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THE ROLE OF MAGNETIC PERTURBATIONS IN RUNAWAY ELECTRON
AND SAWTOOTH DYNAMICS

Gergely Papp

Department of Applied Physics

Chalmers University of Technology

Abstract

As the world’s fusion energy program is increasingly focused towards
burning plasma experiments, it is important to address the remaining
theoretical issues. In this thesis we focus on the effect of magnetic per-
turbations on the radial plasma transport.

The sudden loss of plasma confinement in large tokamaks can lead to
the generation of a relativistic runaway electron beam that may cause
serious structural damage. To suppress the runaway beam the appli-
cation of resonant magnetic perturbations (RMP) has been suggested.
In this thesis, the numerical analysis of the RMP is based on the rela-
tivistic, gyro-averaged drift equations for the runaway electrons in the
3D perturbed equilibria of the TEXTOR and ITER tokamaks. The
results indicate that, in a properly chosen perturbation geometry, run-
away electrons are rapidly lost from approximately the outer half of the
confinement volume. Simulation studies of runaway evolution with self-
consistent electric field in the presence of impurities have been carried
out for the JET tokamak with a 1D tool, where we have demonstrated
the runaway suppression effect of magnetic perturbation induced radial
transport. We also show that runaway electrons can generate high en-
ergy positrons, and that their synchrotron radiation may be used for
diagnostic purposes.

The last part of the thesis describes the low frequency precursor ac-
tivity observed in the ASDEX Upgrade tokamak before sawtooth crashes,
which are periodic density and temperature redistributions of the plasma
core. Besides the well-known internal kink mode, the low frequency
sawtooth precursor (LFSP) mode is studied in detail. Time-frequency
analysis indicates non-linear interaction and a similar spatial structure
for the two modes. A possible role of this mode in the evolution of the
sawtooth crash is discussed in the context of magnetic perturbations.

Keywords: fusion plasma physics, tokamak, runaway electrons, run-
away mitigation, magnetic perturbation, sawtooth oscillation
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1 Introduction

Given a task to do, one that seems impossible, given the desire to do it,
humans can accomplish almost anything.
— Jim Lovell, Apollo astronaut

The human civilization requires an ever increasing amount of energy. At
present times most of our energy production is based on fossil sources,
and this is not in accordance with the principle of sustainable devel-
opment [1]. Fossil fuels will inevitably run out, but even before that,
their use puts a large environmental load on our planet. One of the
possible long-term options is the utilization of nuclear energy [2]. Ex-
ploiting nuclear fission is a technique in use since more than 50 years.
Nuclear fusion of light nuclei is another option to employ nuclear en-
ergy. While keeping all the advantages of nuclear fission, such as energy
production on a large scale or the small fuel requirement, it eliminates
the problem of long-term nuclear waste and also has promising safety
aspects [3, 4]. Up to our present knowledge, energy production based on
controlled nuclear fusion possesses almost all the attributes of an ideal
energy source [5-8]: it is safe, affordable, controlled, plentiful, pollution-
free, requires a small amount of fuel and has a reasonable plant size.

The basic idea is about 90 years old [9] and is the easiest to under-
stand through the Bethe-Weizséicker semi-empirical binding energy for-
mula [10]: uniting light nuclei into heavier ones releases a great amount
of energy. The most practical option is to use isotopes of hydrogen,
namely deuterium (?H = D) and tritium (*H = T):

D+ T — a4+ n + 17.6 MeV,

where the reacton will produce an a-particle and a neutron (that car-
ries 80% of the reaction energy). Unfortunately, the implementation of
controlled nuclear fusion has proved to be rather challenging. The main
problem is posed by the extremely high temperature (in the order of 100
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million Kelvins) needed to overcome the strong Coulomb repulsion of the
nuclei to be fused. Matter at this temperature is in the plasma state and
cannot be held together by any kind of vessel made of solid materials.
There are three main concepts to confine the fusion plasma. The first
one is gravitational confinement that powers the stars, but is not feasible
on planetary scales. The second is inertial confinement, where small fuel
pellets are ignited by ultra intense lasers to form a “miniature hydrogen
bomb”. This method, though in principle is feasible on Earth, when re-
alised with present day technologies raises questions of practicality and
cost-effectiveness [6]. The third option, that is commonly believed to be
the best solution today, is magnetic confinement.

Bopoloidal Transformer Stabiliser

Current Helical field Be  Field coil

Figure 1.1: Schematic figure of a tokamak.

The most successful magnetic confinement device of present days is
the tokamak [7], shown in figure 1.1. It uses a strong (up to 8 T), mag-
netic field bent to a torus shape. In a tokamak a large toroidal plasma
current (up to 15 MA) is used to twist the magnetic field in a wreath-like
helical structure to avoid particle losses due to motion along field lines
and drifts. Along with the currently operating devices [11] the next step
in fusion research is already under construction. The ITER tokamak
is being built in Cadarache, France, in a worldwide collaboration that
aims to explore reactor relevant operating conditions and to test reactor
elements [12].



In order to operate an energy producing fusion reactor in a safe and
efficient way, we need to precisely understand the behaviour of fusion
plasmas. Although intensive research has been carried out in the last
decades, there are still a number of open questions. This thesis at-
tempts to describe the effect of magnetic perturbations on the tokamak
magnetic structure and its effects on the transport of plasma particles
by discussing two phenomena that contribute to the understanding of
tokamak physics.

One of the applications is connected to runaway electrons [13],
which is a high energy electron population in the plasma. Runaway
electron generation is an interesting effect of collisional transport in fu-
sion plasmas. The collisional drag force experienced by a sufficiently high
energy electron decreases with increasing momentum due to the nature
of Coulomb collisions in plasmas [14]. If a sufficiently high electric field
parallel to the magnetic field is present in the plasma, there will be a
population of electrons for which the electrostatic accelerating force is
stronger than the collisional drag. These electrons will then continue to
be accelerated up to relativistic energies. The runaway electrons usually
drift to the wall of the tokamak, where the impact can cause serious
damage [15]. Fortunately, the conditions necessary for substantial run-
away production seldom arise during normal operation, but can appear
during non-operational plasma conditions, such as disruptions [7]. Dis-
ruptions are global plasma instabilities capable of terminating the dis-
charge. During the disruption a very quick cooling of the plasma takes
place, so that the conductivity drops and, as a result, the toroidal elec-
tric field rises dramatically due to the self-inductance of the plasma. It
can be shown that a higher plasma current leads to a higher number and
more energetic runaways [16], therefore large tokamaks are more threat-
ened by runaways than small ones. Unmitigated disruptions represent
a severe risk for ITER [17], and should be avoided by reliable control
of the plasma discharge. Before operating on reactor-relevant scales, a
suitable solution has to be found to eliminate the runaway electrons [18].

Resonant Magnetic Perturbations (RMP) are one option for
runaway electron mitigation. In RMP, a perturbation field generated by
external coils is applied to the plasma, and as a result, the radial trans-
port is enhanced. This has been shown to work well for runaway suppres-
sion in various experiments [19-24], while positive results in this respect
are lacking in others, such as in the biggest currently operating tokamalk,
JET [25]. The reason for the difference in the experimental success of
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suppressing runaways in various devices is an important question if we
plan to apply RMP to aid runaway electron mitigation in ITER. Due
to the complexity of particle transport in perturbed magnetic fields, a
reliable model of how the runaway electrons are transported out of the
plasma can only be obtained via three-dimensional numerical modelling
of the runaway electron drift orbits. In the first, major part of this the-
sis, we study the effect of RMP on runaway electron transport and losses
in order to create a reliable basis for RMP modelling and to estimate its
effectiveness in ITER. We will also show the effect of magnetic pertur-
bations on runaway electron generation in JET with two different wall
materials (carbon and beryllium).

Interestingly, runaway electrons generated in tokamak disruptions
give rise to the strongest — albeit not deliberate — man-made positron
sources [26]. We calculate the distribution function of the positrons
and show that their synchrotron radiation may be employed to gain
information about plasma parameters that are hard to diagnose during
a disruption.

The last topic covered in this thesis is the issue of sawtooth os-
cillations [27], or sometimes called as “internal disruptions”. This phe-
nomenon is responsible for periodically expelling particles and energy
from the core of the plasma to outer regions, that has both advantages
[28] and disadvantages [18, 29, 30] at the same time. For this reason, the
aim is to control, rather than completely avoid sawteeth. The field of
sawtooth control has made significant progress lately [31], but we are still
lacking a thorough understanding of the underlying physics. Right after
the very first observation [32] it became clear that the transient trans-
port events — called sawtooth crashes — are connected to the appearance
of an internal kink mode, which is a core magnetohydrodynamic (MHD)
mode. This mode is taken into account in every sawtooth model. Re-
cent results on the tokamaks ASDEX Upgrade [33-35], HT-7 [36] and
JET [37] showed, that along the energetic internal kink mode, a low
frequency signal component is also measurable, which gains energy just
before the sawtooth crash. In the last part of the thesis, we describe
the recent experimental results concerning this Low Frequency Saw-
tooth Precursor (LFSP) and introduce a possible model on how it
can play a role in the sawtooth crash. We will show that this weak,
perturbative fluctuation can be of large importance, thus understanding
its behaviour can make an important contribution to present day’s most
favoured sawtooth crash models [33, 38].



Magnetic perturbations have an important role in both runaway elec-
tron and sawtooth dynamics. In a magnetic confinement fusion device
the particle transport is extremely anisotropic. While particles can travel
freely along the magnetic field lines with their thermal speed, in the di-
rection perpendicular to the magnetic surfaces the transport is governed
by collisions, leading to several orders of magnitude smaller transport co-
efficients in the perpendicular direction [14]. In other words, the plasma
acts as an insulator in the radial direction, which is very favourable if
we want to achieve 100 million degrees in the core, and at the same
time, technically manageable temperatures just a few meters away at
the edge. If the magnetic field structure is distorted either for inter-
nal or external reasons, that can lead to a formation of mixed magnetic
topologies of magnetic islands and so-called ergodic zones. In these ra-
dially extended zones the magnetic field lines meander in a chaotic way,
and particles following the ergodic field lines can be transported signif-
icantly faster in the radial direction. In other words, ergodic zones act
like “transport short-circuits”. The spatial properties — such as size and
position — of the ergodic zones depend on the underlying perturbation
strength and structure in a nonlinear way. As a result, even perturba-
tions small compared with the equilibrium magnetic field can lead to the
generation of ergodic zones. Deliberately generating ergodic zones at the
plasma edge can ease the removal of runaway electrons before they are
accelerated to very high energies, while ergodic zones generated by core
MHD modes can play a role in the transient transport of the sawtooth
crash.

The rest of the thesis is organized as follows. The effects of mag-
netic perturbations on the tokamak magnetic structure along with the
generation and properties of ergodic zones are described in chapter 2.
An introduction to the runaway phenomenon is given in chapter 3 with
a short summary of the numerical results concerning the effect of RMP
on runaway electrons. The sawtooth instability is described in chapter 4
along with the experimental results on the LFSP and its possible role in
the crash models. Finally, a summary is given in chapter 5.
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2 Magnetic perturbations

The most exciting phrase to hear in science, the one that heralds new
discoveries, is not ‘Eureka!” but ‘That’s funny...’
— Isaac Asimov

Let us first introduce the classic definitions of the magnetic structure
of the tokamak in the common plasma physics nomenclature. As was
described in chapter 1, tokamaks realize magnetic plasma confinement
in toroidal geometry. The definitions of the toroidal geometry are shown
in figure 2.1a.

