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Abstract

In the study of transcriptional data for different groups (e.g. cancer types)
it’s reasonable to assume that some dependencies between genes on a tran-
scriptional or genetic variants level are common across groups. Also, that
this property is preserved locally, thus defining a modular structure in the
model networks. For ease of interpretation, sparsity in the resulting model
is also desirable. In this thesis we assume genomic data to have a multi-
variate normal distribution and estimate the networks by optimization of
a penalized log-likelihood function for the corresponding inverse covariance
matrices. We apply the fused elastic net penalty for sparsity and commonal-
ity. To achieve modular topology we propose a novel adaptive penalty. This
adaptive penalty is computed from an initial zero-consistent solution. We
also propose a generalization of the method which allows for fusion penalties
defined by a graph. This method can be used to correct estimates when
the groups have different sample sizes. It can also be use to correctly pe-
nalize in the presence of ordered variables such as survival. We optimize
the penalized log-likelihood using the alternating directions method of mul-
tiplier (ADMM). Simulation studies show that our method more accurately
identifies differential connectivity (network edges that differ between cancer
classes) compared with standard methods. We also apply our method to
the investigation of tumor data in glioblastoma, breast and ovarian cancer,
integrating two types of data, mRNA (messenger RNA expression) and CNA
(copy number aberration), by defining a prior distribution of the plausible
links in the corresponding networks.

Keywords: Inverse covariance matrix, precision matrix, graphical models,
high-dimension, low-sample, networks, sparsity, fused lasso, elastic net, can-
cer.
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Chapter 1

Introduction

1.1 Background

According to the central dogma of molecular biology (Figure 1.1) which
describes the flow of information within a biological system, the transfer of
information from a protein to either DNA or RNA is not possible. This fact
establishes a framework for the study of complex biological processes, such
as cancer, at a molecular level.

Figure 1.1: Blue arrows indicate general transfers of information (believed to
occur in most cells). Red arrows indicate special transfers (known to occur
under specific conditions such as lab experiments).

The study of cancer at molecular level is a relatively new area. It is known,
however, that cancer is caused by anomalies in the genome (or genetic al-
terations) that result in an uncontrolled growth of cells. One of the main
challenges of cancer systems biology is to understand the complex molecular
changes that cancerous cells and tissues undergo during the formation of a
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2 1. Introduction

tumor and how these events are connected. This information can be used,
in turn, in the development of new targeted therapies.

1.1.1 Genetic Alterations

The genetic alterations that take place during the formation of a tumor can
be of different types, such as single nucleotide variants (SNV), copy num-
ber alterations (CNA), loss of heterozygosity (LOH) or altered methylation
levels, among others.

• Single Nucleotide Variants. These are point mutations in the DNA
sequence, occurring when a single nucleotide (A, T, C or G) differs
between members of a pair of chromosomes.

Figure 1.2: SNV: The two molecules of DNA differ at the highlighted base-
pair location (a C/T polymorphism).

• Copy Number Alterations. CNA occur when the cell has an ab-
normal number of copies of a certain part of the DNA (sometimes of an
entire gene). The most common ones are deletions (thus fewer copies
than normal) and duplications (more than the normal number).
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Figure 1.3: The cylinders represent a region of the genome. On the left side
a deletion, and on the right side a duplication.

• Loss of Heterozygosity. Most human cells contain two copies of the
genome, one from each parent. Loss of heterozygosity occurs when one
parental copy of a certain region of the genome is lost.

• Altered Methylation. DNA methylation involves the addition of a
methyl group to the cytosine (C) or guanine (G). High levels of methy-
lation in the promotor region of a gene often results in transcriptional
silencing of that gene.

1.1.2 Genetical Data

Collection of genetic data has grown in recent years and will continue. In the
next few years we will have access to comprehensive observations of molecular
changes for different types of cancers thanks to the work of consortia such as
the Cancer Genome Atlas (TCGA), the Cancer Genome Project (CGP), the
International Cancer Genome Consortium (ICGC) and the Uppsala-Umeå
Comprehensive Cancer Consortium (U-CAN).

• TCGA. Since 2006, the Cancer Genome Atlas has been analysing and
building up a comprehensive characterization of the genome of more
than 20 cancer types. Its goal is to scientifically improve our ability
to diagnose, treat and prevent cancer. The data is freely available
through the TCGA Data Portal.

• CGP. The Cancer Genome Project is using the human genome se-
quence and high throughput mutation detection techniques to identify
somatically acquired sequence variants/mutations and hence identify
genes which are critical to the development of human cancers. This
initiative will ultimately provide the paradigm for the detection of



4 1. Introduction

germline mutations in non-neoplastic human genetic diseases through
genome-wide mutation detection approaches.

• ICGC. The primary goals of the International Cancer Genome Con-
sortium are to generate comprehensive catalogues of genomic abnor-
malities (somatic mutations, abnormal expression of genes, epigenetic
modifications) in tumors from 50 different cancer types or subtypes.

• U-CAN. The U-CAN collects and organises patient samples that are
taken before, during and after cancer therapy. Patient data and ra-
diological images are also collected. This material is in turn used to
develop methods to fine-tune diagnoses and to better characterise dif-
ferent tumour diseases, in order to be able to choose an optimal therapy
for the individual patient.

The systems biology approach has an interdisciplinary perspective, as op-
posed to a more traditional reductionistic one, to biological and biomedical
research. In this sense, integration of different data types is an important
aspect of systems biology and it is where mathematical models come to use.
Gene network modeling, for example, has proved helpful to integrate several
levels of genomic cancer data and helped in some important problems such
as (Abenius et al., 2012):

• identification of genes with altered copy number as disease drivers,

• construction of features, based on molecular data, for prediction of
patient survival, and

• discovery of possible therapeutic targets based on matching hubs in
the networks to pharmacological databases.

1.1.3 Cancer types

Here we focus on transcriptional data, mRNA, and one genetic alteration,
namely copy number alteration, CNA. In this thesis we will use data from
TCGA for glioblastoma multiforme, breast cancer and ovarian cancer.

