrations, and
particularily from Figure 4.5b, which shows the corresponding standard deviation, it can be
deduced that there is an additional phase transition. The continuous behaviour of Figure 4.5a
and the lambda type appearence of Figure 4.5b confirms that this is a second order phase
transition.

For c = 0.30 the erratic behaviour below T = 0.7 in both Figures 4.5a and 4.5b is caused by
precipitation and marks the boundary of the miscibility gap. It is thus obvious that this phase
transition is in no way related to the border of the miscibility gap.

4.2.5 Energy

Figure 4.6a shows the temperature dependence of the energy of the Fe-Cr system for atomic
chromium fractions of 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. Just as in the case of the magnetisation
one can see clear tendencies to a second order phase transition consistent with the Curie
Temperature. The Curie temperature manifests itself as a notch above which the graph flattens
out. As expected this notch appears at lower temperature for higher concentrations.

One also notices a second transition in the graph which moves towards higher temperatures
and becomes more pronounced for higher concentrations. This transition is due to precipitates
which appear below thus lowering the energy and marks the transition from the two phase
region to the α-phase. For c = 0.8 the miscibility gap extends into the paramagnetic region
which can be seen as the two transitions melting together.

The standard deviation, which is closely related to the heat capacity9, is seen in Figure 4.6b
The lambda type transition is here obvious. The Curie temperature is seen as a peak in the
standard deviation which is not necessarily the maximum value. The precipitates are also seen
quite clearly as high values in Figure 4.6b.

Figure 4.8b shows a plot of the fluctuations of the energy as a function of both temperature
and concentration. The points of high fluctuations form ridges corresponding to the critical
temperatures for ferromagnetic and antiferromagnetic phase as well as the upper temperature
boundary of the miscibility gap.

4.2.6 The Heusler Phase

Figure 4.7 shows the configurations of c = 0.25 at T = 0 and T = 3 respectively. The
second order phase transition mentioned above is thus a transition from ordered to disordered
structures. The configuration of Figure 4.7a consists of two chessboard layers on top of each
other, shifted such that iron is always above chromium and vice versa, interlaced with a pure
iron layer. A unit cell for this structure is shown in Figure 4.7c. The Strukturbericht is L21
and the Space Group is Fm3̄m. The structure resembles the ternary Heusler alloy and we will
call this phase the Heusler phase and denote it η-phase.

9See equation (4.7)
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Figure 4.6: (a) Average energy per atom as a function of temperature averaged over 25000
MC steps. For concentration 0.4 and 0.6 there are two notches which correspond to phase
transitions, first at higher temperature because of the transition from ferromagnetic phase to
paramagnetic and secondly at a lower temperature because of precipitation. For concentrations
0.0 and 0.2 there is only one transition, from ferromagnetic to paramagnetic and for 0.8 the
two notches coincide at the same temperature. (b) Standard deviation of energy as a function
of temperature which is closely related to the heat capacity (see section 4.2.5).

(a)

(b) (c)

Figure 4.7: (a) Ordered Heusler-phase (η) at c = 0.25, T = 0 and (b) Disordered α-phase at
c = 0.25, T = 3. (c) Unit cell of the Heusler-phase which consists of 2x2x2 conventional bcc
unit cells where the middle atom is alternating chromium and iron. The blue dots represent
iron atoms and the red represent chromium.
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Figure 4.8: (a) ASRO-parameter as a function of both concentration and temperature averaged
over 1000 MC steps. (b) Standard deviation of the energy as a function of temperature and
concentration averaged over 10 000 MC steps.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Concentration

T
em

pe
ra

tu
re

 (
re

du
ce

d 
un

its
)

η  η  + α ′

α + α ′  α ′

 α

(a)

(b)

(c)

Figure 4.9: (a) Phase diagram of Fe-Cr computed using a modified Ising model in a 203 bcc
lattice with second nearest neighbours interaction. (b) Solution of α-phase c = 0.4, T = 4. (c)
Precipitation of α + α′ inside the miscibility gap c = 0.4, T = 2. The blue dots represent iron
atoms and the red represent chromium.
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4.2.7 Phase Diagram

Combining all the data generated through the order parameter analysis yields the phase di-
agram in Figure 4.9a. The Curie temperature was found using the magnetisation order pa-
rameter, the Néel temperature from the magnetic SRO parameter and the miscibility gap as
well as the Heusler phase was found using the atomic SRO parameter. The data were cross
correlated between the order parameter as a function of concentration and the order parameter
as a function of temperature. All data points were also cross correlated with data for the total
energy.

