
Finding Bugs in Wireless Sensor Networks
with Symbolic Execution

Master of Science Thesis in the Network and Distributed Systems

Mahdieh Sadat Mirhashemi

Chalmers University of Technology
Department of Computer Science and Engineering
Goteborg, Sweden, January 2013

1

The Author grants to Chalmers University of Technology and University of Gothenburg the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it
accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not
contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company); acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants hereby
that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet.

Finding Bugs in Wireless Sensor Networks with Symbolic Execution Tool

MAHDIEH SADAT MIRHASHEMI

© MAHDIEH SADAT MIRHASHEMI, December 2012.

Examiner: Olaf Landsiedel

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Goteborg, Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden, December 2012

2

Abstract
Sensor networks are composed of many sensor nodes which have limitations such as memory
and CPU. It is difficult to access them physically, since they are usually distributed in a hard-to-
reach environment such as high mountains and far deserts. They are also connected to each other
by unreliable wireless links. These factors make debugging of sensor network, a challenging
activity. As a matter of fact, it may be common for a deployed sensor network to encounter
periodic faults. Locating and fixing these bugs are difficult after deployment. A main challenge
is to find bugs that are related to non-deterministic events, such as node failure and packet loss.
Since these non-deterministic events often cause complex bugs and errors in sensor applications.
Most of available debugging approaches and tools have been unsuccessful in detecting such
bugs.

In sensor network applications, a high coverage testing before deployment is vital to clean bugs.
However, there are limited numbers of such tools available; hence comprehensive testing has
been difficult so far. In this thesis work, we integrate KLEE symbolic execution tool with
TinyOS to provide high coverage and effective testing before deployment. KLEE executes
sensor network applications on a wide variety of symbolic inputs. In addition, by using such
symbolic execution tool, we can automatically inject non-deterministic failures to applications.
Consequently, KLEE highly covers application and provides numerous distributed execution
paths. These paths may include low-probability situations.

As a case study, we integrate KLEE into Distance Information Protocol (DIP) and TinyOS
MANET On demand (TYMO) protocols available in TinyOS package. We show that KLEE
effectively detects two out-of-bound bugs in DIP protocol and three serious bugs in TYMO.
Bugs in TYMO are critical and result in packet transmission failure.

Keywords: Wireless Sensor Network, Symbolic Execution Tool, KLEE, TinyOS, Dissemination,
DIP, TYMO Routing Protocol.

3

4

Acknowledgment
I would like to thank my supervisor and examiner Professor Olaf Landsiedel, for his continuous
support during my research and writing. I am also grateful of his patience, motivation,
enthusiasm, and immense knowledge. I never thought of better one.

I would like to thank my parents for giving birth to me at the first place and supporting me
spiritually throughout my life, for sympathizing me while grief surrounded me, and for being
with me, when homesick, even from thousands of miles away.

Last but not least, I would like to appreciate my best and steadfast compeer, Yazdan, for his
belief in me long after I’d lost it in myself, for sharing my wish, happiness, sorrow and for all his
supports.

5

6

Table of Contents

1 Introduction.. 11

1.1 Problem statement ... 11

1.2 Method .. 12

1.3 Scientific Contribution .. 12

1.4 Outline... 12

2 Background .. 13

2.1 Wireless Sensor Network .. 13

2.2 TinyOS .. 15

2.3 KLEE... 16

2.4 Dissemination Protocol ... 21

2.5 Distance Information Protocol .. 22

2.6 TYMO Protocol... 23

3 Related works... 25

3.1 Compilers .. 25

3.2 Simulator and Emulator .. 25

3.3 Tracing tools.. 26

3.4 Modeling method .. 26

3.5 Symbolic execution tool.. 26

4 Design .. 27

4.1 KLEE Overview.. 27

4.2 Symbolic input .. 27

4.3 Network and Node modeling .. 29

4.4 Assertion.. 30

4.5 Integration to TinyOS ... 32

5 Implementation and Evaluation ... 35

5.1 Overview of implementation and evaluation phase .. 35

5.2 Integration into TinyOS .. 36

5.3 Case 1: Dissemination Protocol .. 37

5.4 Case 2: TYMO protocol.. 40

7

6 Conclusion ... 47

6.1 Limitations .. 47

6.2 Future work ... 48

References... 49

8

List of Figures

FIGURE 1: MICAZ MOTE.. 13
FIGURE 2: A WSN. BLUE CELLS ARE ROUTERS AND WHITE CELLS ARE NON-

ROUTER NODES... 14
FIGURE 3: FINITE STATE MACHINE OF TINYOS INTERFACE FOR SENDING A

PACKET.. 16
FIGURE 4: BINARY FILE EXPLORATION ... 19
FIGURE 5: KLEE EXECUTION PATH IN SENSOR ENVIRONMENT.................................. 20
FIGURE 6: KLEE OVERVIEW. ... 28
FIGURE 7: KLEE BUILDS PROCESS. .. 31
FIGURE 8: ACT OF THE SYSTEM TOWARD RECEIVING A SYMBOLIC PACKET, B

BRACHES INTO FOUR PATHS... 33
FIGURE 9: EXECUTION PATH CONTINUES IN THE OTHER NODES. 34
FIGURE 10: OVERVIEW OF INTEGRATION, NETWORK AND NODE MODEL. 35
FIGURE 11: SYMMETRIC NETWORK TOPOLOGY CONSISTING FIVE DIRECTLY

CONNECTED NODES... 37
FIGURE 12: COMPONENT OF TYMO [30].. 41
FIGURE 13: SYMMETRIC NETWORK TOPOLOGY.. 41
FIGURE 14: ASYMMETRIC TOPOLOGY OF NETWORK (IMPLEMENTED BY KLEE).

NODE 0 IS ORIGIN IN BLACK ROUTES AND TARGET IN RED ROUTES. 42
FIGURE 15: FORWARDINGENGINEM MODULE [13].. 44
FIGURE 16: BUG IN AMSEND. .. 45

9

List of Tables

TABLE 1: A SIMPLE CODE TO SHOW HOW TO USE KLEE... 18
TABLE 2: KLEE FUNCTION IN MAIN().. 18
TABLE 3: LIST OF GENERATED FILES OF KLEE [8]. ... 19
TABLE 4: SUMMERY OF DISSEMINATION PROTOCOLS [10].. 22
TABLE 5: DIPSUMMARYP.NC COMPONENT FOR NEGOTIATING OF THE LENGTH OF

THE HASH.. 38
TABLE 6: PART OF THE CODE OF DIPSUMMARY FOR BUG#2. 39
TABLE 7: DIPSUMMARYP CODE. .. 39
TABLE 8: KLEE COVERAGE STATISTICS IN DISSEMINATION PROTOCOL................. 40
TABLE 9: SENDDONE EVENT... 46
TABLE 10: KLEE COVERAGE STATISTICS IN ONE EXECUTION IN TYMO.................. 46

10

11

1 Introduction

A Wireless Sensor Network (WSN) is a real-time, distributed network composed of sensor
nodes. These nodes have an ability of monitoring and controlling physical or environmental
settings such as temperature and sound. In the development of sensor applications, testing phase
plays an important role. Testing software includes two main phases of finding and fixing bugs as
soon as possible before deploying it into a real environment. These phases improve operation
and reliability of network.

Nowadays, impediments such as memory and CPU resource limitation in sensor nodes impelled
developers to use low-level languages. One drawback of low-level languages is that they have
unsafe types to implement functions. Memory constraints also result in not having a dynamic
type checking which prevents memory-related bug issues. Moreover, wireless sensor network
has a distributed and faulty nature; therefore some bugs may exist in a program and are detected
only after the software is deployed.

As an example, GSM nodes have been recently deployed in Swiss Alps. Some sink nodes were
implemented for collecting measurements from the environment and sending them to a base
station server. All nodes encountered huge packet loss at the same time, and the reason was a
bug in GPRS driver. The bug was not detected in the testing phase before deployment [1].
Another example is a three-day network outage in the sensor network around a volcano in
Ecuador, due to a bug in the flash driver of sensor nodes [2]. The bug prevented nodes to rejoin
the network after a remote programming by administrators. These two examples and other bugs
[3, 4] show that there is a need to comprehensively debug applications before deployment.

1.1 Problem statement
Detection of functional bugs is difficult by just checking, testing and compiling a code. Hence to
detect them, one should execute the code. Bugs caused by non-deterministic events such as node
reboot, packet duplicates or Packet loss, for example, are necessary to be found and fixed before
deployment of WSN. The reason is that they drive the network into an undesirable state. They
may cause network outage or tremendous packet loss, as an instance.

In this thesis work, we integrate KLEE, a symbolic execution tool into TinyOS, an operating
system for WSN, to debug protocols. Symbolic execution tools execute a code on symbolic input

Chapter

1

12

which can be anything [6]. These tools substitute an input with symbolic value and further on
substitute operations with ones using those symbolic values. Consequently, we study the
behavior of an application against symbolic values to inspect codes and paths.

One aim of this thesis work is to provide symbolic non-deterministic events in WSN
environment and evaluate protocols and applications. We want to study the behavior of protocols
toward non-deterministic event of node failure and find all bugs.

