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Abstract

The automated segmentation of magnetic resonance (MRes@ghe human head is an
active area of research in the field of neuroimaging. Theltiegulsegmentation yields a

patient-specific labeling of individual tissues and makessjble quantitative characteri-
zation of these tissues (e.g. in the study of Alzheimersadis@nd multiple sclerosis). The
segmentation is also useful for assigning individual #ssoonductivity or biomechani-

cal properties for patient-specific electromagnetic andngichanical simulations respec-
tively. The former are of importance in applications suchE&s (electroencephalog-

raphy) source localization in epilepsy patients and hyygenia treatment planning for

head and neck tumors. The latter are of interest in apmicatsuch as patient-specific
motion correction and in surgical simulation.

Automated and accurate segmentation of MR images is a olgailg task in the field
of neuroimaging because of noise, spatial intensity intgemeities, difficulty of MR in-
tensity normalization and partial volume effects (a singigel represents more than one
tissue type). Consequently most of the techniques propiseddte require manual cor-
rection or intervention to achieve an accurate segmentatiadghe brain or whole-head.
As a result they are time consuming, laborious and subpcfihis thesis presents two
automatic and unsupervised segmentation methods, foi-tisglie segmentation of the
brain and whole-head respectively from multi-modal MR i@sghat are more accurate
than the state-of-the-art algorithms. The brain segmientatethod is based on the mean
shift algorithm with a Bayesian-based adaptive bandwidtimetor. The method is called
BAMS (Bayesian adaptive mean shift) and can be used to seégheehrain into multiple
tissue types; e.g. white matter (WM), gray matter (GM) anetloeospinal fluid (CSF).
The accuracy of BAMS was evaluated relative to that of séwemrapeting methods using
both synthetic and real MRI data. The results show that ibmist to both noise and
spatial intensity inhomogeneities compared to competiethods. The whole-head seg-
mentation method is based on a hierarchical segmentatoagh (HSA) incorporating
the BAMS method. The segmentation performance of HSA-BANS ewvaluated relative
to a reference method BET-FAST (based on the BET and FAST tndhe well-known
FMRIB Software Library) and three other instantiationstaf HSA, using synthetic MRI
data with varying noise levels, and real MRI data. The segatiom results show the
efficacy and accuracy of proposed method and that it condligteutperforms the BET-
FAST reference method. HSA-BAMS was also evaluated intyrét terms of its impact
on the accuracy of EEG source localization using electromtig simulations based on a
tissue conductivity labeling derived from the segmentatidbhe results demonstrate that
HSA-BAMS outperforms the competing methods, and suggesdtitihas potential as a
surrogate for manual segmentation for EEG source localizat
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CHAPTER 1

Introduction

1.1 Background and problem definition

Neuroimaging [1] is an important branch of medical imagiliggncompasses a range of
techniques used to non-invasively image the brain at adll$egf structure and function,
ranging from neurotransmitter and receptor molecules rgelaetworks of brain cells.
Neuroimaging can be broadly classified into functional img@nd structural imaging.

Functional imaging is used to visualize/assess the neciigitg in the brain. The neu-
ral activity at a specific location in the brain is associatsith localized vascular changes
(such as cerebral blood flow) and metabolic changes (sucluessg and oxygen con-
sumption). Functional imaging techniques include posiemission tomography (PET),
functional magnetic resonance imaging (fMRI), magnetephalography (MEG), and
electroencephalography (EEG).

Structural imaging is used to visualize/assess anatorsfoattures in the brain and
the head and to diagnose/characterize tumors and injBtasctural imaging techniques
include X-ray computed tomography (CT) and magnetic resom@maging (MRI).

Segmentation (i.e. delineation or labeling) of the indidttissues in the structural
and functional images makes possible quantitative cheniaation of anatomical struc-
tures as well as diseased tissue and injury. For examplevtihation of multiple sclerosis
can be monitored in terms of total lesion load determinethfeosegmentation of the in-
dividual lesions in T2-weighted images. Segmentation ais#es it possible to assign
conductivity or biomechanical properties to the indivildtissues for the purpose of con-
structing electro-conductivity or biomechanical simigas. One approach, known as the
finite element method (FEM), involves creating a 3D meshrofxe geometric elements,
e.g. tetrahedral elements, from the segmented images.espense of the overall (con-
ductivity or biomechanical) mathematical model is thenragjmated by the responses
of the individual elements in the discrete model.

Electro-conductivity modeling finds use in applicationglswas non-invasive EEG
source localization in epilepsy patients [2], hypertherinéatment planning for head and
neck tumors [3], the study of electric fields induced by tcaasial magnetic stimulation
(TMS) [4] and the study of deep brain simulation [5]. Biomanlttal modeling finds use
in applications such as brain deformation simulation foage-guided neurosurgery [6]
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CHAPTER 1. INTRODUCTION

and the study of head trauma in traffic accidents [7].

To date most of the approaches [2, 4, 8] proposed for accpaditent-specific segmen-
tation of the brain or whole-head require manual correabioimtervention. Consequently
they are time consuming, laborious and subjective. Thusdlyadutomatic and accurate
segmentation method is highly desirable.

1.2 Aim and objectives

The aim of this thesis was to develop fully automatic and eateupatient-specific tissue
segmentation methods for both the brain and whole-head usuiti-modal MR images
(MR images of the same anatomy but acquired using differemirast mechanisms such
as T1-weighting, T2-weighting, and proton density weig}i To this end the thesis had
the following objectives:

1. To develop an unsupervised method for segmenting the tmai individual tissues.

2. To evaluate the performance of the method using both stiotand real MR images
of the brain.

3. To develop an unsupervised method for segmenting theeatredd into individual
tissues.

4. To evaluate the performance of the method using both sfiotand real MR images
of the head.

1.3 Scope of the thesis

Only unsupervised image segmentation techniques weredeved in this thesis. Such
techniques do not require training data but rather exploeeirtrinsic structure of the
image data using various statistics.

Likewise atlas-based segmentation methods (wherein nedogldd training images
are used to define an atlas) were not investigated. Such dwetre not able to handle
major structural changes due to pathology (for exampleigmaht tumor) [9].

The real and synthetic MRI data sets used in this study ca@grat most three dif-
ferent MRI modalities. This meant that it was not necessaugerform advanced feature
selection and extraction for the purposes of dimensignediduction.

Only the segmentation of multi-modal MRI data was considérethis thesis. The
use of additional imaging modalities, such as X-ray comgpttenography or ultrasound,
was not investigated.



1.4 OVERVIEW OF THE THESIS

1.4 Overview of the thesis

The thesis is organized into two main parts.

Part | consists of chapters 2 through 5. Chapter 2 provideddsic anatomical and
methodological concepts needed for the remainder of thesth&he aim and objectives
of the thesis are addressed in chapters 3 and 4. Chapter énfgess summary of the
papers arising from this thesis and discusses future work.