• Glioblastoma multiforme is the most common and aggressive ma-
lignant brain tumor in adults. It affects 2/100000 to 3/100000 people
per year in Europe and North America. The prognosis is poor, with a
median survival time of 12 to 14 months.
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• Breast cancer. The great majority of breast cancer cases occur in
women, but male breast cancer can also occur. It originates from breast
tissue, most commonly inner lining of milk ducts or the lobules that
supply the ducts with milk. Survival rates in the western world are
high compared to those of other cancer types.

• Ovarian cancer. More than 90% of ovarian cancers are classified as
epithelial and are believed to arise from the epithelium (surface) of the
ovary. It has poor prognosis because it lacks any clear early detection
or screening test.

1.2 Gene Regulatory Networks

A gene regulatory network describes how genes interact with each other to
form modules and carry out cell functions. They can help us, by describ-
ing the implied dependencies for the genes, in systematically understanding
complex molecular mechanisms for certain biological processes.

Of special interest are genes that interact with many others, called hub genes.
Recent analysis of hub genes has shown them to be possible disease drivers,
particularly identifying them as key tumorigenic genes (Kendall et al., 2005;
Mani et al., 2008; Nibbe et al., 2010; Slavov and Dawson, 2009).

The methods used for estimation of gene regulatory networks can be classified
in four categories (Allen et al., 2012): Bayesian networks, information theory-
based, correlation-based and partial correlation-based methods. The method
proposed in this thesis falls into the latter category. Furthermore, we are
interested in the joint estimation of multiple gene regulatory networks. More
precisely, we will use partial correlation-based methods to jointly estimate
multiple Gaussian graphical models. Due to the nature of the data we work
with, we find biologically relevant to introduce some constraints on equality
of the links across classes and modularity.

Bayesian networks

Construction of Bayesian networks is based on searching for a probabilistic-
network structure with a high posterior probability. The solution is con-
strained to a graphical model that represents a set of variables and their
independencies. Examples of methods to compute Bayesian networks are
BNArray (Chen et al., 2006), B-course (Myllymaki et al., 2002), BNT (Mur-
phy, 2001) and Werhli’s implementation of BN (Werhli et al., 2006).
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Information Theory-based Methods

These type of methods use mutual information to determine the depen-
dencies between genes and remove indirect candidate interactions using the
data processing inequality. The best known algorithm of such type is the
Algorithm for the Reconstruction of Accurate Cellular Networks, ARACNE
(Margolin et al., 2006).

Correlation-based Methods

The most straightforward way of estimating gene regulatory networks is by
thresholding the sample covariance matrix to keep only the strongest connec-
tions between pairs of genes. An example of a correlation-based method is
the Weighted Correlation Network Analysis, WGCNA (Langfelder and Hor-
vath, 2008).

Partial Correlation-based Methods

Partial correlation-based methods make use of Gaussian graphical model-
theory. The goal is to estimate the partial (conditional) correlation between
genes given by the non-zero elements of the inverse covariance matrix.

In the next chapter we will give a review of the latest proposals in partial
correlation-based methods for estimation of both single and multiple Gaus-
sian graphical models. We will also explain in more detail our constraints of
equality and modularity.



Chapter 2

Gene Network Estimation

Under the assumption of normality, the problem of estimating the partial
correlations is equivalent to estimating the inverse covariance matrix (also
called the precision matrix). For a single Gaussian graphical model this
can been done in many different ways. Dempster (1972) formulated it as
the combinatorial problem of optimizing the location of zeros in the matrix.
Since such methods don’t scale up to high dimensions, more recently the
focus has been shifted to optimization of penalized likelihood functions. In
Meinshausen and Buhlmann (2006), each variable is estimated through an
L1 penalized regression on the rest of the variables. Later on, extensions
and generalizations were proposed by Yuan and Lin (2007a), Banerjee et al.
(2008), D’Aspremont et al. (2008) and Friedman et al. (2008). All of these
produce estimates of the inverse covariance matrix referred to nowadays as
the graphical lasso.

Regarding the estimation of multiple graphical models, a relevant problem
in the presence of data from several classes that share variables, but not
necessarily structure, Guo et al. (2011), Yuan and Lin (2007a), and Guo
and Wang (2010) have proposed methods to achieve a common structure
(without equal values), but not necessarily common modules.

2.1 Review of Existing Methods

If we assume that transcriptional data from different groups (for exam-
ple different cancer types) can be modeled as a realization of a multivari-
ate normal distribution with mean µ and covariance matrix Σk, for all
groups k = 1, 2, . . . ,K, then the problem of estimating the transcription

networks is equivalent to estimating the precision matrices Θk =
(

Σk
)−1

,

7



8 2. Gene Network Estimation

k = 1, 2, . . . ,K. Specifically, transcription of gene i is conditionally inde-
pendent of transcription of gene j given all the others (i.e. there is no link
between i and j in the corresponding network), if and only if the (i, j)-th
element in the precision matrix is zero.

Assume for the moment we have only one class and a data set X of obser-
vations from N(0,Σ) (we assume without loss of generality that the data
is centered). Most of the recent methods to estimate the precision matrix
Θ = Σ−1 are based on the optimization of a penalized version of the likeli-
hood function (see for example Friedman et al. (2008))

l(Θ) = ln (det (Θ))− tr (SΘ)− g(λ,Θ)

where S = 1
nX

TX is the empirical covariance matrix, g is a suitable function
of Θ which imposes the desired constrains on the model and λ is a tuning
parameter, which can be a vector or a matrix. When the number of variables
p is larger than the number of observations n (precisely the case we are
interested in here), a penalty that imposes sparsity is needed since the usual
maximum likelihood estimate Σ̂ = S is not positive definite and suffers from
very high variance.

Many authors who have studied this problem optimize the penalized function

l(Θ) = ln (det (Θ))− tr (SΘ)− λ‖Θ‖1,

where ‖Θ‖1 =
∑

i 6=j |θij | and θij is the ij-th element of Θ. This penalty is
known as the (Tibshirani, 1996) lasso penalty and the parameter λ controls
the degree of sparsity in Θ. The larger it is, the more elements in Θ will be
shrunk to zero. The solution to this problem is referred to as the graphical

lasso or glasso.

