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Abstract

The automated segmentation of magnetic resonance (MR) images of the human head is an
active area of research in the field of neuroimaging. The resulting segmentation yields a
patient-specific labeling of individual tissues and makes possible quantitative characteri-
zation of these tissues (e.g. in the study of Alzheimers disease and multiple sclerosis). The
segmentation is also useful for assigning individual tissues conductivity or biomechani-
cal properties for patient-specific electromagnetic and biomechanical simulations respec-
tively. The former are of importance in applications such asEEG (electroencephalog-
raphy) source localization in epilepsy patients and hyperthermia treatment planning for
head and neck tumors. The latter are of interest in applications such as patient-specific
motion correction and in surgical simulation.

Automated and accurate segmentation of MR images is a challenging task in the field
of neuroimaging because of noise, spatial intensity inhomogeneities, difficulty of MR in-
tensity normalization and partial volume effects (a singlevoxel represents more than one
tissue type). Consequently most of the techniques proposedto date require manual cor-
rection or intervention to achieve an accurate segmentation of the brain or whole-head.
As a result they are time consuming, laborious and subjective. This thesis presents two
automatic and unsupervised segmentation methods, for multi-tissue segmentation of the
brain and whole-head respectively from multi-modal MR images, that are more accurate
than the state-of-the-art algorithms. The brain segmentation method is based on the mean
shift algorithm with a Bayesian-based adaptive bandwidth estimator. The method is called
BAMS (Bayesian adaptive mean shift) and can be used to segment the brain into multiple
tissue types; e.g. white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF).
The accuracy of BAMS was evaluated relative to that of several competing methods using
both synthetic and real MRI data. The results show that it is robust to both noise and
spatial intensity inhomogeneities compared to competing methods. The whole-head seg-
mentation method is based on a hierarchical segmentation approach (HSA) incorporating
the BAMS method. The segmentation performance of HSA-BAMS was evaluated relative
to a reference method BET-FAST (based on the BET and FAST tools in the well-known
FMRIB Software Library) and three other instantiations of the HSA, using synthetic MRI
data with varying noise levels, and real MRI data. The segmentation results show the
efficacy and accuracy of proposed method and that it consistently outperforms the BET-
FAST reference method. HSA-BAMS was also evaluated indirectly in terms of its impact
on the accuracy of EEG source localization using electromagnetic simulations based on a
tissue conductivity labeling derived from the segmentation. The results demonstrate that
HSA-BAMS outperforms the competing methods, and suggest that it has potential as a
surrogate for manual segmentation for EEG source localization.
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CHAPTER 1

Introduction

1.1 Background and problem definition

Neuroimaging [1] is an important branch of medical imaging.It encompasses a range of
techniques used to non-invasively image the brain at all levels of structure and function,
ranging from neurotransmitter and receptor molecules to large networks of brain cells.
Neuroimaging can be broadly classified into functional imaging and structural imaging.

Functional imaging is used to visualize/assess the neural activity in the brain. The neu-
ral activity at a specific location in the brain is associatedwith localized vascular changes
(such as cerebral blood flow) and metabolic changes (such as glucose and oxygen con-
sumption). Functional imaging techniques include positron emission tomography (PET),
functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and
electroencephalography (EEG).

Structural imaging is used to visualize/assess anatomicalstructures in the brain and
the head and to diagnose/characterize tumors and injuries.Structural imaging techniques
include X-ray computed tomography (CT) and magnetic resonance imaging (MRI).

Segmentation (i.e. delineation or labeling) of the individual tissues in the structural
and functional images makes possible quantitative characterization of anatomical struc-
tures as well as diseased tissue and injury. For example the evolution of multiple sclerosis
can be monitored in terms of total lesion load determined from a segmentation of the in-
dividual lesions in T2-weighted images. Segmentation alsomakes it possible to assign
conductivity or biomechanical properties to the individual tissues for the purpose of con-
structing electro-conductivity or biomechanical simulations. One approach, known as the
finite element method (FEM), involves creating a 3D mesh of simple geometric elements,
e.g. tetrahedral elements, from the segmented images. The response of the overall (con-
ductivity or biomechanical) mathematical model is then approximated by the responses
of the individual elements in the discrete model.

Electro-conductivity modeling finds use in applications such as non-invasive EEG
source localization in epilepsy patients [2], hyperthermia treatment planning for head and
neck tumors [3], the study of electric fields induced by transcranial magnetic stimulation
(TMS) [4] and the study of deep brain simulation [5]. Biomechanical modeling finds use
in applications such as brain deformation simulation for image-guided neurosurgery [6]
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CHAPTER 1. INTRODUCTION

and the study of head trauma in traffic accidents [7].
To date most of the approaches [2, 4, 8] proposed for accuratepatient-specific segmen-

tation of the brain or whole-head require manual correctionor intervention. Consequently
they are time consuming, laborious and subjective. Thus a fully automatic and accurate
segmentation method is highly desirable.

1.2 Aim and objectives

The aim of this thesis was to develop fully automatic and accurate patient-specific tissue
segmentation methods for both the brain and whole-head using multi-modal MR images
(MR images of the same anatomy but acquired using different contrast mechanisms such
as T1-weighting, T2-weighting, and proton density weighting). To this end the thesis had
the following objectives:
1. To develop an unsupervised method for segmenting the brain into individual tissues.
2. To evaluate the performance of the method using both synthetic and real MR images
of the brain.
3. To develop an unsupervised method for segmenting the whole-head into individual
tissues.
4. To evaluate the performance of the method using both synthetic and real MR images
of the head.

1.3 Scope of the thesis

Only unsupervised image segmentation techniques were considered in this thesis. Such
techniques do not require training data but rather explore the intrinsic structure of the
image data using various statistics.

Likewise atlas-based segmentation methods (wherein many labeled training images
are used to define an atlas) were not investigated. Such methods are not able to handle
major structural changes due to pathology (for example, malignant tumor) [9].

The real and synthetic MRI data sets used in this study comprised at most three dif-
ferent MRI modalities. This meant that it was not necessary to perform advanced feature
selection and extraction for the purposes of dimensionality reduction.

Only the segmentation of multi-modal MRI data was considered in this thesis. The
use of additional imaging modalities, such as X-ray computed tomography or ultrasound,
was not investigated.

4



1.4 OVERVIEW OF THE THESIS

1.4 Overview of the thesis

The thesis is organized into two main parts.
Part I consists of chapters 2 through 5. Chapter 2 provides the basic anatomical and

methodological concepts needed for the remainder of the thesis. The aim and objectives
of the thesis are addressed in chapters 3 and 4. Chapter 5 presents a summary of the
papers arising from this thesis and discusses future work.

Part II comprises the papers arising from this research.
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CHAPTER 2

Theoretical Background

The purpose of this chapter is to acquaint the reader with thebasic anatomical and the-
oretical concepts essential for an understanding of the material presented in subsequent
chapters. In particular, the next section presents an overview of the anatomy of the hu-
man head, section 2.2 provides an overview of magnetic resonance imaging (MRI), and
finally sections 2.3 and 2.4 describe several segmentation techniques and tools underlying
existing approaches to brain and whole-head segmentation.