The phase diagram shows three qualitatively different phase boundaries, the critical temper-
ature boundary for the ferromagnetic and antiferromagnetic phases, the boundaries between
the miscibility gap, iron-rich α-phase or the chromium-rich α′-phase respectively, and the
boundary between ordered η-phase and disordered α-phase.
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5 Free Energy

5.1 Obtaining the Interface Free Energy

Simulations of a Semi-Grand Canonical (SGC) ensemble or a Variance Constrained Semi-
Grand Canonical (VC-SGC) ensemble consist of two different types of trial moves, either (i) a
spin flip, the spin of a random site is changed or (ii) element swap, the atom type is swapped
from Fe to Cr or vice versa[18]. The ratio between the different trial moves were equal fractions.
For each chosen value of the SGC parameter Δμ the concentration was calculated as the
average value of the concentration after each iteration 〈c〉.
The simulation of the free energy in the SGC ensemble suffers from some shortcomings which
will be discussed below. The free energy inside the miscibility gap cannot be obtained via
simulations in the SGC ensemble. These shortcomings can be remedied by the Variance
Constrained Semi-Grand Canonical (VC-SGC) ensemble.

In order to constrain the concentration and obtain a one-to-one relation between ∂F/∂c and
concentration the VC-SGC parameter κ was chosen1 to 1/N , where N is the number of atoms
in the system, and through the relation

Δμ = φ+ 2κN 〈c〉V (3.24)

the derivative of the free energy was obtained from which the free energy F was calculated
through numerical integration using the trapezoidal rule and relation

Δμ(c) = − 1

N

(
∂FC

∂c

)
V,T

(3.19)

restated here for convenience. The interface free energy ΔF = Aγ was obtained as a function
of concentration after subtraction of the tangent.2

1For a discussion on the proper choice of parameter values see [18]
2The tangent construction is described in appendix B.1
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5.2 Results

5.2.1 SGC vs. VC-SGC

The difference between SGC and VC-SGC can be seen in Figure 5.1. Note for the SGC ensem-
ble simulation how the standard deviation increases near the binodals and how ∂F/∂c makes
a discontinuous jump through the miscibility gap. The point of discontinuity is somewhat
different depending on if the sampling is performed in increasing concentration (forward) or
decreasing (backward). This discontinuity stems from the fact that ∂F/∂c is not one-to-one
in the miscibility gap and there are three intersections corresponding to three different con-
centrations for each value of ∂F/∂c. This failing of the SGC ensemble to produce ∂F/∂c as
a continuous function of the concentration makes it impossible to integrate to obtain the free
energy. The VC-SGC data however, which give the same result outside the miscibility gap
and with smaller standard deviation, are much more well behaved inside the miscibility gap
and are well suited for numerical integration.

5.2.2 Miscibility gap

Figure 5.2 shows the miscibility gap calculated from the free energy as obtained through
VC-SGC ensemble simulations. The binodals, where ∂ΔG

∂c
= 0, are indicated with a solid

line and the spinodals, where ∂2ΔG
∂c2

= 0 are indicated with a dashed line. The miscibility
gap produced via free energy calculations in the VC-SGC ensemble and the phase diagram
produced via order parameters are identical. However, it is striking that the phase boundary
for the miscibility gap obtained through order parameters does not coincide with the binodals
but with the spinodals. The actual configurations however, show that the solubility limit is
the binodal.

Complicating things further is the size dependence of the spinodals shown in Figure 5.3. The
binodals are size independent since the solubility limit for chromium in iron only depends
on the Boltzmann factor where no size dependence enters the calculations. The perceived
increase of the miscibility gap for small systems is likely due to the one over square root of
size behaviour of the fluctuations and to the large error in concentration if one atom changes
species at small sizes. For the spinodals however, the size dependence is obvious and for
increasing system size there is no difference between spinodals and binodal.

5.2.3 Interface Free Energy

Figure 5.4 shows the interface free energy as a function of the chromium concentration for
an interface area of 6x6xLz at temperature T = 2. The flat region from 0.5 to 0.8 atomic
fraction which is particularly pronounced for the 6x6x12 system corresponds to a flat interface.
As described in section 3.3.4 and shown graphically in Figure 3.1, the area of a flat interface
does not increase with increasing concentration. From Figure 5.4 it is also apparent that
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the interface free energy per unit volume decreases as the volume of the size of the system
increases.

Figure 5.5 shows a plot of the interface free energy versus the inverse of the length of the
system measured in number of unit cells for a flat interface at constant temperature. The
expected linear dependence of ΔF/N as a function of 1/Lz from equation (3.26) is confirmed
and the value of γ is the slope of the line. Since clusters are dissolved by thermal fluctua-
tions at higher temperatures the interface free energy is expected to approach zero when the
temperature increases. This is also confirmed by Figure 5.6 which shows how the interface
free energy depends on the temperature. However, the relation between interface free energy
and temperature is not trivial. The change of character at temperature T = 1.5 can possibly
be attributed to the formation of the ordered Heusler phase, but it can also be due to the
interfaces forming in different directions, e.g. the [110]- or [111]-directions.