Poloidal
direction

!Toroidal

direction direction

Figure 2.1: (a) Definitions of the toroidal geometry: radial (r), poloidal (9)
and toroidal (¢) directions; Ry marks the major-, a the minor
radius. (b) Nested magnetic surfaces drawn by magnetic field
lines and current lines.

For axisymmetric equilibria — where physical quantities do not de-
pend on the toroidal angle ¢ — the magnetic field lines necessarily lie in
nested toroidal magnetic surfaces as illustrated in figure 2.1b [7]. Equiv-
alently, if we follow a magnetic field line long enough, we will be able
to observe it coming around a topologically torus surface, called the
magnetic surface. The basic condition for equilibrium requires that
the electromagnetic forces balance the plasma pressure: j x B = Vp.
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From this equation B x Vp = 0 follows, thus there is no pressure gradi-
ent along the field lines, the magnetic surfaces are surfaces of constant
pressure. Also, j x Vp = 0, and consequently the current lines also lie
on the magnetic surfaces as shown in figure 2.1b.

In tokamak equilibria, the successive surfaces are labeled by the val-
ues of any surface quantity, a quantity that changes monotonically as
moving across the magnetic surfaces, but is constant on the magnetic
surface. This is denoted by 1, that plays the role of the radial coordi-
nate. One possible choice for 1, the one we will use in this thesis, is
the toroidal flux Wy, which is the magnetic flux through a surface per-
pendicular to the magnetic axis. For convenience, this quantity is made
dimensionless ) = Wy / Bya? where By is the characteristic magnetic field
and a is the minor radius of the device. In the case of a circular torus
we have simply ¢ = 72, where 7 is the dimensionless radial coordinate
(scaled with a). In this coordinate system the magnetic axis is repre-
sented by 1) = 0 and the last closed flux surface (LCFS) by ¢ = 1.
The variables (¢, 0, ¢) form a curvilinear coordinate system, that can be
made orthogonal by a proper choice of the angles.

An important parameter characterizing the field lines is the safety
factor, ¢ [8]. In an axisymmetric equilibrium, each magnetic field line
has a value of q. The magnetic filed line spirals around its associated
magnetic surface along a helical trajectory. The safety factor is defined
as the average value of the change in its A¢ toroidal angle per a full
poloidal transit (A = 27). With this definition, a magnetic surface con-
sists of field lines with identical values of q. There are several different
ways to express ¢ in the most convenient form for a given application [7].
For a large aspect ratio (Ro > a) circular tokamak ¢(r) ~ rBy/RoBy,
where By and By are the toroidal- and poloidal magnetic field compo-
nents, respectively. An alternative expression for ¢ can be obtained in
terms of the magnetic fluxes:

dWy

= 5o (2.1)

q
where Uy and ¥, are the toroidal and poloidal fluxes. Thus the safety
factor can be expressed as the rate of change of toroidal flux with poloidal
flux. In other words ¢ represent “how many toroidal rotations are re-
quired for a full poloidal rotation”. If a magnetic field line returns to its
starting position after exactly one rotation around the torus, then ¢ = 1.
If the safety factor is a rational number, namely ¢ = m/n, m,n € Z,
the field line joins up on itself after m toroidal and n poloidal rotations
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around the torus. A surface is called a rational surface if the ¢ associ-
ated with that surface is rational. Since the rational numbers Q form a
dense subset of the real numbers R, usually only the surfaces associated
with low order rationals (small m,n) are denoted as “rational surfaces”.
Rational surfaces play an important role in plasma stability. They are
also crucial in the understanding of how the magnetic field is distorted
as a result of magnetic perturbations, as will be shown in this chapter.

To describe field line twist in stellarators the associated quantity of
the rotational transform, + = /27 is commonly used, where ¢ (iota) is
the poloidal angle change in one toroidal turn. It can be expressed by
t = 1/q. At some places in what follows, using + instead of ¢ will be
more convenient.

2.1 The Hamiltonian nature of field lines

The stationary magnetic field B satisfies V- B = 0 and B - Vy = 0,
namely the divergence-free nature of the magnetic field and its tangency
to the magnetic surface ¥ = const. The magnetic field satisfying these
constraints can be conveniently represented in the Clebsch form [39-42]

B =V x VO — VI, (1) X Vo, (2.2)

where the surface quantity

_ [V 4y
\pr,o(@b)—/o q(¥")

is the dimensionless poloidal flux (the magnetic field and the gradient
operators are also made dimensionless by scaling them with By and a,
respectively). From equation (2.2) one finds the equations for the mag-
netic field lines expressed in the coordinates (v, 6, ¢) by using elementary
geometrical formulas. Using the toroidal angle as the running param-
eter, a field line is characterized by the two functions ¢ (¢) and 0(¢)
obeying the following differential equations:

dy 9T,  dI 9V, 23)

d¢ 90 d¢ o

These field line equations have a Hamiltonian structure: W, o plays the
role of the Hamiltonian, ¢ the role of “time”, and 1 and 0 appear as a
pair of canonical variables [42-44]. In the unperturbed case, when ¥y,
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is a surface quantity depending only on 1, equations (2.3) represent a
one degree of freedom — hence integrable — dynamical system:

dv de
— — - = 2.4
=0 =) (2.4)
where the unperturbed winding number is defined as follows:
oV v
W) =5 — )= [ W (25)

Comparing (2.1) with (2.5) shows that the winding number is equiv-
alent with the previously defined rotational transform W =+ = 1/q.
1 is analogous to an action variable, a constant of motion; the asso-
ciated angle variable increases linearly in time. A Poincaré mapping
(¢ = 2mn, n € N) of the unperturbed case can be acquired as

Yng1 = Un, Ony1 =0, + W(wn—&-l) (mOd 2”):

that represents the exact solution of the integrable Hamiltonian system
[41]. Equation (2.4) expresses that in the unperturbed situation the
radial position of the field line measured in 1 remains constant, while
its poloidal angle € changes with W () = +(1) after each toroidal turn.
This was exactly the definition of the flux surface and the rotational
transform, respectively.

The ideal structure is, however, strongly modified whenever some
(even arbitrarily small) perturbation is present. The perturbation can
be due to external features such as imperfections in the coils or delib-
erate external perturbations (as studied in Papers A-C) or to internal
factors such as instabilities or fluctuations (as studied in Paper F). The
perturbed magnetic field is also conveniently represented in the (2.2)
Clebsch form, in which the Hamiltonian is replaced by a function of all
three coordinates:

Upo — Up(1h,0,0) = Upo(¥) +ed¥p (1,0, 0).

The perturbation Hamiltonian edW,, is a 27 periodic function of the
variables # and ¢. The ¢ € R™ parameter is the dimensionless stochas-
ticity parameter, which measures the strength of the perturbation. The
corresponding equations of the field lines are now

% _ _685‘I’p(¢7 97 ¢)
do 90
Q9 96 (1,6,9)

(2.6)

10



2.2. Magnetic field perturbations

These are the equations of motion of a 11/2 degrees of freedom dynam-
ical system (a Hamiltonian system of one degree of freedom depending
periodically on ¢), which is, generally, nonintegrable. It is possible to
construct different mapping techniques to solve (2.6) that are valid de-
pending on the nature of the perturbation [41, 45-47]. However, in the
papers included in this thesis we use a direct integration of the magnetic
field calculated from the plasma equilibrium and any perturbation cur-
rents. This way, though requiring more computational power, facilitates
a faithful treatment of the magnetic field and allows us to study the
effect of any arbitrary perturbation without restrictions.

The nature of the field lines is conveniently studied by consider-
ing a Poincaré plot, obtained by recording the values of the coordi-
nates (¢,6) when the field line crosses a chosen poloidal cross-section
(¢ = const). These coordinates define the phase space of the dynamical
system associated with the field lines. Poincaré mapping can be carried
out for any arbitrary plasma shape. The Poincaré plot of the unper-
turbed system — after enough iterations — consists of a set of closed
concentric curves (corresponding to non-rational magnetic surfaces) in-
terspersed with discrete points (corresponding to rational surfaces). An
alternative graphical representation, that in some cases provides a clearer
picture, is obtained by making a cut starting from the center (the mag-
netic axis) pulling the two parts apart, and expanding the point repre-
senting the magnetic axis into a line. The radial coordinate v is rep-
resented on the vertical axis and the poloidal angle 0 is given, modulo
27, on the horizontal axis. Non-rational surfaces are now represented as
horizontal segments, and the rational surfaces (periodic orbits) show up
as points aligned horizontally. An example will be given in figure 2.2a.

2.2 Magnetic field perturbations

Due to the Hamiltonian nature of the (2.6) field line equations, the
properties of the perturbed tokamak magnetic system are analogous to
the phase space properties of perturbed Hamiltonian systems that are
thoroughly studied in the literature and textbooks of nonlinear systems
and chaos in conservative systems [48, 49]. One example is the well-
known Chirikov-Taylor standard map [50, 51]:

ﬂnﬂ = @n + 0, Opi1 =0, + esin(zﬂnﬂ) (both mod 27).

11



Chapter 2. Magnetic perturbations

Although the standard map has some analogous properties, it is not a
faithful model of a tokamak for several reasons. The most important is
that W(¢) in a tokamak is — in standard scenarios — a monotonously
decreasing function of 1, which is not true for the standard map. Also,
mapping techniques used in nonlinear dynamics most of the time apply
a global perturbation. That is not the case in tokamaks, where the
perturbation strength usually depends on . In the case of core MHD
modes the perturbation is dominant in the core, while in case of external
perturbations it radially decays from the edge to the axis.

The rational or irrational nature of the magnetic surfaces is of great
importance when it comes to the effects of perturbations. On rational
surfaces the magnetic field lines sooner or later close exactly on them-
selves, thus the effects of any perturbation can accumulate, while on
irrational surfaces the effects are averaged out more easily. As the result
of the perturbation, the rational surfaces will break up, therefore they
are often called resonant surfaces. Low order rationals break up more
easily than high-order ones, and irrational surfaces require even stronger
perturbation to break up [49].

The Kolmogorov-Arnold-Moser (KAM) theorem [52-54] determines
exactly how the rational and irrational surfaces will break up depending
on the perturbation strength. If the perturbation is sufficiently small
(e < 1), then those magnetic surfaces will remain intact, for which

K(e)
$5/2"

w-1|> (2.7)
S
where r/s is the rational approximation of the winding number or rota-
tional transform W = + with an arbitrary precision. K(¢) is a parameter
that depends only on the perturbation strength and vanishes if € — 0.
This means that every /s rational torus is surrounded by a 2K (¢)s>/2
wide layer in which all the surfaces will break up. The unbroken surfaces
are often called KAM surfaces or KAM barriers. The KAM theorem
also implies that the total volume of the broken-up zones is nonzero for
any arbitrarily small perturbation. What replaces the broken-up mag-
netic surfaces? The Poincaré-Birkhoff theorem [49] states that whenever
W (%) is a monotonic function, a ¢ = m/n rational surface breaks un-
der a — sufficiently small — perturbation into an even number 2m of
fixed points, m elliptical- or O-points alternating with m hyperbolic-
or X-points. An example is shown in figure 2.2b. Hence the rational
surfaces will be transformed into magnetic island chains. The O-point
is surrounded by new KAM surfaces, while the X-point is surrounded

12
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Figure 2.2: (Square) Poincaré plot of the (a) unperturbed and (b) perturbed
magnetic field. An m = 1 magnetic island is visible with one X
(0 ~ 7) and one O point (0 ~ 0).

by an ergodic layer with nonzero phase volume. For sufficiently high
perturbation the layer width might become macroscopic and it grows
as the perturbation increases, up to the final destruction of the island
chain. The stochastic layer always starts in the neighbourhood of the X
points of the separatrix encircling the islands, they are the most “fragile”
points of the chain. Whenever a perturbation is present, the topology of
the magnetic field is strongly modified. There appear island chains (the
locations of which are correlated with the rational values of ¢), together
with undestroyed, but deformed magnetic surfaces at irrational g values
and in between these features there exists ergodic zones filling up the
space. This mixed magnetic topology of chaotic structures and unbro-
ken surfaces is generic for tokamaks; understanding it is a prerequisite
for any realistic study of transport in such devices.