2.1 Anatomy of the human head

This section provides an overview of the anatomy of the humanhead. The level of detail
provided is sufficient for the aim and objectives of this thesis. For a more detailed and
comprehensive treatment of the subject, the reader is referred to [10, 11, 12].

Skin

Fat

Muscle

Skull

CSF

GM

WM

Figure 2.1: Axial slice through the human head showing the major tissue types: white
matter (WM) in white, gray matter (GM) in gray, cerebrospinal fluid (CSF) in
black, skull in red, fat in green, muscle in brown and skin in yellow.
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CHAPTER 2. THEORETICAL BACKGROUND

The human head is made up of several major tissue types as shown in Fig. 2.1. These
in turn can be classified as belonging to two major classes: brain and non-brain.

2.1.1 Brain

The human brain is an important part of the central nervous system. Functionally, it can
be decomposed into three main parts (see Fig. 2.2).

1. Cerebrum: This is the largest part of the brain and is composed of left and right
hemispheres. Each hemisphere can in turn be divided into four lobes:

• Frontal Lobe: It is involved in functions such as reasoning,planning, parts of
speech, voluntary motor function of skeletal muscles, emotions, and problem
solving.

• Parietal Lobe: It is involved in functions such as movement,orientation,
recognition, and perception of stimuli.

• Occipital Lobe: It is involved in visual processing.

• Temporal Lobe: It is involved in functions such as perception and recognition
of auditory stimuli, memory, speech, and smell.

2. Cerebellum: It is located under the cerebrum and is involved in functions such as
regulation and coordination of movement, posture, and balance.

3. Brain Stem: It is responsible for regulating breathing, heartbeat, and blood pressure.

Figure 2.2: Anatomy of the human brain.
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2.2 MAGNETIC RESONANCE IMAGING (MRI)

Structurally, the brain can be decomposed into three main tissue types (shown in Fig.
2.1):
Gray matter

The gray matter is located on the thin outer layer of the brain, called the cerebral
cortex, and also deeper in the brain underneath the white matter. It comprises neuronal
cell bodies. Gray matter is involved in various functions including muscle control, speech,
emotion, memory, vision and hearing.
White matter

The white matter lies underneath the cerebral cortex and is made up of glial cells and
bundles of myelinated axons. The white matter connects various regions of the gray mat-
ter, favoring communication between cortical-cortical orcortical-subcortical structures.
Cerebrospinal fluid (CSF)

The CSF is a colorless fluid. It is located in the subarachnoidspace (space between the
two protective membranes that surround the brain: arachnoid membrane and pia mater),
the ventricles (large cavities inside the brain) and the spinal cord. It serves to protect the
brain, supply it with nutrition, and to remove waste.

2.1.2 Non brain

The non-brain is composed of four main tissues:
Skull

The skull is a bony structure and has a thickness between 4 to 7mm. It surrounds the
brain, eyes, nose and teeth and serves to protect them.
Skin

The scalp, neck and face surrounding the skull are composed of soft tissue called
skin. The skin is made up of two primary layers: epidermis anddermis. The epidermis
layer is the outermost layer of the skin and acts as infectionbarrier. The dermis layer lies
underneath the epidermis and provides tensile strength andelasticity to the skin.
Fat

Fat is a soft tissue that lies beneath the skin. It is made up ofadipose cells called
adipocytes.
Muscle

The term muscle describes another soft tissue located inside the skin. It is composed
of protein filaments that slide past one another enabling actions such eating, blinking and
smiling.

2.2 Magnetic Resonance Imaging (MRI)

This section provides a brief overview of the principles of magnetic resonance imaging
(MRI). For a more detailed and comprehensive treatment see [13, 14, 15, 16, 17].

MRI is a non-invasive imaging technique. R. Damadian, in 1971, proposed the MRI
to use as a medical imaging device. In 2003, P. Lauterbur and P. Mansfield received the
Noble prize in Physiology or Medicine for their pioneering work in the development of
MRI.

9



CHAPTER 2. THEORETICAL BACKGROUND

MRI is based on a physical phenomenon called nuclear magnetic resonance which is
defined as the ability of magnetic nuclei to absorb energy from an electromagnetic pulse
and to radiate this energy back. The hydrogen nucleus or proton is positively charged
and possesses an angular moment called spin. This property causes it to behave as a tiny
magnet with a small magnetic field or magnetic moment.

In MR imaging the object to be imaged is placed inside a strongexternal magnetic
field B0 that causes the nuclear spins to align alongB0 with the same orientation (parallel
spins) or opposite orientation (anti-parallel spins). Thesmall difference in the two popula-
tions yields a bulk magnetizationM , which is the sum of the individual magnetic moments
of the individual protons, that depends linearly on the fieldintensity and is aligned with
the B0 field (illustrated in Fig. 2.3). This state of magnetizationis known as thermal
equilibrium.

The magnetization vectorM is the main source of MR signal and is used to produce a
MR image. It has two components called longitudinal and transverse magnetization. The
longitudinal magnetization (denoted asM z) is parallel to the external magnetic fieldB0

while the transverse magnetization (denoted asMxy) is perpendicular to theB0.

B
0

(a) (b)

M=M
Z

Figure 2.3: Alignment of protons with theB0 field: (a) with no external magnetic field, all
the protons are oriented randomly (b) in the presence of strong external mag-
netic field (B0), all the protons are aligned (parallel or anti-parallel toexternal
magnetic fieldB0). As a result, a net magnetizationM = M z is produced
parallel to the external fieldB0.

When a radio frequency (RF) pulseBRF (having frequency equal to the Larmor fre-
quency) is applied, it gives energy to the protons. As a result, the magnetization vector
M flips in the transverse plane and the longitudinal componentM z becomes zero. Once
the RF pulse is turned off, another RF signal is generated by the protons due to magnetic
resonance phenomena. This signal is decaying towards zero when the magnetization vec-
tor M = Mxy in the transverse plane starts to dephase. This state is known as transverse
relaxation or T2-relaxation. The dephasing ofM xy is due to the magnetic moments of pro-
tons that are precessing with slightly different frequencies. The decaying signal is known
as free induction decay (FID) which is measured by a conductive field coil in the MR

10



2.2 MAGNETIC RESONANCE IMAGING (MRI)

scanner and then it is processed to get the MR image of the object. After T2-relaxation,
the protons build up the magnetization vectorM = M z again parallel to the originalB0

field and the state is known as longitudinal relaxation or T1-relaxation. The illustration of
T2- and T1-relaxation are shown in Fig. 2.4 and Fig. 2.5 respectively.

Figure 2.4: T2- relaxation: (a) Dephasing ofM = M xy in the transverse plane (b) Free
induction decay (FID).

Figure 2.5: T1- relaxation: Application of a perpendicularRF pulse causes longitudinal
magnetizationM = M z to become zero. Over time, the longitudinal magneti-
zationM z will grow back in a direction parallel to the mainB0 field.