5.2.4 Interface fluctuations

Due to thermal fluctuations the interface is flat only at temperature T = 0 while at higher
temperatures the interface exhibits roughness. Figure 5.7 shows the chromium concentrations
as a function of position along the z-axis along with a fitted error function

erf

(
x− μ

σ

)
=

x−μ
σ∫

0

e−t2 dt (5.1)

The values of σ, which is a measure of the extension of the fluctuations of the interface is seen
to increase with temperature. At temperature T = 4 there are no precipitates and σ goes
to infinity. As temperature goes to zero σ is expected to go to zero but this is numerically
difficult to achieve due to the low acceptance probability.

Figure 5.7 also shows the saturation limit of chromium in an iron matrix to the left and the
respective saturation limit of iron in a chromium matrix to the right. From the respective
saturation limits the miscibility gap can be obtained and is shown by red squares in Figure
5.2.
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Figure 5.1: Data obtained through simulations in a SGC ensemble with increasing (blue long
dashed) and decreasing (red short dashed) Δμ and in a VC-SGC ensemble with κ = 0.1 (green
solid) at temperature 2 in a system of 6x6x12 unit cells. Note for the SGC ensemble simulations
how the standard deviation increases near the binodals and how the free energy derivative makes
a discontinuous jump through the miscibility gap. Note also how well behaved the VC-SGC
ensemble data are inside the miscibility gap.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

2

2.5

3

3.5

4

Concentration

Te
m

pe
ra

tu
re

 (r
ed

uc
ed

 u
ni

ts
)

 

 

Solubility limit
Binodal
Spinodal
ASRO
Ackland data

Figure 5.2: Miscibility gap obtained through calculations of the free energy in a 203 bcc supercell.
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Figure 5.7: Interface fluctuation for different temperatures. The blue marks show the chromium
concentration as a function of Lz and the red curves show fitted error functions for specific
configurations.
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Figure 5.8: The extension of the interface fluctuations σ measured in number of unit cells as
a function of temperature averaged over 20 configurations.
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6 Discussion

The phase diagram obtained by order parameters (Figure 4.9a) exhibits the main charac-
teristics of a Fe-Cr phase diagram in Figure B.3; (i) a Curie temperature and saturation
magnetisation which decrease with increasing chromium content, (ii) a miscibility gap skewed
towards the right, allowing for solution of chromium in iron at low temperature but not vice
versa, and (iii) a ratio between the Curie and the Néel temperatures of 2.9 which is surpris-
ingly close to the measured ratio 3.4. The last property is probably accidental but the other
two show that Ising type magnetic effects alone can explain the immiscibility of ferromagnetic
and antiferromagnetic type species in a bcc lattice. This is quite remarkable considering the
simplicity of the Ising model, that all interaction parameters ε have been set to unity and that
no direct repulsive term between iron and chromium has been added.

However, the miscibility gap is somewhat to small compared with the experimental phase
diagram. An improvement can be achieved by adding a repulsive term SiSj to the Hamiltonian
(3.2) [11], by fitting of parameters or by including up to fifth nearest neighbour interaction
[12]. Nevertheless, for more quantitatively accurate results an altogether different Hamiltonian
would be advisable which, e.g. takes as input data obtained with Density Functional Theory
[7, 8, 9, 10].

There is one feature in the phase diagram of Figure 4.9a which is not found in the experimen-
tally observed phase diagram, namely the ordered state of the α-phase at low temperatures.
This phase, which we have chosen to call the Heusler phase after its similarity with the ternary
Heusler alloy, has not been observed by Ackland [11] despite using the same modified Ising
model of equation (3.2). A comparison of the temperature at which the miscibility gap closes
with the experimentally obtained phase diagram shows that T = 1 corresponds to about 200K,
a temperature at which thermal equilibrium is impossible to obtain. Thus it can be concluded
that the Heusler transition cannot be observed experimentally. However, the Heusler tran-
sition is most likely a feature of the modified Ising model since it requires a solubility of
chromium in iron of 25%.

The low temperature at which this transition takes place also implies a low acceptance proba-
bility. In this work the solution has been a rejection of the initial nonequilibrium configurations
in combination with a gradual decrease in temperature. Preliminary findings however, show
that an additional trial move consisting of a simultaneous spin flip and a change of species
could increase the acceptance probability and produce better data for lower temperatures.
Another solution could be a trial move of Swendsen-Wang type where whole clusters change
spin simultaneously [20].