A similar problem, but so far only studied in the linear regression context, is
the elastic net (Zou and Hastie (2008)), where the penalty function is given
by

g(λ, α,Θ) = λ
∑

i 6=j

[

α|θij |+ (1− α)θ2ij
]

.

According to the authors, the elastic net often outperforms the lasso while
enjoying similar sparsity structure. It also has a grouping effect, in which
strongly correlated variables tend to be zero, or not, simultaneously.

Here we are interested in common networks across K classes. Guo et al.
(2011) proposed a method to achieve a common structure (without equal
values), but not necessarily common modules. They find an approximate
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solution to this problem by iteratively optimizing the K likelihood functions

l(Θk) = ln
(

det
(

Θk
))

− tr
(

SkΘk
)

− λ
∑

i 6=j

ωk
ij | θ

k
ij |,

where ωk
ij =

(

∑K
k=1 | θ

k
ij |

)−1/2
. Thus the problem can be solved by repeat-

edly applying glasso to the precision matrix and updating the penalty so it
decreases in each iteration for links that must be present across all classes.
However, this approach doesn’t fulfil all the constraints we are interested
in, since it doesn’t encourage modularity, nor does it guarantee equal values
of the common entries of the precision matrices, only a certain number of
common non-zeros.

A similar approach that also guarantees a similar pattern of sparsity, but
not equal values for some of the non-zeros, is the sparse group lasso (Yuan
and Lin, 2007b). It optimizes the likelihood function

l ({Θ}) =
K
∑

k=1

nk

[

ln
(

det
(

Θk
))

− tr
(

SkΘk
)]

− λ1

K
∑

k=1

∑

i 6=j

| θkij | −λ2

∑

i 6=j

√

√

√

√

K
∑

k=1

(

θkij

)2
,

where {Θ} = {Θ1,Θ2, . . . ,ΘK}.

Guo and Wang (2010) suggested one way to introduce modularity, under-
stood as a partition of the nodes in disjoint sets. First they estimated the
precision matrix using glasso and used this estimate to define a dissimilarity
matrix which was, in turn, used to find clusters of nodes in the correspond-
ing network. In a second step, they estimated again the precision matrix
by penalizing the log-likelihood function with either a double regularization
penalty or a group penalty. By means of independent tuning parameters they
control the sparsity within and between clusters. This procedure doesn’t
guarantee equality of common values.

One way to guarantee equal values for the common links, if not the common
modules, is the OSCAR, described in Bondel and Reich (2008) in the context
of linear regression. The OSCAR penalty can, in principle, be applied to our
problem, which will then require optimizing the following function:

l ({Θ}) =
K
∑

k=1

nk

[

ln
(

det
(

Θk
))

− tr
(

SkΘk
)]

− λ1

K
∑

k=1

∑

i 6=j

| θkij | −λ2

∑

k<k′

∑

i 6=j

max{θkij, θ
k′
ij }.
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Here, the L∞ norm encourages equality of coefficients. The drawback here
is of practical nature, since this is a complicated function to optimize.

A more tractable way to approach the problem is suggested in Danaher et al.
(2011). There, the log-likelihood takes the form

l ({Θ}) =
K
∑

k=1

nk

[

ln
(

det
(

Θk
))

− tr
(

SkΘk
)]

− λ1

k
∑

k=1

∑

i 6=j

| θkij | −λ2

∑

k<k′

∑

i,j

|θkij − θk
′

ij |.

This time the equality in link values is encouraged by the fused penalty.
Although the authors provide a closed solution to for the case with two
classes, they don’t provide an efficient algorithm for the general case.

In our case, for the model to have a relevant and useful interpretation from
the biological point of view, some constraints must be imposed:

• A full (non-sparse) precision matrix is informative for output prediction
but is hard to interpret. It also contains correlations of all strength
levels, therefore sparsity restrictions must be imposed to pick out the
strong correlations of interest.

• The diversity observed in cancer biology makes it plausible to assume
that different cancers have different regulators, but it’s possible that
some of them are shared and their transcription will be, therefore,
common across cancer types. From the network point of view, this
means that some links will be unique, whereas some will be common
to some or all cancer types.

• It is biologically sensible that the type of a given link (common across
cancer types or unique) is a property that should be preserved locally,
thus defining a module or a modular network structure.

In the next chapter we describe a method to solve the problem, which into
account all these constraints.



Chapter 3

The adaptive penalty method

In the previous chapter we described the problem we are interested in and its
equivalence to a constrained optimization problem. Sparsity and commonal-
ity of links are taken care of by the lasso and the fused penalty, respectively.
Here we present details on an adaptive penalty that will encourage modu-
larity.

3.1 Adaptive penalty schemes

Consider K data sets X1, X2, . . . ,XK with K ≥ 2 corresponding to K
classes. Data set Xk consists of nk observations and p variables, which are
common to all K data sets. We assume the observations within each data set
to be i.i.d. N(0,Σk). Let Θk =

(

Σk
)−1

and Sk be the empirical covariance
matrix for the k class, k = 1, 2, . . . ,K. We propose to optimize the penalized
likelihood function

l ({Θ}) =
K
∑

k=1

nk

[

ln
(

det
(

Θk
))

− tr
(

SkΘk
)]

(3.1)

− λ1

K
∑

k=1

∑

i 6=j

[

α
∣

∣

∣
θkij

∣

∣

∣
+ (1− α)

(

θkij

)2
]

− λ2

∑

k<k′

∑

i,j

ωkk′
ij

∣

∣

∣
θkij − θk

′

ij

∣

∣

∣
,

where θkij is the ij element of Θk.

The first term of the penalty is the elastic net, which controls the overall
sparsity level of all covariance matrices: the larger the tuning parameter λ1 is,

11
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the sparser the Θk are. The second term is the fused lasso penalty, there the
parameter λ2 controls the degree of commonality (links with the same value)
across the K classes: the larger it is, the more the link value is preserved
across classes. These two penalties take care of the first two constraints
mentioned in the previous section however, one of the main contributions
of this paper is given by the adaptivity factor ωkk′

ij , which will take care of
the third constraint described in the previous section, and that we describe
below.