The exact dependence of W on 1, or, in tokamak language, the ¢(v))
g-profile is of great importance when it comes to the exact effect of
the perturbations. A typical tokamak g-profile is shown in figure 2.3.
Usually the ¢ on axis, qo is around or under 1 (Wy =+ = 1) and the ¢
on edge, g, is around 3-5 (W, < 1/3). The gy value determines whether
aq=1(W(y) = 1) surface is present in the plasma or not. Accord-
ing to the KAM theorem (2.7), it is the most sensitive to perturbation
and is the first to break up. In chapter 4 we will see that the condi-
tion go < 1 implies the possibility of sawtooth oscillations. The g-profile
is flat in the core meaning that the low-order resonant surfaces lie far
from each other. In the case of a perturbation that has sufficient ampli-
tude in the plasma center (such as core MHD modes or weakly shielded

13
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Figure 2.3: Typical tokamak ¢ and rotational transform profiles.

external perturbations) relatively wide islands can be generated in the
place of the broken up resonant surfaces, the locations of which are cor-
related with low-order rational values of the safety factor. These islands
are separated by unbroken surfaces acting as KAM barriers. Prominent
MHD modes such as resistive kink modes [55, 56] or Neoclassical Tear-
ing Modes (NTM) [57] appear in this way. Core MHD modes will be
discussed in chapter 4. We will show examples of island formation in
figure 2.4.

Due to the shape of the g-profile the low-order rational surfaces are
closer to each other at the plasma edge. With enough perturbation the
last KAM barriers separating the clustered edge islands disappear, and
the islands — which are completely replaced by ergodic zones themselves
for sufficiently strong perturbation — meld together, forming a global
ergodic zone at the plasma edge as highlighted in figure figure 2.4. Even
if the width of islands and standalone ergodic layers could be estimated
in a simple way, the overlapping and disappearance of KAM barriers
cannot. The global evolution of the magnetic structure depends non-
linearly on the perturbation strength: as it increases we might observe
sudden changes in the particle transport at certain thresholds due to
the sudden disappearance of KAM barriers originally separating broad
ergodic zones. The phenomenon of edge ergodic zones is the basis of
techniques enhancing edge transport via external perturbations like the
Dynamic Ergodic Divertor (DED) [58], the ELM pacing coils [59-63] or
the Resonant Magnetic Perturbations (RMP) aiming at runaway miti-
gation. The latter is the topic of Papers A—C, and will be described in
chapter 3.

14



2.2. Magnetic field perturbations

i

Figure 2.4: The result of a global perturbation with 180° toroidal symmetry
(n = 2) on a circular plasma, shown in a poloidal cross section.
In the inner regions magnetic islands appear, with mode numbers
(m,n) =(2,2), (3,2). At the edge, the overlapping magnetic is-
lands create a broad ergodic zone outwards from ¢ = 2. The
outermost black line shows the unperturbed last closed flux sur-
face as a comparison.
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3 Runaway electrons
in disruptions

It is nice to know that the computer understands the problem.
But I would like to understand it too.
— Eugene (Jend) Wigner

The disruption is a global plasma instability that results in the loss of
plasma confinement [7, 64, 65]. If the plasma reaches a stability limit
it may begin to interact with the vessel wall, thereby causing an influx
of wall particles. As a result of the heat conduction and the radiation
due to influx of impurity particles, the plasma quickly loses a significant
fraction of the stored thermal energy. During this thermal quench phase
of the disruption, the temperature falls on a short, O(ms) time scale.
Since the resistivity 1 depends on the temperature 7' (n ~ T3/ ), it
increases drastically in the cooling plasma. On these short time scales
the inductive property of the plasma prevents the current from changing.
Hence, when the resistivity rises, Ohm’s law E) = n,j; implies that an
increasing parallel electric field will be induced. As will be described in
the following section, runaway electrons (RE) are produced if the electric
field is above a certain limit £y > Ec. Disruptions can be harmful for
a tokamak in several ways [18]. The heat loads on the vessel and the
divertor due to radiation and heat conduction can be tremendous [66],
halo currents may lead to excessive mechanical forces [67, 68], and if the
induced toroidal electric field produces runaway electrons, these may
severely damage the first wall upon impact [15, 69, 70].
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Chapter 3. Runaway electrons in disruptions

3.1 The runaway electron phenomenon

The mathematical treatment of runaway electron generation is possible
through the kinetic theory of plasmas, where the particles of species ‘a’
are described by the distribution function f,(r,v,t). If the number of
charged particles of the species ‘a’ is conserved in a plasma, and the
acceleration is due to electromagnetic forces, the distribution function
obeys the Vlasov equation

dfa_afa 4o £ D 8fa_
% = o +V-Vfa—l—m—a(E+v><B)- Gy

0,  (3.1)

where g, and m, are the charge and the mass of the particle respec-
tively, and E and B are the electric and magnetic fields. These electric
and magnetic fields include the small-scale (less than the Debye length)
fluctuations responsible for interaction of individual particles. If we sep-
arate the effects of the short-scale fluctuations, or collisions, and include
them in a separate collision operator Co(fy) = (0fa/0t)|con, we arrive at
the Boltzmann equation
dfa Ofa

qa _
E+V.Vfa+m7a(E+va)- v = Ca(fa), (3:2)

which now includes only the E and B macroscopic average electric and
magnetic fields. All quantities included in the Boltzmann equation can
be measured, and it is the basic equation of kinetic theory.

For Coulomb collisions in plasmas the C, collision operator can be
modelled by the Fokker-Planck operator [14]. The kinetic equation (3.2)
is then often called the Fokker-Planck equation. In some cases — usu-
ally in the description of processes involving shorter time scales than the
characteristic collision times — the C4(f,) collision term can be omitted,
and the (3.2) Boltzmann equation takes the form of the (3.1) Vlasov
equation. Finding a suitable approximation of the Fokker-Planck op-
erator is a complex topic [14]. Only one aspect of it is introduced in
this section, which is essential for the understanding of the generation
of runaway electrons.

Runaway electron generation

The friction force on an electron with velocity v is associated with the
slowing down frequency (inverse of the characteristic slowing down time).
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3.1. The runaway electron phenomenon

It comes mainly from collisions with other electrons [14]:
me (Av))™
At

where 1/$° is the slowing down frequency from electron-electron collisions,
Te = Ve /vTe and G(ze) is the Chandrasekar function:

= —mevrs® x G(we), (3.3)

f(x) — x - erf’ 22 0
G($) = er (f]?) 2$2 er (1’) — { 3/ T — (34)
xr 5227 xr — OO
2 X
erf(z) eV dy.

~ Vi

As can be seen from the asymptotic forms, the (3.4) Chandrasekar func-
tion is non-monotonic. The fact that G(z) decreases for large arguments
has the remarkable consequence that the (3.3) average friction force ex-
erted on electrons decreases with increasing momentum, if the latter is
sufficiently high. Figure 3.1 shows the friction force experienced by an
electron as a function of its kinetic energy.
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Figure 3.1: A sketch of the friction force as a function of electron energy.

The friction force vanishes in the limit of infinite velocity, unless rel-
ativistic effects are considered. The physical reason for this is that a fast
electron spends less time in the vicinity of each particle it collides with
than a slow electron does. If relativistic effects are taken into account,
the friction force does not go down to zero: it reaches a minimum at
energies around the rest energy [14, 71].
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Chapter 3. Runaway electrons in disruptions

Now consider what happens if a constant electric field E is applied to
the plasma. Sufficiently fast electrons above a certain critical velocity v,
experience a friction force smaller than the force from the electric field.
Since the collision frequency decreases rapidly with increasing velocity,
the faster the electron moves, the more time it has to gain momentum
from the electric field before its next collision. The momentum gained
between two collisions increasingly exceeds the momentum lost in each
collision. This is an unstable situation: electrons are accelerated to high
energies (tens of MeV) and form a population of so-called runaway
electrons. Ultimately, runaway electrons reach relativistic speeds and
are lost to the first wall, or are sometimes scattered by various plasma
instabilities.

The maximum of the friction force is located at about the thermal
energy level T,. If the electric field is sufficiently strong, so that the
critical speed is equal to the thermal speed, ordinary thermal electrons
will also run away. This occurs when the electric field exceeds the so-
called Dreicer field [13, 72]

neeInA 1

EFn =
b dred  To

(3.5)
where n, is the electron density, e the electron charge, In A is the Coulomb
logarithm (typically 10 < In A < 25) and Tt is the electron temperature.
If relativistic effects are taken into account and the friction force does
not fall all the way to zero at large energies, there is a minimum as
the velocity approaches the speed of light. Thus, in order to produce
runaway electrons the electric field must exceed the friction force on
electrons travelling close to the speed of light [73]. The smallest electric
field needed for runaway generation is determined by the minimum of
the friction force and is found when the critical energy is equal to the
rest energy. It is called the critical field F.:

nee3InA 1

E.= —_
¢ 4med mec?

(3.6)
The electric field needed to drive the current in an Ohmic tokamak
plasma is usually not (much) above E., implying only a trace amount of
runaways. However, when a disruption occurs, the induced parallel elec-
tric field F) is often higher than Ec, suggesting that runaway electrons
can be generated in significant amounts.

Primary generation of runaway electrons may occur through differ-
ent mechanisms. The classical primary generation (often called Dreicer
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3.2. Runaway positrons

generation) works in quasi-steady state, when an electric field larger
than the critical field exists E| > E.. In this mechanism the tail of the
Maxwellian distribution of the plasma electrons can run away above a
critical velocity determined by the electric field according to figure 3.1.
The tail of the thermal electron distribution function lost to the run-
away electrons is continuously recovered through collisional processes.
Electrons diffuse in velocity-space above v. and are accelerated by the
electric field. This leads to a continuous influx to the runaway region. If
the plasma cools rapidly, such as in disruptions, the quasi-steady state
assumption is no longer valid, and a burst of runaways can be produced
through the hot-tail generation [74-77]. Other possible primary genera-
tion mechanisms can be included as an S,(f,) source term in equation
(3.2), such as inverse Compton scattering by energetic 7 rays, tritium
decay, etc.

Although primary generation is clearly necessary to start the pro-
cess, in large tokamak disruptions secondary generation by the avalanche
mechanism quickly joins in, and finally produces a large fraction of run-
away electrons. The secondary runaway generation is caused by close
Coulomb collisions between existing runaways and thermal electrons. A
runaway electron usually has such a large energy that it can, in one close
collision, knock a thermal electron over the runaway threshold, while still
remaining above the threshold itself. This leads to a runaway avalanche
[16]. Small changes in the primary runaway sources can be magnified
through the secondary generation. Reducing the avalanche effect bears
a great importance from the runaway electron mitigation point of view.