The phase diagram calculated from the interface free energy, Figure 5.2, shows very good
correspondence with the phase diagram obtained from order parameters. However, the mis-
cibility gap obtained from order parameters does not coincide with the binodals as expected
but with the spinodals. In the thermodynamic limit, i.e. when the system size goes to infinity,
the difference between binodal and spinodal goes to zero, but it can be seen in Figure 5.3 that
the rate at which this happens is much slower than assumed by Ackland [11] and for a 203

bcc supercell the difference between spinodals and binodals of about 3 percentage points is
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too large to be neglected.

The difference between the binodal and the spinodal depends on the critical radius r∗ required
for nuclei to form. While the binodal marks the onset of the metastable phase region, where
clusters constantly form and dissolve without reaching critical radius, the spinodal marks the
point beyond which metastable phases can no longer exist and stable clusters form [5]. The
order parameter method used by Ackland cannot detect the metastable phase between the
binodal and the spinodal, only clusters beyond the spinodal. However, the interface free en-
ergy approach proposed by Sadigh and Erhart [18, 21], i.e. Monte Carlo simulations in a
VC-SGC ensemble, accurately produces the spinodal as well as the binodal. This is confirmed
respectively by the correspondence of spinodals and order parameters and by the correspon-
dence of binodals and solubility limit obtained directly from the sampled configurations. It
must be stressed however, that it is important to keep the system size the same in different
simulations in order to achieve this correspondance due to the size dependence of the location
of the spinodals.

Another indication of the accuracy of the VC-SGC approach is the agreement of the derivative
of the interface free energy obtained through simulations of the VC-SGC ensemble with data
produced in the SGC ensemble outside the miscibility gap. However, due to the constrained
variance in the VC-SGC the fluctuations are, as predicted, smaller compared to the SGC.
The good agreement between the two methods outside the miscibility gap suggests that the
VC-SGC is a valid generalisation of the SGC for sampling in regions of negative curvature of
the free energy.

The flat region in the figure of the interface free energy at intermediate concentrations for
systems of cuboid dimensions suggest that flat interfaces are indeed formed and cross cor-
relations with actual configurations support this. The extension of the fluctuations of the
interfaces seen in Figure 5.7 and 5.8 are indeed Gaussian and on average zero. The interfaces
can therefore be considered flat for intermediate concentrations. The lattice has in this work
has been orientated with lattice vectors parallel to the sides of the cuboid system. The flat
interfaces have therefore formed in the [100]-direction. By orientating the lattice differently
other interface directions can in principle be calculated. Choosing the dimensions of the sys-
tem differently, e.g. two sides equal and one side shorter could provoke cylindrical interfaces
to form. The formation of spherical precipitates, which is the form attained by small clusters,
could be found as a ΔF ∝ c2/3 behaviour of the free energy at the onset of precipitation.
Knowledge of the interface free energy for interfaces orientated in different directions can help
explain the shapes attained by clusters in real systems.

35



7 Conclusions

We have performed Monte Carlo simulations in a ferromagnetic lattice based model of Fe-Cr
and obtained a phase diagram which exhibits the main characteristics of the experimentally
observed phase diagram. The modified Ising model used shows that ferromagnetic interaction
can by itself produce a miscibility gap skewed somewhat to the right, allowing for solution of
chromium in iron but not vice versa, even in the absence of a direct repulsive term.

The phase diagram obtained from order parameters in the present work is in close agreement
with Ackland’s [11] results. The miscibility gap obtained from order parameters was confirmed
to correspond to the spinodal by calculations of the free energy but the large difference between
spinodals and binodals, even at systems of size 303, shows that the assumption of Ackland,
that the difference is negligible, is wrong. The present work presents a more accurate way of
obtaining the miscibility gap through the interface free energy computed from simulations of
a Variance Constrained Semi-Grand Canonical ensemble.

An additional phase transition from ordered state to disordered state at low temperatures
and intermediate concentrations has also been found. This ordered phase, which has Struk-
turbericht L21 and resembles the Heusler Alloy, has not been observed in previous works by
Ackland despite using the same modified Ising model.

We have also computed the interface free energy in the [100]-direction of a bcc lattice of Fe-Cr
and a predicted relation between system size and interface free energy has been confirmed. A
decreasing interface free energy with increasing temperature has also been observed.
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A Thermodynamic ensembles

Systems in thermal equilibrium can be characterised by their macroscopic thermodynamic variables, e.g. vol-
ume (V ), pressure (P ) and temperature (T ). However, in statistical physics but these quantities are nothing
but the time averages of some microscopic configuration in phase space. Statistical physics is the theory of
systems with large degrees of freedom and the relation between atomistic degrees of freedom and measurable
quantities, the thermodynamic variables.