Part Il comprises the papers arising from this research.
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CHAPTER 2

Theoretical Background

The purpose of this chapter is to acquaint the reader witlh#séc anatomical and the-
oretical concepts essential for an understanding of thenmahpresented in subsequent
chapters. In particular, the next section presents an mverof the anatomy of the hu-
man head, section 2.2 provides an overview of magnetic asm@nimaging (MRI), and
finally sections 2.3 and 2.4 describe several segmentaamiques and tools underlying
existing approaches to brain and whole-head segmentation.

2.1 Anatomy of the human head

This section provides an overview of the anatomy of the huhesd. The level of detail
provided is sufficient for the aim and objectives of this the$-or a more detailed and
comprehensive treatment of the subject, the reader iseefén [10, 11, 12].

[ ] skin
[ Fat
[ Muscle
I skull
B csF
B am
[ ] wm

fla

Figure 2.1: Axial slice through the human head showing th@pmissue types: white
matter (WM) in white, gray matter (GM) in gray, cerebrospifiaid (CSF) in
black, skull in red, fat in green, muscle in brown and skin étigw.



CHAPTER 2. THEORETICAL BACKGROUND

The human head is made up of several major tissue types as shéig. 2.1. These
in turn can be classified as belonging to two major classesn land non-brain.

2.1.1 Brain

The human brain is an important part of the central nervosteay. Functionally, it can
be decomposed into three main parts (see Fig. 2.2).

1. Cerebrum: This is the largest part of the brain and is campaf left and right
hemispheres. Each hemisphere can in turn be divided intddbas:

e Frontal Lobe: Itis involved in functions such as reasonignning, parts of
speech, voluntary motor function of skeletal muscles, @net and problem
solving.

e Parietal Lobe: It is involved in functions such as movemeamtentation,
recognition, and perception of stimuli.

e Occipital Lobe: It is involved in visual processing.

e Temporal Lobe: It is involved in functions such as percapaod recognition
of auditory stimuli, memory, speech, and smell.

2. Cerebellum: It is located under the cerebrum and is imlwn functions such as
regulation and coordination of movement, posture, andnisala

3. Brain Stem: Itis responsible for regulating breathirgaitbeat, and blood pressure.

Parital

Occipital

Lobejf\; A \
\\

Temporal

Cerebellum \  Brain Lobe

. Stem
Spinal

cord

Figure 2.2: Anatomy of the human brain.



2.2 MAGNETIC RESONANCE IMAGING (MRI)

Structurally, the brain can be decomposed into three mssndi types (shown in Fig.
2.1):

Gray matter

The gray matter is located on the thin outer layer of the brealed the cerebral
cortex, and also deeper in the brain underneath the whiteemat comprises neuronal
cell bodies. Gray matter is involved in various functiondiring muscle control, speech,
emotion, memory, vision and hearing.

White matter

The white matter lies underneath the cerebral cortex anédemp of glial cells and
bundles of myelinated axons. The white matter connectewsaurniegions of the gray mat-
ter, favoring communication between cortical-corticatortical-subcortical structures.
Cerebrospinal fluid (CSF)

The CSFis a colorless fluid. Itis located in the subarachapéte (space between the
two protective membranes that surround the brain: aradhme@mbrane and pia mater),
the ventricles (large cavities inside the brain) and theamord. It serves to protect the
brain, supply it with nutrition, and to remove waste.

2.1.2 Non brain

The non-brain is composed of four main tissues:
Skull

The skull is a bony structure and has a thickness between #ntw.7It surrounds the
brain, eyes, nose and teeth and serves to protect them.
Skin

The scalp, neck and face surrounding the skull are compofedfiotissue called
skin. The skin is made up of two primary layers: epidermis dadnis. The epidermis
layer is the outermost layer of the skin and acts as infediamier. The dermis layer lies
underneath the epidermis and provides tensile strengtlelastcity to the skin.
Fat

Fat is a soft tissue that lies beneath the skin. It is made wlipiose cells called
adipocytes.
Muscle

The term muscle describes another soft tissue locateckeitisalskin. It is composed
of protein filaments that slide past one another enablingreesuch eating, blinking and
smiling.

2.2 Magnetic Resonance Imaging (MRI)

This section provides a brief overview of the principles aignetic resonance imaging
(MRI). For a more detailed and comprehensive treatmentls&elfi, 15, 16, 17].

MRI is a non-invasive imaging technique. R. Damadian, in1ll9foposed the MRI
to use as a medical imaging device. In 2003, P. Lauterbur akthRsfield received the
Noble prize in Physiology or Medicine for their pioneeringnk in the development of
MRI.



CHAPTER 2. THEORETICAL BACKGROUND

MRI is based on a physical phenomenon called nuclear magmstbonance which is
defined as the ability of magnetic nuclei to absorb energynfam electromagnetic pulse
and to radiate this energy back. The hydrogen nucleus oomristpositively charged
and possesses an angular moment called spin. This properse<it to behave as a tiny
magnet with a small magnetic field or magnetic moment.

In MR imaging the object to be imaged is placed inside a stextgrnal magnetic
field Bg that causes the nuclear spins to align alBggvith the same orientation (parallel
spins) or opposite orientation (anti-parallel spins). $hwll difference in the two popula-
tions yields a bulk magnetizatiavi, which is the sum of the individual magnetic moments
of the individual protons, that depends linearly on the fiaténsity and is aligned with
the By field (illustrated in Fig. 2.3). This state of magnetizatisnknown as thermal
equilibrium.

The magnetization vectdd is the main source of MR signal and is used to produce a
MR image. It has two components called longitudinal andsvarse magnetization. The
longitudinal magnetization (denoted ik, is parallel to the external magnetic ficiy
while the transverse magnetization (denoteiag) is perpendicular to thBy.

(a) (b)

Figure 2.3: Alignment of protons with th#y, field: (a) with no external magnetic field, all
the protons are oriented randomly (b) in the presence afigtexternal mag-
netic field By), all the protons are aligned (parallel or anti-paralleéxternal
magnetic fieldBg). As a result, a net magnetizatiod = M, is produced
parallel to the external fielB.

When a radio frequency (RF) pul&xr (having frequency equal to the Larmor fre-
quency) is applied, it gives energy to the protons. As a teth#é magnetization vector
M flips in the transverse plane and the longitudinal compoiMenbecomes zero. Once
the RF pulse is turned off, another RF signal is generatetidyptotons due to magnetic
resonance phenomena. This signal is decaying towards Zeo the magnetization vec-
tor M = My, in the transverse plane starts to dephase. This state isrkaswransverse
relaxation or T2-relaxation. The dephasingwy is due to the magnetic moments of pro-
tons that are precessing with slightly different frequeaciThe decaying signal is known
as free induction decay (FID) which is measured by a condgeidield coil in the MR

10



2.2 MAGNETIC RESONANCE IMAGING (MRI)

scanner and then it is processed to get the MR image of thetolfjfter T2-relaxation,
the protons build up the magnetization vedibr= M, again parallel to the origindg
field and the state is known as longitudinal relaxation ordlaxation. The illustration of
T2- and T1-relaxation are shown in Fig. 2.4 and Fig. 2.5 rethyey.

y4 Zz Z4 z
M, v
. Xy < ,
y y / y %\% y
X X X X
{a)
TEK
k=)
vy
(b) Time

Figure 2.4: T2- relaxation: (a) Dephasing Mf = Myy in the transverse plane (b) Free
induction decay (FID).