3.2 Runaway positrons

The energetic electrons produced in the avalanches may give rise to
electron-positron pair production. Pair production can occur in colli-
sions between runaway electrons and thermal ions if the runaway energy
exceeds three times the electron rest mass, & 2 1.5 MeV. In tokamak
disruptions the typical runaway energy is well above the threshold for
pair-production and therefore positrons, in principle, should be present
in large quantities [26] if the runaway electron current is large and the
number of high-Z impurities is significant.

The aim of Paper E was to determine the distribution of positrons
at birth, their subsequent fate and the possibility of detection through
synchrotron radiation. The production rate is calculated by using a pair-
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Chapter 3. Runaway electrons in disruptions

production cross-section valid for arbitrary energies [78] and a runaway
electron distribution typical for avalanching [79], which is illustrated in
figure 3.2. We have found that the ultrarelativistic cross-section used in

10 1 1
Iogw(fr /n,)

_1 0 1 1 1 1
0 10 20 30 40
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Figure 3.2: Contour plot of the avalanche distribution function from ref. [79]
plotted with respect to parallel and perpendicular momenta nor-
malized to mec for Zeg = 2, E/E;, = 60, T, = 10 eV.

ref. [26] overestimates the positron production. However, collisions with
thermal electrons and impurities give a large contribution to the number
of positrons created. The pair-production cross-sections scales with Z2,
where Z is the charge number of the nucleus, independent of the ionisa-
tion state. Due to the substantial amount of high-Z impurities present
in the post-disruptive plasmas, the multiplicative factor associated with
the plasma ions can be two orders of magnitude.

The positrons generated by runaway electron avalanches are rela-
tivistic already at birth, and in addition they experience acceleration
by the electric field. To obtain the positron velocity distribution, the
Fokker-Planck equation (3.2) including the positron production and an-
nihilation rates and slowing-down terms is solved. The steady-state nu-
merical solution to the kinetic equation have shown that most positrons
that survive the slowing down without annihilation have energies less
than 5 MeV. The lifetime of a positron can be estimated from the anni-
hilation cross-section and it is expected to be of the order of seconds. If
the electric field is strong enough, almost all the positrons run away in
the opposite direction to the electrons.
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3.3. Simulation of runaway electron drift orbits

Detection of the annihilation radiation of runaway positrons in toka-
maks is difficult, because it is overwhelmed by the Bremsstrahlung ra-
diation from the electron population. On the other hand, the syn-
chrotron radiation of runaway positrons is peaked in the direction op-
posite from that of the runaway electrons and this may be possible to
detect. We have estimated the synchrotron spectrum of the positron
distribution with an approximative formula valid in toroidal geometry
[80, 81]. Paper E presents the first runaway distribution integrated syn-
chrotron spectrum calculation. In most cases, the maximum of the syn-
chrotron radiation spectrum is around 1 pum, while the peak value of the
synchrotron radiation spectrum is larger in plasmas with a large number
of impurities, high magnetic field and high temperature.

The positrons may prove to be beneficial in tokamaks where the cam-
eras capable of detecting runaway synchrotron generation are aligned
opposite to the runaway electrons. For example, the currently operat-
ing largest tokamak, JET, has such infrared cameras and these would
be suitable for detecting synchrotron radiation from runaway positrons.
JET can also have runaway electron currents in the megaampere range
and has sometimes large high-Z material content during massive gas in-
jection or due to tungsten sputtering from the divertor. If the positron
synchrotron radiation could be detected, it would give valuable informa-
tion about the post-disruption plasma and the runaway electron popu-
lation.

3.3 Simulation of runaway electron drift orbits

As was mentioned in chapter 1, externally applied Resonant Magnetic
Perturbations (RMP) are one option for runaway electron mitigation. A
large number of promising experiments [19-24] suggest that the applica-
tion of RMP is capable of decreasing or even stopping the avalanching of
runaways. However, the results are not uniformly positive in every toka-
mak [25]. The reason for the difference in the experimental success of
suppressing runaways in various devices is not yet properly understood.

In the case of externally applied perturbations, as introduced in chap-
ter 2, edge ergodic zones can form and significantly enhance the radial
particle transport. Previous theoretical work has indicated that if the
radial diffusion of runaway electrons is sufficiently strong, avalanches can
be prevented and the magnetic perturbation level necessary for this has
been estimated to §B/B = 1073 for typical tokamak parameters [82, 83].

23



Chapter 3. Runaway electrons in disruptions

However, the analytically estimated diffusion coefficient is an approxi-
mation and depends on many parameters. In the simplest picture, the
electrons follow stochastic magnetic field lines and diffuse radially out of
the plasma with the Rechester-Rosenbluth diffusion coefficient [84]. Due
to the complexity of the effect of magnetic drift on diffusion, a reliable
picture of how the runaway electrons are transported out of the plasma
can only be obtained via three-dimensional numerical modelling of the
runaway electrons.

Solving the complete kinetic problem of runaway electrons is a com-
plex and computationally very expensive numerical task [85-89]. In the
work presented in Papers A—C we solve the relativistic, gyro-averaged
equations of motion for the runaway electrons including the effect of ra-
diation losses and collisions. In these simulations we follow a test particle
approach: independent test particles with given initial conditions for po-
sition ro and velocity v are launched and their orbits are integrated in
predefined 3D static magnetic fields. The particles are considered lost if
they leave the computational zone, that is the field mesh truncated by
the original last closed flux surface (LCFS) of the device. In Paper A
the electric field Ej is set to be constant in time. In Papers B & C we
use a time-dependent electric field obtained for an ITER-like disruption
scenario calculated with a model of the coupled dynamics of the evolu-
tion of the radial profile of the current density (including the runaways)
and the resistive diffusion of the electric field [90]. The model and the
JET simulation results acquired with it are reported in Paper D and will
be described in section 3.6.

At the high (tens of MeV) energies reachable by runaways the ef-
fect of synchrotron radiation [91] has to be taken into account. The
average rate of change of momentum due to synchrotron radiation
can be calculated from the Abraham-Lorentz force [92] as described in
Appendix A of Paper A. In large tokamaks, such as ITER — studied
in Papers B & C — also the effect of Bremsstrahlung [71, 93] radiation
has to be considered. Bremsstrahlung is included in the form of a de-
celerating force, as is described in Paper B. The radiation terms have a
measurable, but not significant effect on the results, especially if an elec-
tric field is present. We have found that including radiation terms has
a negligible influence on the effect of RMP on the particle trajectories
even in the ITER case.
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The ANTS code

For the numerical solution of the relativistic drift equations the ANTS
(plasmA simulatioN with drifT' and collisionS) code [94] was selected.
ANTS calculates the drift motion of particles in 3D fields and takes into
account collisions with background (Maxwellian) particle distributions,
using a full-f Monte Carlo approach. For the purposes of our work it has
been extended to include the aforementioned radiation losses and a new
collision operator that is valid for both thermal and relativistic velocities,
as described in Appendix B of Paper A. Several minor modifications
were necessary to address possible numerical issues when simulating tens
of MeV runaway electrons.

One reason for our choice was that the ANTS code is highly modu-
lar. This flexibility allows one to run it with different sets of differential
equations and Monte Carlo operators describing the drift motion and
collisions of the test particles with the background, which was beneficial
in e.g. comparison calculations. ANTS is also able to use the entire range
of coil types available from the ONSET and EXTENDER coil optimi-
sation packages [95, 96] in order to describe the external magnetic field.
This was very advantageous in the implementation of different RMP
systems. Furthermore, the 3D magnetic field is defined on a mesh in
the entire domain of computation, and the integration of the particle or-
bits is carried out in Cartesian coordinates. This approach provides the
greatest flexibility and facilitates a faithful treatment of magnetic fields
with islands and ergodic zones, since the existence of magnetic surfaces
is not required. If stellarator symmetry (B(60,¢) = B(—6,—¢) [97]) can
be assumed, like in Paper A, the memory demand of the calculations is
reduced to some hundred MBs. The pseudo random number generator is
initialised from the particle index, and therefore every individual particle
trajectory in every run can be reproduced regardless of the stochastic
nature of the collisions. This feature allows the investigation of single
particle orbits in greater detail, if necessary.

3.4 Runaway losses in TEXTOR

In Paper A, we studied the runaway electron drift orbits in TEXTOR-
like perturbed magnetostatic fields and evaluated the effect of RMP
coils on runaway loss enhancement. The main reason for this choice
is that it has been shown experimentally on TEXTOR that runaway
losses can be enhanced by the application of RMP [21-24, 98]. The
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measurements have shown that the runaway plateau current drops with
increased perturbation current, and at sufficiently high perturbation lev-
els the high energy runaways are suppressed. Interestingly, the current
decay rate was unaffected by the perturbation [24]. Both the runaway
plateau length and the measured synchrotron radiation intensity showed
a significant drop at the same threshold perturbation.

A possible explanation of the observed phenonema is that the radial
spread of the runaways is increased by increasing perturbation, decreas-
ing the avalanche generation that depends on the runaway current and
at a certain point avalanche generation is overwhelmed by the losses.
Meanwhile, the threshold may be connected to a characteristic pertur-
bation strength where a region of unbroken surfaces disappears and the
neighboring ergodic zones meld together to form a large ergodic zone,
which thus leads to a sudden increase in radial transport. The collec-
tion of published experimental results at TEXTOR concerning RMP
and runaways makes it (in principle) possible to benchmark the numer-
ical results. In the previous works [21, 22] analyzing the dynamics of
runaways under the effect of RMP the authors used a mapping method
based on Hamiltonian guiding center equations [99-101]. Instead of par-
ticle mapping we used the gyro-averaged equations of motion in the 3D
perturbed field as well as included the effect of collisions and radiation.

The plasma parameters were chosen to be similar to the ones where
the runaways were shown to be suppressed [24] by resonant magnetic
perturbations created by the Dynamic Ergodic Divertor (DED) [58]
coils. The unperturbed magnetic equilibrium has been calculated by
the VMEC [102] equilibrium code. VMEC can only generate equilibria
with unbroken flux surfaces and therefore it cannot properly take the
effect of perturbation coils into account. We have created free boundary
equilibria without the toroidal field ripple. This allows us to study the
“pure” effect of the RMP. The effect of ripple on fast particles have been
studied extensively in previous work [103-106]. We note that the ripple
resonance effect is not significant at the particle energies we studied in
our cases [106]. The magnetic field perturbations are modelled to be
similar to the ones produced by DED-coils on TEXTOR in the 6/2 DC
operation mode [58, 107], that has a 180° toroidal rotation symmetry,
hence the generated islands have a lead toroidal mode number of n = 2.
The coils create magnetic perturbations at the plasma periphery on the
high field side of the torus that decay radially toward the inside of the
plasma. We neglect the effect of shielding of magnetic field perturbations
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3.4. Runaway losses in TEXTOR

by plasma response currents. This approximation is expected to be valid
in cold post-disruption plasmas [24]. Including shielding of any strength
would reduce the perturbation [108-110], thus our results should be in-
terpreted as an upper limit on the actual losses. Close to the maximal
DED current the coils are capable of creating the § B/B = 1073 magnetic
perturbation level that is predicted to be necessary for runaway suppres-
sion [82] up to the flux surface ¢» = 0.7, that roughly corresponds to the
outer half of the confinement volume. A perturbed TEXTOR-like equi-
librium was illustrated previously in figure 2.4 for 6 kA DED current.
Clearly, the edge region becomes ergodic and particles outside the last
intact magnetic surface can leave the plasma rapidly.