To compute the adaptivity parameter we proceed in a similar way to Zou
(2006) and his adaptive lasso scheme. The idea is to adapt the tuning pa-
rameter for the fused penalty, λ2, based on an initial estimate of the network.
Now, for the adaptive lasso to possess the oracle property as described in
Fan and Li (2001), it is required that the initial estimate of the network is
zero-consistent (estimators of zero link converge to zero in probability and
estimators of non-zero links do not converge to zero). The fused lasso has
this property (Sharma et al. (2012)) and, for that reason, we optimize (3.1)
in two steps. First we compute the initial estimate of the networks using
the usual fused lasso (that is, with ωkk′

ij = 1 ∀i, j and ∀k, k′) which we then

use to compute a new ωkk′
ij . Then we optimize again (3.1) using these new

values for the adaptivity parameter.

We propose four different adaptivity schemes, two global and two local ones.

Adaptivity I

We consider ωij to be the same for all pairwise comparisons in the fused
penalty. For this reason we can drop the superindices kk′ and define it as
follows

ωij =





∑

k<k′

|θ̃kij − θ̃k
′

ij |
∑

k<k′

∑

l∈Nij

(

|θ̃kil − θ̃k
′

il |+ |θ̃
k
jl − θ̃k

′

jl |
)





−γ

, (3.2)

where the θ̃kij are the initial estimates of the network, Nij denotes the set of
neighbors of link (i, j), that is, the set of links connected to nodes i and j;
γ is a positive tuning parameter. This adaptivity factor encourages fusing
of link (i, j) for classes k and k′ when they are already close or when its
neighbors are (that is, when they have similar values) across classes, thus
encouraging even more similarity.

As an example, consider Figure 3.1, where an initial estimate of a net-
work is shown. The neighbors of link (i, j) (that between genes i and
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j) are links marked as 1, 2, 3, and 4. Whenever link (i, j) itself is sim-
ilar across some classes, the inverse

∑

k<k′ |θ̃
k
ij − θ̃k

′

ij | will be large. On
the other hand, whenever links 1, 2, 3, or 4 are similar, the inverse of
∑

k<k′
∑

l∈Nij

(

|θ̃kil − θ̃k
′

il |+ |θ̃
k
jl − θ̃k

′

jl |
)

will be large. The result is that ωij

will be large whenever link (i, j) or its neighbors are similar, thus encourag-
ing a local fused structure (modularity). If either link (i, j) or its neighbors
are equal across all classes, ωij becomes infinite, in which case we define it
as some large value.

Figure 3.1: In this network the neighborhood of link (i, j) is comprised of
links 1, 2, 3, and 4.

Adaptivity II

We want to further refine the adaptivity penalty. We notice that when using
the above criterion to define ωij, we increase (or decrease) the fused penalty
equally for all pairwise differences. This can result in neighbor links being
equal across different subsets of all classes. To avoid that, we define pairwise
specific ωkk′

ij as

ωkk′

ij =



|θ̃kij − θ̃k
′

ij |
∑

l∈Nij

(

|θ̃kil − θ̃k
′

il |+ |θ̃
k
jl − θ̃k

′

jl |
)





−γ

. (3.3)

Figure 3.2 shows an example for such situation. In this case link (i, j) is
equal for classes 2, 4, and 6 so we would like to encourage fusing across these
classes. However, its neighbors are equal across a different subset of classes
and we would like to take that into account to obtain a "cleaner" module,
in the sense that its links are equal across the same subset (or as similar as
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possible). In this example ω12
ij will be larger than any other ωkk′

ij , since 3
links in the neighborhood of link (i, j) are equal for classes 1 and 2.

Figure 3.2: A network where the links in the neighborhood of link (i, j) are
not equal across the same subset of classes.

Adaptivity III and IV

The last two adaptivity schemes are just local versions of the previous adap-
tivity factors. The idea is to encourage modularity even more by creating
local versions the ωij and ωkk′

ij defined above. To do that we first cluster the
variables for all classes, using the union network of the initial estimate, thus
finding, say, M clusters. We then define

ω
(m)
ij =







∑

k<k′

|θ̃kij − θ̃k
′

ij |
∑

k<k′

∑

l∈N
(m)
ij

(

|θ̃kil − θ̃k
′

il |+ |θ̃
k
jl − θ̃k

′

jl |
)







−γ

, (3.4)

where i, j and l belong to the m-th cluster and m = 1, 2, . . . ,M . Similarly,

(

ωkk′
ij

)(m)
=






|θ̃kij − θ̃k

′

ij |
∑

l∈N
(m)
ij

(

|θ̃kil − θ̃k
′

il |+ |θ̃
k
jl − θ̃k

′

jl |
)







−γ

. (3.5)

Here too i, j and l belong to the m-th cluster and m = 1, 2, . . . ,M .

We will show in Chapter 5 simulation studies and results on real data using
schemes I and II. However, we leave further analysis of schemes III and IV for
future work. In the next chapter we present an iterative method to optimize
the adaptive penalized log-likelihood using the alternating directions method
of multipliers.



Chapter 4

Estimation of parameters

We are interested in applying the fused elastic net penalty to the log-likelihood
of the inverse covariance matrices. To further encourage modularity we want
to adapt the fused penalty using the adaptivity schemes introduced in Chap-
ter 3. We optimize this penalized log-likelihood function in two steps. First
we obtain a zero-consistent estimate from the regular fused elastic net (that
is, without applying any adaptivity scheme) which is used to computed ei-
ther (3.2) or (3.3), then we estimate again the networks using this adaptive
penalty.