2D and 3D MR imaging

In MRI, the two approaches called 2D and 3D imaging can be usedto acquire the image
of an object. In 2D imaging, the RF pulse is used to excite onlythe selected slice of an
object. In this way the signal is generated from that particular slice is used to construct
the image of that slice. In 3D imaging, the volume of an objectthat contains the stack of
slices is excited with RF pulse to get the image of that particular volume of an object.

11



CHAPTER 2. THEORETICAL BACKGROUND

2.2.1 Contrast Mechanisms in MRI

In MRI, the contrast between tissues are based on the intrinsic properties of tissues i.e.
proton density PD, T1 and T2.

T1 is defined as the time that it takes the longitudinal magnetizationM z to grow back
to 63% of its original value. It is related to the rate of regrowth of longitudinal magnetiza-
tion which is a fundamental source of contrast in T1-weighted images. Different tissues
have different rates of T1-relaxation as shown in Fig. 2.6.

T2 is defined as the time that it takes the transverse magnetizationM xy to decrease to
37% of its starting value. It is related to the rate of dephasing of transverse magnetization
that is a fundamental source of contrast in T2-weighted images. Different tissues have
different rates of T2-relaxation as shown in Fig. 2.7.

In the PD-weighted images, the contrast is based on the density of protons in the
tissues. Different tissues have different density of protons.

In order to control the weighting amount of T1 and T2 effects in the MR images, the
basic imaging parameters are used which are known as echo time (TE) and repetition time
(TR). TE is defined as the time between the start of RF pulse andthe maximum in the FID
response signal. TR is defined as the time between the consecutive RF pulses.

The relative values of TE and TR to produce different contrast weighted image as
shown in Fig. 2.8. Herein, T1-weighted image is produced by maximized the T1-
relaxation and minimized the T2-relaxation using short TE and intermediate TR. T2-
weighted image is produced by maximized the T2-relaxation and minimized the T1-
relaxation using long TE and long TR. PD-weighted image is produced by minimized
the both T1- and T2-relaxation using short TE and long TR.

Figure 2.6: (a) T1: longitudinal magnetization increases to 63% ofM z (b) Different tis-
sues have different rates of T1-relaxation.

12



2.2 MAGNETIC RESONANCE IMAGING (MRI)

Figure 2.7: (a) T2: transverse magnetization decreases to 37% ofM xy (b) Different tissues
have different rates of T2-relaxation.

Figure 2.8: Basic imaging parameters: (a) short TE and intermediatory TR for T1-
weighting (b) long TE and long TR for T2-weighting (c) short TE and long
TR for PD-weighting.

13



CHAPTER 2. THEORETICAL BACKGROUND

Tissues of the human head visualized by magnetic resonance imaging

Fig. 2.9 shows three MR images of the same axial slice througha human head. In these
images the contrast between soft tissues can be seen clearly. The contrast in these im-
ages are characterised as (a) T1-weighted (b) T2-weighted (c) PD-weighted. In the T1-
weighted image the CSF, skull, and fat appear dark and the gray matter, white matter, skin
and muscle appear bright. In the T2-weighted image the CSF and skin appear bright, and
the skull, fat, muscle, white matter and gray matter appear darker than in the T1-weighted
image. In the PD-weighted image the fat, muscle, white matter, gray matter, and CSF
appear bright, and the skull appear dark.

Figure 2.9: Axial slice from an MRI scan of the human head ([18]) (a) T1-weighted (b)
T2-weighted (c) PD-weighted image.

Basics pulse sequences for MRI

The two pulse sequences known as spin echo (SE) and gradient echo (GE) are commonly
used to generate MR images. These sequences are repeated many times during a scan to
generate the image of an object.

In spin echo sequence, a 90◦ RF pulse is used to flip the magnetization vectorM in
the transverse plane. As the protons go through the T1- and T2- relaxation, the transverse
magnetizationMxy is gradually dephased. A 180◦ is applied to rephase it. As a result,
a signal (called spin echo) is generated and is used to reconstruct a MR image. In order
to generate the different contrast MR images, SE sequence isbased on the TE and TR
scanning parameters.

In gradient echo sequence, an RF pulse is applied that partlyflips the net magnetiza-
tion vectorM into the transverse plane. A negative gradient pulse is usedto dephase the
transverse magnetizationM xy and a positive gradient pulse is applied to rephase it. As a
result, a signal (called gradient echo) is generated. In GE sequence, the scanning param-
eters: pulse flip angle, TE, and TR are used to produce different contrast MR images.

2.2.2 Artifacts in MRI

The two major sources of artifacts that degrade the MR image quality significantly and
also obfuscate the anatomical and physiological detail arenoise and the bias field. The
noise in MRI is generally caused by the thermal agitation of electrons in the conductor. It
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is usually modeled as Rician distribution [19]. The bias field is a low frequency smooth
undesirable signal which is caused by inhomogeneities in the magnetic field of the MR
scanner. It changes the intensity values of the image pixelsso that the same tissue has
different gray level distribution across the image.

2.3 Overview of the basic segmentation techniques underlying
existing approaches to brain and whole-head segmentation

Image segmentation refers to the process where every pixel in a digital image is assigned
a label and such that pixels sharing the same characteristics are given the same label.
Numerous techniques for image segmentation can be found in the literature. No single
technique is applicable for all problems and no general theory exists for synthesizing
a segmentation solution for any given problem. The image analysis practitioner must
therefore devise solutions based on one or more techniques and using experience and trial
and error.
In this section we give a brief description of the elementarysegmentation techniques used
in the brain and whole-head segmentation methods presented/discussed in later chapters.

2.3.1 Mean Shift

Mean shift is a non-parametric mode seeking and clustering technique originally proposed
for the analysis of data by Fukunaga and Hostetler [20]. Its application to image process-
ing and computer vision tasks such as filtering, image segmentation and real time object
tracking was pioneered by Comaniciu et al. [21].

Mean shift does not require any prior information concerning the number of clusters,
and does not constraint the size or shape of the clusters. Mean shift clustering is based on
an adaptive gradient ascent approach to estimate the local maxima or modes of multivari-
ate distributions underlying the feature space. Ultimately each feature point is associated
with a mode thereby defining clusters. The basic principle ofmean shift clustering is
described below.