The drift topology for high energy particles can significantly differ
from the magnetic topology in both perturbed and unperturbed mag-
netic fields [111, 112]. Therefore, we present particle Poincaré plots
that allow us to determine how the confinement changes with differ-
ent particle energies and perturbation currents. The particle Poincaré
plots are not generated by a mapping algorithm, rather by recording
the (¢,0) coordinates when the particles cross a fixed ¢ = ¢p toroidal
cross-section.
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Figure 3.3: Poincaré plots of the particle orbits without RMP. The particle
energies are (a) 1, (b) 10 and (c) 30 MeV. The confinement volume
shrinkage is clearly observable.

Even in the unperturbed case, the confinement volume shrinks as the
particle population is shifted with increasing energy, as illustrated in fig-
ure 3.3. Runaway electrons move antiparallel to the current and their
drift orbits are therefore always shifted to the low field side as a result of
adiabatic toroidal angular momentum conservation. If the displacement
is defined as the distance between the center of the runaway orbit and
the magnetic axis, then it is estimated to be d ~ gp|/eBo [112, 113],
where p| is the non-normalized parallel momentum. The drift orbits
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(in the unperturbed field) of the particles are circles that are displaced
horizontally with respect to the flux surfaces, with a displacement that
is proportional to the energy, for v > 1 relativistic particles. Since
the population is shifted, the outermost particles intersect the original
LCFS that causes a shrinkage of the effective confinement zone. This
shrinkage of the confinement zone plays an important role at high par-
ticle energies regardless of the DED. However, high energy particles are
kept confined within their new LCFS, hence the core runaways are
not lost due to the RMP. The effect of the DED decreases with
increasing particle energy, at higher energies the edge stochastization
is less visible. We found that the DED can significantly influence only
the low-energy (~ 1 MeV) particles closer to the boundary. For these
particles the onset time of the losses is dependent on the amplitude of
the magnetic perturbation. For particles launched close to the edge the
start of the losses decreased only by ~ 20%. The time dependence of the
following losses — the runaway current damping rate — is insensitive to
the magnetic perturbation level. This and its experimentally measured
value is consistent with our simulations. The simulations described in
Paper A did not show the loss of core runaways. On the other hand, en-
hanced radial transport, even if it does not lead to drift orbit losses, may
weaken localised runaway currents and it therefore weakens avalanche
generation. Also, the loss of the core runaways is enhanced by MHD per-
turbations onset by the disruption [114]. These perturbations can expel
a significant amount of runaways from the core to the edge in a small
scale device like TEXTOR. Several tokamaks have reported enhanced
runaway losses connected to various plasma waves [115-119]. The RMP
can enhance the losses of the runaways once those are close to the edge.
This may also explain the observed enhancement of runaway losses due
to the RMP on small tokamaks. For JET, the MHD perturbations are
not sufficient to expel the particles from the core, which could be one of
the reasons why RMP does not seem to be effective in JET.

3.5 Loss estimations for ITER

Large tokamaks, such as ITER, could be more susceptible to substan-
tial runaway electron generation than present tokamaks. The uncon-
trolled loss of a high energy electron population with a current of several
megaamperes is intolerable and therefore the issue of how to avoid or
mitigate the runaway generation is of prime importance for ITER.
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The ITER ELM perturbation coils, in principle, can be used to aid
runaway mitigation efforts. Extrapolating from experiments in existing
devices and theoretical studies made for those carries large uncertainties
due to the complexity of runaway dynamics and the chaotic nature of
magnetic perturbations. Obviously, no experimental results are available
about the runaway suppression capabilities of any ITER system. There-
fore in Paper B and Paper C we carried out an investigation covering
several possible current schemes, to estimate the RMP efficiency on run-
away removal in ITER. For the purposes of Paper B, ANTS have been
further extended to include the effect of Bremsstrahlung radiation that
can be important for the ITER case. However, the results indicated that
the particle loss dynamics is not much altered by the radiation effects.
Also, we use a time-dependent electric field obtained for an ITER-like
disruption scenario calculated with a model of the coupled dynamics of
the evolution of the radial profile of the current density (including the
runaways) and the resistive diffusion of the electric field [90].

The simulations have been carried out for the ITER scenario #2
(15 MA inductive burn) [120]. Inductive scenarios are expected to pro-
duce the largest and most energetic populations of runaway electrons.
We use a cold (10 eV [18]) post-disruption equilibrium calculated with
VMEC, based on plasma parameters obtained by simulations with the
ASTRA code [120, 121]. The ELM perturbation coil-set consists of 9 x 3
quasi-rectangular coils at the low field side, that allows for a wide vari-
ety of possible current configurations. Due to the 9 x 3 alignment, the
natural static configurations have n = 9 or n = 3 lead toroidal mode-
number. In Paper B we investigated two n = 9 and four possible n = 3
configurations. The technically achievable upper limit of 60 kA for the
perturbation current can generate the aforementioned 0.1% perturbation
level up to the flux-surface ¢ ~ 0.5, which is better than in the TEX-
TOR case despite the size of ITER. Although the relative perturbation
strength is similar, the perturbed structure corresponding to the various
configurations is very different. As expected, the n = 9 configurations
do not achieve much ergodization, the generated islands are very thin.
Islands created by lower mode-number perturbations are considerably
larger. Most of the n = 3 configurations perform much better, but those
also differ largely from each other. The reason for this is the different
alignment of the current structures with respect to the unperturbed field
lines. This also underlines the importance of 3D calculations as opposed
to estimates based solely on the relative perturbation strength 6 B/B.
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Figure 3.4: Casen = 3 “B”. (a) Loss time of particles as a function of starting
position (¢,9;¢ = 0). (b) Particle losses starting from different
flux surfaces. Note that these figures differ from their counter-
parts in Paper C, see the errata for details.

In Paper C we aimed at better understanding the governing mech-
anisms of RMP induced fast electron transport. In the perturbed case
the ergodic zone arising at the edge causes losses several orders of mag-
nitude faster than in the unperturbed case. Without perturbations it
takes O(10) ms until the losses initiate due to the drift orbit shift asso-
ciated with the energy gain, at which point the runaways already have
more than 10 MeV energy. Figure 3.4a shows a plot of the loss times in
the flux coordinate system of (1,1)). To obtain this picture test particles
were launched in the n = 3 “B” configuration at the same toroidal angle
of ¢ = 0 in the radial belt between 1) = 0.5 — 0.8. The flux coordinates
were determined from the unperturbed equilibrium, where ¥ = 0 marks
the divertor, ¥ = m/2 is the low field side midplane. Each particle is
represented at its starting position by a color that shows the loss time
associated with that particular starting position (note the logarithmic
color scale). This picture allows us to study the ergodic magnetic field
structure from a particle loss point of view. Due to the chaotic nature
of field lines in the ergodic zone close to the LCFS slight changes of the
individual particle starting positions can lead to orders of magnitude
differences between the loss times for those particular particles. The
chaotic structure on figure 3.4a is dominated by partially or completely
broken magnetic islands at around ¢ = 0.5 (m/n = 7/6), ¥ = 0.55
(m/n =11/9), ¥ = 0.6 (m/n =4/3) and ¢ = 0.7 (m/n = 5/3). Black
dots represent particles that are not lost during the 100 ms simulation
time - these particles are confined within the KAM zones around the
O points of remnant islands or whitheld by cantori [122] even at the
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possible maximum energy reachable by the runaways in this scenario.
Figure 3.4b shows the loss time distribution for particles launched at
individual flux surfaces. The particle losses follow an exponential time
evolution. The total final loss fraction, the start time of the losses and
the characteristic loss rate all depend on the initial radial position .
For example, every Ay = 0.1 step inside leads to about an order of
magnitude longer loss initiation time and the characteristic loss rate
also scales accordingly. It is interesting to note that the saturation for
particles launched at v = 0.6 occurs around 70%, as the rest is confined
within the remnant 4/3 island at low energies. However, when their
energy saturates, also these particles lose their confinement due to con-
finement volume shrinkage. This is what leads to the sudden increase
in the losses between 10-20 ms. The confinement within the remnant
4/3 O points of the particles launched at 1) = 0.6 is the reason why a
higher loss fraction can be achieved by particles launched at ¥ = 0.5
at a certain time (£ ~ 5 ms) as these are able to pass through the 4/3
island at the ergodic regions surrounding the X-points. The timescales
on figure 3.4b represent 2-4 orders of magnitude faster losses than in the
unperturbed case. Most of the particles outside 1) = 0.55 are lost during
the very early phases of the evolution, which can be favourable from the
avalanche generation point of view. This also means that the particles
lost due to RMP will have negligible energy gain.

However, losing fast electrons from the edge may lead to a larger in-
ductive field in the centre of the plasma, making the runaway generation
stronger there. Therefore, quantitative conclusions about the magnitude
of the total runaway current can only be drawn from simulations where
both the evolution of the electric field and losses due to RMP are in-
cluded self-consistently. This could be achieved e.g. by the GO code (see
section 3.6), using the results presented in Paper C as inputs, possibly
in a form of radial transport coefficients and/or time-dependent losses
at the edge.

Possible heat load anisotropies

Without RMP, in an ideal case, the RE losses would be isotropic in the
toroidal direction, and located at the low field side due to the energy
gain related outward shift of the drift surfaces with respect to the flux
surfaces. The application of the RMP introduces an anisotropy in the
mesh exit points correlated with the perturbation pattern, as will be
discussed briefly in this subsection.
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Figure 3.5: (a) Mesh exit points (black dots) overlaid on the radial perturba-
tion strength 0 B,. Particles get lost after passing regions where
the field perturbation component points inwards (green arrow
marks the particle passing direction). (b) 2D histogram of the
mesh exit points at the LCFS.

The exit point pattern for case n = 3 “B” is shown in figure 3.5a-b
in the (¢,9) flux coordinate system at the LCFS. In figure 3.5a black
dots mark the mesh exit points, overlaid on the local radial magnetic
field perturbation component d B, at the LCFS shown by the colormap,
which is positive if § B, points outwards. Figure 3.5b shows a 2D an-
gular histogram of the mesh exits. The majority of the exit points are
situated below the midplane ¢ < 7/2. Exit points are concentrated
in the regions where the magnetic field perturbation component points
inwards. The loss pattern follows the natural periodicity and helicity
of the configuration, as we have shown for the n = 3 and seen for the
n = 9 cases. Similar observations were reported for ripple induced losses
as well [123-126]. This also means that although RMP scenarios with
low n remove particles faster, but the heat loads may be more localized,
especially in the presence of dominant 3D wall structures that can act
as natural hot spots [127, 128]. The n = 3 configurations seem to pro-
vide a good runaway removal from the edge with the disadvantage of
possible localised losses. However, this might be handled with properly
positioning the RMP current pattern — the details, again, depend on
the 3D wall shape. Rotation of the current pattern during a disruption
can only offer possible aid in smoothing the RMP induced pattern if the
rotation period is in the same order of the losses, that is in the order of
milliseconds.
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3.5. Loss estimations for ITER

Transport in the perturbed field

We have found an almost perfect correlation between the particle radial
steps and the local radial perturbation magnetic field —6B,. The sign
depends on runaway propagation with respect to the magnetic field,
which in the ITER case is antiparallel. The particles follow a helical
path passing in front of three consecutive RMP coils, which cause 6B,
with different signs depending on the current direction, and therefore
lead to either inwards or outwards radial steps. However, these radial
steps bring the particles to a region with a different q. Hence, in the next
round the angle of approach to the RMP pattern is different. This leads
to a chaotic walk in the sense that the particle “walks” both along the
orbit (v|) and in the radial direction. Meanwhile, the alignment angle
of the orbit to the 2D RMP pattern is constantly changing. The step
sizes and the whole walk itself is deterministic but depend nonlinearly
on the initial parameters.
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Figure 3.6: Four different types of typical particle behaviour: fast resonant
loss, chaotic walk with and without quasiperiodic stage, confined.