RF

Z Fy
Longitudinal
Magnetization \/

Figure 2.5: T1- relaxation: Application of a perpendicuRdF pulse causes longitudinal
magnetizatiorM = M, to become zero. Over time, the longitudinal magneti-
zationM , will grow back in a direction parallel to the maBy, field.

Time

2D and 3D MR imaging

In MRI, the two approaches called 2D and 3D imaging can be tsadquire the image
of an object. In 2D imaging, the RF pulse is used to excite timyselected slice of an
object. In this way the signal is generated from that palicslice is used to construct
the image of that slice. In 3D imaging, the volume of an objkat contains the stack of
slices is excited with RF pulse to get the image of that paldicvolume of an object.

11



CHAPTER 2. THEORETICAL BACKGROUND

2.2.1 Contrast Mechanisms in MRI

In MR, the contrast between tissues are based on the iistfimeperties of tissues i.e.
proton density PD, T1 and T2.

T1is defined as the time that it takes the longitudinal magagon M, to grow back
to 63% of its original value. Itis related to the rate of ragtio of longitudinal magnetiza-
tion which is a fundamental source of contrast in T1-weidhteages. Different tissues
have different rates of T1-relaxation as shown in Fig. 2.6.

T2 is defined as the time that it takes the transverse magtietiM, to decrease to
37% of its starting value. It is related to the rate of dephgsif transverse magnetization
that is a fundamental source of contrast in T2-weighted enadifferent tissues have
different rates of T2-relaxation as shown in Fig. 2.7.

In the PD-weighted images, the contrast is based on the tgdesfsprotons in the
tissues. Different tissues have different density of prsto

In order to control the weighting amount of T1 and T2 effeotshie MR images, the
basic imaging parameters are used which are known as eca¢Tig) and repetition time
(TR). TE is defined as the time between the start of RF pulséfechaximum in the FID
response signal. TR is defined as the time between the cdiveeRE pulses.

The relative values of TE and TR to produce different comtvesighted image as
shown in Fig. 2.8. Herein, T1l-weighted image is produced laximized the T1-
relaxation and minimized the T2-relaxation using short TE éntermediate TR. T2-
weighted image is produced by maximized the T2-relaxatiod minimized the T1-
relaxation using long TE and long TR. PD-weighted image @pced by minimized
the both T1- and T2-relaxation using short TE and long TR.

Z Twhite matter

Gray matter
CSF

A

-|-I1 Time
(b)

Figure 2.6: (a) T1: longitudinal magnetization increase$3% ofM  (b) Different tis-
sues have different rates of T1-relaxation.

12



2.2 MAGNETIC RESONANCE IMAGING (MRI)

Xy
100%

Time

White matter

(a) (b)

Figure 2.7: (a) T2: transverse magnetization decreasé®tu3M y, (b) Different tissues
have different rates of T2-relaxation.

E 3
(a) 55 K s" T
| Time > I Time g
TE TR
F
(b) < ="
| Time > I Time >
TE TR
rS
(C) E; K EN
| Time > I Time >
TE TR

Figure 2.8: Basic imaging parameters: (a) short TE and rmgdiatory TR for T1-
weighting (b) long TE and long TR for T2-weighting (c) shoit &ind long
TR for PD-weighting.



CHAPTER 2. THEORETICAL BACKGROUND

Tissues of the human head visualized by magnetic resonangeaging

Fig. 2.9 shows three MR images of the same axial slice threughman head. In these
images the contrast between soft tissues can be seen cl&adycontrast in these im-
ages are characterised as (a) T1-weighted (b) T2-weigh)ee-weighted. In the T1-

weighted image the CSF, skull, and fat appear dark and tlyengadter, white matter, skin

and muscle appear bright. In the T2-weighted image the C8Ekin appear bright, and
the skull, fat, muscle, white matter and gray matter appegdatt than in the T1-weighted
image. In the PD-weighted image the fat, muscle, white magt@y matter, and CSF
appear bright, and the skull appear dark.

Figure 2.9: Axial slice from an MRI scan of the human head Jj[18) T1-weighted (b)
T2-weighted (c) PD-weighted image.

Basics pulse sequences for MRI

The two pulse sequences known as spin echo (SE) and gradien{@E) are commonly
used to generate MR images. These sequences are repeatetimesnduring a scan to
generate the image of an object.

In spin echo sequence, a°9BF pulse is used to flip the magnetization vedibiin
the transverse plane. As the protons go through the T1- anteXation, the transverse
magnetizationMy is gradually dephased. A 18(s applied to rephase it. As a result,
a signal (called spin echo) is generated and is used to reaona MR image. In order
to generate the different contrast MR images, SE sequerfzasid on the TE and TR
scanning parameters.

In gradient echo sequence, an RF pulse is applied that gepdythe net magnetiza-
tion vectorM into the transverse plane. A negative gradient pulse is tesddphase the
transverse magnetizatiovi,, and a positive gradient pulse is applied to rephase it. As a
result, a signal (called gradient echo) is generated. Iné&fdence, the scanning param-
eters: pulse flip angle, TE, and TR are used to produce diffe@ntrast MR images.

2.2.2 Artifacts in MRI

The two major sources of artifacts that degrade the MR imagdity significantly and
also obfuscate the anatomical and physiological detaihaige and the bias field. The
noise in MRI is generally caused by the thermal agitationl@dteons in the conductor. It

14
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is usually modeled as Rician distribution [19]. The biasdfisl a low frequency smooth
undesirable signal which is caused by inhomogeneitiesémihgnetic field of the MR
scanner. It changes the intensity values of the image ps®khat the same tissue has
different gray level distribution across the image.

2.3 Overview of the basic segmentation techniques underlyg
existing approaches to brain and whole-head segmentation

Image segmentation refers to the process where every pixedligital image is assigned
a label and such that pixels sharing the same charactsrate given the same label.
Numerous techniques for image segmentation can be fourteiliterature. No single
technique is applicable for all problems and no generalrtheaists for synthesizing
a segmentation solution for any given problem. The imagdyaisapractitioner must
therefore devise solutions based on one or more techniegqukgsing experience and trial
and error.

In this section we give a brief description of the elementagmentation techniques used
in the brain and whole-head segmentation methods pregdistaassed in later chapters.

2.3.1 Mean Shift

Mean shift is a non-parametric mode seeking and clustegictgiique originally proposed
for the analysis of data by Fukunaga and Hostetler [20].dfdieation to image process-
ing and computer vision tasks such as filtering, image setatien and real time object
tracking was pioneered by Comaniciu et al. [21].

Mean shift does not require any prior information concegrtime number of clusters,
and does not constraint the size or shape of the clusteran bhgfh clustering is based on
an adaptive gradient ascent approach to estimate the l@aima or modes of multivari-
ate distributions underlying the feature space. Ultinyagelch feature point is associated
with a mode thereby defining clusters. The basic principlenefin shift clustering is
described below.