1.2 Method
In this thesis, we provide general study of WSN with a focus on routing, disseminating and
KLEE as a symbolic execution tool. We also present almost all related works regarding testing
and debugging WSN applications. Although some of them are far from the method used in this
thesis, they are chosen to give insight into all testing approaches. To implement a testing
environment, we select Dissemination and TinyOS MANET On demand (TYMO) protocols
from TinyOS. The reason is that TYMO is a well-known algorithm for routing and dissemination
is a basis for distributing sensor data into the network.

In addition to study these protocols and their counterparts in TinyOS, we build KLEE on top of
TinyOS protocol stack to debug and evaluate these protocols. The main aim is to generate high
coverage path and analyze each path and state of a sensor network while system is running in
those paths. For accomplishing this goal, we model node behavior and interactions in network to
provide comprehensive testing environment. Moreover, with assertion check available in KLEE
library, we check sensor network in a state that is of interest for us.

1.3 Scientific Contribution
To our knowledge, integration of KLEE into wireless environment to debug protocols has not
been done before. However, similar bug finding tools have been tested. We introduce them in
chapter 3. This thesis work is based on two protocols selected from TinyOS package. Both of
these protocols consider routing aspects of a network, since routing is almost a part of every
communication in a sensor network. Hence, their reliability and security plays an important role
in a packet transmission.

1.4 Outline
Chapter 2 provides a snapshot overview of WSN and TinyOS. Furthermore, we briefly describe
method and protocols. Chapter 3 addresses tools that have been used nowadays in order to debug
and troubleshoot wireless sensor applications. Chapter 4 focuses on the design phase, on how to
successfully build KLEE on top of TinyOS and how to define libraries in KLEE. We also
introduce some common non-deterministic events. Chapter 5 focuses more on experiment and
evaluation phase of the project. We successfully integrate KLEE into TinyOS and detect some
bugs that have not been detected in the previous testing and compilation phase.

13

2 Background

In this chapter, we give some explanations about the basic concepts, purposes and an outline of

this thesis. It starts from introduction into wireless sensor network and an operating system for

that, namely TinyOS. Then we introduce KLEE symbolic execution tool and its functionality.

Finally, this chapter ends with necessary information about TYMO, dissemination protocol and

DIP, a specific library of dissemination.

2.1 Wireless Sensor Network
A Wireless Sensor Network (WSN) is a real time distributed network composed of distributed

sensors. These nodes have an ability of monitoring and controlling any kind of physical or

environmental settings such as temperature, sound and motion and then forward these data to a

target. The number of sensor nodes in an environment varies from less than ten to a thousand

depending on the size of a network. Those self-organized sensor nodes are small and low-cost

with a processor (CPU, DSP or other microcontrollers) and RF transceiver. They use batteries or

solar cells to provide power. MicaZ, shown in Figure 1, is a common node used in sensor

network.

Wireless networks are broadly used nowadays. They provide cheap and application-oriented

solution for military services or disaster response situations where the other networking

approaches are not feasible. The reason for using sensor networks lies behind an unlimited

Chapter

2

Figure 1: A MicaZ node.

14

potential to provide functionality in numerous applications such as military, medicine,

transportation, entertainment, home security and smart spaces. Compared to a wired network,

each of the existing nodes in a developed WSN acts as a router. Figure 2 shows a very simple

topology of nodes functioning as a router and a non-router or intermediate. Nodes sense target

data from an environment and gather all necessary events and then pass them toward the network

to a node or a base station. These base stations process the information and utilize routing

protocols to define outlines and rules of the data flow.

Figure 2: a WSN. Blue cells are routers and white cells are non-router nodes

2.1.1 Security challenge
As we stated earlier, sensor network nodes have limited resources of CPU and RAM which may

produce faults. In addition, all transmissions are broadcast in a sensor environment and messages

must be securely transmitted. Moreover, the nature of a wireless sensor network is distributed

and based on interaction of nodes. It is necessary to observe interactions between nodes,

although it is difficult due to complexity. Therefore, developers need to consider security,

reliability and operation of WSN. It is highly recommended to test and debug wireless sensor

network codes before deployment to prevent network outage.

Some critical bugs occur as a result of non-deterministic events such as packet duplicates, node

crash and node reboots [5]. Existing tools for testing and debugging are not successful in

detecting such events. Therefore, there is a need to implement and facilitate a testing tool

integrated into WSN environment. Later in this chapter, we introduce KLEE as a symbolic tool,

to address this demand.

As we mentioned earlier, each node acts as a router in a sensor network to securely deliver data

to a destination. This is a main reason to investigate and evaluate routing and disseminating

protocols in this thesis work. We select Distance Information Protocol (DIP) and TinyOS

Dynamic MANET On-demand (TYMO) protocols as a nomination of routing and broadcast

protocols.

15

2.2 TinyOS
Similar to cell phones, laptops and computer systems, wireless sensor networks require an

operating system to execute codes and provide functionality. TinyOS is a well-known embedded

operating system for WSN. It is designed to run on sensor nodes and other embedded devices of

sensor network. Developers use Network Embedded Systems C (NesC) to make applications for

TinyOS platform. NesC is an event-driven programming language with components wired

together to execute applications [30]. An abstraction in TinyOS is designed for ultra-low power

sensor microcontrollers of nodes which have limitation in RAM. Moreover, nodes’ hardware has

not enough support for memory safety and protection. This enforces additional testing tools and

memory safe execution to ensure security in TinyOS.

2.2.1 Hardware
TinyOS executes in 8 Mega hertz on 16 bit microcontrollers. These microcontrollers typically

have 4 to 10 KB of SRAM and almost 40 to 128 KB of flash memory. Programs in TinyOS are

made up of software components which are connected by interfaces to each other. It is important

to mention that these software components are representative of hardware abstraction as well. In

order to have successful packet transmitting, routing or sensing, there are interfaces and built-in

abstractions in TinyOS [12]. In the implementation phase, we build KLEE testing tool on top of

these interfaces to find non-deterministic bugs in applications.

2.2.2 Abstract
The components and interfaces in TinyOS are working similar to a Finite state Machine (FSM).

It means that a call of a component provides state changes; one call subsequently, calls another.

These changes in states are occurred internally in components. However, some of those state

changes have affection on other components. Hence components can have access to each other

[14].

16

Figure 3: Finite State Machine of TinyOS interface for sending a packet.

As a very simple example, Figure 3 shows a finite state machine of TinyOS interface to send a

packet. Send is called and it returns SUCCESS which causes the interface to change to Busy state.

In the Busy state all other callings return FAIL. When SendDone occurs, the interface signals

back with SUCCESS to indicate that a packet has been successfully transmitted. Then it goes to

an Idle mode. A component at any time can call send () and cancel (). At a point of time one call

produces different results. As an instance, if a component calls cancel () when FSM is busy, two

options occur. Packet transmission continues which returns FAIL or packet transmission fails

which returns SUCCESS and finally both return cancel [14].

2.3 KLEE
As stated earlier, functional bugs are a class of faults that are found when a code is executing. In

addition, we should find bugs resulted from non-deterministic events, before deployment.

Manual testing is difficult and does not detect all bugs. It decreases performance, while some

critical errors may exist in code. Therefore, the need of a symbolic execution tool is vital. It

generates an output of a program automatically while inputs are symbolic and can be everything

a tester defines [5].

KLEE is an open-source, symbolic virtual machine. It is built on LLVM compiler infrastructure

and acts as a symbolic execution tool to generate high coverage tests automatically [6].

Moreover, it is an optimized version of previous symbolic execution tool [7] with higher

coverage. Another advantage of this tool is that KLEE’s method is simpler compared to similar

tools and it has more optimized constraint solving. Since it utilizes search heuristics. In addition,

17

KLEE enhances dealing with external environments. All aforementioned characteristics,

categorize it as a high-performance and a high-coverage tool [7].

2.3.1 KLEE mechanism
KLEE considers all possible symbolic data and input while executing WSN applications. It

automatically injects non-deterministic events to study reaction of an application. Moreover, it

provides memory safety for TinyOS based applications [6]. In this thesis work, we apply KLEE

on top of TinyOS applications. Upon hunting a bug or hitting a suspicious path, KLEE generates

some log files. These files carry inputs with which the application encounters error. By

investigating log files, we produce a list of faulty inputs and also we analyze them to find roots

of bugs.

A main objective of KLEE is to generate high coverage path. Hence, while system is executing,

we can test states of a sensor network. Below is a list of KLEE mechanism:

1. As a symbolic execution tool, it provides symbolic inputs such as a symbolic packet or

sensor data to test the behavior of an application. Hence it increases the reliability aspect

of security.

2. It models a network by providing a snapshot of interaction of nodes and injection of non-

deterministic events. Moreover, it also models node characteristics such as node failure or

node reboot. This behavior of nodes happens rarely. But if occurs, it takes distributed

systems into an invalid path or state. Sometimes it causes network operation failure.

3. KLEE provides comprehensive testing environment.

4. A main check in KLEE is assertion that let us check a sensor network in a state that we

aim to study behavior of the system there.