Figure 3.6 shows examples of typical particle behaviour during the
RMP governed chaotic walk process. The particles that are born in a
resonant loss region where the consecutive steps lead to a sudden loss
will get lost. Those particles for which the perturbation is averaged
out along the orbit are the ones that become confined in the remnant
O-points, undergoing a quasi-periodic oscillation in the radial direction.
All the rest follows the chaotic walk, which leads to an anomalous diffu-
sion process that explains the exponential dependence of the cumulative
losses on time. Note that the lost particles can also undergo quasiperi-
odic phases, or move significantly inwards before finally moving out.
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The most probable spot to exit the mesh is close to the end of the re-
gions with many consecutive outwards steps, that is along the negative
B, fields. In figure 3.5a, shown with a green arrow, the particles move
from the top left corner to the bottom right corner, that causes the losses
to be more pronounced at the lower coils.
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Figure 3.7: Time evolution of the RE density profile in the perturbed field
calculated with (a) ANTS (b) Rechester-Rosenbluth diffusion.

In order to better understand the transport of the runaway ensem-
ble under RMP, figure 3.7a illustrates the time evolution of the runaway
density profile in the ITER n = 3 “B” configuration, as calculated by
ANTS. The initial density profile was a flat-top between 1) = 0.5 — 0.8,
and zero otherwise. Note the logarithmic time axis. Figure 3.7a demon-
strates the exponential dependence of the loss initiation time on initial
radial position as well as the exponential time dependence of the losses.
We can also clearly observe particles trapped within remnant islands.
Although the individual particle orbits are chaotic, the ensemble be-
haviour is reasonably smooth. This is very promising if we want to
include the RMP induced transport in a simplified, e.g. 1D modelling,
which is valuable if we aim to calculate the effect of RMP on runaway
electron dynamics with a self-consistent electric field. For comparison,
figure 3.7b shows the evolution with the same initial parameters calcu-
lated with the Rechester-Rosenbluth (RR) diffusion. There is a clear
discrepancy between the two. Not only that the RR diffusion does not
account for particle trapping, it also shows a different time- and v de-
pendence. However, for the particles outside the remnant islands the
characteristic loss time is in the same order as the ANTS result. This
shows that although the RR diffusion is not sophisticated enough to
describe the total transport process, it is still reasonable for order of
magnitude estimates.
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3.6. Runaway simulations with self-consistent electric field

3.6 Runaway electron simulations with
self-consistent electric field

In this section, we describe a model for self-consistent runaway electron
generation calculations. This numerical tool, called the GO code, has
been in development since several years [83, 86, 129, 130]. GO is the
basis of the Ey(1),t) electric field calculations for the ANTS simulations
in Papers B & C. We show the effect of different impurities on runaway
generation with an example from the JET tokamak and will also demon-
strate the influence of magnetic perturbation induced radial transport
of fast electrons on the whole process.

The GO code

The time evolution of the current density profile is determined by the
runaway electron generation and the diffusion of the electric field gov-
erned by the parallel component of the induction equation

10 ( OF 0
- <T87”> = u()a(a”E + nyec), (3.7)

where n, is the number density of the runaways — travelling with ap-
proximately the speed of light — and o is the Spitzer conductivity with
a neoclassical correction [7]. The changes of the (3.7) electric field are
mainly determined by the short time scale changes of the conductivity,
which strongly depends on temperature (o o 7°/2). The model also
includes a conducting plasma vessel [83, 129] but neglects coupling to
the coils. The primary generation is calculated via the Dreicer process

<dnr> N e (mecz>3/2 (ED>3(1+Zefr)/16 67%7 /(1+ze}§)ED.
D

dt T 2T, E

Here, Ep is the (3.5) Dreicer field, and 7 is the relativistic electron col-
lision time 7 = 4wedm2c®/(neet In A). The seed runaways are amplified
via avalanching [16]:

dnr E/Ec -1 s
dt avalanche =~ M X
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where E. is the (3.6) critical electric field, ¢ = (1 4 1.46€/% 4 1.72¢) "
and € = r/R denotes the inverse aspect ratio. In Paper D, we consid-
ered radial diffusion due to magnetic perturbations using the Rechester-
Rosenbluth diffusion estimate [84] Drr = mqu| R (0B/ B)?, where v ¢
is the parallel velocity, R is the major radius and 6 B/B is the normalized
magnetic perturbation amplitude. In the version of the GO code used
in Paper D, the Dreicer and avalanche runaway rates and radial losses
due to magnetic field perturbations are coupled to the evolution of the
electric field through equation (3.7). Hot tail generation is efficient if the
cooling rate is comparable to the collision frequency [131] and has been
predicted to be important in ITER disruptions [76], but in the cases
studied in this thesis, the cooling times are long enough for the Dreicer
generation to dominate over hot-tail generation.

The GO code requires specification of the neutral impurity density
as function of time and radius, n%i (r,t). The time evolution is often as-
sumed to be an exponential ramp-up, with a characteristic time on the
ms timescale in agreement with numerical modelling [114]. The tem-
perature and density evolution is modeled separately for each plasma
component — electrons and Z; ions. The energy balance equations de-
scribing the temperature evolution are

§8(neTe) B 3neg

oT, .
(X'F e)+POH_-Pline_PBr_-Pion+ZPc6217
7

2 ot  2r or or
30(nz,1z,) _ 3nyg, 0 017y, Zie 7:7Z;
2 ot  2r Or <Xr or ) +Fe +ZPC : (3.8)
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Here Poy = UHE2 is the Ohmic heating power density, Pjine and Ppg, are
the line- and Bremsstrahlung radiation and P, is the ionization energy
loss. Bremsstrahlung losses are taken into account with the formula
Pg, = 1.69 - 10_38n2ﬁZeg [132]. Due to the different collision times
the different species are modeled separately. The (3.8) energy balance
equations are coupled with collisional energy exchange terms between
Maxwellian species [14]: Pe? = 3n;(T; —T;)/27;; with the heat exchange
time

/2 (1, 1,

Tij = —
o4 72172 . .
n;e*Z; Zj InA \m; m;

where the subscripts 4, j now refer to electrons as well as deuterium &
impurity ions. The heat diffusion coefficient is assumed to be constant
(x = 1 m?/s) unless otherwise indicated. Studies were made in ref. [83]
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to test the influence of this assumption on the GO simulation results. Ra-
diation has the strongest cooling effect on the electrons. To describe the
line radiation we calculate the ionization of the impurities by calculating
the density of each charge state for every ion species (n’%z, k=0.2;):

dn%i
dt

= e (Ik_lnléfl — (I + Ry)nf, + Rk“"gl) ’

where I}, denotes the electron impact ionization rate for the k-th charge
state and Ry, is the radiative recombination rate [132]. The line radiation
is calculated by

f)line = Z nZineLZi (nea Te)-
7

The radiation rates Lz, (ne,Te) are extracted from the ADAS database
[133]. We note that from a numerical point of view this ionisation /
recombination & radiation calculation is the most CPU intensive task
as each transition for every charge state in every ion species has to be
calculated in every time step. Including impurities in the calculation
therefore increases the required CPU time by a factor of 102 — 103.

The effect of ITER-like wall in JET

Runaway electrons with energies of several MeVs are routinely observed
during disruptions in JET [64, 134-138]. One of the open questions,
which is the main topic of Paper D, is the observed different runaway
behaviour in the presence of carbon and beryllium wall impurities, a
question which recently gained interest in the view of the new ITER-like
wall (ILW) installed at JET. The ILW comprises solid beryllium limiters
and a combination of bulk tungsten and tungsten-coated carbon fibre
composite divertor tiles [139].

The ILW has a significant impact on disruption physics in general
[66, 140]. One of the major differences compared to disruptions with
the carbon wall is that a lower fraction of energy is radiated during the
disruption process, yielding higher plasma temperatures after the ther-
mal quench. This will in turn affect the runaway formation. Drawing
experimental conclusions at present time is difficult due to the limited
number of runaway experiments carried out with the ILW so far. The
aim of Paper D was to perform a comparative modelling study of two
similar L-mode limiter discharges, performed with different wall mate-
rials to provide a deeper insight in the differences. In both cases the
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disruption was induced by slow argon injection. In the CFC case the
thermal quench is quick, which gives rise to runaways with a significant
current plateau. In the ILW case the thermal quench lasts for about 80
ms and results in only a negligible amount of runaways. As the result
of relatively low plasma density coupled with increased wall sputtering
in L-mode, these discharges have substantial steady state wall impurity
content. However, the level of impurity sputtering during the disruption
is unknown and therefore a scan for the impurity amounts was necessary.
The argon content can be estimated based on the total injected argon
amount with a reasonable assumption for the mixing efficiency [141].

We found that in general the runaway current increases with argon
content, while it decreases with carbon/beryllium content. The differ-
ences are due to the nonlinear nature of the simulations that amplify the
differences in the initial temperature- and density profiles, injected argon
amount and the presence of different background impurities, all of which
amplify each others’ effect. The presence of beryllium effectively reduces
the runaway current at argon contents of experimental relevance. As low
as 10% beryllium leads to a factor of two decrease in runaway current.
The presence of impurities also decreases the relative fraction of primary
runaways. Beryllium increases the avalanche fraction more than carbon,
that can be useful as the characteristic growth rate of avalanche is an
order of magnitude lower than for Dreicer generation. This means that
intrinsic and/or active runaway mitigation mechanisms have more time
to have an effect. In Paper D the experimentally measured runaway cur-
rents were reproduced at reasonable impurity contents. The simulations
indicate that the runaway current and Dreicer fraction reducing effect of
the wall impurities decreases with increasing Ar content (for the plasma
parameters in these shots) and the behaviour is comparable above 50%
argon content. This suggests that runaway electrons will probably re-
turn in future experiments regardless of the ILW when argon is used in
large quantities in massive gas injection (MGI) experiments on JET as
well as ITER.

The effect of runaway diffusion

As we have described earlier in this thesis, magnetic perturbations can
lead to increased radial runaway transport. In general, magnetic per-
turbations can come from the RMPs, MHD mixing, error fields, the
response of the control system to the disruption, instabilities enhanced
by the gradients during runaway evolution, etc. In Paper D we use
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the aforementioned Rechester-Rosenbluth diffusion [84] to demonstrate
the effect of magnetic perturbations on runaway current evolution. The
magnetic perturbations are kept constant in space and time as this is
sufficient to demonstrate the effect and only requires one free parame-
ter, 0 B/B. For simplicity, the evolution of the main plasma parameters
such as temperature is taken from the experimental data. Although the
radial transport is not as sophisticated as in the ANTS simulations, the
electric field and runaway generation is calculated self-consistently.