Each optimization step is done using the alternating directions method of

multipliers, ADMM. For a complete description of the method see Boyd et al.
(2011). We will present first an algorithm to solve the problem when the
elastic net penalty is not class specific (that is, λ1 is equal ∀k = 1, 2, . . . ,K)
and the fused penalty is not pair-specific (that is, ωkk′

ij is equal ∀k, k′ =
1, 2, . . . ,K) since it’s simpler. Nevertheless, adaptivity scheme II (and IV)
require pair-specific penalties. Moreover, as we will see later, relative sample
sizes have an effect in the sparsity structure that can be alleviated by using
class-specific elastic net penalties. For this reason, we will present a slightly
different algorithm to solve this problem with more general penalties.

4.1 The ADMM algorithm

To optimize the penalized likelihood problem using ADMM we note first
that it can be written as

minimize
{Θ},{Z}

f({Θ}) + g(λ, {Z})

subject to Θk = Zk, k = 1, . . . ,K.

15
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(Danaher et al., 2011) where

f({Θ}) =
K
∑

k=1

nk

[

tr(SkΘk)− ln
(

det(Θk)
)]

g(λ, {Z}) = λ1

K
∑

k=1

∑

i 6=j

[

α
∣

∣

∣
Zk
ij

∣

∣

∣
+ (1− α)Z2

ij

]

+ λ2

∑

k<k′

∑

i,j

∣

∣

∣
Zk
ij − Zk′

ij

∣

∣

∣
.

ADMM solves this problem by defining the scaled augmented lagrangian as
follows:

L({Θ}, {Z}, {U}) = f({Θ}) + g(λ, {Z}) +
ρ

2

K
∑

k=1

‖Θk − Zk + Uk‖2F ,

where Uk are the dual variables.

Then minimization is done iteratively in three steps. At iteration m, the
variables {Θ}, {Z} and {U} are updated according to

1. Θk
m ← arg min{Θ} {L({Θ}, {Zm−1}, {Um−1})}

2. Zk
m ← arg min{Z} {L({Θm}, {Z}, {Um−1})}

3. Uk
m ← Uk

m−1 +Θk
m − Zk

m

for k = 1, . . . ,K. We now present details of the first two steps. We omit the
iteration subindex to simplify the notation.

For the first step, function g is a constant, so the problem is to minimize the
function

K
∑

k=1

nk

[

tr(SkΘk)− ln
(

det(Θk)
)]

+
ρ

2

K
∑

k=1

‖Θk − Zk + Uk‖2F (4.1)

with respect to Θ. Let V DV T be the SVD decomposition of ρ/nk(Z
k−Uk)−

Sk. The minimizer of (4.1) is given (Witten and Tibshirani, 2009) by V D̃V T

where D̃ is a diagonal matrix with elements nk/2ρ(Djj +
√

D2
jj + 4ρ/nk).

For the second step, function f is a constant, so the problem is to minimize
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the function

g(λ, {Z}) +
ρ

2

K
∑

k=1

‖Θk − Zk + Uk‖2F

=
ρ

2

K
∑

k=1

‖Zk −Ak‖2F + λ1

K
∑

k=1

∑

i 6=j

[

α|Zk
ij |+ (1− α)

(

Zk
ij

)2
]

+ λ2

∑

k<k′

∑

i,j

|Zk
ij − Zk′

ij |

with respect to Z, where Ak = Θk + Uk.

This problem is separable for each element (i, j), so we can solve separately
as

minimize
{Zij}

{

1

2

K
∑

k=1

(

Zk
ij −Ak

ij

)2

+
λ1

ρ
Ii 6=j

K
∑

k=1

[

α|Zk
ij |+ (1− α)

(

Zk
ij

)2
]

+
λ2

ρ

∑

k<k′

|Zk
ij − Zk′

ij |

}
(4.2)

This is a case of the fused lasso signal approximator (Hoefling, 2010) where
all pairwise differences are penalized and regularized with the elastic net.
When K = 2, and λ1 = 0, the problem has a closed form solution (Danaher
et al., 2011),

(

Z1

ij , Z
2

ij

)

=







(

A1

ij − λ2/ρ,A
2

ij + λ2/ρ
)

if A1

ij > A2

ij + 2λ2/ρ
(

A1

ij + λ2/ρ,A
2

ij − λ2/ρ
)

if A2

ij > A1

ij + 2λ2/ρ
(

1

2
(A1

ij +A2

ij),
1

2
(A1

ij +A2

ij)
)

if |A1

ij −A2

ij | ≤ λ2/ρ,
(4.3)

and the solution for λ1 > 0, Z∗
ij , can be found by soft-thresholding (Friedman

et al., 2007; Zou and Hastie, 2008) (4.3) according to Z∗
ij = αSTλ1(Zij)/(1+

(1−α)λ1). The soft-threshold function is defined as: STλ(x) = sign(x)max(|x|−
λ).

To solve the case when K > 2 we follow Hoefling (2012). We focus first
on the fused penalty and drop the subindexes ij and ρ to simplify notation.
Proposition 1 in Hoefling (2012) ensures that the order of the coefficients in
the solution Zk is the same as the order of the Ak. Assume now, without
loss of generality, that A1 ≤ A2 ≤ . . . ≤ AK . Then, taking λ1 = 0 (as before,
the solution for λ1 > 0 can be found afterwards by soft-thresholding), the
objective function becomes

L({Z}) =
1

2

K
∑

k=1

(

Zk −Ak
)2

+ λ2

∑

k>k′

(Zk − Zk′

) = (4.4)

K
∑

k=1

[

1

2

(

Zk −Ak
)2

+ λ2 (2k − (K + 1))Zk

]
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subject to Z1 ≤ Z2 ≤ . . . ≤ ZK , and we see that the variables are separable.

If the constraint on the order of Z is fulfilled, then the global solution, found
by setting the derivative of (4.4) with respect to Zk equal to zero, is given by
Zk
∗ = Ak − λ2 (2k − (K + 1)). If, for a certain index k0, Z

k0
∗ > Zk0+1

∗ , then
Proposition 2 in Hoefling (2012) proves that Zk0 = Zk0+1 = (Zk0

∗ +Zk0+1
∗ )/2.

Algorithm for the adaptive penalty method

We sketch below the algorithm to solve the initial fused elastic net problem.