Let{x € RY|i = 1.....n} denote a set of feature vectors (data points}-idimensional
space. The kernel density estimate of the underlying naultite probability function at
pointx is given by

fi(x) = %i\HH/ZKUHHﬂ(x—xi)) 2.)

whereH is ad x d symmetric positive definite bandwidth matrix. For a ragiaymmetric
kernel,H = h?l which leads to

2

) (2.2)

n
fex) = % k(

whereh > 0 is a scalar bandwidth arid: [0,1] — R is the kernel profile of the radially

X=X
h

15



CHAPTER 2. THEORETICAL BACKGROUND

symmetric kerneK with bounded support defined as
_ 2
K(x) = ceak (Ix11?) Ix <1 (2.3)

andc g is a normalizing constant ensuring that the keiehtegrates to 1. The typical
kernels used in the mean shift applications are Gaus&aand Epanechnikog given
as

Ka(x) = oueke = ocaexp( 3 17 (2.4)

Ke (X) = ckake = cea(1—[X]1%) X[ <1 (2.5)

wherekg andkg are the kernel profiles dfg andKg respectively. The derivative of the
sample point density estimator in eq. 2.2 leads to
2)

vk (x) = v fk(x) = %_i(x—xﬂk’(
n X—X; |12
2)] . [zimg(h ) X] (2.6)

_ % |
= ez [;g( a0 (]54°)

whereg(x) = —K/(x). The right-most factor (in square brackets) in eq. 2.6 ifedahe
mean shift vector. It points toward the direction of maximimerease in density and also
provides the basis for clustering. The mean shift vectorbeawritten as

X=X
h

X=X
h

. —xi ||2
vi(x) ZP:1Xi9(H%H )
ot stag(I517)
whereG represents the kernel and defined as
G(x) = cgag(|X]*) (2.8)

The kernelG starts from an initial positiory; and moves towards the position closer to
the higher density region. The update rule of kernel pasisagiven by

Mna(x) = —x 2.7)

Yi—Xi 2
h

Zinlxig< )
=12 (2.9)

Siti9 ( >

where{y j} j—1.2,.. represents the successive locations of the k&bndlhe characteristics
of convergence for the discrete data depends on the empl®meél. The guaranteed
convergence of the mean shift algorithm to the local maxinmira probability density
function, is achieved due to the adaptive magnitude of themsaift vectoMh g(x). In

a lower density region, the magnitude Mf,g(x) is large, and in a high density region

Yj—Xi
h
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(i.e. closer to a mode), the magnitude is small. The featdata] points that converge
to the same mode constitute a cluster. An example of mean(sttH) clustering for 2D
intensity feature space is illustrated in Fig. 2.10.

MS can be applied for image segmentation where the featweesis extended by
concatenating the spatial coordinates of a pixel with itsrisity (range) value. An image
is represented as a 2D or 3D latticedsflimensional intensity vectors (pixels). The space
of the lattice is called the spatial domain while the spacintansity vectors is called
the range domain. To perform image segmentation using M8eindint spatial-range
domain, a joint spatial-range domain ker#@lp, (x) is used. It is defined as a product of
spatial and range domain kernels and is given by

2
) (2.10)

)i

wherex® represents a vector of pixels spatial coordinaxésepresents a vector of pixels
range (intensity) values ard andh; are their corresponding kernel bandwidths, @rid
a normalization constant.

XI’
hr

XS
hs

C
Kheh (X) = thk <
c
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Figure 2.10: (a) The 2D intensity feature space for data feomulti-modal MR image
(T1- and T2-weighted) of the brain of a volunteer (b) Dens#jimate for the
2D intensity feature space (using a Gaussian kernel witbwitth h=0.08)
(c) Mean shift procedure trajectories for some featuretgainawn over the
Gaussian density estimate (d) Resulting clusters aftelyiagpmean shift
(CSFin black, gray matter in magenta and white matter in)blue
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2.3.2 Segmentation via a hidden Markov random field model (HNRF) and
the expectation-maximization (EM) algorithm

The hidden Markov random field model and expectation mayation (HMRF-EM) frame-
work is an unsupervised parametric method initially pregbsy Zhang et al. [22] for the
segmentation of brain tissues in MR images. In the HMRF-EMniework, HMRF is
a stochastic model generated by a Markov random field (MRF)selstate sequence is
estimated indirectly through observations. The advantdd¢éMRF is derived from the
MRF theory in which the spatial information of an image is @aed through contex-
tual constraints of neighbouring pixels. The EM algorittsruged to fit this model. The
principle of the HMRF-EM method is described below.

Lety = (y1,..ec.... ,YN) represent a gray-scale image such fhaepresents the inten-
sity of thei-th pixel. Letx = (xq,........ ,Xn) represent a label image such tlkat L is the
label corresponding to pixg| andL is the set of all possible labels.

According to the maximum a posteriori (MAP) criterion, thptimal labelingX is
obtained as follows

X = arg n)1(a>{P(y,O|x)P(x)} (2.12)
wherex is a realization of an MRF anll(x) is its prior probability given by
P(x) = Z texp(—U (x)) (2.12)
where Z is a normalizing constant abdx) is an energy function.
P(y,©|x) represents the joint likelihood probability and is defined

P(ylx.©) = [P [x. 6) (2.13)

whereP(yi|x, 8y ) is a Gaussian distribution with parametés= {10y }. © = {G]l €
L} is the set of parameters which are estimated using the EMitdgo In [22], the
iterated conditional modes (ICM) algorithm [23] (one of thptimization methods) is
used to obtain the optimal solutions of MAP.

2.3.3 k-means algorithm

The termk-means was introduced by MacQueen [24] in 1967 to descrilgeobrihe
simplest unsupervised clustering algorithms. In this @llgm, the partitioning oh data
points intok disjoint subsets; is done by minimizing the following cost function

k
I=5 5 Ixi—nyll (2.14)

J=1xES

wherex; is a vector representing tlith data point angi; is the centroid of the data points
"1Sn
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The standard-means algorithm starts with random initializationkafentroids. Each
data point is then assigned to a closest centroid and the erafiliata points closest to
a centroid form a cluster. The new centroid is computed aicgrto the data points in
the cluster. This process is continued until the data paittp changing their centroids
or clusters. The downside of this algorithm is that it is g@énsitive to the initialization
of the centroids of the clusters and it provides clusterimthé intensity (range) domain
only.

Different variations ok-means algorithm can be found in [9, 25] that are applied for
the brain tissue segmentation. Herein, we give a short iggiser of these algorithms
which are presented in the later chapters.

Tree structure k-means (t&kmeans) algorithm

To avoid the initialization problem, the tree structlireneans (tkmeans) algorithm [25]
begins with one cluster and then the clusters grow in a trééthe desired number of
clusters is obtained. At each step, the resulting clustémeernode is split into two more
clusters for the next stage.

Voxel-weightedk-means algorithm

In voxel-weightedk-means algorithm [9], the centroid is defined as

X €lm,VImeES;

where the intensity vectdy,, for each moden is assigned to clasg is weighted byw,
the relative portion of the total number of data points (ki represents.