Let {xi ∈Rd|i = 1.....n} denote a set of feature vectors (data points) ind- dimensional
space. The kernel density estimate of the underlying multivariate probability function at
point x is given by

f̂K(x) =
1
n

n

∑
i=1

|H|−1/2K(|H|−1/2(x−xi)) (2.1)

whereH is ad×d symmetric positive definite bandwidth matrix. For a radially symmetric
kernel,H = h2I which leads to

f̂K(x) =
ck,d

nhd

n

∑
i=1

k

(∥∥∥∥
x−xi

h

∥∥∥∥
2
)

(2.2)

whereh> 0 is a scalar bandwidth andk : [0,1] → R is the kernel profile of the radially
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symmetric kernelK with bounded support defined as

K(x) = ck,dk
(
‖x‖2

)
‖x‖ ≤ 1 (2.3)

andck,d is a normalizing constant ensuring that the kernelK integrates to 1. The typical
kernels used in the mean shift applications are GaussianKG and EpanechnikovKE given
as

KG(x) = ck,dkG = ck,d exp

(
−1

2
‖x‖2

)
(2.4)

KE(x) = ck,dkE = ck,d(1−‖x‖2) ‖x‖ ≤ 1 (2.5)

wherekG andkE are the kernel profiles ofKG andKE respectively. The derivative of the
sample point density estimator in eq. 2.2 leads to

▽̂ fK(x)≡▽ f̂K(x) =
2ck,d

nhd+2

n

∑
i=1

(x−xi)k
′
(∥∥∥∥

x−xi

h

∥∥∥∥
2
)

=
2ck,d

nhd+2

[
n

∑
i=1

g

(∥∥∥∥
x−xi

h

∥∥∥∥
2
)]

×


∑n

i=1xig
(∥∥ x−xi

h

∥∥2
)

∑n
i=1g

(∥∥x−xi
h

∥∥2
) −x


 (2.6)

whereg(x) = −k′(x). The right-most factor (in square brackets) in eq. 2.6 is called the
mean shift vector. It points toward the direction of maximumincrease in density and also
provides the basis for clustering. The mean shift vector canbe written as

Mh,G(x) =
▽ f̂K(x)

f̂G(x)
=

∑n
i=1 xig

(∥∥x−xi
h

∥∥2
)

∑n
i=1g

(∥∥x−xi
h

∥∥2
) −x (2.7)

whereG represents the kernel and defined as

G(x) = cg,dg(‖x‖2) (2.8)

The kernelG starts from an initial positiony1 and moves towards the position closer to
the higher density region. The update rule of kernel position is given by

y j+1 =

∑n
i=1 xig

(∥∥∥ y j−xi

h

∥∥∥
2
)

∑n
i=1 g

(∥∥∥ y j−xi

h

∥∥∥
2
) , j = 1,2, .... (2.9)

where{y j} j=1,2,... represents the successive locations of the kernelG. The characteristics
of convergence for the discrete data depends on the employedkernel. The guaranteed
convergence of the mean shift algorithm to the local maximumof a probability density
function, is achieved due to the adaptive magnitude of the mean shift vectorMh,G(x). In
a lower density region, the magnitude ofMh,G(x) is large, and in a high density region
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(i.e. closer to a mode), the magnitude is small. The feature (data) points that converge
to the same mode constitute a cluster. An example of mean shift (MS) clustering for 2D
intensity feature space is illustrated in Fig. 2.10.

MS can be applied for image segmentation where the feature space is extended by
concatenating the spatial coordinates of a pixel with its intensity (range) value. An image
is represented as a 2D or 3D lattice ofd-dimensional intensity vectors (pixels). The space
of the lattice is called the spatial domain while the space ofintensity vectors is called
the range domain. To perform image segmentation using MS in the joint spatial-range
domain, a joint spatial-range domain kernelKhs,hr (x) is used. It is defined as a product of
spatial and range domain kernels and is given by

Khs,hr (x) =
C

hp
shd

r
k

(∥∥∥∥
xs

hs

∥∥∥∥
2
)

k

(∥∥∥∥
xr

hr

∥∥∥∥
2
)

(2.10)

wherexs represents a vector of pixels spatial coordinates,xr represents a vector of pixels
range (intensity) values andhs andhr are their corresponding kernel bandwidths, andC is
a normalization constant.
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Figure 2.10: (a) The 2D intensity feature space for data froma multi-modal MR image
(T1- and T2-weighted) of the brain of a volunteer (b) Densityestimate for the
2D intensity feature space (using a Gaussian kernel with bandwidth h=0.08)
(c) Mean shift procedure trajectories for some feature points drawn over the
Gaussian density estimate (d) Resulting clusters after applying mean shift
(CSF in black, gray matter in magenta and white matter in blue).
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2.3.2 Segmentation via a hidden Markov random field model (HMRF) and
the expectation-maximization (EM) algorithm

The hidden Markov random field model and expectation maximization (HMRF-EM) frame-
work is an unsupervised parametric method initially proposed by Zhang et al. [22] for the
segmentation of brain tissues in MR images. In the HMRF-EM framework, HMRF is
a stochastic model generated by a Markov random field (MRF) whose state sequence is
estimated indirectly through observations. The advantageof HMRF is derived from the
MRF theory in which the spatial information of an image is encoded through contex-
tual constraints of neighbouring pixels. The EM algorithm is used to fit this model. The
principle of the HMRF-EM method is described below.

Let y = (y1, ........,yN) represent a gray-scale image such thatyi represents the inten-
sity of thei-th pixel. Letx = (x1, ........,xN) represent a label image such thatxi ∈ L is the
label corresponding to pixelyi andL is the set of all possible labels.

According to the maximum a posteriori (MAP) criterion, the optimal labelingx̂ is
obtained as follows

x̂ = argmax
x

{P(y,Θ|x)P(x)} (2.11)

wherex is a realization of an MRF andP(x) is its prior probability given by

P(x) = Z−1exp(−U(x)) (2.12)

where Z is a normalizing constant andU(x) is an energy function.
P(y,Θ|x) represents the joint likelihood probability and is defined

P(y|x,Θ) = ∏
i

P(yi |xi ,θxi ) (2.13)

whereP(yi |xi ,θxi ) is a Gaussian distribution with parametersθxi = {µxi σxi}. Θ = {θl |l ∈
L} is the set of parameters which are estimated using the EM algorithm. In [22], the
iterated conditional modes (ICM) algorithm [23] (one of theoptimization methods) is
used to obtain the optimal solutions of MAP.

2.3.3 k-means algorithm

The termk-means was introduced by MacQueen [24] in 1967 to describe one of the
simplest unsupervised clustering algorithms. In this algorithm, the partitioning ofn data
points intok disjoint subsetsSj is done by minimizing the following cost function

J =
k

∑
j=1

∑
xi∈Sj

‖xi −µ j‖2. (2.14)

wherexi is a vector representing theith data point andµ j is the centroid of the data points
in Sj .
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The standardk-means algorithm starts with random initialization ofk centroids. Each
data point is then assigned to a closest centroid and the number of data points closest to
a centroid form a cluster. The new centroid is computed according to the data points in
the cluster. This process is continued until the data pointsstop changing their centroids
or clusters. The downside of this algorithm is that it is quite sensitive to the initialization
of the centroids of the clusters and it provides clustering in the intensity (range) domain
only.

Different variations ofk-means algorithm can be found in [9, 25] that are applied for
the brain tissue segmentation. Herein, we give a short description of these algorithms
which are presented in the later chapters.

Tree structure k-means (tskmeans) algorithm

To avoid the initialization problem, the tree structurek-means (tskmeans) algorithm [25]
begins with one cluster and then the clusters grow in a tree until the desired number of
clusters is obtained. At each step, the resulting cluster ortree node is split into two more
clusters for the next stage.

Voxel-weightedk-means algorithm

In voxel-weightedk-means algorithm [9], the centroid is defined as

µ j = ∑
xi∈Im,∀Im∈Sj

wm.Im (2.15)

where the intensity vectorIm, for each modem is assigned to classj, is weighted bywm,
the relative portion of the total number of data points (voxels) it represents.