Without runaway losses due to magnetic perturbations, the simula-
tions end with a considerable runaway current in both shots, although
its value is higher in the C wall case than in the ILW case. The cur-
rent evolution is best matched with the experiment at a perturbation
level of 6B/B = O(1073). With a constant perturbation the runaway
plateau cannot be reproduced, but otherwise the main features of the
current evolution (such as the current decay rate) are similar. With a
perturbation level of 6B/B = 1073 the runaway redistribution rate is
comparable to the generation rate and the runaways spread out in the
plasma before they can form a strong runaway population. Even if the
runaways are not completely removed, the runaway current density is
decreased which in turn decreases the avalanche generation rate. We
found that the maximum value of the runaway current drops exponen-
tially as a function of § B/B for both cases, but the percentages reached
are significantly different for the two walls cases. The reason why the
ILW case is more sensitive to the losses due to magnetic perturbations
than the C wall case in the simulations is that in the C wall case the
Dreicer mechanism is significantly stronger, generating a higher fraction
of the runaway current than in the ILW case. The Dreicer generation
has approximately an order of magnitude shorter characteristic rise time
than the avalanche mechanism, and therefore the losses due to radial dif-
fusion (as well as other loss mechanisms) can more easily counteract the
runaway growth if the Dreicer current fraction is low.
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4 Sawtooth instability

What we observe is not nature itself, but nature
exposed to our method of questioning.
— Werner Heisenberg

The sawtooth oscillation is a periodic collapse phenomenon widely ob-
served in tokamaks [7]. It develops in the plasma core when the safety
factor on-axis (qo) is below 1. In the core, the temperature and density
ramp up slowly over most of the sawtooth period while they rapidly
crash down in the remainder, as illustrated in figure 4.1. During the
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Figure 4.1: Sketch of a central (J53) and non-central (J50) SXR channel dur-
ing five sawtooth crashes in ASDEX Upgrade shot #20975.

crash phase there is an intensive density- and heat transport outwards.
The temperature and density outside the core ramp up quickly just after
the crash, and decrease gradually to their equilibrium value. This effect
is most noticeable on the line integrated Soft X-Ray (SXR) measure-
ments of the plasma core, where the repeating sequence of slow growth
and sudden drop of intensity gives the characteristic sawtooth shape [32].
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Chapter 4. Sawtooth instability

The measured SXR intensity depends mainly on the electron density and
temperature Ije; X ngTe [142, 143], that makes it a preferred tool for
the investigation of sawteeth. The sawtooth phenomenon is important
for various reasons. The plasma can survive the performance-reducing
drops of the main core plasma parameters, but the coupling of sawteeth
to other, more harmful modes [29, 30] can result in a substantial con-
finement degradation. Sawteeth might also pose a threat to plasma self-
heating [18]. On the other hand, the sawtooth instability will remove
helium ash and impurities from the core of burning plasmas, thereby
preventing the degradation of the core temperature [28]. Thus the goal
is to control the sawteeth, not to totally avoid them. For these reasons,
significant effort has been placed by the fusion community in observing,
controlling and understanding the sawtooth instability.

Ever since the first observation [32], sawteeth have been connected
to the (1,1) internal kink mode [7], which is a well-known sawtooth
precursor. It is characterized by an (m,n) = (1,1) spatial structure,
where m and n are the poloidal and toroidal mode numbers, respectively
(go < 1 implies the existence of a ¢ = 1 surface). Most of the sawtooth
control methods rely on influencing the (1, 1) internal kink mode, that
can be realized with a variety of heating and current drive techniques
[144-149]. The knowledge of how to control sawteeth has improved
significantly in recent years [31, 150], however, the physical processes
that govern sawtooth oscillations remain not fully understood.

For example, the details of the crash mechanism itself still need to be
revealed. Kadomtsev was the first to come up with a model [151] that
was successful at explaining the characteristic timescales, but fails to
explain e.g. the evolution of the ¢ profile. Throughout the years there
have always been models which later on have been contradicted with
more and more detailed experimental observations. The importance
of higher order harmonics of (1,1) has recently been investigated on
ASDEX Upgrade [55-57] and HT-7 [152]. It has been proposed that
the interaction of the (1,1) kink and higher order harmonics can lead
to a stochastization of the plasma core. These results fit well into the
stochastic model [153, 154] of the sawtooth crash. The stochastic model
proposes the formation of a broad ergodic zone in the vicinity of the
q = 1 surface that causes the collapse. The exact generation mechanism
of such an ergodic zone, however, is yet unknown.
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Careful analysis of the precursor phase on ASDEX Upgrade [33-35]
and HT-7 [36] showed, that a low frequency signal component is visible
on the central SXR signals, and it gains energy just before the sawtooth
crash. Observations of a second, lower amplitude and lower frequency
n = 1 mode have also been reported on JET [37]. This signal component
is called the Low Frequency Sawtooth Precursor (LFSP). The
existence of this low frequency mode and its possible interaction with
the internal kink fits well into the stochastic model [33], and can be a key
element in the understanding of the crash mechanism. Paper F focuses
on the detailed analysis of the data from the central soft X-ray channels
of ASDEX Upgrade [155] in order to better understand the behaviour of
the LFSP, and the connection between it and other sawtooth precursor
modes. The line of sights for the SXR cameras are shown in figure 4.2.
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Figure 4.2: The line of sights of the SXR cameras F-K of ASDEX Upgrade.
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Chapter 4. Sawtooth instability

4.1 Experimental investigation

Time-frequency evolution

Most of the analysis tools used in Paper F are based on linear continu-
ous time-frequency transforms such as the Short Time Fourier Transform
(STFT) and the Continuous Wavelet Transform (CWT) [156]. Contin-
uous transforms have the advantage of being time-shift invariant that
is crucial in transient signal analysis. By using linear transforms we
are able to calculate the power distribution of the signal over the time-
frequency plane called the spectrogram (in case of using STFT) that is
used to visualise the time-frequency evolution of signal components. The
spectrograms have shown the existence of the LFSP 20-40 ms before the
sawtooth crash in a wide variety of shots. The LFSP was investigated
during different heating- and active sawtooth control schemes, and was
observable in all cases with a similar time-frequency structure. The main
phenomena [34, 35] also proved to be the same in different shots from
year to year. These observations support the generality of the LFSP.
In order to improve event statistics in various techniques — for exam-
ple, correlation analysis — we required statistical averaging over several
similarly behaving sawtooth crashes. The spectrograms allow to follow
the complex time-frequency evolution that served as a basis of finding
similar crashes for the averaging.

The frequency ratio of the (1,1) and the LESP had to be estimated
with a quantitative method. For this we used a global ridge follow-
ing algorithm based on graph theory, inspired by P. Varela [157].
In this method the spectrogram is represented as a graph: the nodes
mark the time-frequency points, and edges connect each node at a
given time point ¢ with all the nodes in the following time point ¢ + 1:
Zij — Tiy1k k= 1...N for V 4,7, where 7 and j are the time- and
frequency indexes, respectively. The edges are weighted with a scheme
that takes the strength of each point and their difference in frequency
into account in a way that is optimized for the actual signal-to-noise ra-
tios. The shortest path in this weighted graph represents the frequency
evolution of the signal component of interest. The path is calculated
with a modified version of Dijkstra’s shortest path algorithm [158]. The
frequency ratio of the two modes does not show any particular temporal
development pattern, it is restricted to the 0.5-0.7 range, and seems not
to equal any specific low order rational.
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The spectrograms show that the LFSP is a low energy mode dur-
ing most of the precursor phase, but it swiftly gains energy right before
the sawtooth crash. In order to quantitatively characterize the power
evolution of the LFSP, we estimated the bandpower of the frequency
range associated with it. This is done by integrating the spectrogram
in frequency over a given frequency range [159]. The estimated band-
power then serves as an input for other analysis methods. We have to
note that the bandpowers and the power modulation acquired with the
ridge following algorithm show good agreement with each other, but the
bandpower is more preferred for its simpler algorithm and also requires
lower computational effort.

For quantitative description of the time evolution of the energy and
to estimate the growth rate of the LFSP we fitted exponential curves
to the bandpowers of the LFSP for the investigated sawtooth crashes in
the precursor phase. We calculated the weighted average of the fitted
parameters (maximal bandpower, growth rate, background noise) in the
aforementioned crash groups. The parameters show good agreement be-
tween the different shots, consequently the ramp-up of the LFSP is very
uniform from the amplitude growth point of view. The average ampli-
tude growth rate is ya = (407 s~ & 3%), that suggests that the LFSP
is most probably a resistive MHD mode [160]. These observations can
be the basis to extract the critical values of the underlying parameters
such as the LFSP amplitude necessary for the crash, as will be discussed
in section 4.2.

Mode interaction

Investigating the possible interaction of the LFSP and the (1,1) mode
is crucial in order to understand the origin of the LFSP and its role in
the sawtooth crash. One way to characterize the interaction of different
modes is the bandpower correlation method [159] in which the band-
powers of LFSP and (1,1) are correlated with each other. Our previous
results have already shown an interaction between these two modes in
the early precursor phase before the crash [34]. In Paper F we extended
the previous investigation to improve the event statistics by averaging
the bandpower correlation functions for several crashes with similar be-
haviour. We found that a > 50% correlation can systematically be found
for a wide range of shotnumbers, that implies a connection between the
two modes long before the crash. Bandpower-correlation also provided
a way to determine the location in which the two modes are interacting,
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Chapter 4. Sawtooth instability

that is also visible slightly outside the inversion radius, the importance
of which will be described in section 4.2.

The other method employed in the analysis is bicoherence, that is
able to measure phase coupling between signal components [161]. De-
spite the low energy of the LFSP, we found a significant, 60% bicoherence
between the (1,1) and the LFSP already 15 ms before the crash event.
This suggests the existence of a nonlinear interaction between the two
modes in the early, low-energy phase of the LFSP, in agreement with
the bandpower correlation analysis.

Spatial structure

The spatial structure of the LFSP is a key issue in understanding the
phenomenon, but one has to overcome the difficulties raising in the de-
tection and mode number estimation of a low energy, transient core
mode. The only diagnostics available on ASDEX-Upgrade — at the time
of investigation — that have the required spatiotemporal resolution of the
plasma core are the soft X-ray cameras, for which we have applied previ-
ously developed wavelet based methods for detecting short-lived plasma
eigenmodes and determining their spatial structure [162, 163]. A typical
model structure for an MHD eigenmode is

B(,0,6,t) = B(p)e™!em0+19),

that defines the (m,n) mode numbers. Therefore, we can determine the
mode number if we measure the phase of a given w frequency mode at
different spatial positions. Our mode number determination is based
on the phase of the continuous analytical wavelet transform [156]. For
each (u,&) point of the time-frequency plane, ¥, ,(u, ) relative phases
between all (z,y) pairs of signals are calculated. For a pure harmonic
structure, these relative phases would lie on a straight line as a function
of the ¢, , relative probe position as illustrated in figure 4.3. The slope
of the best fitting straight line gives the mode number with the residual
defined as:

Ql(u,g) = Z Hﬁfﬁ,y(uag) —1- be,yHgW
z,y

where | = {m,n} is the toroidal or poloidal mode number and || ... ||2x
is the norm by taking the optimum shift of ¥, , by 27z, 2z € Z.