2.4 Overview of the segmentation tools used for brain and wHe-
head segmentation

Herein, we give a brief description of segmentation toolksduer the brain and whole-
head segmentation that are presented/discussed in laijgiech

2.4.1 Functional Magnetic Resonance Imaging of the Brain (MRIB) Soft-
ware Library (FSL)

FSL [26] is a software devolved and maintained by the Funetidlagnetic Resonance
Imaging of the Brain (FMRIB) analysis group in Oxford Unisdéy, UK. It contains a
comprehensive library of analysis tools for structural Miehd/brain imaging data. The
tools provided for MRI head/brain segmentation are asvilo
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FMRIB’s Automated Segmentation Tool (FAST)

The FAST tool is used to segment the 3D image (stack of MR slioéthe brain into
different tissue types (gray matter, white matter, CSFE,).et€he underlying method is
based on the HMRF-EM method described in section 2.3.2.

Brain Extraction Tool (BET)

The BET tool [27] is used to segment the brain, skull, and.sklme underlying methods
used in the tool are described below.

1. Arough threshold for the brain matter/background isweasted by computing the global
minimum and maximum intensity of an image using the intgnisistogram. The mini-
mum intensity lies at the 2% of the cumulative histogram drednhaximum intensity lies
at 98% of the cumulative histogram. The rough thresholdHertrain matter/background
lies 10% of the way between minimum and maximum intensityhefitnage.

2. In the second step, this rough threshold is used to estithatposition of centre-of-
gravity (COG) of the brain/head in the image. This COG is coteg by average of all
voxels positions that have intensity grater than roughstinuk.

3. Then a rough radius of brain/head is estimated by coumtiingoxels with intensity
greater than rough threshold. This radius is used for liziiey the surface model.

4. Next a triangular tessellation (mesh) of the sphericdbse is initialized whose center
is at the COG and radius is equal to half of the estimated rdugim/head radius. The
surface model is basically a deformable model [28] and iténed inside the head
until the brain’s boundary is detected. The surface modstapped at the surface of
brain where the intensity of the voxels less than the loaastmold. The local threshold
distinguishes the brain from the non-brain tissue. It isdasn both the local maximum
and global minimum thresholds of the image and a user-defimaat parameter called
the fractional constant.

5. Finally, the surfaces of non-brain tissue: skull and skimextracted by searching the
minimum and maximum intensity through a line (pointed outiga perpendicular to the
brain surface.

2.4.2 FreeSurfer

The software, FreeSurfer [29] is developed by the Laboyator Computational Neu-
roimaging at the Martinos Center for Biomedical Imagingsla set of tools for analysis
and visualization of structural and functional brain immagdata. In FreeSurfer, the tool
used for the whole-brain segmentation is based on the segtitenmethod that includes
registration of brain atlas, framework of Bayesian estiaratheory, Markov random field
(MRF) spatial model and ICM algorithm [23]. The Bayesiamimwork allows to incor-
porate the prior information about the spatial distribatmf individual brain structures
and their expected intensity appearance through atlaslOMes applied to estimate the
optimal labelling of voxels. MRF is used to model the neiginting voxels interaction in
order to improve the segmentation smoothness.
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2.4.3 Anatomist Software

The Anatomist software interactive tools for segmenting the brain imggiata. These
tools need expert or clinician (who are good in anatomicavwkedge) interaction for
generating manual labelling of brain/head tissues.

Lwww.brainvisa.info
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CHAPTER 3

Proposed method for brain segmentation

This chapter addresses objectives 1 and 2 of this thesisiloeddén chapter 1. It consists
of three sections. Section 3.1 presents a review of existiathods for brain tissue seg-
mentation. The proposed method is then presented in seg@orFinally, an empirical
evaluation of the proposed method is presented in sectin 3.

3.1 Review of existing brain MRI tissue segmentation methasl

A wide range of brain MRI tissue segmentation methods haga peoposed in the litera-
ture. A recent review of such methods can be found in [30]. Brain MRI segmentation
methods published since this review are [31, 32]. More msief MR brain image seg-
mentation methods can be found in [33] and [34]. From the inaclearning point of
view these methods can be broadly classified into superaisddinsupervised methods.

Supervised segmentation methods [33, 35] require prodstypuch as the intensity
values of labeled voxel samples, from each tissue type ito daralassifier. This classifier
is then used to label unseen voxels. Artificial neural nekw@ndkNN classifiers are the
two examples of supervised segmentation methods. A doerdidhese methods that
they require accurate labeled tissues as training dataitottreir classifier for the tissue
segmentation.

Unsupervised methods don't require any labeled data setsantetric methods are
one of the unsupervised methods. These methods assume &triteitibnal form for
the underlying probability distribution of the data and lsée estimate its parameters.
KVL (K. Van Leemput) [36], CGMM (Constrained Gaussian mpdumodel) [37], AMAP
(Adaptive maximum a posteriori probability map) and BMAHg&:d maximum a pos-
teriori probability map) [25] are examples of such methddsthese methods, the voxel
intensities are modeled by a Gaussian mixture model (GMMEhlvis a weighted sum
of k component Gaussian densities (usuélly 3 or more). A GMM is parameterized by
the mean vectors, covariance matrices and mixture weighits &l component densities
and these parameters are estimated using the Expectatigimitation (EM) algorithm.
The final segmentation is done by assigning every voxel ttiskae type for which it has
the highest posteriori probability. A drawback with these approactethat they may
give poor tissue classifications in the presence of additvise and the multiplicative
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bias field [9]. Another parametric approach, which is regdrds a state-of-the-art algo-
rithm, is MPM-MAP (maximizer of the posterior marginals-ximum a posteriori) [38].
This algorithm is based on non-rigid registration of theib&tlas and uses expectation-
maximization (EM) for estimation of the model parameterd &tarkov Random Fields
(MRF) for spatial coherences. A downside of this approadinas it involves two crit-
ical steps for accurate segmentation of brain tissues.t iEirsquires appropriate atlas
which doesn’t always exist for the data at hand (for examiptain data obtained from
young infants and brain data with tumors). The second isrigementation of MRF
algorithm which is computationally expensive and requiigcal parameters settings at
higher dimensional feature space [9].

An alternative unsupervised approach that doesn’t reaquizniey parameters, incorpo-
rates the spatial information easily into a higher dimemsideature space (multi-modal
MR images) without using a MRF model, is mean shift (MS) ausig (described in
section 2.3.1). Mean shift clustering is one of the non-petaic approaches. In this ap-
proach, only the kernel size influences the clustering wisiclalled bandwidth. A couple
of MS methods [9, 39] based on the adaptive bandwidth have pemposed for brain
tissue segmentation in MR images. The adaptive bandwidima®r [21] used in [9],
is based on th& nearest neighboukiIN) distance. A downside is that this approach is
known to be biased by outliers for Euclidean distance [40hvilback of adaptive band-
width estimator used in [39] include that it requires aniahitlensity estimate (called the
pilot estimate). These collective limitations motivatbe tdevelopment of new algorithm
presented in the next section. The algorithm employs ant@edampproach based on a
novel variation on the Bayesian approach initially progbse[40] for the estimation of
a global fixed kernel bandwidth.