2.4 Overview of the segmentation tools used for brain and whole-
head segmentation

Herein, we give a brief description of segmentation tools used for the brain and whole-
head segmentation that are presented/discussed in later chapters.

2.4.1 Functional Magnetic Resonance Imaging of the Brain (FMRIB) Soft-
ware Library (FSL)

FSL [26] is a software devolved and maintained by the Functional Magnetic Resonance
Imaging of the Brain (FMRIB) analysis group in Oxford University, UK. It contains a
comprehensive library of analysis tools for structural MRIhead/brain imaging data. The
tools provided for MRI head/brain segmentation are as follows.
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FMRIB’s Automated Segmentation Tool (FAST)

The FAST tool is used to segment the 3D image (stack of MR slices) of the brain into
different tissue types (gray matter, white matter, CSF, etc.). The underlying method is
based on the HMRF-EM method described in section 2.3.2.

Brain Extraction Tool (BET)

The BET tool [27] is used to segment the brain, skull, and skin. The underlying methods
used in the tool are described below.
1. A rough threshold for the brain matter/background is estimated by computing the global
minimum and maximum intensity of an image using the intensity histogram. The mini-
mum intensity lies at the 2% of the cumulative histogram and the maximum intensity lies
at 98% of the cumulative histogram. The rough threshold for the brain matter/background
lies 10% of the way between minimum and maximum intensity of the image.
2. In the second step, this rough threshold is used to estimate the position of centre-of-
gravity (COG) of the brain/head in the image. This COG is computed by average of all
voxels positions that have intensity grater than rough threshold.
3. Then a rough radius of brain/head is estimated by countingall voxels with intensity
greater than rough threshold. This radius is used for initializing the surface model.
4. Next a triangular tessellation (mesh) of the spherical surface is initialized whose center
is at the COG and radius is equal to half of the estimated roughbrain/head radius. The
surface model is basically a deformable model [28] and it is deformed inside the head
until the brain’s boundary is detected. The surface model isstopped at the surface of
brain where the intensity of the voxels less than the local threshold. The local threshold
distinguishes the brain from the non-brain tissue. It is based on both the local maximum
and global minimum thresholds of the image and a user-definedinput parameter called
the fractional constant.
5. Finally, the surfaces of non-brain tissue: skull and skinare extracted by searching the
minimum and maximum intensity through a line (pointed outwards) perpendicular to the
brain surface.

2.4.2 FreeSurfer

The software, FreeSurfer [29] is developed by the Laboratory for Computational Neu-
roimaging at the Martinos Center for Biomedical Imaging. Itis a set of tools for analysis
and visualization of structural and functional brain imaging data. In FreeSurfer, the tool
used for the whole-brain segmentation is based on the segmentation method that includes
registration of brain atlas, framework of Bayesian estimation theory, Markov random field
(MRF) spatial model and ICM algorithm [23]. The Bayesian framework allows to incor-
porate the prior information about the spatial distribution of individual brain structures
and their expected intensity appearance through atlas. TheICM is applied to estimate the
optimal labelling of voxels. MRF is used to model the neighbouring voxels interaction in
order to improve the segmentation smoothness.
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2.4.3 Anatomist Software

The Anatomist1 software interactive tools for segmenting the brain imaging data. These
tools need expert or clinician (who are good in anatomical knowledge) interaction for
generating manual labelling of brain/head tissues.

1www.brainvisa.info
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CHAPTER 3

Proposed method for brain segmentation

This chapter addresses objectives 1 and 2 of this thesis described in chapter 1. It consists
of three sections. Section 3.1 presents a review of existingmethods for brain tissue seg-
mentation. The proposed method is then presented in section3.2. Finally, an empirical
evaluation of the proposed method is presented in section 3.3.

3.1 Review of existing brain MRI tissue segmentation methods

A wide range of brain MRI tissue segmentation methods have been proposed in the litera-
ture. A recent review of such methods can be found in [30]. Twobrain MRI segmentation
methods published since this review are [31, 32]. More reviews of MR brain image seg-
mentation methods can be found in [33] and [34]. From the machine learning point of
view these methods can be broadly classified into supervisedand unsupervised methods.

Supervised segmentation methods [33, 35] require prototypes, such as the intensity
values of labeled voxel samples, from each tissue type to train a classifier. This classifier
is then used to label unseen voxels. Artificial neural networks andkNN classifiers are the
two examples of supervised segmentation methods. A downside of these methods that
they require accurate labeled tissues as training data to train their classifier for the tissue
segmentation.

Unsupervised methods don’t require any labeled data sets. Parametric methods are
one of the unsupervised methods. These methods assume some distributional form for
the underlying probability distribution of the data and seek to estimate its parameters.
KVL (K. Van Leemput) [36], CGMM (Constrained Gaussian mixture model) [37], AMAP
(Adaptive maximum a posteriori probability map) and BMAP (Biased maximum a pos-
teriori probability map) [25] are examples of such methods.In these methods, the voxel
intensities are modeled by a Gaussian mixture model (GMM) which is a weighted sum
of k component Gaussian densities (usuallyk is 3 or more). A GMM is parameterized by
the mean vectors, covariance matrices and mixture weights from all component densities
and these parameters are estimated using the Expectation-Maximization (EM) algorithm.
The final segmentation is done by assigning every voxel to thetissue type for which it has
the highesta posteriori probability. A drawback with these approaches is that they may
give poor tissue classifications in the presence of additivenoise and the multiplicative
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bias field [9]. Another parametric approach, which is regarded as a state-of-the-art algo-
rithm, is MPM-MAP (maximizer of the posterior marginals-maximum a posteriori) [38].
This algorithm is based on non-rigid registration of the brain atlas and uses expectation-
maximization (EM) for estimation of the model parameters and Markov Random Fields
(MRF) for spatial coherences. A downside of this approach isthat it involves two crit-
ical steps for accurate segmentation of brain tissues. First it requires appropriate atlas
which doesn’t always exist for the data at hand (for example,brain data obtained from
young infants and brain data with tumors). The second is the implementation of MRF
algorithm which is computationally expensive and require critical parameters settings at
higher dimensional feature space [9].

An alternative unsupervised approach that doesn’t requiremany parameters, incorpo-
rates the spatial information easily into a higher dimensional feature space (multi-modal
MR images) without using a MRF model, is mean shift (MS) clustering (described in
section 2.3.1). Mean shift clustering is one of the non-parametric approaches. In this ap-
proach, only the kernel size influences the clustering whichis called bandwidth. A couple
of MS methods [9, 39] based on the adaptive bandwidth have been proposed for brain
tissue segmentation in MR images. The adaptive bandwidth estimator [21] used in [9],
is based on thek nearest neighbour (kNN) distance. A downside is that this approach is
known to be biased by outliers for Euclidean distance [40]. Drawback of adaptive band-
width estimator used in [39] include that it requires an initial density estimate (called the
pilot estimate). These collective limitations motivated the development of new algorithm
presented in the next section. The algorithm employs an adaptive approach based on a
novel variation on the Bayesian approach initially proposed in [40] for the estimation of
a global fixed kernel bandwidth.