Algorithm 1

for k = 1→ K do

Zk ← (Sk + ǫI)−1

Uk ← 0

end for

while convergence6=TRUE do

for k = 1→ K do

ΘK
i ← arg min

{Θ}

{

K
∑

k=1

nk

[

tr(SkΘk)− ln
(

det(Θk)
)]

+
ρ

2

K
∑

k=1

‖Θk − Z
k
i−1 + U

k
i−1‖

2
F

}

Z
K
i ← arg min

{Z}







ρ

2

K
∑

k=1

‖Θk
i − Z

k + U
k
i−1‖

2
F + λ1

K
∑

k=1

∑

i6=j

[

α|Zk
ij |+ (1− α)

(

Z
k
ij

)2
]

+λ2

∑

k<k′

∑

i,j

|Zk
ij − Z

k′

ij |

}

U
k
i ← U

k
i−1 +Θk

i − Z
k
i

end for

end while

To solve the problem with adaptive penalty we just need to run Algorithm 1
first, update the penalties according to (3.2) and then run again Algorithm 1
using these updated penalties. Furthermore, we can decrease the execution
time by using the solution from Algorithm 1 as a warm start. The complete
algorithm is thus:

Algorithm 2

{Θ} ← Algorithm 1({S}, λ1, λ2)
λ2 ← update(λ2)
{Θ} ← Algorithm 1({Θ}, λ1, λ2)

where the update of λ2 is computed, according to (3.2).
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4.2 Faster computations through vectorization

The second step of the ADMM algorithm, where the matrix Z is updated,
assumes elementwise updating of each element ij, since the K classes need
to be sorted so that A1

ij ≤ A2
ij ≤ . . . ≤ AK

ij . This results in very slow
computations when the number of variables p is large. Here we present a
vectorization method for faster computations of the update of Z.

1. Let B be a reshaped version of A, where B is a p2×K matrix containing
all elements from A as rows and the K classes as columns:

B(i−1)p+j,k = Ak
i,j.

2. Sort each row of B and save the order of the sorting for future use.

3. Let I be the p2 ×K matrix

I =











1 2 3 · · · K
1 2 3 · · · K
...

...
...

. . .
...

1 2 3 · · · K











.

4. Calculate the derivative solutions (Z∗) in a matrix form: b = B −
λ2(2I −K − 1).

5. Initialize the following variables:

• bI a p2 ×K boolean matrix with FALSE.

• mv a p2 × 1 vector with zeros.

• lf a p2 × 1 vector with ones.

• l a p2 × 1 vector with ones.

6. Apply the following algorithm:

for iter = 1→ K do

for k = 1→ K − 1 do

fuse← b.k > b.k+1 ⊲ fuse = boolean p2 × 1 vector
bI.k ← fuse
bI.k+1 ← fuse
lf(fuse)← lf(fuse) + 1 ⊲ Counter of how many classes

that are being fused

lf(notfuse)← 1
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mv(fuse)← b(fuse,k).∗(lf(fuse)−1)+b(fuse,k+1)
lf(fuse) ⊲ Calculates

the new values for the fused elements
update← repmat(mv, 1,K). ∗ bI
b(bI)← update(bI)

end for

end for

7. Reorder b with the help of the sorting kept from step 2.

8. To get the final solution Z for the current iteration, reshape b into K
p× p matrices.

4.3 The effect of different sample sizes

The sparsity and fusing levels of the solution depend on the sample sizes for
each class. To see this, consider the penalized log-likelihood function of our
problem (3.1). It can be rewritten as

l ({Θ}) =
K
∑

k=1

nk

[

ln
(

det
(

Θk
))

− tr
(

SkΘk
)]

− λ1

K
∑

k=1

∑

i 6=j

[

α
∣

∣

∣
θkij

∣

∣

∣
+ (1− α)

(

θkij

)2
]

−
λ2

2

K
∑

k=1

K
∑

k′=1

∑

i,j

ωkk′
ij

∣

∣

∣
θkij − θk

′

ij

∣

∣

∣

=
K
∑

k=1

nk

{

ln
(

det
(

Θk
))

− tr
(

SkΘk
)

−
λ1

nk

∑

i 6=j

[

α
∣

∣

∣
θkij

∣

∣

∣
+ (1− α)

(

θkij

)2
]

−
λ2

2nk

K
∑

k′=1

∑

i,j

ωkk′
ij

∣

∣

∣
θkij − θk

′

ij

∣

∣

∣







.

The effective elastic net penalty for class k is thus given by λ1/nk. This
penalty makes the estimates of classes with smaller sample sizes sparser, in
comparison to those with larger sample sizes.

Consider now a specific pair of classes k and k′ and a specific link (i, j), the
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elements in the fused penalty which include these are

λ2

nk

K
∑

l 6=k

∣

∣

∣
θkij − θlij

∣

∣

∣
+

λ2

nk′

K
∑

l 6=k′

∣

∣

∣
θk

′

ij − θlij

∣

∣

∣

= · · · +
λ2

nk

∣

∣

∣
θkij − θk

′

ij

∣

∣

∣
+

λ2

nk′

∣

∣

∣
θk

′

ij − θkij

∣

∣

∣
+ · · ·

= λ2

(

1

2nk
+

1

2nk′

)

∣

∣

∣
θkij − θk

′

ij

∣

∣

∣
= λ2

nk + nk′

2nknk′

∣

∣

∣
θkij − θk

′

ij

∣

∣

∣
,

so the effective fused penalty for the pair k, k′ is λ2
nk+nk′

2nknk′
. This penalty

makes classes with smaller sample sizes fuse faster towards each other than
to classes with larger sample sizes.

We think is reasonable to assume that the networks for different cancer
classes have similar sparsity levels. Our approach is then to correct the
sparsity and the fusing tuning parameters λ1 and λ2, respectively, so that
classes with larger sample sizes don’t dominate the estimation of all networks.
This way we obtain similar sparsity levels. We think, however, that this
correction shouldn’t be used when the sample sizes are too different, since it
can, potentially, create many false positives.