Ā = lim
T→∞

1

T

T∫
0

A(t) dt (A.1)

Two very useful theorems from mathematical statistics, the Central Limit Theorem and the Law of Large
Numbers, state that when the number of sampled points N go to infinity, or in reality become very large,
the distribution of A is Gaussian with the mean value equal to the expected value and a standard deviation
σ ∝ 1/

√
N [26]. Thus, if N is very large the statistical variable A goes to the thermodynamical quantity Ā.

This is called the thermodynamical limit. In this context it is also important to realise that not only need
the number of samples be very large but for a discrete set, e.g. a lattice model such as the Ising Model, the
number of lattice points need to be large in order to reach the thermodynamical limit.

Assuming a system in thermal equilibrium, the physical quantities describing the system macroscopically or
controlling the system externally are called system parameters. Every set of system parameters correspond to a
set of allowed microscopic states. Different experimental circumstances correspond to different system param-
eters being fixed. These correspond to different ensembles. The fundamental postulate of statistical physics
is that all microscopic states corresponding to a certain value of the system parameters are equally probable
and that every configuration is equally likely to be visited in the course of time (the ergodic hypothesis). This
leads to the conclusion that the time average Ā (A.1) is identical to the expectation value

〈A〉 =
∑
i

AiP(Ai) (A.2)

It should be stressed that this is not true in general and there are examples of systems that do not follow this
rule, e.g. glasses and meta stable phases.

A.1 Microcanonical Ensemble

The most fundamental ensemble is the microcanonical ensemble or the NVE-ensemble, which is described by
the number of particles N , the volume V and the energy E. The probability P of a state is the inverse to the
number of states Ω with the prescribed energy.

P(X) =
1

Ω(N, V,E)
(A.3)

Keeping in mind that the indistinguishability of the particles in the semi-classical model (the interchange of
two particles do not correspond to different states) the number of states must also be divided by N !. The
inclusion of N ! also ensures that the entropy defined below is an extensive variable, i.e. scales linearly with
system size. (For mixtures, the factor N ! is replaced by the product N1!N2!...,, where the subscripts label
different species.) The number of states with the prescribed energy is thus

Ω(N, V,E) =
1

N !

∑
X

δ[H(X)− E] (A.4)
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where H(X) is the Hamiltonian which gives the energy at the point X in phase space. We thus have

〈A〉 =
∑
i

AiP(A) =

∑
X AXδ[H(X)− E]∑

X δ[H(X)− E]
(A.5)

A very important relation is
S = kB lnΩ (A.6)

which relates the macroscopic entropy to the microscopic multiplicity. The importance of this relation is readily
seen as the temperature T , the chemical potential μ and the pressure P are given as derivatives of the entropy
with respect to different system parameters

1

T
=

(
∂S

∂E

)
N,V

μ

T
=

(
∂S

∂N

)
E,V

P

T
=

(
∂S

∂V

)
E,N

(A.7)

as can be readily seen from the first law of thermodynamics, sometimes also called the thermodynamic identity

dE = TdS − pdV + μdN (A.8)

A.2 Canonical Ensemble

In practise it in not the energy that is kept constant but the temperature. This ensemble is called the
canonical ensemble or the NV T ensemble after the system parameters of the ensemble. It can be shown that
the probability of a state being occupied under those circumstances is proportional to exp{−H(X)/kBT },
called the Boltzmann factor. More specifically (with β = 1/(kBT ))

P(X) =
1

N !Z
e−βH(X) (A.9)

where the partition function

Z(N, V, T ) =
1

N !

∑
X

e−βH(X) (A.10)

ensures correct normalisation. If the summation is taken only over different energies the partition function
takes the following form.

Z(N, V, T ) =
∑
E

e−βEΩ(N, V,E) (A.11)

or the more familiar form
Z(N, V, T ) =

∑
s

e−βE(s) (A.12)

Note that H(x) counts all the permutations of the state and has to bring along a factor N ! whereas E(s)
is defined to only count indistinguishable states ones and E (without reference so s) is the energy of the
configuration and does not count multiplicities at all. Together with equation (A.6) equation (A.11) can be
written as

Z(N, V, T ) =
∑
E

e−β(E−TS) =
∑
E

e−βFE (A.13)

Hence the free energy which in thermodynamical quantities is given by F ≡ E−TS is related to the partition
function through

F = −kBT lnZ(N, V, T ) (A.14)

Once again the first law of thermodynamics can be used to obtain the following thermodynamic relations

μ =

(
∂F

∂N

)
V,T

P = −
(
∂F

∂V

)
N,T

S = −
(
∂F

∂T

)
V,N

(A.15)
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A.3 Grand Canonical Ensemble

Letting the number of particles vary one obtains the grand canonical ensemble

P(X) = − 1

N !
eβμN

1

Z e−βH(X) (A.16)

Z(μ, V, T ) =
∑
N

e−βμN 1

N !