3.2 New brain MRI tissue segmentation algorithm: Bayesian-
based adaptive mean shift (BAMS)

Our novel brain MRI tissue segmentation algorithm is calledBayesian-based adaptive
mean shift (BAMS). The method is described briefly below.
BAMS is a variation on thekNN-AMS (adaptive mean shift) segmentation framework
of Mayer and Greenspan [9]. The fundamental difference is that BAMS is based on a
Bayesian adaptive bandwidth estimator instead of akNN adaptive bandwidth estimator.
In BAMS, the bandwidth is modeled by theaposteriori probability density functionp(s|x)
of local data spreads given the data pointx. Let M < n (total number of data points) be
the number of nearest neighborhoods to a data samplexi . The evaluation of probabilities
over the entire set of neighborhoodsM j is given as

P(s|xi) =

∫
P(s|M j ,xM j )P(M j |xM j )dMj (3.1)

Bayes rule yields

P(M j |xM j ) =
P(xM j |M j)P(M j)

P(xM j )
(3.2)
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whereP(xM j |M j) is the probability of the data samplexM j given theM j nearest neighbor-
hood andP(M j) is a uniform distribution.
For a givenM j the local variancesj is computed as

sj =
M j

∑
l=1

∥∥x(i,l)−xi
∥∥2

M j −1
i = 1,2, ...n, j = 1,2, ....N (3.3)

wherex(i,l) is thel -th nearest neighbor to the data pointxi . The distribution of variances
is modeled as the Gamma distribution defined as

P(s|α ,β ) =
sα−1

β αΓ (α)
e−

s
β s≥ 0,α ,β > 0 (3.4)

whereα andβ define the shape and the scale of the Gamma distribution, respectively
[40].

Finally the adaptive bandwidth is estimated by the product of these parameters, iden-
tically the mean of the Gamma distribution. Fig. 3.1 illustrates this bandwidth estimation
approach for a data pointxi (the data originates from synthetic multi-modal MR images).
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Figure 3.1: Illustration of bandwidth estimation (shown inred) for a data pointxi . His-
togram of local neighborhood variancess fitted to the Gamma distribution
P(s).

After estimating the bandwidthhi for each feature point, the fixed bandwidthh is
replaced byhi in eq. 2.9 (as described in mean shift algorithm in section 2.3.1) to achieve
the clustering of the brain/non-brain tissues. The output of the adaptive MS is a set of
clusters. The clusters which are close to one another (with respect to the Mahalanobis
distance) in the range domain (decided using a window of radius R) are then pruned. The
pruning is done in an iterative fashion with increasing R until the variance of merging
clusters reaches a preset threshold value. Finally, the desired number of tissues in the
brain/non-brain is obtained by applying voxel-weightedk-means algorithm (discussed in
section 2.3.3) [9].
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3.3 Empirical evaluation of the proposed method

This section summarizes the empirical evaluation, detailed in paper A, of the proposed
method. The evaluation was performed using multimodal (T1-, T2-, and PD-weighted)
synthetic MRI data with differing noise levels (downloadedfrom the Brainweb [18]),
and also T1-weighted images of 20 normal subjects with varying spatial inhomogeneities
downloaded from the IBSR (Internet Brain Segmentation Repository) [41]. Refer to pa-
per A for more details concerning this data. The quantitative and qualitative performance
of the proposed method BAMS was evaluated relative tokNN-AMS (our own imple-
mentation) and several competing methods (AMAP, BMAP and tskmeans (tree structure
k-means) [25]).

Quantitative results

The quantitative results of multi-modal synthetic MR volume (containing six slice) (see
Fig. 1 in paper A) shows that BAMS outperforms thekNN-AMS for the gray matter (GM)
and CSF classification for the noise levels 5% and 9%. It also outperformskNN-AMS for
the white matter (WM) classification for the noise level 7%.

Herein, we present quantitative results of 20 real T1-weighted brain volumes in detail
that are summarized in Table 2 in paper A. The quantitative results (Tanimoto coefficient)
for each T1-weighted brain volume for each tissue type are shown in Fig. 3.2. It can
be seen that the proposed method BAMS outperforms AMAP, BMAPand tsk-means for
each tissue classification in the first five volumes. These volumes are acknowledged in the
literature [9] as difficult to segment due to low contrast andhigh spatial inhomogeneities.
It can also be observed that the performance of proposed method is closer to or better
thankNN-AMS method across the range of T1-weighted brain volumesfor each tissue
classification.

Qualitative results

The qualitative results for both multi-modal synthetic andreal T1-weighted MR images
(see Fig. 3 and Fig. 4 in paper A) show thatkNN-AMS misclassifies CSF more frequently
than BAMS.
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Figure 3.2: (a) WM (top left), (b) GM (top right), (c) CSF (bottom center) (Methods:
BAMS is shown in red,kNN-AMS in black, AMAP in blue, BMAP in green
and tsk-means in magenta. In plots, along the horizontal axis, the real T1-
weighted brain volumes (Brain scans) are ordered in decreasing level of diffi-
culty (low contrast and high spatial inhomogeneities).
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CHAPTER 4

Proposed method for whole-head segmentation

This chapter addresses objectives 3 and 4 of this thesis described in chapter 1. It includes
four sections. Section 4.1 presents a review of existing methods and tools for whole-head
tissue segmentation. The proposed method is then presentedin section 4.2. An evaluation
of the segmentation accuracy of the proposed method is presented in section 4.3. Finally
section 4.4 presents an indirect evaluation of the proposedmethod in the context of EEG
source localization.

4.1 Review of existing whole-head tissue segmentation meth-
ods and tools

To date only a couple of methods have been proposed for automated whole-head seg-
mentation. Dokládal et al. [42] proposed an automatic method based on mathematical
morphology operators. Amato et al. [43] proposed a non-parametric discriminant anal-
ysis method for automatic multi-modal MR head segmentation. This method requires
training data to learn the density functions of the individual tissues. The former algorithm
has downside that it applies only on single T1-weighted images and the latter has limita-
tion that it needs correctly labeled tissues as training data to train their classifier for the
tissue segmentation.

Several neuroscience application-based papers proffer semi-automatic whole-head
segmentation approaches based on freely available software such as FSL [26], Anatomist
and FreeSurfer [29]. For example, Rullmann et al. [2] used FSL together with the
Anatomist software in a two-step process to segment the whole-head of an epilepsy pa-
tient from T1-weighted images. In the first step the FSL tool BET (described in section
2.3.4) [22, 27] was used to segment the head into brain, skin and skull tissues and then the
segmentation result was manually corrected using the Anatomist software. In the second
step the brain tissue was further segmented into cerebrospinal fluid (CSF), white matter
(WM) and gray matter (GM) using the Anatomist software. The final segmentation was
then used to construct a conductivity model for EEG source localization. Another exam-
ple, Optiz et al. [4] used FreeSurfer and FSL to segment the whole-head of a healthy
subject using T1- and T2-weighted images. In particular FreeSurfer was used to seg-
ment the GM and WM surfaces using the T1-weighted images, andthe BET tool used
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to segment the CSF, skin and skull surfaces. The quality of the initial surface meshes
was then semi-automatically corrected and used to construct a conductivity volume for
studying the fields induced by transcranial magnetic stimulation (TMS). The drawback to
these semi-automatic methods is that they are time consuming, laborious and subjective.
Most recently Zynep [44] introduced a new toolbox called Neuroelectromagnetic forward
modeling toolbox (NFT) for generating realistic head models from T1-weighted image
and for solving the forward problem of electro-magnetic source imaging numerically. In
NFT, the segmentation tool is based on thresholding, morphological operations, and the
watershed transform to segment the whole-head into four tissues: brain, CSF, inner skull
and outer skull. A downside to this tool is that it requires expert intervention for providing
the seeds for accurate segmentation of brain and outer skull.