KLEE developers applied it on 89 programs in COREUTILS and consequently KLEE achieved

high coverage of 90% per tool [6]. It is higher than test suits written by programmers. In

addition, testers applied it on BUSYBOX and it led to coverage of 100% of 31 programs out of

75 [6]. In this thesis work, we apply KLEE on TinyOS and we have an intention to get the same

high coverage.

2.3.1 Example of how to use KLEE
In this section, we show how KLEE works on a part of a code and how it finds an output

according to injected inputs. Table 1 shows part of an application that gets an input and checks it

according to if command.

18

Table 1: A simple code to show how to use KLEE.

int get_sign(int x) {
if (x == 0)

return 0;

if (x < 0)
return -1;

else
return 1;

}

To test this code with KLEE, we should execute it with symbolic integer value. So we use
klee_make_symbolic function just after input definition in the program:

klee_make_symbolic (memory location, size, “name”)

This function gets three arguments: a memory location of the value, a size and finally an
arbitrary name. Table 2 shows simple function to make a variable symbolic and forward it to the
program.

Table 2: KLEE function in main()

int main() {
int a;
klee_make_symbolic(&a, sizeof(a), "a");
return get_sign(a);

}

First, we compile our code and produce a bitcode (*.bc or *.o) file. Then, KLEE runs on a

bitcode file generated after compilation of the code. As it is shown in Figure 4, KLEE walks

through three different execution paths. In one of those paths, symbolic value is 0, another one is

less than 0 and last one is greater than 0. For each of these values, KLEE generates a test case

which is readable with ktest-tool utility in KLEE directory. In each of them, KLEE gives an

invoked argument, a number of symbolic objects, a name and size of the input. In the simple

code above, KLEE tested a positive, a negative and a value equals to 0.

Figure 4 shows the log files of KLEE. Each of the test cases carries one input which is shown as

“data” in the output (-2147483648 indicates a negative value).

19

test000001.ktest

object 0: name: 'a'

object 0: size: 4

object 0: data: 1

test000002.ktest

object 0: name: 'a'

object 0: size: 4

object 0: data: -2147483648

test000003.ktest

object 0: name: 'a'

object 0: size: 4

object 0: data: 0

When KLEE terminates executing of paths, it generates some files in the output directory. These

files represent error messages and all covered paths until termination signal receives. For each

path, a file with a name of “test<n>.ktest” is generated by KLEE, where n is the number of

execution. For instance, in our example code, KLEE generated three test files: test000001.ktest,

test000002.ktest and test000003.ktest, as shown in figure 4.

If a path terminates with fault, or if it finds a bug, then format of output would be:

“test<n>.<error type>.err”.

This output contains information about the bug and location of it in the code. Table 3 shows a list

of all files that KLEE generates. These files are useful later for analyzing the behavior of nodes

and network.

Table 3: List of generated files by KLEE [8].

Name Description

Warning.txt Containing all warning emitted by KLEE while executing the path.

Messages.txt Other messages rather than warnings emitted by KLEE

Assembly.ll A version of readable LLVM bitcodes.

Run.stats By using KLEE-stats the containing context of this file is readable. It has all statistics
regarding, paths and bugs found, the times spent on the test.

Run.istats Global statistics for each line of the code emitted by KLEE in a binary form.

Figure 4: Binary file exploration

20

A CB

Send a packet

Drop the Packet

Continue the rest of the programCase a

A CB

Send a packet

Case b

Ack back (Reply)

A C
B

Send a packet

Case c

Forward the packet

A C
B

Send a packet

Case d

Forward the packet

NODE B crashes and reboot after forwarding the packet

Figure 5 depicts how nodes interact in sensor network. In this thesis, KLEE symbolically defines
these interactions. Node A starts sending a packet to B and though initiates an execution path.
There are four possible ways in node B to act toward a received packet. These four execution
paths are:

1. Deliver the packet to a next neighbor (forwarding the packet)
2. Drop the packet due to wrong format or invalidity.
3. Reply back to the sender (in this case A) - to ACK receipt of the packet.
4. Deliver the packet to a neighbor and reboot.

Figure 5: KLEE execution paths in sensor environment.

21

Consequently, node c has same execution paths after receiving a packet from B. Moreover, in
other paths, program executes in normal way until reaches end of the program or faces an error.
As it appears, KLEE covers all possible reactions of node B upon receiving a packet. Figure 5
shows non-deterministic events such as node reboot (depicted in Figure 5d) or packet loss
(depicted in Figure 5b).

We consider above topology in Chapters 4 and 5, with a greater dimension for testing protocols,
and integrating KLEE into TinyOS. More information about KLEE is also available at [6, 8].

2.4 Dissemination Protocol
In wireless sensor network, dissemination is a service to broadcast a small packet in network.
Receiving nodes do not acknowledge back when they get a message. In sensor network, every
node is keeping a copy of a variable whose value is shared between all nodes (such as
temperature, vibration or emission). The ultimate goal of this protocol is to provide consistency
on shared variables [9].

2.4.1 Consistency
Dissemination protocol forces node to disseminate a value whenever a change in that value is
detected. Therefore, eventually all nodes across network have the same value as the disseminator
and they are consistent. It may happen that some nodes do not agree on a new value, but after a
couple of minutes network converges to that new broadcast value. Dissemination protocol
promises that over time, network is consistent, if disconnection does not happen. However,
consistency is threatened by packet loss and disconnections which happens temporarily in
networks. A reason may be due to mobility of nodes. These threats, force considering security
evaluation on this protocol and motivated us to apply KLEE on it to completely test.

Consistency does not refer to that all nodes receive every new value for a variable and substitute
an existing value. In this case, bandwidth is saturated by un-necessary and extra overheads.
Consistency indicates that all nodes eventually agree on the most recent value that a variable gets
and apply that to what they stored. Then, if several nodes have a same opinion of updating their
value to the most recent version, dissemination protocol concludes that the network is converged
to a single value.

Overall, usefulness of dissemination is vivid in a situation that a network administrator would
like to inject a special command, script or any constants into an application. This remote
administration is for a purpose of upgrading or installing a small program into a network to build
an application based on sensor network.

2.4.2 Dissemination libraries
In order to provide eventual consistency model, there exists three dissemination libraries in
TinyOS namely Drip, DIP and DHV. A basic difference between these protocols is that in Drip,
each data is considered to be a separate entity for dissemination. Hence there is a control over
time of dissemination and speed in which data is disseminated. It is useful when a small number

22

of data is available and there is no information about where those data are stored. However, in
DIP and DHV data are treated as a group, so dissemination control applies to all. In this case
there is an agreement on the data and less messaging occurs in network, results in bandwidth
saving [10]. Totally, in DHV fewer messages are exchanged between nodes. So, DHV is faster
than DIP and DRIP. Table 4 shows differences in greater detail.

Table 4: Summery of Dissemination protocols [10].

Radio control Timing Messaging Data size

D
R

IP

Application is
responsible of
enabling or
disabling radio for
dissemination

DisseminationTimer
P component trickle
timers. The tau values
apply to all
dissemination items.

Each data item advertised
and disseminated
independently. Metadata is
not shared among data. So
nodes do not need to agree
on data sets.

Typedef t controls
data size. It should
be smaller than the
message payload
size.

D
IP Application is

responsible of
enabling or
disabling radio for
dissemination

A single trickle timer
is for all data items.
Tau value is
configured in Dip.h

For all fixed data set an
advertisement message is
used and all nodes are to
agree on a fixed data before
dissemination. DIP
advertisement is based on
message size in Dip.h

Typedef t controls
data size but nx-
struct dip-data-t in
Dip.h is a backup.
The size in less than
the message payload
size.

D
H

V Automatically start
the radio. And
manually turning
off the radio which
causes DHV not to
work through.

A single trickle timer
is for all data items.
Tau value is
configured in Dhv.h

For all fixed data set an
advertisement message is
used and all nodes are to
agree on a fixed data before
dissemination. DIP
advertisement is based on
message size in Dhv.h

Typedef t controls
data size but nx-
struct dhv-data-t in
Dhv.h is a backup.
The size in less than
the message payload
size.

In this thesis work, we investigate DIP library, since it is a protocol in use nowadays. The next
section provides a short introduction to this protocol.

2.5 Distance Information Protocol
Distance Information Protocol (DIP) is a data detection and dissemination protocol. It has two
fundamental functionalities. It detects a difference in values and also identifies the time in which,
that difference has occurred. DIP protocol utilizes search methodology dynamically to find
changes in the value [11].

23

DIP continuously calculates the probability of data item by exchanging messages. When the
probability reaches 100 %, data exchanging starts and lasts until all nodes eventually have
consistent set of data. DIP protocol keeps a version number for each data. A version number is
an indication of steady state and shows that all nodes are up-to-date. Each time, a hash
containing a version number, is sent. If a node receives a hash, it checks it against its own value.
If values are the same, it means that it is in a consistent state. But if they are different, the node
concludes that there is a change in value, however, it has no idea of which part is different. DIP
also stores the state estimate, so in the time that the estimation is incorrect, protocol continues
execution.

In this protocol, it is essential to identify which data is new and what node owns a newer version
of the data. This process requires exchanging version numbers among node in a hash tree basis.
This hash tree has a bug in its code. We address this bug in Chapter 5.