3.2 New brain MRI tissue segmentation algorithm: Bayesian-
based adaptive mean shift (BAMS)

Our novel brain MRI tissue segmentation algorithm is caBayesian-based adaptive
mean shift (BAMS). The method is described briefly below.

BAMS is a variation on th&kNN-AMS (adaptive mean shift) segmentation framework
of Mayer and Greenspan [9]. The fundamental difference as BAMS is based on a
Bayesian adaptive bandwidth estimator instead ldfil adaptive bandwidth estimator.

In BAMS, the bandwidth is modeled by tlagoosteriori probability density functiop(s|x)

of local data spread given the data point. Let M < n (total number of data points) be
the number of nearest neighborhoods to a data saxpléhe evaluation of probabilities
over the entire set of neighborhoollk is given as

P(slxi) = /P(s]Mj,xMj)P(Mj]XMj)de 3.1)
Bayes rule yields

P(xu; [Mj)P(M;)
P(XMj)

P(Mj|xw;) = (3.2)
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whereP(xy, |Mj) is the probability of the data samptg; given theM; nearest neighbor-
hood andP(M;) is a uniform distribution.
For a givenM; the local variance; is computed as

M%) — ]|

S = a Az v
: IZ:L Mj—1

i=12.nj=12..N (3.3)

wherex; ) is thel-th nearest neighbor to the data paint The distribution of variances
is modeled as the Gamma distribution defined as
st s
P = B s> 4

wherea and 3 define the shape and the scale of the Gamma distributionectaply
[40].

Finally the adaptive bandwidth is estimated by the prodéith@se parameters, iden-
tically the mean of the Gamma distribution. Fig. 3.1 illasés this bandwidth estimation
approach for a data poirt (the data originates from synthetic multi-modal MR images)

0.08 ﬁ ‘ : ‘h(xl)=0.0‘4
AN

006 \*

0.05 \:

0.025 0.03 0.035 0.04 0.045 0.05
S

Figure 3.1: lllustration of bandwidth estimation (shownréd) for a data poink;. His-
togram of local neighborhood varianceditted to the Gamma distribution
P(s).

After estimating the bandwidth; for each feature point, the fixed bandwidths
replaced byh; in eq. 2.9 (as described in mean shift algorithm in secti@nl to achieve
the clustering of the brain/non-brain tissues. The outpuhe adaptive MS is a set of
clusters. The clusters which are close to one another (wipeact to the Mahalanobis
distance) in the range domain (decided using a window otisall) are then pruned. The
pruning is done in an iterative fashion with increasing Riluhe variance of merging
clusters reaches a preset threshold value. Finally, thieedesumber of tissues in the
brain/non-brain is obtained by applying voxel-weightetheans algorithm (discussed in
section 2.3.3) [9].
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3.3 Empirical evaluation of the proposed method

This section summarizes the empirical evaluation, detaitepaper A, of the proposed
method. The evaluation was performed using multimodal ,(T2-, and PD-weighted)
synthetic MRI data with differing noise levels (downloadigdm the Brainweb [18]),
and also T1-weighted images of 20 normal subjects with mgrgpatial inhomogeneities
downloaded from the IBSR (Internet Brain Segmentation Ripiy) [41]. Refer to pa-
per A for more details concerning this data. The quantigadind qualitative performance
of the proposed method BAMS was evaluated relativ&kN®N-AMS (our own imple-
mentation) and several competing methods (AMAP, BMAP akihézans (tree structure
k-means) [25]).

Quantitative results

The quantitative results of multi-modal synthetic MR vokiiftontaining six slice) (see
Fig. 1in paper A) shows that BAMS outperforms #id¢N-AMS for the gray matter (GM)
and CSF classification for the noise levels 5% and 9%. It alspesformskNN-AMS for
the white matter (WM) classification for the noise level 7%.

Herein, we present quantitative results of 20 real T1-wteigtbrain volumes in detail
that are summarized in Table 2 in paper A. The quantitatigelte (Tanimoto coefficient)
for each T1-weighted brain volume for each tissue type aosvshn Fig. 3.2. It can
be seen that the proposed method BAMS outperforms AMAP, BMA#®Pt&-means for
each tissue classification in the first five volumes. Thesemek are acknowledged in the
literature [9] as difficult to segment due to low contrast &igh spatial inhomogeneities.
It can also be observed that the performance of proposedoohéthcloser to or better
thankNN-AMS method across the range of T1-weighted brain volufoegach tissue
classification.

Qualitative results

The qualitative results for both multi-modal synthetic aedl T1-weighted MR images
(see Fig. 3 and Fig. 4 in paper A) show tkBIN-AMS misclassifies CSF more frequently
than BAMS.
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Figure 3.2: (a) WM (top left), (b) GM (top right), (c) CSF (bot center) (Methods:
BAMS is shown in redkNN-AMS in black, AMAP in blue, BMAP in green
and t&-means in magenta. In plots, along the horizontal axis, ¢a T1-
weighted brain volumes (Brain scans) are ordered in deiogésvel of diffi-
culty (low contrast and high spatial inhomogeneities).
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CHAPTER 4

Proposed method for whole-head segmentation

This chapter addresses objectives 3 and 4 of this thesisildeddn chapter 1. It includes
four sections. Section 4.1 presents a review of existindnott and tools for whole-head
tissue segmentation. The proposed method is then presargection 4.2. An evaluation
of the segmentation accuracy of the proposed method ismiegbén section 4.3. Finally
section 4.4 presents an indirect evaluation of the proposettiod in the context of EEG
source localization.

4.1 Review of existing whole-head tissue segmentation meth
ods and tools

To date only a couple of methods have been proposed for atedmehole-head seg-
mentation. Dokladal et al. [42] proposed an automatic wekthased on mathematical
morphology operators. Amato et al. [43] proposed a nonspatdc discriminant anal-
ysis method for automatic multi-modal MR head segmentati®his method requires
training data to learn the density functions of the indiabitissues. The former algorithm
has downside that it applies only on single T1-weighted iesaand the latter has limita-
tion that it needs correctly labeled tissues as training ttatrain their classifier for the
tissue segmentation.

Several neuroscience application-based papers proffei-agomatic whole-head
segmentation approaches based on freely available sefsuah as FSL [26], Anatomist
and FreeSurfer [29]. For example, Rullmann et al. [2] used Egether with the
Anatomist software in a two-step process to segment theeathedhd of an epilepsy pa-
tient from T1-weighted images. In the first step the FSL toBITBdescribed in section
2.3.4) [22, 27] was used to segment the head into brain, skirskull tissues and then the
segmentation result was manually corrected using the Amatsoftware. In the second
step the brain tissue was further segmented into cerelmalsihilid (CSF), white matter
(WM) and gray matter (GM) using the Anatomist software. Timalfisegmentation was
then used to construct a conductivity model for EEG sourcalipation. Another exam-
ple, Optiz et al. [4] used FreeSurfer and FSL to segment thelesead of a healthy
subject using T1- and T2-weighted images. In particulae&tefer was used to seg-
ment the GM and WM surfaces using the T1-weighted imagesten@ET tool used
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to segment the CSF, skin and skull surfaces. The quality efiriltial surface meshes
was then semi-automatically corrected and used to consaraonductivity volume for

studying the fields induced by transcranial magnetic st (TMS). The drawback to
these semi-automatic methods is that they are time congyaiborious and subjective.
Most recently Zynep [44] introduced a new toolbox called Melectromagnetic forward
modeling toolbox (NFT) for generating realistic head medebm T1-weighted image
and for solving the forward problem of electro-magneticrseumaging numerically. In

NFT, the segmentation tool is based on thresholding, mdogiaal operations, and the
watershed transform to segment the whole-head into fasuweis brain, CSF, inner skull
and outer skull. A downside to this tool is that it requirepet intervention for providing

the seeds for accurate segmentation of brain and outer skull

The drawbacks of the existing automatic and semi-automagithods outlined above
served as the motivation for the development of a new fulljormatic and accurate
method for multi-tissue segmentation of multi-modal MR gaa of the head presented
in the next section.