∑
X

e−βH(X) =
∑
N

e−βμNZ(N, V, T )

=
∑
N

∑
E

e−β(EN+μN)Ω(N, V,E)
(A.17)

or in the more familiar form

Z(μ, V, T ) =
∑
N

∑
s

e−β[E(N,s)+μN ] (A.18)

In analogy with other thermodynamic ensembles one can define a grand canonical potential

FG = −kBT lnZG = FC − μN (A.19)

From the grand canonical potential we can therefore derive the thermodynamic relations

N = −
(
∂FG

∂μ

)
V,T

P = −
(
∂FG

∂V

)
μ,T

S = −
(
∂FG

∂T

)
V,μ

(A.20)

A.4 Semi-Grand Canonical Ensemble

For mixtures where the total number of particles is fixed while the concentration is allowed to vary there
is a variant of the grand canonical ensemble called the semi-grand canonical ensemble defined through the
canonical ensemble as

ZS =
∑
c

ZC e−βΔμNc =
∑
c

∑
E

e−β[FC+ΔμNc] (A.21)

which yields a version of the well-known thermodynamic relation (A.15)

Δμ = − 1

N

(
∂FC

∂c

)
V,T

(A.22)

A.5 The Partition Function

From the discussion above it is obvious that the partitions function plays a fundamental role in thermodynamics
and statistical physics. We have already seen several examples of this above in equations (A.7), (A.15) and
(A.20). But to illustrate the statistical nature of the ensemble approach consider the mean energy of the system
〈E〉 (often denoted U in thermodynamics) which can be computed as the statistical average (or expectation
value)

〈E〉 =
∑
s

E(s)PC(s) =

∑
s E(s)e−βE(s)∑

s e
−βE(s)

= −∂ lnZC

∂β
(A.23)
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and the heat capacity as

CV =

(
∂U

∂T

)
N,V

=
1

kBT 2

∂2 lnZC

∂β2

=
1

kBT 2

[∑
s E(s)2e−βE(s)∑

s e
−βE(s)

−
(∑

s E(s)e−βE(s)∑
s e

−βE(s)

)2
]

=
1

kBT 2

(〈
E2
〉
NV T

− 〈E〉2NV T

)
(A.24)

where the last expression in round brackets is called the variance of E. Thus if one could obtain the partition
function for a system in one could principle derive all thermodynamic quantities from it. However, closed
analytical expressions for the partition function are only available in some special cases and the number of
allowed states, usually of the order 1010

23

, makes it impossible to compute the energy for all states. There are
methods available for estimating the partition function numerically, e.g. the Monte Carlo method. The Monte
Carlo method allows for a numerical sampling of the average value of thermodynamical quantities, which in
turn can be integrated through clever methods to generate the partition function.

B Phase Diagram

A phase diagram is a two dimensional map describing the properties of e.g. an alloy subject to different
system parameters being held fixed. Often the system parameter on the abscissa is the concentration and on
the ordinate the temperature. The boundaries, where equilibrium between different phases exists, appear as
lines and the areas enclosed by those lines represent different states or phases of the substance. Examples of
such phases are: gaseous, liquid and solid phase, but will in this context refer to different crystal structures or
different magnetic properties.

B.1 Construction of the Phase Diagram

A phase diagram can be constructed from the Gibbs free energy G of the system

G = H − TS (B.1)

Assuming that subsystem A has a Gibbs free energy of G◦
A and subsystem B a Gibbs free energy of G◦

B then
an unmixed combination of the two systems will have a Gibbs free energy of Gunmixed = (1 − x)G◦

A + xG◦
B ,

where x is the concentration of B. However, the free energy of the system will not remain constant during the
mixing and the actual free energy at concentration x can be expressed

Gmixed = Gunmixed +ΔG (B.2)

where ΔG is the change in the free energy due to the mixing. But, with 1 for the unmixed system and 2 for
the mixed system, since G1 = H1 − TS1 and G2 = H2 − TS2 denoting ΔH = H2 − H1 and ΔS = S2 − S1

gives
ΔG = ΔH − TΔS (B.3)

For an ideal solution, where the free energy change is only due to the change in entropy, ΔH = 0 and ΔS can
be written as

ΔS = −R [x lnx+ (1− x) ln(1 − x)] (B.4)