A natural way to correct for the sample size effects is to multiply the tun-
ing parameters λ1 and λ2 by the inverses of nk and

nk+nk′

2nknk′
respectively,

however, in our experience this can overcorrect. We proceed instead as fol-

lows. Define an effective sample size ne
k for class k as ne

k = n̄δn
(1−δ)
k , where

n̄ = 1
K

∑k
k=1 nk and 0 ≤ δ ≤ 1 is the correction parameter. We penal-

ize the log-likelihood with the effective penalty parameters λk
1 = λ1n

e
k and

λkk′
2 = λ2

2ne
k
ne
k′

ne
k
+ne

k′
. In the process, the tuning parameter for the elastic net

penalty becomes class specific and the tuning parameter for the fused penalty
becomes pair specific. This way, when δ = 1, λk

1 are all equal ∀k = 1, 2, . . . K
and no sample size correction is done. When δ = 0 ne

k = nk, using the real
sample size as correction factor. Selecting a value 0 ≤ δ ≤ 1 we can achieve
similar sparsity levels, but of course it will be data dependent.

An example, we apply the correction method for a real data set with 6
classes: glioblastoma, ovarian, breast, head and neck, uterine and kidney
cancer. The sample sizes of these classes are 254, 307, 337, 394, 498 and
646 respectively. In Table 4.1 we show the number of links in the estimated
networks for different values of δ.

It is difficult to obtain networks with exactly the same sparsity levels, since
the sample sizes are so different (the largest sample is about 2.5 times larger
than the smallest). Taking δ = 0, or too small, can overcorrects and give
opposite results, making the estimates of the classes with larger sample sizes
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δ Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

0 494 63 368 69 97 219

0.02 352 57 318 67 115 247

0.04 245 49 271 65 128 277

0.06 154 39 223 65 153 371

0.08 104 30 193 64 70 467

0.1 61 23 154 62 189 599

0.12 37 18 125 59 81 673

0.14 28 15 100 55 230 922

0.16 20 12 78 54 254 939

0.18 8 10 61 50 101 1058

0.2 1 8 47 50 304 1080

0.22 1 6 41 48 334 1313

0.24 0 5 31 47 362 1256

0.26 0 4 22 45 399 1194

0.28 0 1 14 43 423 1309

0.3 0 1 12 41 463 4375

Table 4.1: Number of links present in estimated networks for different values
of δ. δ = 0.04 minimizes the variance in estimated number of links.

to be the most sparse. Not doing correction results in empty networks for
the classes with smaller sample sizes. For this particular data set, δ = 0.04 is
the best value since it reduces the variability in the sparsity of the estimated
networks.

4.4 ADMM algorithm for class and pair-specific penal-

ties

We now present an algorithm to optimize the log-likelihood function with
class and pair specific penalties. With this algorithm we have the possibility
of using adaptive scheme II (3.3) and correct for unequal sample sizes.

The log-likelihood function with class-specific elastic net penalty and pair-
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specific fuse penalty is

l ({Θ}) =
K
∑

k=1

nk

[

ln
(

det
(

Θk
))

− tr
(

SkΘk
)]

(4.5)

−
K
∑

k=1

∑

i 6=j

λk
1,ij

[

α
∣

∣

∣
θkij

∣

∣

∣
+ (1− α)

(

θkij

)2
]

−
∑

k<k′

∑

i,j

λkk′
2,ij

∣

∣

∣
θkij − θk

′

ij

∣

∣

∣
.

We proceed similarly to Algorithm 1 to minimize (4.5), but this time the
update for the {Z} matrices is also done by ADMM. We present now the
details for this update following Ye and Xie (2011).

Here we drop the subindex ij to simplify notation, but we keep the su-
perindex that denotes class, thus, in the following, Z and A should be inter-
preted as vectors in R

K). Consider thus a link (i, j), we need to solve the
problem

minimize
Z

{

1

2

K
∑

k=1

(

Zk −Ak
)2

+

K
∑

k=1

λk
1

[

α|Zk|+ (1− α)
(

Zk
)2

]

+
∑

k<k′

λkk′
2 |Z

k − Zk′|

}

.

(4.6)

Let

f(Z) =
1

2

K
∑

k=1

(

Zk −Ak
)2

g(Z) =

K
∑

k=1

λk
1

[

α|Zk|+ (1− α)
(

Zk
)2

]

h(Z) =
∑

k<k′

λkk′
2 |Z

k − Zk′| = ‖Λ2LZ‖1,

where Λ2 = (λkk′
2 ) is a vector of dimension 1

2K(K+1) and L is a 1
2K(K+1)-

by-K matrix with values in {−1, 0, 1} corresponding to the pairwise differ-
ences to be penalized. Problem (4.6) can be written as

minimize
Z

f(Z) + g(V ) + h(W )

subject to V = Z

W = LZ.
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In this occasion we need to introduce two dual variables P and Q for the
augmented Lagrangian. At iteration m we update the values of the variables
according to

Zm ← argminZ

{

f(Z) + 〈Pm−1, Z − Vm−1〉+ 〈Q,LZ −Wm−1〉

+
ρ1
2
‖Z − Vm−1‖

2
2 +

ρ2
2
‖LZ −Wm−1‖

2
2

}

Vm ← argminV

{

g(V ) + 〈Pm−1, Zm − V 〉+
ρ1
2
‖Zm − V ‖22

}

Wm ← argminW

{

h(W ) + 〈Qm−1, LZm −W 〉+
ρ2
2
‖LZm −W‖22

}

Pm ← Pm−1 + ρ1(Zm − Vm)

Qm ← Qm−1 + ρ2(LZm −Wm),

where 〈x, y〉 denotes the inner product of vectors x and y.

The solution to the updating problem for Zm, which corresponds to a system
of linear equations; and the solutions to the updating problems for Vm and
Wm, which are given by soft-thresholding, can be computed as follows:

Z =
[

(ρ1 + 1)I + ρ2L
TL

]

−1

[

A+ ρ1

(

V −
1

ρ1
P

)

+ ρ2L
T

(

W −
1

ρ2
Q

)]

(4.7)

V = STλ1/ρ1

(

Z +
1

ρ1
P

)

W = STλ2/ρ2

(

LZ +
1

ρ2
Q

)

.