4.2 New automatic multi-tissue whole-head segmentationgo-
rithm

Our proposed method is based on a hierarchical segmengioroach (HSA) incor-

porating our novel Bayesian-based adaptive mean shift (BAS&gmentation algorithm
introduced in Chapter 3. We call this method HSA-BAMS. In ecoam with several semi-

automatic approaches in the literature, the HSA involvéglly segmenting the data into
brain tissue and non-brain tissue sub-volumes. The idesifithat the detection of brain
and non-brain tissue is a much simpler problem than the gnolif segmenting each of
these into multiple tissue classes. What distinguishesH&4 is that a single method is
proposed for segmenting the brain tissue and non-brainetissb-volumes into multiple
tissue classes; in particular BAMS in the case of HSA-BAMS.

Proposed Hierarchical Segmentation Approach (HSA)

The proposed HSA takes as input one or more pre-processeshatidlly co-registered
sets of MR images of the whole head. Collectively this data lva considered a sin-
gle spatial volumgV) with vector-valued voxels. This volume is segmented into tw
disjoint sub-volumes, brain tiss&gT) and non-brain-tissué/ygT), using a brain tissue
segmentation algorithm (BTSA) and a non-brain tissue seggtien algorithm (NBTSA)
respectively. Finally the multi-tissue segmentation gtbon (MTSA) is applied indepen-
dently to theVgr andVygT volumes to segment them into individual tissue clad4gas
VBT,,... andVngT,, VNBT,---- fespectively. The schematic diagram of our proposs4 s
shown in Fig. 4.1.
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MTSA | ([ MTsA

\ L

Figure 4.1: Schematic of the proposed method HSA for autedhahole-head segmen-
tation.

4.3 Empirical evaluation of the proposed method

This section summarizes the empirical evaluation, detdiepaper B, of the proposed
method, HSA-BAMS. The evaluation was performed using thviRl data sets: (1)

multi-modal (T1-, T2-, and PD-weighted) synthetic datahadiffering noise levels (ob-

tained from the Brainweb [18]), (2) T1-weighted data fromealthy volunteer and (3)
multi-modal (T1-and T2-weighted) data from second healthiynteer (acquired on a 3T
Philips Achieva scanner at Sahlgrenska University HospgBathenburg, Sweden). The
details of these MR data sets are described in paper B.

Ground truth for the synthetic data was obtained from the tissue classes defined
in the labeled data obtained from Brainweb. This was redtmedven classes by merging
the connective and skin tissue classes, and the glial naatte6GM (gray matter) classes.

For the volunteer’'s data, manually segmented images (g&tkby an experienced
radio-oncologist) were used to define a ground truth segatientconsisting of five tissue
classes (fat, muscle, and skin were treated as a single lslsis)

In our experiments, we used BET as the BTSA and a simple #hgorbased on
thresholding and morphological reconstruction [45] asNBE SA. For multi-tissue seg-
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mentation of brain and non-brain volume, we applied theofdihg MTSAS: our own
BAMS (described in section 3.2kNN-AMS, FAST (described in section 2.3.2), akd
means (described in section 2.3.3). Hereinafter theseifstantiations of the HSA are
denoted HSA-BAMS (our proposed method for whole-head segptien), HSAKNN-
AMS, HSA-FAST, and HSAk-means.

The evaluation of HSA-BAMS, was done relative to that of éhother instantiations
of the HSA as well as that of a reference method BET-FAST.

Quantitative results

The qualitative results of synthetic multi-modal MR dateg§ig. 3 in paper B) show that
the proposed method HSA-BAMS outperforms the HSA-FAST aBd\H-means for the
skin, skull, muscle, WM, GM, and CSF classification for eaofse levels.

The qualitative results of volunteers’ data (see Table 12idpaper B) show that
HSA-BAMS performs consistently better than that of all catipg methods for the skin,
WM, GM, and CSF classification.

Difference in segmentation behaviour

Several multiple comparison tests [46] were performedgubinth synthetic multi-modal
and volunteer's MR data to determine whether there existatetically significant dif-
ference in segmentation behaviour for each tissue typedsgtvthe proposed method
HSA-BAMS and each of the other methods (see paper B for ditail

The tests for synthetic multi-modal MR data with 9% noisecleshow that HSA-
BAMS performs differently ¢ = 0.05) to all other methods for the classification of CSF,
GM, WM, fat, and muscle.

The tests for volunteers’ MR data provide the evidence tiattassification behavior
of HSA-BAMS (o = 0.05) is different to that of all the other competing methodstie
tissues: CSF, WM, GM, and skin.

Qualitative results

The qualitative result of multi-modal MR data with 9% noigedl (see Fig. 4 in paper
B) shows that the proposed method HSA-BAMS is less sengiivdise as compared to
HSA-FAST and HSAk-means.

The qualitative results of volunteers’ data (see Fig. 6 aigd B in paper B) show
that the proposed method HSA-BAMS has better segmentatiskim CSF, and GM as
compared to that of all other competing methods.
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4.4 Indirect evaluation of the proposed method in the contex
of non-invasive EEG source localization

Electroencephalography (EEG) source localization is aineasive tool used to locate
the source of epileptic seizures in the brain. It involves solution of two problems:

(1) Forward problem which deals with finding the scalp pagsitfor the given current

sources and (2) Inverse problem which deals with estimatiegsources to fit with the

given the potential distributions at the scalp electrod&$.[The accuracy of EEG source
localization is based on the quality and fidelity of the pattigpecific head conductivity
model which in turn based on the accurate segmentation gfdtient’s head tissues.

Herein, we summarize an indirect empirical evaluation effihoposed segmentation
method HSA-BAMS and the two reference segmentation methd84-FAST and BET-
FAST, in the context of EEG source localization (see papesr@iore details).

The evaluation was performed using (1) synthetic 2D mutidal MRI head data and
synthetic EEG (generated for a prescribed source), aneé#23b T1-weighted MRI head
data and real EEG data.

Ground truth (GT) consisting of five tissue classes was defioethe synthetic data
by merging the connective, fat, muscle and skin tissue etasand the glial matter and
GM (gray matter) tissue classes in the actual labeled datajned from the Brainweb.
For the real case, a five tissue labeled GT was obtained frorarauah segmentation of
the volume by an experienced radio-oncologist.