The drawbacks of the existing automatic and semi-automaticmethods outlined above
served as the motivation for the development of a new fully automatic and accurate
method for multi-tissue segmentation of multi-modal MR images of the head presented
in the next section.

4.2 New automatic multi-tissue whole-head segmentation algo-
rithm

Our proposed method is based on a hierarchical segmentationapproach (HSA) incor-
porating our novel Bayesian-based adaptive mean shift (BAMS) segmentation algorithm
introduced in Chapter 3. We call this method HSA-BAMS. In common with several semi-
automatic approaches in the literature, the HSA involves initially segmenting the data into
brain tissue and non-brain tissue sub-volumes. The idea here is that the detection of brain
and non-brain tissue is a much simpler problem than the problem of segmenting each of
these into multiple tissue classes. What distinguishes ourHSA is that a single method is
proposed for segmenting the brain tissue and non-brain tissue sub-volumes into multiple
tissue classes; in particular BAMS in the case of HSA-BAMS.

Proposed Hierarchical Segmentation Approach (HSA)

The proposed HSA takes as input one or more pre-processed andspatially co-registered
sets of MR images of the whole head. Collectively this data can be considered a sin-
gle spatial volume(V) with vector-valued voxels. This volume is segmented into two
disjoint sub-volumes, brain tissue(VBT) and non-brain-tissue(VNBT), using a brain tissue
segmentation algorithm (BTSA) and a non-brain tissue segmentation algorithm (NBTSA)
respectively. Finally the multi-tissue segmentation algorithm (MTSA) is applied indepen-
dently to theVBT andVNBT volumes to segment them into individual tissue classesVBT1,
VBT2,... andVNBT1, VNBT2,.... respectively. The schematic diagram of our proposed HSA is
shown in Fig. 4.1.
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Figure 4.1: Schematic of the proposed method HSA for automated whole-head segmen-
tation.

4.3 Empirical evaluation of the proposed method

This section summarizes the empirical evaluation, detailed in paper B, of the proposed
method, HSA-BAMS. The evaluation was performed using threeMRI data sets: (1)
multi-modal (T1-, T2-, and PD-weighted) synthetic data with differing noise levels (ob-
tained from the Brainweb [18]), (2) T1-weighted data from a healthy volunteer and (3)
multi-modal (T1-and T2-weighted) data from second healthyvolunteer (acquired on a 3T
Philips Achieva scanner at Sahlgrenska University Hospital, Gothenburg, Sweden). The
details of these MR data sets are described in paper B.

Ground truth for the synthetic data was obtained from the nine tissue classes defined
in the labeled data obtained from Brainweb. This was reducedto seven classes by merging
the connective and skin tissue classes, and the glial matterand GM (gray matter) classes.

For the volunteer’s data, manually segmented images (generated by an experienced
radio-oncologist) were used to define a ground truth segmentation consisting of five tissue
classes (fat, muscle, and skin were treated as a single skin class).

In our experiments, we used BET as the BTSA and a simple algorithm based on
thresholding and morphological reconstruction [45] as theNBTSA. For multi-tissue seg-
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mentation of brain and non-brain volume, we applied the following MTSAs: our own
BAMS (described in section 3.2),kNN-AMS, FAST (described in section 2.3.2), andk-
means (described in section 2.3.3). Hereinafter these fourinstantiations of the HSA are
denoted HSA-BAMS (our proposed method for whole-head segmentation), HSA-kNN-
AMS, HSA-FAST, and HSA-k-means.

The evaluation of HSA-BAMS, was done relative to that of three other instantiations
of the HSA as well as that of a reference method BET-FAST.

Quantitative results

The qualitative results of synthetic multi-modal MR data (see Fig. 3 in paper B) show that
the proposed method HSA-BAMS outperforms the HSA-FAST and HSA-k-means for the
skin, skull, muscle, WM, GM, and CSF classification for each noise levels.

The qualitative results of volunteers’ data (see Table 1 and2 in paper B) show that
HSA-BAMS performs consistently better than that of all competing methods for the skin,
WM, GM, and CSF classification.

Difference in segmentation behaviour

Several multiple comparison tests [46] were performed using both synthetic multi-modal
and volunteer’s MR data to determine whether there exists a statistically significant dif-
ference in segmentation behaviour for each tissue type between the proposed method
HSA-BAMS and each of the other methods (see paper B for details).

The tests for synthetic multi-modal MR data with 9% noise level show that HSA-
BAMS performs differently (α = 0.05) to all other methods for the classification of CSF,
GM, WM, fat, and muscle.

The tests for volunteers’ MR data provide the evidence that the classification behavior
of HSA-BAMS (α = 0.05) is different to that of all the other competing methods for the
tissues: CSF, WM, GM, and skin.

Qualitative results

The qualitative result of multi-modal MR data with 9% noise level (see Fig. 4 in paper
B) shows that the proposed method HSA-BAMS is less sensitiveto noise as compared to
HSA-FAST and HSA-k-means.

The qualitative results of volunteers’ data (see Fig. 6 and Fig. 8 in paper B) show
that the proposed method HSA-BAMS has better segmentation of skin, CSF, and GM as
compared to that of all other competing methods.
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4.4 Indirect evaluation of the proposed method in the context
of non-invasive EEG source localization

Electroencephalography (EEG) source localization is a non-invasive tool used to locate
the source of epileptic seizures in the brain. It involves the solution of two problems:
(1) Forward problem which deals with finding the scalp potentials for the given current
sources and (2) Inverse problem which deals with estimatingthe sources to fit with the
given the potential distributions at the scalp electrodes [47]. The accuracy of EEG source
localization is based on the quality and fidelity of the patient-specific head conductivity
model which in turn based on the accurate segmentation of thepatient’s head tissues.

Herein, we summarize an indirect empirical evaluation of the proposed segmentation
method HSA-BAMS and the two reference segmentation methods, HSA-FAST and BET-
FAST, in the context of EEG source localization (see paper C for more details).

The evaluation was performed using (1) synthetic 2D multi-modal MRI head data and
synthetic EEG (generated for a prescribed source), and (2) real 3D T1-weighted MRI head
data and real EEG data.