It is important to note that the derivative of ΔS and thus also for ΔG will be infinite at x = 0 and x = 1 and
that the tiniest impurity will lower the free energy regardless of the enthalpy of the system which cannot have
an infinite derivative.
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Figure B.1: Top: The free energy at negative enthalpy ΔH < 0. Bottom: The free energy at
positive enthalpy ΔH > 0.
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Figure B.2: Derivation of a phase diagram exhibiting a miscibility gap.
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For ΔH < 0, the lower part of Figure B.1, the free energy is straight forward to obtain as the value where
G has a minimum for a given concentration. For ΔH > 0, the upper part of Figure B.1, the case is also
straight forward at high temperatures but at low temperatures there is a way to lower the free energy further
by phase separation into clusters of concentrations x1 and x2. These concentrations, which are the solubility
limit of A in B and vice versa, are called binodals. Characteristically for a solution with a miscibility gap
is that there is a temperature marked T2 in Figure B.2 where the two species A and B mix before liquid
phase occurs. The negative curvature of the free energy between concentrations x3 and x4 is an interval which
exhibits spontaneous uphill diffusion and spinodal decomposition occurs, a precipitation mechanism which has

no barrier for nucleation (see Figure 2.4). The concentrations where ∂2G
∂T 2 are called the spinodals and are of

great importance significance in understanding precipitation in binary alloys.

B.2 The Experimental Phase Diagram of Fe-Cr

σ

γ

α δ

Figure B.3: The Experimental Phase Diagram of Fe-Cr (redrawn after [27])
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C Phase transitions

Phase transitions happen at critical temperatures TC and are characterised by changes in internal order of
the substance. If L is a measure of this order, essentially two things can happen at TC . Either L decreases
continuously with increasing temperature reaching a value zero at TC , meaning that the order has disappeared
or L can remain virtually constant up to TC where it drops abruptly to zero. The magnetisation is a typical
example of the former and the measure of the order being the magnetisation M . Depending on the behaviour
of L near TC the phase transition is characterised as either first or second order.

A first order phase transition, Figure C.1a, e.g. the melting of a solid, is characterised by a discontinuity in
the first derivative of the free energy, e.g. (

∂G

∂T

)
P

= −S (C.1)

is discontinuous at the transition from solid to liquid phase. An equivalent formulation is that a first order
phase transition is associated with a latent heat. At the phase transition the free energy G = H − TS is
constant but the entropy and hence also the enthalpy is greater in the liquid phase causing the heat capacity
CP = ∂H/∂T to go infinity at the phase transition since heat is supplied at a constant temperature.

A second order phase transition or a continuous phase transition, Figure C.1b, is characterised by a discontinu-
ity of the second derivative of the free energy but a continuous first derivative. This means that the enthalpy
H is continuous at the phase transition and consequently

∂2G

∂T 2
= −

(
∂S

∂T

)
p

=
1

T

(
∂H

∂T

)
p

=
CP

T
(C.2)

there is no latent heat, only a high heat capacity associated with the transformation. A second order phase
transition is sometimes called a lambda transition due to the shape of the curve of the second derivative.

D Magnetism

Magnetism, being a purely quantum mechanical phenomenon, cannot be fully understood from a classical
point of view. However, it is possible to understand many of the properties of magnetism through without
going into quantum physics. If a material is subjected to a magnetic field the response of the system can be
described as the magnetic susceptibility χ defined as

χ =
M

B
(D.1)

whereM is the magnetisation if the material, B is the applied magnetic field. SI-units also require a constant of
proportionality of μ0, the permittivity in free space. Systems with negative susceptibility are called diamagnetic
and systems with positive susceptibility are called paramagnetic. One can show, through a quantum mechanical
analysis, that the susceptibility is proportional to T−1. This law, experimentally found by Curie and valid for
low magnetic fields or high temperatures, is called the Curie Law and the constant of proportionality, called
the Curie constant can be expressed in fundamental constants of nature as

C =
NJ(J + 1)g2μ2

B

3kB
(D.2)

where g is the Landé g-factor, μB is the Bohr magneton and J is the angular momentum quantum number.

Ferromagnetic materials are systems which display a net magnetisation without externally applied magnetic
field. Thus there seems to be an internal magnetic field, an exchange field BE , which does not enter into
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Figure C.1: Thermodynamic characteristics of (a) first order and (b) second order phase
transitions. (Redrawn after [14])
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Maxwell’s equations.1 In a mean field approximation we can macroscopically expect that the exchange field
is proportional to the magnetisation, or

BE = λM (D.3)

where the constant λ is independent of T . The Curie temperature TC is defined as the temperature above
which the spontaneous magnetisation disappears and the material behaves paramagnetically. Above the Curie
temperature we can thus treat the material with Curies law for paramagnetic materials (χP = C/T ). First we
write the magnetisation in terms of the exchange field and the applied magnetic field

M = χP (BA +BE) (D.4)

Once again we drop the constants required in SI-units. Inserting equation (D.3) and the Curie law we can
rewrite (D.4) as

MT = Tχ(BA +BE) = C(BA + λM) (D.5)

The susceptibility will thus become

χ =
M

BA
=

C

T − λC
(D.6)

The susceptibility will thus go to infinity at Cλ which has the dimension of temperature and is the critical
temperature or the Curie temperature TC mentioned above. This is called the Curie-Weiss law.