A synthetic EEG was generated by placing a source in the GM@iGT (ground
truth) image and calculating the EEG signals from 30 elelesaplaced equidistantly on
the 2D scalp based on 100 system [47].

The real EEG data was obtained by recording the somatogessoked potentials
(SEPs) on the subjects scalp. These SEPs were generateidnblashg the left wrist
median nerve by electric pulses and EEG measurement wasusimg 61 electrodes
based on 10/10 system [12]. The GT for the source was takee tioebexpected source
region determined independently by an experienced dinibased on neurophysiological
knowledge.

The performance of EEG source localization was measurestimstof relative error
(RE) between the measured and estimated source potentialization error (LE) be-
tween the actual source and estimated source distanceianthtion error (OE) between
the actual source and estimated source moment orientation.

A finite element head conductivity model (FEHCM) was consgtigd from each seg-
mentation method (HSA- BAMS, HSA-HMRF-EM and BET-FAST and)Gising both
synthetic and real MR data sets. To solve the EEG sourceizatiah problems, a sub-
traction method was used for modeling the dipole in the fodwaoblem [48] and a mod-
ified particle swarm optimization (MPSO) [47] method was lagapto solve the inverse
problem.
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Quantitative results

The quantitative results (see Table Il and Il in paper C)aihlbmulti-modal synthetic and
real T1-weighted MR data for EEG source localization shost tiSA-BAMS performs
consistently better than all reference methods.

Qualitative results

The qualitative results for both 2D synthetic multi-modaRMata and real MR data (see
Fig. 2(e) and Fig. 4 in paper C) show that the source (dipabs)tipn estimated using

proposed method HSA-BAMS is similar or closer to the GT seyrasition as compared
to that of all reference methods.
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CHAPTER B

Summary of papers and future work

The chapter presents brief summaries of the enclosed papérs discussion about pos-
sible future work.

5.1 Paper A: A Novel Bayesian Approach to Adaptive Mean
Shift Segmentation of Brain Images

In this paper we propose a novel adaptive mean shift algorftir the segmentation of
multi-modal MR images of the brain into three tissue typesitevmatter (WM), gray
matter (GM) and cerebrospinal fluid (CSF). The novelty lieghie algorithm for the esti-
mation of the adaptive bandwidth. It is based on a Bayesianoagh, we call it BAMS
(Bayesian based adaptive mean shift). The accuracy of tipmped BAMS algorithm was
evaluated relative to another mean shift algorithm thaagehl on thé& nearest neighbors
(KNN) bandwidth estimator and several other existing methdtie segmentation exper-
iments were performed on both multi-modal synthetic (T2, PD-weighted) MR data
with different levels of noise and real T1-weighted MR daithwarying levels of spatial
intensity inhomogeneities. The performance of segmamatiethods was measured us
ing the Dice and Tanimoto coefficient. The results demotesttee efficacy and accuracy
of proposed BAMS algorithm and that it outperforms the cotimgemethods especially
when the noise and spatial intensity inhomogeneities ate hi

5.2 Paper B: Automatic Multi-tissue Segmentation of MR Im-
ages of the Head Using a Hierarchical Segmentation Ap-
proach Incorporating Bayesian-Based Adaptive Mean Shift

In this paper we propose and evaluate a fully automatic naefimomulti-tissue segmen-
tation in multi-modal MR images of the head. The method i€tam a hierarchical seg-
mentation approach (HSA) incorporating Bayesian basegtagamean shift (BAMS).
The segmentation experiments were performed on three dtta @) synthetic multi-
modal MR data of the human head with differing levels of no{@ T1-weighted MR

35



CHAPTER 5. SUMMARY OF PAPERS AND FUTURE WORK

image of the head of a healthy volunteer and (3) multi-mod& Wtata (T1- and T2-
weighted images) from a second healthy volunteer. The sei@then accuracy of the
proposed HSA- BAMS method was evaluated relative to a reéerenethod BET-FAST
and three other instantiations of the HSA (HBNN-AMS, HSA-FAST, and HSAk-
means) using the Dice index. Multiple comparison tests<istimg of several McNemar
tests) were employed to determine whether there was arigtist@ty signicant differ-
ence in the voxel-wise classification performance betwherptoposed and each of the
other methods for each tissue type and each data set. Thesegion results for data
set 1 show the robustness of proposed method to noise. Tihiésréw data sets 2 and
3 demonstrate the accuracy of proposed method and thatdtstently outperforms the
BET-FAST reference method.

5.3 Paper C: On the Fully Automatic Construction of a Real-
istic Head Model for EEG Source Localization

In this paper we present an evaluation of a fully automatithoe:for the construction of
realistic finite element head conductivity model (FEHCM) EEG source localization.
The proposed method is based on a hierarchical segmengtjmoach (HSA) incorpo-
rating Bayesian based adaptive mean shift segmentatios.eWduation was performed
on (1) 2D synthetic multi-modal (T1-, T2-, PD-weighted) MRtd with synthetic EEG
data, and (2) real 3D T1-weighted data with real EEG data.pEnfarmance of proposed
method as well as two reference methods was evaluated irs t@fisource localization
accuracy of their resulting FEHCM. The source localizatimturacy was measured in
terms of localized error (LE), relative error (RE) of poiahand orientation error (OE)
between the actual and the estimated source moment. THts relsow that the proposed
method has less LE, RE and OE as compared to other competihgadseand that it can
be used as a surrogate for manual segmentation for the gotisir of realistic FEHCM
in the application: EEG source localization.

5.4 Future work

Incorporation of more modalities and prior anatomical information

In papers B and C we outlined the less than ideal nature oktiledata that was available
for the respective studies. Firstly, in both the T1- and Téghited gradient echo images
the signal intensities for both fat and muscle are heavilgnaiated (due to an opposed
phase cancelation of signal from both fat and water) whictuin leads to false clas-
sification as skull/bone. Secondly, the air and skull/bassue have low, overlapping,
intensities in the T1- and T2-weighted images which leadsiszlassification of the nose
and pharynx airways as skull/lbone. One possible way to oweecthese limitations is
to additionally use CT images (they show better contrasskar/bone tissue). Another,
potentially more robust, solution is to use a priori anatmhinformation; e.g. using
probabilistic atlases. We will explore these possibitie future work.
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Classification of abnormal tissues

The proposed methods (in paper A called BAMS whilst in B ancalled HSA-BAMS)
were applied to segment tissues in multi-modal MR images frealthy subjects with
normal anatomy. In the future we plan to extend proposed odstfor the segmentation
of MR image data containing abnormal brain tissues likerste lesions and tumors.
This will likely require additional MRI modalities and pakly also imaging modalities.
These can be readily accommodated in our proposed methods.

Novel clustering methods

In future work we aim to investigate contemporary novel tag methods for brain and
whole head tissue segmentation. Two such examples aretuguarustering and non-
linear mean shift clustering. The former approach is basethe quantum mechanics
concept where the the Schrodinger equation provides this far the clustering of the
image [49] and the latter one can be useful for the imagesenherdata points lie on the
manifold geometry [50]. For example, MR Diffusion Tensorrigng (DTI).
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