Ground truth (GT) consisting of five tissue classes was defined for the synthetic data
by merging the connective, fat, muscle and skin tissue classes, and the glial matter and
GM (gray matter) tissue classes in the actual labeled data, obtained from the Brainweb.
For the real case, a five tissue labeled GT was obtained from a manual segmentation of
the volume by an experienced radio-oncologist.

A synthetic EEG was generated by placing a source in the GM of the GT (ground
truth) image and calculating the EEG signals from 30 electrodes placed equidistantly on
the 2D scalp based on 10/10 system [47].

The real EEG data was obtained by recording the somatosensory evoked potentials
(SEPs) on the subjects scalp. These SEPs were generated by stimulating the left wrist
median nerve by electric pulses and EEG measurement was doneusing 61 electrodes
based on 10/10 system [12]. The GT for the source was taken to be the expected source
region determined independently by an experienced clinician based on neurophysiological
knowledge.

The performance of EEG source localization was measured in terms of relative error
(RE) between the measured and estimated source potential, localization error (LE) be-
tween the actual source and estimated source distance and orientation error (OE) between
the actual source and estimated source moment orientation.

A finite element head conductivity model (FEHCM) was constructed from each seg-
mentation method (HSA- BAMS, HSA-HMRF-EM and BET-FAST and GT) using both
synthetic and real MR data sets. To solve the EEG source localization problems, a sub-
traction method was used for modeling the dipole in the forward problem [48] and a mod-
ified particle swarm optimization (MPSO) [47] method was applied to solve the inverse
problem.
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Quantitative results

The quantitative results (see Table II and III in paper C) of both multi-modal synthetic and
real T1-weighted MR data for EEG source localization show that HSA-BAMS performs
consistently better than all reference methods.

Qualitative results

The qualitative results for both 2D synthetic multi-modal MR data and real MR data (see
Fig. 2(e) and Fig. 4 in paper C) show that the source (dipole) position estimated using
proposed method HSA-BAMS is similar or closer to the GT source position as compared
to that of all reference methods.
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Summary of papers and future work

The chapter presents brief summaries of the enclosed papersand a discussion about pos-
sible future work.

5.1 Paper A: A Novel Bayesian Approach to Adaptive Mean
Shift Segmentation of Brain Images

In this paper we propose a novel adaptive mean shift algorithm for the segmentation of
multi-modal MR images of the brain into three tissue types: white matter (WM), gray
matter (GM) and cerebrospinal fluid (CSF). The novelty lies in the algorithm for the esti-
mation of the adaptive bandwidth. It is based on a Bayesian approach, we call it BAMS
(Bayesian based adaptive mean shift). The accuracy of the proposed BAMS algorithm was
evaluated relative to another mean shift algorithm that is based on thek nearest neighbors
(kNN) bandwidth estimator and several other existing methods. The segmentation exper-
iments were performed on both multi-modal synthetic (T1-, T2-, PD-weighted) MR data
with different levels of noise and real T1-weighted MR data with varying levels of spatial
intensity inhomogeneities. The performance of segmentation methods was measured us-
ing the Dice and Tanimoto coefficient. The results demonstrate the efficacy and accuracy
of proposed BAMS algorithm and that it outperforms the competing methods especially
when the noise and spatial intensity inhomogeneities are high.

5.2 Paper B: Automatic Multi-tissue Segmentation of MR Im-
ages of the Head Using a Hierarchical Segmentation Ap-
proach Incorporating Bayesian-Based Adaptive Mean Shift

In this paper we propose and evaluate a fully automatic method for multi-tissue segmen-
tation in multi-modal MR images of the head. The method is based on a hierarchical seg-
mentation approach (HSA) incorporating Bayesian based adaptive mean shift (BAMS).
The segmentation experiments were performed on three data sets: (1) synthetic multi-
modal MR data of the human head with differing levels of noise, (2) T1-weighted MR
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image of the head of a healthy volunteer and (3) multi-modal MR data (T1- and T2-
weighted images) from a second healthy volunteer. The segmentation accuracy of the
proposed HSA- BAMS method was evaluated relative to a reference method BET-FAST
and three other instantiations of the HSA (HSA-kNN-AMS, HSA-FAST, and HSA-k-
means) using the Dice index. Multiple comparison tests (consisting of several McNemar
tests) were employed to determine whether there was any statistically signicant differ-
ence in the voxel-wise classification performance between the proposed and each of the
other methods for each tissue type and each data set. The segmentation results for data
set 1 show the robustness of proposed method to noise. The results for data sets 2 and
3 demonstrate the accuracy of proposed method and that it consistently outperforms the
BET-FAST reference method.

5.3 Paper C: On the Fully Automatic Construction of a Real-
istic Head Model for EEG Source Localization

In this paper we present an evaluation of a fully automatic method for the construction of
realistic finite element head conductivity model (FEHCM) for EEG source localization.
The proposed method is based on a hierarchical segmentationapproach (HSA) incorpo-
rating Bayesian based adaptive mean shift segmentation. The evaluation was performed
on (1) 2D synthetic multi-modal (T1-, T2-, PD-weighted) MR data with synthetic EEG
data, and (2) real 3D T1-weighted data with real EEG data. Theperformance of proposed
method as well as two reference methods was evaluated in terms of source localization
accuracy of their resulting FEHCM. The source localizationaccuracy was measured in
terms of localized error (LE), relative error (RE) of potential and orientation error (OE)
between the actual and the estimated source moment. The results show that the proposed
method has less LE, RE and OE as compared to other competing methods and that it can
be used as a surrogate for manual segmentation for the construction of realistic FEHCM
in the application: EEG source localization.

5.4 Future work

Incorporation of more modalities and prior anatomical information

In papers B and C we outlined the less than ideal nature of the real data that was available
for the respective studies. Firstly, in both the T1- and T2-weighted gradient echo images
the signal intensities for both fat and muscle are heavily attenuated (due to an opposed
phase cancelation of signal from both fat and water) which inturn leads to false clas-
sification as skull/bone. Secondly, the air and skull/bone tissue have low, overlapping,
intensities in the T1- and T2-weighted images which leads tomisclassification of the nose
and pharynx airways as skull/bone. One possible way to overcome these limitations is
to additionally use CT images (they show better contrast forskin/bone tissue). Another,
potentially more robust, solution is to use a priori anatomical information; e.g. using
probabilistic atlases. We will explore these possibilities in future work.
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Classification of abnormal tissues

The proposed methods (in paper A called BAMS whilst in B and C called HSA-BAMS)
were applied to segment tissues in multi-modal MR images from healthy subjects with
normal anatomy. In the future we plan to extend proposed methods for the segmentation
of MR image data containing abnormal brain tissues like sclerotic lesions and tumors.
This will likely require additional MRI modalities and possibly also imaging modalities.
These can be readily accommodated in our proposed methods.

Novel clustering methods

In future work we aim to investigate contemporary novel clustering methods for brain and
whole head tissue segmentation. Two such examples are: quantum clustering and non-
linear mean shift clustering. The former approach is based on the quantum mechanics
concept where the the Schrödinger equation provides the basis for the clustering of the
image [49] and the latter one can be useful for the images where the data points lie on the
manifold geometry [50]. For example, MR Diffusion Tensor imaging (DTI).
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