2.6 TYMO Protocol
In WSN, message transmission plays an important role, since all communications are based on
these transactions. Hence there is a need to have routing protocol in order to fulfill the need of
switching information between nodes and send or receive messages.

TYMO is a routing protocol in TinyOS designed for this goal. IETF designed the first draft of
TYMO called DYMO (Dynamic MANET on Demand). DYMO is a successor of Ad hoc On-
Demand Distance Vector1 (AODV) protocol. The main goal is to dynamically find routes over IP
stack. TinyOS implemented a version of DYMO protocol as a routing protocol for point-to-point
purposes, applicable in Mobile Ad-hoc networks (MANETs) with a slight change in the protocol.
The packet format differs from DYMO and the implementation is based on Active Message
stack. It is designed in order to make the network layer modular [13].

As discussed earlier in this chapter, one of the limitations of sensor nodes is lack of memory.
TYMO is applicable for memory constraint sensor nodes, since in TYMO, network topology is
not stored in nodes. The only information stored in a node is a little routing information which is
exchanged in the network when needed.

2.6.1 Concept of TYMO routes
TYMO has its own way of handling routes. When a node wants a route to a destination, it
disseminates a packet to get a route between originator and destination. This small packet is
called Route Request (RREQ) which is disseminated in the network within a defined number of
hops. Hence, network traffic overhead reduces. Furthermore, bandwidth and power of nodes are
saved which is desirable for sensor nodes. When packet arrives at the destination or at a node
that has enough information about the target node, a Route Reply (RREP) packet is sent back to

1 It is a routing protocol for ad-hoc mobile networks. It is designed for both unicast and multicast routing. When
source demands, routes between nodes are built and are kept as long as they are needed by the sources.

24

the originator. Format of both RREP and RREQ messages are similar to each other. A difference
is that RREP is unicast and no acknowledgment is sent back [13].

In RREQ and RREP, information about both sender and originator of the packet are stored in the
cache of every passing node. Hence, nodes can use this information in future packet exchange.
When a node receives a packet, it collects paths which have been followed by the packet. These
accumulations would be useful for another packet that arrives at a node, in order to calculate a
path to target.

TYMO uses sequence number and hop count, similar to most of other routing protocols, in order
to check quality of routes and prevent loops in the network. Moreover, in order to have fresh
information in a small routing table inside nodes, data and information which has not been used
for a long time is deleted regularly by nodes. If a packet arrives and needs to access information
which has been recently deleted, a Route Error (RERR) massage is generated. This message tells
other nodes that the route does not exist any longer [13].

In order to implement TYMO, a transport protocol implemented with the responsibility of
forwarding a packet to the target. This protocol is called MH (Multi Hop) and uses relevant
interfaces of TinyOS such as AMPacket, splitcontrol, AMsend, receive and packet. Later in
Chapter 5, we evaluate MH protocol and other dependent interfaces. we show that, this Protocol
has serious bugs needed to be fixed.

25

3 Related works

Generally, a majority of evaluations and tests in wireless sensor networks is based on using a
combination of tools. There exist lots of approaches and tools to discover bugs. Some of them
focus on debugging before deployment while others are for testing after a code is deployed. In
this section, we classify and explore testing tools and approaches in WSN. Although some of
these tools are not based on symbolic execution which is an aim of this thesis, they show the
significance of providing security in sensor networks. Moreover, a combination of these tools
provides better security for a system.

3.1 Compilers
A first step of testing a code is Compiling. We primarily use compilers to perform lexical and
semantic analysis, parsing, code generation and optimization. Compilers detect program faults
related to errors such as out-of-bound memory, wrong type conversions and race conditions. A
good compiler in WSN is safe TinyOS, a tool to apply type and memory safe application at run
time [12]. Safe TinyOS detects most of harmful memory errors that cause OS code and RAM
corruption in nodes. This compiler is for TinyOS environment.

Neutron [24] is another similar tool, to enforce memory safety and bug recovery. When a code is
deployed, it would be difficult to debug it. In addition, events such as battery usage, concurrency
errors and failure in connectivity of nodes exist in sensor networks. Hence, they make it hard to
diagnose which error is caused by memory issue and which is caused by other events. Overall,
these tools are useful to detect local errors in an implementation. However, there are a wide
variety of distributed bugs caused by interaction of nodes, which may remain unsolved even after
compiling..

3.2 Simulator and Emulator
Simulators and emulators such as TOSSIM [16], COOJA [18] and ATEMU [19] provide
solutions to test and debug network. Stackguard [28] is a tool to detect buffer over-run security
exploit, which causes stack corruption. Sensor network troubleshooting suite (SNTS) [29] is
another tool to check packet format in order to detect problems such as incorrect sequences of
event. It uses some nodes as a sniffer to provide an overview of network traffic. Then they
transfer the information to a central server for further processing. Another tool is ANDES [15]
which is a tool to detect the root of anomaly operation in sensor networks. One of the most

Chapter

3

26

important limitations of these methods is low-input coverage. Hence, they do not provide low-
probable scenarios in which inputs cause bugs. Therefore, it is better to combine simulators and
emulators with other methods in order to close this gap.

3.3 Tracing tools
Tracing a specific part of a code is of importance, since it detects significant errors in that part of
the code. Approaches like TraceSQL [20] and NodeMD [21] are designed for this purpose.
Another tool is Marionette [21] that provides capability to trace at runtime. There are also some
other approaches such as PDA [22], EnviroLOG [17] and MDB [23]. They are designed to
collect states of node and then according to the collected data, analyze the network. But a
limitation of all these and similar tools is that they are solely capable of detecting errors and bugs
in a part of the execution trace. Hence they analyze a particular part of an application and do not
provide a full coverage scenario.

3.4 Modeling method
Some model-oriented methods are developed in order to analyze sensor network codes. They
check applications by modeling method, to assure their accuracy. Initially, these methods take a
whole model of a system and then inject it into a specific environment to verify the correctness.
In [25-27] some of these methods are discussed.

Overall, there are some limitations and complexities in these methods. First of all, they require
hard endeavor to provide a valid model for each system. Secondly, they are not suitable to detect
explosion in states. This error occurs as a result of non-deterministic nature of wireless sensor
network.

3.5 Symbolic execution tool
Tools like KLEEnet [5], FSMGen [14] and KLEE are designed for the purpose of executing a
code on a symbolic value. Their model is based on a state machine. One of the advantages of
KLEE over other similar tools is that, it applies symbolic execution technique on behavior of
nodes. This offers high execution path coverage and high input range. Moreover, it runs
modified application and increases accuracy.

Last but not least, KLEE detects distributed interaction bugs with a possibility to model events
such as packet loss, packet duplicates and node outage. As we discussed earlier, these are
examples of non-deterministic events. These reasons motivated us to select KLEE and build this
tool on top of TinyOS for debugging applications.

27

4 Design

This thesis aims at integration of KLEE as a symbolic execution tool into TinyOS to debug
protocols. In this section, we discuss how to build KLEE on top of TinyOS to automatically
generate paths. Our goal is to study the behavior of sensor applications while non-deterministic
events such as node failure and node outage occur. Moreover, we explore network and node
modeling to address interaction of nodes and topology of network. Finally, we produce a test
environment to find insidious bugs in TYMO and dissemination protocol.

4.1 KLEE Overview
As discussed in Chapter 2, there is a demand to provide high-coverage in execution of paths to

detect bugs in WSN. We chose KLEE to provide automated path generation in distributed sensor
network. To accomplish this goal, KLEE has a specific approach which we discuss in this
chapter.

Figure 6 demonstrates a general overview of the design phase. There are four different categories
in this phase. As a symbolic execution tool, KLEE provides symbolic inputs such as symbolic
packet or sensor data to test the behavior of an application. When KLEE uses symbolic values,
we put assertion in special parts of the code to check the application in different states. Then
KLEE models network and provides snapshot of interaction of nodes. KLEE also injects non-
deterministic events such as packet loss or packet duplicates into the network and transfers
messages among nodes. After defining network model, it is time to model node characteristic
such as node failure or reboot. This behavior of nodes happens rarely, but if occurs, it causes
undesirable afterwards. In the following sections, we present a detailed explanation of the design
phase.

4.2 Symbolic input
KLEE is designed to make an input variable and data as symbolic, see Chapter 2. These inputs
are data gathered from an environment such as temperature, frequencies or packet transmitted
between nodes. In a sensor network, the first step to walk through an executing path is to
symbolically inject an input to an application. The question is that, in order to test and
troubleshoot the distributed sensor network applications, what inputs should be defined as
symbolic. In sensor networks, transmitting Packets and information related to sensor nodes play
important roles; hence it is a desirable scenario to make those symbolic [5].

Chapter

4

28

Figure 6: KLEE overview.

It is of importance to have symbolic input to test functionality and correctness of code operation
in the beginning of development phase and further on the code. As an instance, developers of a
new routing protocol may want to know:

1. What happens if a node in the path from source to destination fails in the middle of a
transition.

2. How a protocol reacts if a path is not accessible.

Moreover, a developer might desire to have symbolic header in a packet for further study of
execution paths, while disseminating a packet to all nodes. Hence, this provides feasibility to be
sure that all nodes have same values at the end of execution. In addition, we know the effect of
packet loss or a special data input on an application.