This method gives a best fitting mode number for each point on the time-
frequency plane, that allows one to follow the time-frequency evolution
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Figure 4.3: (a): Illustration of an m = 3 mode surrounded by an array of
probes, picking up different phases of the oscillation. (b) 9,
relative phases as a function of ¢, , relative probe positions. The
slope of the curve gives the most fitting mode number.

of the mode numbers. However, mode numbers are a relevant quantity
only in limited regions, where coherent modes exist. We can find these
regions based on a criterion for the min;{Q;(u, )} values, or on wavelet
minimum coherence [162], or on the combination of both, as in Paper F.

With the right choice of ¢, ,, the mode number estimation can be ap-
plied for both toroidal and poloidal mode numbers. Toroidal mode num-
bers were estimated using two identical SXR cameras placed 135° apart
toroidally but having the same lines of sight in the poloidal cross-section.
Up to 4 central channel pairs inside the sawtooth inversion radius were
used for mode number estimation. For the poloidal mode numbers we
had to select lines of sight in the same toroidal cross-section that were
tangential to approximately the same flux surface and measured high
bandpower values on the mode frequency. The mode structure distor-
tion (caused by toroidal effects and the magnetic field gradient) can be
compensated if we transform the inhomogeneous magnetic field to a ho-
mogeneous one by using a straight field line poloidal angle coordinate
[164] instead of the geometrical coordinate.

According to these measurements, the mode number of the LFSP
is (1,1), equal to the “classic” (1,1) kink mode. The significance of this
result is discussed in section 4.2.
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Chapter 4. Sawtooth instability

4.2 The possible role of the LFSP

Our knowledge on the LFSP and its role in the sawtooth crash is not yet
sufficient for a clear theoretical understanding, nonetheless, we present a
few possible ways how the LFSP can be fit into different sawtooth crash
models.

If the (1,1) kink mode already exists in the plasma, it provides a
strong periodic drive force that can excite other modes as well (directly
via e.g. magnetic coupling; or indirectly through the change of the
profiles [38]). The mode numbers of the LFSP were found to be identical
to the (1,1) internal kink mode, this also means that the LFSP is located
at the same radial position, at the ¢ = 1 surface. These observations
make the excitation of the LFSP by the (1,1) very likely via magnetic
coupling, that is possible even if the frequency ratio is irrational [48]. A
sign of this interaction is the measured bandpower crosscorrelation, and
the high value of bicoherence.

It has already been shown that the (1,1) internal kink mixed with its
upper harmonics can contribute to the stochastization of the plasma
core [55, 56]. If we investigate the interaction of the (1,1) and the
LFSP we observe that the additional small (< 1%) perturbation with
frrsp = 0.6 f(1,1) mixed with the original (1,1) mode at the observed spa-
tial position creates a relatively broad stochastic layer and an “opening”
at the X point of the (1,1) island [165]. This is shown schematically in
figure 4.4. The important factor in this stochastization is the frequency
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Figure 4.4: (a): Sketch of the magnetic island generation as a result of the
(1,1) mode. (b): X point opens up and broader stochastic region
appears due to the additional presence of the LFSP.
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ratio and the identical spatial structure of the two coupled modes. The
fact that the two modes are interacting also outside ¢ = 1 enables the
formation of an ergodic layer at the outer island separatrix. Adding
upper harmonics does not open up the magnetic structure as effectively
as the LESP. The generation of a broad stochastic layer near the (1,1)
island separatrix and especially at the X point coincides well with the
2D electron cyclotron emission (ECE) measurements of the crash phase
[152, 166, 167]. As was discussed in chapter 2, small modifications in
the perturbation amplitude can result in swift changes of the magnetic
structure. It is probable that the ergodic zone visualized in figure 4.4
appears almost instantly when the LFSP reaches a certain critical am-
plitude, as was implied during the analysis of the power evolution. This
could explain the sudden onset of the crash.

The implications of this model on the evolution of the ¢ profile are
consistent with the measurements, namely that the position of the ¢ = 1
surface is preserved and that g on axis remains below unity. The inter-
action of the LFSP and the (1,1) kink implies a partial reconnection
procedure that is consistent with the observations that heat comes out
from the central core region through the X-point of the (1,1) island and
the (1,1) island survives the crash [167]. The sudden onset of the crash,
the rapidity of the temperature collapse and the incomplete relaxation
of the current profile can also be explained by the interaction of modes
with commensurate spatial structure [56].

An interesting question is why the two modes with equal spatial
structure have different frequencies? One possible explanation is the
difference of the mode types. According to the observed growth rate of
A ~ 400 s71, the LFSP is most probably a resistive mode [160]. On
the other hand, the internal kink is often characterized as an ideal mode
before the crash [168]. However, an ideal mode cannot be responsible
for changes in the magnetic topology, while a resistive can be [169]. In
the ASDEX Upgrade the presence of a (1,1) island is instantly visible
after the crash, but not before [167]. These experimental observations
cannot be described solely with ideal MHD theory.

As of today, we understand the LFSP as a secondary instability
driven by the (1,1), that causes, or contributes to the crash. During
the years, several different crash models have been proposed, each with
experimental support [31]. The LFSP can play a role in the models
that involve field line stochasticity, chaos or partial magnetic reconnec-
tion. There are indications that the sawtooth crash might be governed
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by different mechanisms in the various devices [27], or by a mixture
of the possible mechanisms. One of the latter is the possibility that
the formation of an (1,1) island or an ergodic layer around ¢ = 1 pro-
vides a steep temperature gradient, that excites secondary ideal MHD
instabilities during the crash [38], that would explain the rapidity of the
temperature and density collapse. There is also the possibility that the
LFSP is excited, driven or destabilized by the changes of the parameter
profiles initiated by the (1,1) mode evolution. In the latter case the in-
teraction of the reconnection process (that is enhanced by the presence
of the LFSP) and the secondary instabilities is very complex and yet
unclear. These questions cannot be answered without extensive MHD
simulation studies. Either way, it seems very improbable that a crash
model without partial magnetic reconnection can be consistent with all
the experimental observations [38, 167], and as outlined above, the LEFSP
can play a crucial role in the reconnection process.
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5  Summary

Somewhere, something incredible is waiting to be known.
— Carl Sagan

The present thesis describes problems in the field of tokamak plasma
physics related to the effect of magnetic perturbations on the tokamak
magnetic structure. We have shown that magnetic perturbations can
generate ergodic zones both in the core and at the plasma periphery.
These ergodic zones significantly alter the radial transport due to the
largely anisotropic transport in magnetized plasmas.

In the first part of the thesis, we aimed on utilizing this feature. The
high energy population of runaway electrons that can form in disrup-
tions poses a large threat to reactor-scale tokamaks like ITER, and the
runaway generation has to be mitigated for a reliable operation. One
possible option for runaway removal is to artificially generate ergodic
zones in the post-disruption plasma by external resonant magnetic per-
turbation (RMP). The ergodic zones arising at the edge can lead to the
removal of particles before they can reach large energies. Experimen-
tally, the concept shows ambivalent results, showing success on several
tokamaks, while lacking positive results on others. Numerical analysis
is necessary to better understand the phenomenon.

In Paper A we focused on developing a numerical tool for the study
of runaway electron drift orbits in 3D magnetic fields and understanding
the experimental results measured on the TEXTOR tokamak. We found
that runaway electrons in the core of the plasma are likely to be well
confined. For low-energy (~ 1 MeV) particles closer to the boundary,
the onset time of the losses is dependent on the amplitude of the mag-
netic perturbation, and this should affect the maximal runaway current.
The runaway current damping rate is insensitive to the magnetic per-
turbation level, and its experimentally measured value is consistent with
our simulations. We have also found that a significant loss of runaways
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Chapter 5. Summary

happens independently of the RMP, as a result of the confinement vol-
ume shrinkage at larger energies. We concluded that the experimental
success of RMP on smaller devices can not be understood solely based
on drift orbit simulations, but only if more complex effects such as e.g.
MHD perturbations are taken into account as well.

In Paper B and Paper C we investigated the effectiveness of the pro-
posed ITER RMP system. As expected, we found that runaways in
the core (¢ < 0.6) are well confined. However, runaways are rapidly
lost if §B/B 2 1073, which corresponds to the region outside the nor-
malised flux ¥ ~ 0.6. The losses are caused partly by the confinement
volume shrinkage and partly by the increased radial transport in the
stochastic region. We performed simulations for several perturbation
configurations and concluded that runaway losses are quite sensitive to
the perturbation configuration. We identified one of the possible n = 3
perturbations to be the most efficient in this respect. We have iden-
tified the radial perturbation component B, as the main reason for
particle radial “steps” and explored the chaotic processes governing the
radial transport. We have also studied loss anisotropies arising from
the usage of RMP. The results indicate that the presence of RMP not
only increases the amount of lost particles, but may also influence the
avalanche generation at the edge, since it leads to earlier losses of par-
ticles with lower energies. The actual effect of the RMP on the whole
runaway electron population and dynamics can only be estimated with
more complex simulations that take into account the electric field dy-
namics self-consistently.

In Paper D we studied runaway dynamics by using a tool that is
capable of handling runaway generation with self-consistent electric field
calculation, the GO code. This tool also includes modules to calculate
the evolution of plasma parameters and impurity injection. We have
shown that the difference observed in runaway behaviour on JET with
two different wall materials (carbon, beryllium) can be explained with
this relatively simple tool, but further studies are necessary for a more
complete modelling. The results indicate that runaway electrons are
expected to be present if massive gas injection is applied even with the
ITER-like wall. In this paper we also demonstrated the effect of magnetic
perturbations on the runaway current evolution with a self-consistent
electric field. A perturbation in the range of O(1073) is sufficient to
counteract the avalanche mechanism and significantly alter the runaway
dynamics.
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In Paper E we have studied runaway positrons originating from run-
away electrons in disruptions. These positrons can form in large num-
bers, gain relativistic energies and have a lifetime of seconds. We have
calculated the distribution function of the positrons and estimated their
detectability through synchrotron emission. Synchrotron spectra emit-
ted by positrons, if measured, may offer information about the post-
disruption plasma parameters.

Paper F is dedicated to the deeper understanding of the sawtooth
crash mechanism, again on the basis of the perturbed magnetic struc-
ture. It presents a detailed analysis of the Low Frequency Sawtooth
Precursor (LFSP) mode appearing at a slightly lower frequency than the
well known sawtooth precursor (1,1) internal kink mode, as observed on
the soft X-ray (SXR) diagnostic of the ASDEX Upgrade tokamak. A
number of advanced data analysis methods were applied, such as the
ridge following algorithm, bandpower-correlation, bicoherence for MHD
modes, and a wavelet based method to determine core mode numbers on
the time-frequency plane using SXR signals. Most of these techniques
are new or have not been used in such a way before. The results indicate
that the frequency of the LFSP is 0.5 — 0.7 times the frequency of the
(1,1) mode and has a growth rate of vy ~ 400 s~!, which is typical for
a resistive core MHD mode. We have shown the correlation and phase
coupling of the two modes in the early precursor phase. As was observed,
the spatial structure of the LFSP agrees with that of the (1, 1) kink and
this enhances the possible interaction. It has been proposed that the in-
teraction of the two modes with the same spatial structure but different
frequency enhances the formation of a core ergodic zone. These results
contribute to the sawtooth models involving field line stochasticity. Ex-
tensive simulation studies are required in order to better understand the
LFSP and its role in the sawtooth crash in the future.
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