D.1 The Heisenberg Model

On a microscopic scale magnetism can be regarded as magnetic dipole moments centred on atoms. These are
caused by the total angular momentum of the atoms which in general include both a spin and an orbital part,
but it is common practise to refer to the these as just spin. On a quantum level in a lattice model the spin
coupling between magnetic moments can be described via the Heisenberg model

H = −1

2

∑
RR′

S(R) · S(R′)J(R−R′)− gμBH
∑
R

Sz(R) (D.7)

The first term is the exchange energy between atoms, where S are quantum mechanical operators, J(R−R′)
is the exchange integral and is related the overlap in the wave functions of the charge distribution. The second
term is the energy contribution from en external field, where g is the Landé g-factor, μB is the Bohr magneton
and H is the externally applied magnetic field.

Although a lot of information about magnetism can be extracted from the Heisenberg model, the complexity
of the Hamiltonian limits its uses practically. Many simplifications can be done however, and one of the most
important simplification of the Heisenberg model is the Ising model in which S(R and SR′ are assumed parallel
or antiparallel.2 Furthermore, we can assume that J(R −R′) = J(R′ −R) = Jij where Jij is equal to zero
everywhere except when i and j are neighbours, first neighbours of neighbours of higher order. We also make
the assumption that the interaction Jij = ε is the same for all atoms in the lattice. We then arrive at the Ising
model

H = −ε
∑
i,j

σiσj (D.8)

where the sum goes over neighbours i and j.

1This is called a Weiss field.
2Strictly speaking, since S(R) ·S(R′) = S−(R)S+(R

′)+Sz(R)Sz(R
′) are all quantum mechanical operators

dropping the first term S−(R)S+(R
′) from the Heisenberg model gives the Ising model in which Sz(R)Sz(R

′)
commute.
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D.2 Magnetic Ordering on a microscopic scale

Just as the macroscopic susceptibility χ can be negative or positive the exchange integral ε can be negative
or positive. A positive value of ε will favour parallel spins which will then cause a net magnetisation without
externally applied magnetic field, i.e. a ferromagnetic material. On the other hand if ε is negative antipar-
allel spins are favoured. Such a material which i ordered but has a no spontaneous magnetisation is called
antiferromagnetic.

An antiferromagnetic material will differ from a paramagnetic in the sense that while both have zero net
magnetisation, a paramagnetic material has random order while an antiferromagnetic material will have its
spins aligned antiparallel. Figure D.1 shows possible configurations for an antiferromagnetic structure. The
antiferromagnetic structure will look different depending on whether only first neighbour interactions or first
and second neighbour interactions are considered. For first neighbour interactions the configuration can be
visualising as two interpenetrating simple cubic lattices, one with only spin up and the other with only spin
down (to the left). The first neighbours are then all in the other lattice. The lowest possible energy per atom
will then be −8ε. For first and second nearest neighbour interactions the configuration can be viewed as one
chessboard layer on top of another, shifted such that spin up is always straight above spin down, with another
chessboard layer between (to the right). The lowest possible energy per atom will then be (−10 + 4)ε = −6ε.

While the transition from ferromagnetic to paramagnetic state can be measured through the total magneti-
sation, M =

∑
σi, the transition from antiferromagnetic to paramagnetic cannot, since both have a net

magnetisation equal to zero. The difference between the two is on a short range scale and must be measured
using short range order parameters such as αM in section 4.1.2 restated here for convenience.

α
(k)
M = 1− σ

(k)
+

σ
(k)
tot

1
2 (1 +M)

(4.4)

For M = 0 the denominator, which is the expected number of neighbours with spin up, will equal 1/2 times
the number of neighbours. In the case of first and second neighbour interaction the denominator will be equal
to 4. In a paramagnetic state this is also the average number of atoms we will encounter with spin up resulting
in αM = 0. In a antiferromagnetic state however, the denominator will be 7 while the numerator is 4 resulting
in αM = 3/7. In other words, the magnetic SRO parameter will change its value at the critical temperature
TC , the boundary between antiferromagnetic and paramagnetic state.
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Figure D.1: Antiferromagnetic structure using first neighbour interaction left and both first
and second neighbour interaction right.
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