So, this testing assures us that at the end the state of the application is valid and a variety of
inputs and sensor data does not affect the operation and functionality of the application.
Developers would continue with feedbacks received from analysis to make the code bug-free.

4.2.1 Complexity
There is a complexity factor in KLEE, similar to other execution methods. It determines time
spent totally on a testing or debugging scenario. The best scenario is that in the first execution
path, we find a bug. The worst scenario, similar to what is calculated in [5] is (.). Where n
is the n-ary branch, m is the number of nodes and t is the time. In our implementation and
evaluation phase, we observe that the complexity would not reach the worst case.

29

Moreover, in experimental part of this thesis, growth is not exponential. Even in a
communication protocol such as TYMO, where numbers of nodes exceed hundred. So, we
conclude that the execution paths do not grow exponentially. Hence, protocols under test, TYMO
and dissemination, both have a small number of execution paths. In the next section, we discuss
modeling of node interaction and topology of network in more details.

4.3 Network and Node modeling
As a part of evaluation and debugging of protocol stacks in TinyOS, it is necessary to model
nodes characteristic such as node failure or node reboot. As we mentioned earlier, these
behaviors are categorized as non-deterministic events. Another important modeling is related to
network operation. It models an interaction of nodes and network-based, non-deterministic
events such as packet loss or packet duplicate.

As we discussed in chapter 2, a wireless node is a hardware device which is exposure to software
reboot due to memory faults, battery outage and hardware faults. Some of these problems cause a
node to reset and the node may lose unsaved data or states. Although occurrence of these outages
is too rare, there is still probability. So we need to wisely consider them. It is important to study
and test the path in which a node fails in order to test a code. In sensor networks, nodes are
neighboring. Therefore, when a node fails, neighbors by default should detect this failure.
Otherwise, distributed sensor network may fail or may go to an invalid or undefined state [5].

In the following sections, we provide a short discussion of common non-deterministic events that
cause problem in a sensor network.

4.3.1 Node failure
In order to introduce node failure in sensor nodes, KLEE provides symbolic event to reboot one
of the nodes in the middle of an execution. After execution terminates, we observe the behavior
and reaction of our system. Program executes in two valid paths. One is an execution that all
nodes are working well and connected to each other. In the second path, one or more nodes have
no connection to the rest of nodes in sensor network.

In node reboot or node failure scenario, we ask KLEE to disconnect a randomly selected node
from the rest of network for a while. After a specific time, KLEE connects the node to one or
more sensor nodes in network. Therefore, execution in that path re-initiated. KLEE records all
states in a file which is useful for later analysis. We investigate all generated files and results, in
order to find out whether promising goals of the application meet.

4.3.2 Packet loss or corruption
Since the operation of sensor network is based on packet transition, packet loss may be a
common failure in the network. KLEE has an ability to introduce packet drops symbolically.
Therefore, we can verify the effect of this event in sensor network. In the middle of an execution,
KLEE discards a transmitting packet and records behavior of network toward this distributed
non-deterministic event. These records provide a reference to study network operation.

30

By symbolically dropping an arbitrary packet in a network, KLEE introduces a possible buggy
scenario and covers it. It also provides another new distributed execution path, by symbolically
corrupt a packet and continue execution to see what happens to the rest of network.

4.3.3 Packet duplicates
A possible fault in sensor network is to have re-transmitted packets or to have loops. So,
investigating network by injecting duplicate packets can be of interest in terms of finding faults
and bugs. KLEE introduces packet duplicate symbolically to the network in order to see
robustness of dissemination and TYMO in different execution phases.

Modeling non-deterministic events gives the opportunity to cover all execution paths in codes to
find insidious bugs. This is a reason that we consider those events in the design phase. We
addressed earlier that complexity of network increases by introducing all events simultaneously.
Hence, we select events which are happening more frequent in protocols and have critical
outcomes.

In the implementation phase in Chapter 5, we study the behavior of two sample protocols, DIP
and TYMO. In case of symbolic input in TYMO, we observe that node failure is mainly a root
cause to produce faults in network. In addition, we study the behavior of dissemination in case of
having a symbolic packet with different sizes and types. We also show that rather than bugs
related to symbolic input and network model, we find a few memory-related and configuration
issues in both protocols.

4.4 Assertion
There may be numerous execution paths in a sensor distributed network. It is time consuming to
analyze every path to get an overview of what has happened and what was the result. Although
there are some tools in order to show results (such as klee-stat), we still need manual analysis of
each of the results separately. Moreover, KLEE covers all paths and states among which some
are un-necessary for us (and for each one, KLEE defines one test case). What is important for us
is to explore paths in which abnormalities occur. In order to test protocols, it is more convenient
to check that:

1. Nodes inside a conversion domain are in correct state, after protocol is applied.
2. If protocol is doing as it should.

For example, in a sensor environment that uses routing protocol to transfer messages, it would be
interesting to know what happens to ACK messages or to entries of routing table, if one node
fails. In such a case, with help of assert in ACK controller event, we study violation against a
condition. This condition can be a simple statement of “if a node does not receive an ACK in 5
seconds (a defined duration)”. Consequently, KLEE generates an error file. Then, we investigate
these files deeply to find, what is a cause and root of this violation. With use of assert, execution

31

is limited to a narrow section, hence, it reduces manual effort in finding bugs in numerous
generated paths.

For more explanation of assertion, assume f(x) and g(x) implement the same interfaces. We make
x as symbolic by KLEE. Then we execute KLEE on assert (f(x) == g(x)). In this case, for each
explored paths, KLEE terminates with or without errors of “paths are equivalent” or “mismatch
found”.

KLEE proves assertions on a per path basis. It considers that all constraints do not have
approximations. An assert is a kind of a branch, and KLEE shows feasibility of each branch it
reaches. If KLEE determines infeasibility of false side of assert, then it proves the assert on the
current path [6].

Figure 7: KLEE build process.

In order to use assertion functionality in a sensor network application, we need knowledge of
data and code structure of applications. We should deeply revise the code to know where is
appropriate to have beneficial assertions.

So far, we addressed considerations in design phase and in node and network modeling .The next
section provides an instance of how to integrate KLEE with TinyOS.

32

4.5 Integration to TinyOS
As discussed earlier, we want to integrate KLEE into TinyOS by adding KLEE platform based
on the OS null platform. This permits marking a sensor value input and a packet transmitting in
network as symbolic. Event-driven nature of sensor applications enforces execution of some
codes only after another dependent event is fired. Hence, to cover all paths of an application
regardless of related events, the main code is manipulated to signal all events automatically.
When the application starts, all events are fired to be processed and included in test.

4.5.1 Process of KLEE build
Figure 7, demonstrates an overview of integration process. We should take the following steps to
accomplish integration:

1. We need to specify which variables should be symbolic in the application code (files
contain configuration data). To succeed, we insert a call to Klee-make-symbolic function
in the “.c” code (a “.c” code is generated after parsing NesC code).

2. KLEE marks packet buffers, number of nodes or node connectivity as symbolic. These
are inputs that check the state of a program regarding node failure or packet loss. At each
execution, it is better to mark one event as symbolic to avoid complexity in results.

3. KLEE operates on LLVM bitcodes. In order to run a program with KLEE, we should
compile the code with LLVM compiler.

4. At the last step, we run KLEE on the bitcode file to interpret it. At this step, KLEE
generates test cases and writes them to files with .ktest extension. In case an error occurs,
KLEE writes some additional information about the error into a file namely
testN.TYPE.err.

Generated test cases indicate which input causes error and which inputs are safe. Hence, by
analyzing test cases and by considering network and node model provided by KLEE, we can find
faults and bugs in an application.

4.5.2 Example of a node modeling
Applications in TinyOS use non-symbolic data. Simulators such as TOSSIM, use real input in
sensor applications. Therefore, limited range of data is available for testers. KLEE works similar
to simulators, but injects symbolic inputs into a sensor network application. In KLEE, when an
executing path encounters an error in a code with a symbolic input, that execution path is
branched into a new one. Hence in order to keep an execution in a consistent level, we should
observe and investigate these paths in the provided network model.

As an example of a node model, consider a network consists of 4 nodes. BY KLEE, we
symbolically define a packet and inject it into a distributed system. Node A sends a packet to
node B. After receiving a packet, there are some possible ways in node B. Generally, depending
on an implemented protocol, B sends back an ACK after successfully receiving a packet or drops

33

it and sends a NACK back. There are other possibilities such as forwarding the packet to next
nodes or discard without any further action.

We say there are four execution paths defined in node B. Figure 8, shows this approach with all
possible execution paths.

Figure 8: Act of a system toward receiving a symbolic packet, B braches into four paths.

Later in Chapter 5, we use this approach to debug TYMO Routing protocol.

Node C has a similar approach to node B. Upon receiving a packet from node B, it branches into
four other execution paths as depicted in Figure 9. Many of execution paths are unnecessary and
lead to waste of memory resources. It also requires a long execution time. In order to optimize
the execution time, we include an assertion in the codes. It enhances paths and focus only on part
of the execution desired for us. The effect of an assertion mainly is visible in a sensor network
with large network setup such as a routing environment. In such a network, a lot of nodes are
exchanging sensor information and a packet influences a big part of the network. So, if we limit
our study on the effected part of the network, it helps us to efficiently debug the protocol.

34

Figure 9: Execution path continues in a subsequent node.

AC
K
ba
ck

N
ac
k
ba
ck

Fo
rw
ar
di
ng

Di
sc
ar
di
ng

AC
K
ba
ck

N
ac
k
ba
ck

Fo
rw
ar
di
ng

Di
sc
ar
di
ng

ACK

35

5 Implementation and Evaluation

In this chapter, we provide an overview of the implementation and evaluation phase of this thesis
work. To begin with, we define a node and network model, as discussed in the previous section.
Then we implement a scenario for testing two sample protocols. Upon successful integration of
KLEE and TinyOS, we evaluate protocols in order to debug them. Results show that KLEE
found two memory faults in dissemination protocol and three bugs in TYMO.

5.1 Overview of implementation and evaluation phase
Figure 10, demonstrates a general overview of the implementation and evaluation part. As it
appears, we include node outage and reboot as a node model together with packet failure as a
network model, to evaluate protocols. There are two phases. First, we verify a feasibility of
integration into TinyOS. Second, we consider some case studies to evaluate the design. At the

first case study, we use KLEE on top of TinyOS in order to test functionality of DIP protocol. In
the second case study, we run some tests on TYMO protocol and use KLEE to inject packets and
alter topology of the network.

Chapter

5

Figure 10: Overview of integration, network and node model.

TinyOS

Node Model

Reboot Outage

Network Model

Packet failure

35

5 Implementation and Evaluation

In this chapter, we provide an overview of the implementation and evaluation phase of this thesis
work. To begin with, we define a node and network model, as discussed in the previous section.
Then we implement a scenario for testing two sample protocols. Upon successful integration of
KLEE and TinyOS, we evaluate protocols in order to debug them. Results show that KLEE
found two memory faults in dissemination protocol and three bugs in TYMO.

5.1 Overview of implementation and evaluation phase
Figure 10, demonstrates a general overview of the implementation and evaluation part. As it
appears, we include node outage and reboot as a node model together with packet failure as a
network model, to evaluate protocols. There are two phases. First, we verify a feasibility of
integration into TinyOS. Second, we consider some case studies to evaluate the design. At the

first case study, we use KLEE on top of TinyOS in order to test functionality of DIP protocol. In
the second case study, we run some tests on TYMO protocol and use KLEE to inject packets and
alter topology of the network.

Chapter

5

Figure 10: Overview of integration, network and node model.

TinyOS

Node Model

Reboot Outage

Network Model

Packet failure

35

5 Implementation and Evaluation

In this chapter, we provide an overview of the implementation and evaluation phase of this thesis
work. To begin with, we define a node and network model, as discussed in the previous section.
Then we implement a scenario for testing two sample protocols. Upon successful integration of
KLEE and TinyOS, we evaluate protocols in order to debug them. Results show that KLEE
found two memory faults in dissemination protocol and three bugs in TYMO.

5.1 Overview of implementation and evaluation phase
Figure 10, demonstrates a general overview of the implementation and evaluation part. As it
appears, we include node outage and reboot as a node model together with packet failure as a
network model, to evaluate protocols. There are two phases. First, we verify a feasibility of
integration into TinyOS. Second, we consider some case studies to evaluate the design. At the

first case study, we use KLEE on top of TinyOS in order to test functionality of DIP protocol. In
the second case study, we run some tests on TYMO protocol and use KLEE to inject packets and
alter topology of the network.

Chapter

5

Figure 10: Overview of integration, network and node model.

TinyOS

Node Model

Reboot Outage

Network Model

Packet failure

36

5.2 Integration into TinyOS
KLEE has a design independent of platform, which allows it to be applicable to any kind of
operating system such as Contiki, Kooja or TinyOS [6]. In order to integrate KLEE into TinyOS,
which is a goal of this thesis, we utilize some libraries of KLEE such as replay and assertion.
This minimizes hard work of large log file analyzing, by just narrowing the execution to a single
path.

Similar to simulation tools such as TOSSIM, node and network modeling in KLEE are based on
hardware layer. A difference is that all events are symbolic in KLEE, but they are manually
defined by user in simulation environment [5]. There is a possibility to introduce node reboot and
node failure such as what may happen in real environment. Moreover, while sensor nodes
communicating with each other in a sensor network, KLEE can inject events of sending packer,
receiving, forwarding or even discarding. This integration is shown in figure 10.

As discussed in Chapter 4, KLEE can implement node outage at any time during execution. This
consequently, produces more execution paths. Contrary to TOSSIM, packet loss is not done with
Channels. Here, KLEE decides to branch an execution path into different paths in a certain time.
One path is to pass the packet to a neighbor node and another is to discard it, in order to simulate
packet loss in the network. Similarly, a scenario for packet duplicate is that right after receiving a
packet, KLEE forks the execution path. One path may be a successful delivery of packet to a
next node and another is to produce the same packet twice and inject them to network. Similar
approach is applicable for packet corruption.

KLEE can control time of execution in order to prevent state explosion. This time is used in
implementation phase to limit execution and to save bandwidth and CPU of processing
computer. Another necessity is to model the topology as symmetric or asymmetric. In symmetric
topology, every node has one connection to other nodes in network. While in asymmetric
topology, nodes have arbitrary connections. There might be a node in asymmetric topology
which is connected to only one node, whereas rests are connected to each other.

We also define a number of nodes and the connectivity between them in the topologies by
KLEE. Hence, we study the behavior of protocols toward increasing network size. This also
provides simulation of the probability of node disconnection and increased load while the
application is executing in a real environment. In this case, we may want to have a complex
model of network with multi-hops and many nodes. These nodes have direct connections to
some other nodes or do not have any connections. However, network can be as simple as a small
full mesh network.

In both aforementioned scenarios, we analyze protocols separately, to investigate all possible
reactions. We also consider non-deterministic event of node failure in setting up KLEE
environment. The motive behind choosing node failure is that, this event has an important effect
on routing and disseminating of packet in distributed sensor networks.

37

5.3 Case 1: Dissemination Protocol
As discussed in chapter 2, dissemination is a service to broadcast a small packet in the network
to provide consistency on shared variables between nodes. Whenever there is a change in a
value, the detector node distributes the value to all nodes. Therefore, all nodes have the same
value as the disseminator [10].

The first case study is to test dissemination protocol. DIP is a data discovery and dissemination
protocol. It is one of the existing libraries in dissemination protocol. Topology of our network is
symmetric, meaning that there is at least one path from one node to another. In a very well
scenario, all nodes are up and working.

Our test starts with 4 nodes. But during execution, a number of nodes increases to provide a full-
coverage scenario with as many numbers of nodes as possible (We continue until CPU and
memory of computer allows). Figure 11 demonstrates a simple case of a symmetric network
topology consists of 5 nodes. As it appears from the figure, all nodes are connected directly to
each other.

xWe select TestDisseminationAppC code in TinyOS package as a source to test the functionality
of dissemination protocol. Since this package comprehensively utilizes the dissemination layer.
In this application, every 4 seconds, node with ID 1 injects two new values of 32-bit and 16-bit
into the network. 32-bit value uses key 0x1234 and 16-bit value uses key 0x2345.

Figure 11: Symmetric network topology consisting o five directly connected nodes.

Both sender and receiver nodes are using Light-Emitting Diode (LED) to indicate operation in a
real network. However, in testing process, we use debug and printf commands in the main code
and related tasks. A disseminator starts the protocol by sending a packet to network. Nodes

38

receiving that packet signal by blinking LED and apply the value. More detailed information of
tasks and functions of dissemination are available at [9].

Right after using KLEE in the program, we found two memory issues. KLEE writes them in log
files accessible to us. Below we describe these errors.

5.3.1 Bug#1: Out-of-bound Pointer Error
DIP protocol bases its decision on a probability of data changed, see Chapter 2. At a certain
period of time, the protocol sends hashes to nodes in order to extract version numbers. If a node
receives a hash, it checks it against its own value. If they are the same, it means that the node is
in consistent state. If they are different, the node concludes that there is a difference [9]. Hash
functionality plays an important role in providing base of DIP decision. Therefore, it is sufficient
for us to make sure that this part is securely implemented and works as perfect as it should. In
order to handle hash, developers implemented DIPSummary.nc component. In this component,
DIPSummary message is responsible for summarizing and hashing the extracted information
from a range of data. Hence we choose this part of the code and apply KLEE on it.

Table 5 shows part of a code in DIPSummary.nc that carries a bug. This bug is related to a case
where getPayloadPtr() returns null. Then, it causes dmsg to dereference a NULL pointer in line
13 of Table 5. This error is categorized as a safety violation.

Bug#1 is so-called as out-of-bound error. At the first compilation phase, LLVM compiler did not
find this bug, while KLEE successfully found it. This bug shows importance of having powerful
and full-coverage testing tool of KLEE type.

Table 5: DIPsummaryp.nc component for negotiation of the length of a hash.

1 command void* DipSend.getPayloadPtr() {
2 // returns NULL if message is busy
3 if(busy) {
4 return NULL;
5 }
6 return call NetAMSend.getPayload(&am_msg, 0);
7 }
8
9 command error_t DipDecision.send() {
10 dip_msg_t* dmsg;
11 dmsg = (dip_msg_t*) call SummarySend.getPayloadPtr();
12
13 dmsg->type = ID_DIP_SUMMARY;
14 ... code omitted ...
15 }

39

5.3.2 Bug#2: Out-of-bound array error
Another out-of-bound error exists in DIPSummary.nc component. Table 6 shows part of a code
extracted from findRangeShadow() task. This code calculates left and right indices of
ShadowEstimates array in order to provide a calculation of hash in subsequent lines.

Table 6: Part of DIPSummary that carries Bug#2.

1 for (i = LBound ; i + len < RBound ; i++) {
2 est1 = shadowEstimates[i];
3 est2 = shadowEstimates[i + len];
4 }

In line 3 of table 6, est2 = shadowEstimates [i + len] access is out-of-bound, when an amount of
RBound value violates a proper one. In this case, it gains a faulty value instead. KLEE found an
improper value for est2. Table 7 shows more lines of the component code carrying this error.
KLEE assigns ShadowEstimates a range of values including UQCOUNT_DIP (128). We
analyzed the log files generated by KLEE. They show that an initial value of high Index is 0,
which provides len = 128 and LBound = RBound = 128.

Program continues until value of high index reaches 121. Consequently, len=8, LBound= 114
and RBound= 129. KLEE logs show the value of RBound is still 130. Hence, it becomes greater
than the maximum current value of 127. This results in out-of-bound error. This error was not
detected in memory safe execution phase (with Safe TinyOS tool).

To solve this issue, a part of the code carrying the bug, may have a change as below:

est= shadowEstimates [i+len] to est2=shadowEstimates [i+len-1]

Whenever, RBound reaches UQCOUNT_DIP, no error appears. However, there is a probability
of exceeding UQCOUNT_DIP. This may provide another safety violation in the code.

Table 7: DipSummaryP code.

1 // repeats through the range
2 runEstSum = highEstSum;
3 printf("DipSummaryP:Iterating from %u to %u\n", LBound, RBound);
4 for(i = LBound ; i + len < RBound; i++) {
5 est1 = shadowEstimates[i];
6 est2 = shadowEstimates[i + len];
7 runEstSum = runEstSum - est1 + est2;
8 printf("Dissemination: Next sum: %u\n", runEstSum);
9 if(runEstSum > highEstSum) {
10 highEstSum = runEstSum;
11 highIndex = i + 1;
12 printf("DipSummaryP: Next range: %u, %u = %u\n", highIndex,
13 highIndex + len, highEstSum);
14 }

40

15 }

5.3.3: Consistency in dissemination
Table 8 shows a coverage provided by KLEE in one execution period. An execution lasts for 5
hours and non-deterministic event that we applied is node failure. As it is shown, during
execution approximately 98% of the code is covered by KLEE. In addition, 5% of the code needs
to be solved regarding the emitted errors.

Table 8: KLEE coverage statistics in dissemination protocol.

Path Instrs Time(s) ICov (%) BCov (%) ICount Solver (%)
klee-last 3190515 18051.38 98.55 79.96 156242 5.33

Despite of two aforementioned bugs, logs generated by KLEE present a successful eventual
consistency of network in case of node reboot and node failure. To test the behavior of DIP
protocol toward node reboot, we consider both symmetric and asymmetric network topology.
These topologies were described in Chapter 4.

We carefully analyzed an execution path, in which one node is not available. KLEE injects two
inputs of different size to network and writes all logs to separate files. Node reboots and rejoins
the network. State files in KLEE indicate that a newly joined node has the same shared value
after dissemination terminates. When a node reboots symbolically by KLEE, network
disseminates different updates for a shared variable, periodically. However, when node rejoins
the network, it receives a recent new value and agrees on keeping that. This provides promised
consistency in the network.

In the next section, we evaluate TYMO routing protocol. We also show that symbolic execution
method (KLEE) detects some bugs while compiler and simulation test tools could not detect
them.

5.4 Case 2: TYMO protocol
As discussed in Chapter 2, TYMO is a point-to-point routing protocol for MANET. In the
following section, we integrate KLEE with TYMO to test functionality of this protocol. Similar
to dissemination, we consider two different network topologies. In one of them, all nodes are
connected and network is symmetric. In the second one, we have an asymmetric network to try
to study what happens to packet transmission, if a link between two nodes fails. Figure 12 shows
all components inside TYMO and an order in which a packet transmits to reach a destination. It
is sufficient to go through all those components involved in packet transmission to ensure
coverage.

41

Figure 13, demonstrates a network of four nodes as an example. All nodes are connected and
communicating well. Execution time of KLEE is set to 5000 seconds, to limit execution paths to
time and to control CPU usage and delay. However, at a final evaluation, we let the system to
run for 36 hours. In this scenario, we aim to test the robustness of packet transmission against
non-deterministic event of packet loss.

Figure 12: Component of TYMO [30].

Figure 13: Symmetric network topology

42

We put distributed assertion for not receiving an acknowledgment. If a sender does not receive
an ACK of the sent packet within a specific time declared in the code, it violates the assertion.
KLEE then writes error in an output file.

In this execution, we aim to have node numbers and connectivity of nodes as symbolic to test the
behavior of the network toward a growing network. We also aim to study node failure effect.
KLEE symbolically defines number and ID for nodes in network. The following sections
describe how KLEE detected a bug in node ID and ACK handler event.

5.4.1 Bug#1: Node ID 0 failure
This bug is related to behavior of nodes depending on whether they are origin, target or
intermediate. KLEE starts from topology depicted in Figure 13 and continues until reaches 20
nodes. Execution time varies between 10 minutes to 36 hours, depending on size of the network.
KLEE starts assigning nodes as origin and target. Log files show that when node ID 0 attempts to
send a packet to any other nodes, packet transmission fails. However, other nodes with ID of 1 to
100 can successfully finish transmission.

Figure 14: Asymmetric topology of network (implemented by KLEE). Node 0 is origin in black routes and
target in red routes.

We found this error by defining a distributed assertion in the component of ACK receipt. If a
sender does not receive an ACK of a sent packet, within a specific time, then it violates the
assertion. Then KLEE generates an error output file. These files show that all messages in which

43

origin has ID 0 failed. Those messages are being retransmitted again and again by origin until
time limit expires.

In that faulty execution path, no packet is sent and no node received any packet. Therefore,
KLEE terminates the path with error. However, execution continues in other paths in which other
IDs are origin. For example, Figure 14 shows an asymmetric network composed of 9 nodes.
KLEE examined all possible combinations of node interactions.

Suppose set of (origin, destination). Here is an extract from KLEE outputs which shows the path,
packet has passed:

(1, 0): [node 1, node 0]
(1, 5): [node 1, node 5]
(1, 2): [no route available]
(2, 8): [node 2, node 5, node 6, node 8]
(2, 0): [node 2, node 5, node 1, node 0]
(2, 7): [node 2, node 5, node 1, node 0, node 7]
(0, 1): [general error occurred]

And so on. As it appears, node with Id 0 can be as target and intermediate node (to transfer a
packet to the next hop) without any error.

5.4.2 Bug#2and #3: ACK handling
This bug in TYMO is associated with messages transmitting process. This process is
implemented in ForwardingEngineM component. We showed the functionality of
ForwardingEngineM module in Figure 15.

44

Figure 15: ForwardingEngineM module [13].

ForwardingEngineM module has a simple role to forward a message. As depicted in Figure 15,
in a node, a packet is received through forward command. Routing engine decides what
operations should be done on the packet. Hence it inspects the packet according to protocol and
decides to forward that packet by updating it.

Protocol informs the forwarding engine about the decision of the routing engine later. If
processing a packet takes a long time, then routing engine makes decision on its own. It decides
to immediately drop a packet, process and forward the packet itself or return error message by
AMSend interface. Bug #2 in TYMO, is related to ForwardingEngineM functionality.

45

Figure 16: A bug in AMSend.

When the protocol starts, in one execution path, we activate ACK. A node tries to send a
message while it does not have a valid route to a destination. As an example, in Figure 14, node
5 joins network and wants to send packet to node 7. There is no direct route between these nodes.
The only way is {5, 1, 0, 7} and this entry is only produced in nodes after transferring some
messages. A small routing table inside nodes shows that entry of routing table is empty or old
when the node joins. This case specially, occurs after KLEE connects a rebooted node to the
network. While node was down, routing table of neighboring nodes has been updated with no
route to and from the affected node. Hence, we have a successful ACK activated environment. In
this case, retransmission timer initiates and Timer.fired() starts successfully.

However, if execution lasts for half a day, for example, valid routes are available toward all
nodes. Therefore, message is sent without the ACK request activated. There is no way to make
sure that whether packet is received by a destination or has been lost in way.

46

Table 9: SendDone event

event void MHSend.sendDone(message_t * msg, error_t e){
if((e == SUCCESS) && (msg == &packet) && (call MHPacket.address ()

== ORIGIN) {
// Even better!

} else {
// The packet couldn’t be sent!

}
}

Table 9 shows part of a component, SendDone event, carrying second ACK handling error. This
part of the code is extracted from MHPacket package. Figure 16 demonstrates where in
communication, the bug exists. Error handling mechanism in SendDone indicates that, if for any
reason, e=FAIL then packet has not been sent. However, log files of KLEE show that even if a
packet is sent to the destination, e=!SUCCESS occurs. Origin node retries sending packet for
duration of time limit. This time is specified in KLEE. Resending the packets causes bandwidth
traffic and packet retransmission. Interestingly, we did not detect this bug when we executed the
protocol for a short time. This error emerges when we have many nodes running the protocol for
a long time. In our case, it lasts 33 hours. We conclude that ACK is not efficiently handled in the
protocol in increasing load.

5.4.3 Coverage
Table 10 shows the coverage of TYMO application by KLEE in one execution run. In this
execution, KLEE detected the bug discussed in Section 5.4.1. Table shows that KLEE covered
1562541 instructions, equivalent to 28% of total at a very short time of 2.57 seconds. At this
short time, KLEE found node ID fault in code.

Table 10: KLEE coverage statistics in one execution in TYMO

Path Instrs Time(s) ICov (%) BCov (%) ICount Solver (%)
klee-last 1562541 2.57 28.02 15.43 15531 21.40

In conclusion, although developers provide a good proof that protocols are working securely
enough, there is a need to test and debug the protocol comprehensively. Since, for example, bugs
described in this thesis successfully passed compilation and simulation testing phase.

47

6 Conclusion

In this thesis work, we presented a technique of symbolic execution to find bugs in wireless
sensor networks. We implemented and prototyped the integration of KLEE with TinyOS, in
order to automate testing of sensor networks. As discussed in the first chapter, it is important to
completely test embedded applications in a wireless sensor network. We should consider all
possible inputs to applications to test the reaction and behavior of the network. All these efforts
are important, since if an error remains undetected, troubleshooting and solving phase become
costly.

In a wireless sensor network, events such as node outage, packet drops or packet corruption
cause complex interaction bugs. Moreover, distributed and resource constraint nature of sensor
nodes demand numerous testing in different phases. With KLEE, as a bug hunting tool before
deployment, we have an automated bug finding tool. This closes gaps between testing
community and developing part. Since KLEE successfully injects non-deterministic events to the
network, it finally provides high-coverage to codes and applications. We showed that we could
successfully integrate KLEE with TinyOS. KLEE fully covered codes and found some bugs.

We used KLEE to test two sample protocols implemented in TinyOS in distributed scenarios.
The scenarios that we considered in evaluation and implementation phase, consist of 3 to 100
nodes. KLEE decides how many nodes are there in network at any time. These nodes are
connected to each other at start and at a certain time, one or more nodes are disconnected. This
helped us to study an effect of node outage event in network.

KLEE found some memory faults and out-of-bound pointer/array in DIP and TYMO. To deeply
check applications, we used assertion to verify the condition of a code, in case assertion violates.
Then we replayed and analyzed the failure scenario to study what caused assertion to violate.
This led us to find some more bugs. By integrating KLEE into two protocols, dissemination and
TYMO, we found an ACK handling problem, a node ID and hash faults.

6.1 Limitations
We used KLEE execution model in this thesis work. It requires a testing system with powerful
processors and memory storage to handle a large number of log files and error logs. Hence, a
comprehensive evaluation requires a real super computer. Moreover, more protocols should be

Chapter

6

48

evaluated with different topologies to make a better judgment on performance of KLEE in
TinyOS. A real environment consists of hundreds of nodes. Therefore, a more comprehensive
debugging requires providing such an environment. In this thesis work, we provided a dimension
of 20 nodes in DIP and 100 nodes in TYMO. However, in real implementations, network is
much larger.

One other limitation is that, during test execution, run time and memory usage depends on
symbolic inputs and a number of inputs. These factors are defined by KLEE. As discussed
earlier, defining non-deterministic events as symbolic affects the number of execution paths.
Therefore, even with a few number of inputs or a small packet injected to the network, we face
numerous execution paths. This limitation was greatly solved by distributed assertions, since
they reduce a number of paths. One important necessity to use KLEE is that we need to have
knowledge of the application logic before applying KLEE on it.

6.2 Future work
It is important to integrate KLEE with more protocols such as CTP, which is broadly used. In
addition, we only considered DIP; hence other dissemination libraries need to be considered
later. Another future work is to incorporate more checks in KLEE such as runtime monitoring of
intensive computational tasks and monitoring of long loops. Another demand is to apply time
annotations. Moreover, interested people can integrate KLEE with other operating systems and
development platforms of wireless sensor networks. They can also address and verify another
distributed behavior of sensor protocols such as state transition.

49

References

[1] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli. The Hitchhiker's Guide to
Successful Wireless Sensor Network Deployments. In SenSys, 2008.

[2] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity and Yield in a
Volcano Monitoring Sensor Network. In OSDI, 2006.

[3] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Dawson, P.
Buonadonna, D. Gay, and W. Hong. A Macroscope in the Redwoods. In SenSys, 2005.

[4] K. Langendoen, A. Baggio, and O. Visser. Murphy Loves Potatoes: Experiences from a Pilot
Sensor Network Deployment in Precision Agriculture. In WPDRTS, 2006.

[5] R. Sasnauskas, O. Landsiedel, M. HamadAlizai, C. Weise, S. Kowalewski, and K. Wehrle.
KLEENet: Discovering insidious interaction bugs in wireless sensor networks before
deployment. In Proc. of the 9th ACM/IEEE International Conference on Information Processing
inSensor Networks (IPSN), Stockholm, Sweden, April 2010.

[6] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI, 2008.

[7] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE: Automatically generating
inputs of death. In Proceedings of the 13th ACM Conference on Computer and Communications
Security (CCS), 2006.

[8] http://klee.llvm.org/.

[9] http://www.tinyos.net/tinyos-2.x/doc/html/tep118.html.

[10] http://docs.TinyOS.net/tinywiki/index.php/Dissemination.

[11] K. Lin and P. Levis. Data Discovery and Dissemination with DIP. In IPSN, 2008.

[12] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M.
Welsh, E. Brewer, and D. Culler. TinyOS: An Operating System for Sensor Networks. In
Ambient Intelligence, 115-148. 2005.

[13] http://docs.tinyos.net/tinywiki/index.php/Tymo.

[14] N. Kothari, T. Millstein, and R. Govindan. Deriving State Machines from TinyOS Programs
Using Symbolic Execution. In IPSN/SPOTS, 2008.

50

[15] S. Gupta, R. Zheng and A. M. K. Cheng, “ANDES: an Anomaly Detection System for
Wireless Sensor Networks,” Proceedings of the IEEE International Conference on Mobile Adhoc
and Sensor Systems, 1-9, 2007.

[16] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications. In SenSys, 2003.

[17] L. Luo, T. He, G. Zhou, L. Gu, T. F. Abdelzaher, and J. A. Stankovic. Achieving
Repeatability of Asynchronous Events in Wireless Sensor Networks with EnviroLog. In
INFOCOM, 2006.

[18] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-level Sensor Network
Simulation with COOJA. EWSN, 2006.

[19] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. Baras, and M. Karir. ATEMU: A Fine-grained
Sensor.

[20] Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, and L. Luo. Declarative Trace points:
A Programmable and Application Independent Debugging System for Wireless Sensor
Networks. In SenSys, 2008.

[21] V. Krunic, E. Trumpler, and R. Han. NodeMD: Diagnosing Node-level Faults in Remote
Wireless Sensor Systems. In MobiSys, 2007.

[22] K. Romer and J. Ma. PDA: Passive Distributed Assertions for Sensor Networks. In
IPSN/SPOTS, 2009.

[23] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and K. Whitehouse. Macro debugging:
Global Views of Distributed Program Execution. In SenSys, 2009.

[24] Y. Chen, O. Gnawali, M. Kazandjieva, P. Levis, and J. Regehr. Surviving Sensor Network
Software Faults. In SOSP, 2009.

[25] P. Ballarini and A. Miller. Model Checking Medium Access Control for Sensor Networks.
In ISOLA, 2006.

[26] P. C. Olveczky and S. Thorvaldsen. Formal Modeling, Performance Estimation, and Model
Checking of Wireless Sensor Network Algorithms in Real-Time Maude. Theor. Comput. Sci.,
410(2-3):254-280, 2009.

[27] P. Volgyesi, M. Maroti, S. Dora, E. Osses, and A. Lfiedeczi. Software Composition and
Verification for Sensor Networks. Sci. Comput. Program., 56(1-2):191-210, 2005.

51

[28] P. D. K. Varma and V. Radha, “Prevention of Buffer Overflow Attacks Using Advanced
Stackguard,” Proceedings of the International Conference on Advances in Communication,
Network, and Computing (CNC), 2010.

[29] M. M. H. Khan, L. Luo, C. Huang and T. F. Abdelzaher, “Snts: Sensor Network
Troubleshooting Suite,” Proceedings of the 3rd IEEE International Conference DCOSS, Springer
LNCS, 45-49:142-157, 2007.

[30] D. Gay et al. The nesC language: a holistic approach to networked embedded systems. In
Programming Language Design and Implementation (PLDI’03), 2003.