Although problem (4.6) and its ADMM updates (4.7) were specified for one
gene only, we can solve for all the genes in our data set at the same time.
We reshape the data matrices {A} to a rectangular matrix with K rows,
corresponding to each one of the classes, and 1

2p(p+1) columns, the links in
the lower triangular part across all {A}. The update for Z in (4.7) requires
us to solve 1

2p(p+1) linear systems. All of these have the same left-hand-side
matrix,

(

(ρ1 + 1)I + ρ2L
TL

)

, and 1
2p(p+ 1) right-hand-sides, which are the

columns of the reshaped matrices {A}. This requires of course changing the
dimensions of the other variables so that V, P ∈ R

K×1/2p(p+1) and W,Q ∈
R
1/2K(K−1)×1/2p(p+1).

4.4.1 Generalization to specific pairwise penalties

For some problems it could be required penalize only specific classes, in order
to avoid certain fusings. Consider for example K cancer classes for which
there’s available survival data. The samples can be grouped in T survival
levels, and then be treated as KT cancer classes. Survival is, however, an
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ordered variable which means that, for a given cancer class k, network links
can be fused only for consecutive survival levels t and t + 1 (or t − 1 and
t). The pairwise differences that we want to penalize here can be better
visualized by the following graph (vertices represent cancer classes and links
represent allowed penalties):

Figure 4.1: Allowed penalties for K cancer classes grouped in T survival
levels. Penalties for all cancer types are allowed, while for survival levels
only consecutive penalties are.

When using such penalties, a link in the estimated network is allowed, for a
given cancer class, to be equal across all survival levels, and will actually be
so for a sufficiently large value of the fuse penalty parameter. Alternatively
it can be equal for a certain number of consecutive survival levels.

We can extend this approach to a more general situation in which we have
K cancer classes and a graph structure which describes the allowed pairwise
fusings. To solve this problem we apply the ADMM algorithm for class and
pair-specific penalties taking care in specifying the allowed fusings in the
matrix L in (4.6).

This concludes the presentation of our methods. In the next chapter we show,
by means of simulations, how our adaptive penalty has better performance
than the regular fused elastic net in the presence of modularity. We also
present an analysis of tumor data, mRNA and CNA, for three types of
cancer: breast cancer, glioblastoma and ovarian cancer.
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Chapter 5

Results

5.1 Simulation Study

Construction of ROC curves

To compare the performance of our method with the regular fused elastic
net, we consider a problem with three classes each with different sparsity
and modularity settings.

We present the receiver operating characteristic (ROC) curves for the differ-
ential networks, that is, for the networks composed of links that are unique
to a certain class. For the construction of the ROC curves we need to define
the false positive rate (FPR) and the true positive rate (TPR). To do that
we need to define, in turn, the number true positives (TP) and the number
false positives (FP). Since we are interested in the discovery of differential
networks, those will be the ones we will consider as positives, while fused
links will be negatives.

To define the false positives and true positives we proceed as follows. Let
Fr ⊆ {1, 2, . . . ,K} for r = 1, 2, . . . , R where 1 ≤ R ≤ K. For a given link
(i, j) in the true networks, we can define Fij = {F1, F2, . . . , FR} as the set of
(mutually disjoint) groups of classes for which the link is fused. That is, link
(i, j) has exactly the same value for classes in set Fr and exactly the same
values in set Fs but the value for the first group is different from the value for
the second group. This implies that Fr

⋂

Fs = ∅ for all r, s = 1, 2, . . . , R. The
idea is to make pairwise comparisons between classes and label an estimated
link as a true positive if its values are not fused for a pair of classes where
the corresponding real link is not fused. Specifically, let θkij be the true value

of link (i, j) in class k and θ̃kij its estimate, the number of true positives and

27
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True positives False positives

1, 4 1, 2
1, 5 1, 3
1, 6 2, 3
2, 4 4, 5
2, 5
2, 6
3, 4
3, 5
3, 6
4, 6
5, 6

Table 5.1: True positives and false positives for a link present in six classes
and fusing structure {{1,2,3},{4,5},{6}}.

false negatives are defined as

TP =
∑

i

∑

j

∑

k<k′

I(θ̃kij 6= θ̃k
′

ij , θ
k
ij 6= θk

′

ij )

FP =
∑

i

∑

j

∑

k<k′

I(θ̃kij 6= θ̃k
′

ij , θ
k
ij = θk

′

ij )

respectively. Similarly, the number of true negatives and false negatives are
defined as

TN =
∑

i

∑

j

∑

k<k′

I(θ̃kij = θ̃k
′

ij , θ
k
ij = θk

′

ij )

FN =
∑

i

∑

j

∑

k<k′

I(θ̃kij = θ̃k
′

ij , θ
k
ij 6= θk

′

ij ).

The FPR and TPR are defined as TPR = TP/(TP + FN) and FPR =
FP/(FP + TN).

Consider the following example. We have 6 classes, and we know that, for
a certain link (i, j), we have Fij = {{1, 2, 3}, {4, 5}, {6}}. That is, the link
has the same value for classes 1, 2 and 3; the same value (but different to
that in classes 1, 2 and 3) for classes 4 and 5 and a unique value (different
than those for all the other classes) for class 6. The true positives and false
positives are shown in Table 5.1. Specifically, each link that is not fused for
any of the pairs of classes in the true positives column will be classified as a
true positive. Similarly, each link that is fused for any of the pairs of classes
in the true negative column will be classified as such.
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Data preprocessing

We will investigate tumor data from glioblastoma, breast cancer and ovarian
data sets in the Cancer Genome Atlas (TCGA). The number of genes and
samples available from each cancer type are shown in Table 5.2.

Glioblastoma Breast cancer Ovarian cancer

Genes 12042 20502 12042

Samples 529 779 568

Table 5.2: Variable and sample sizes for TCGA data.

The data sets contain 10321 genes common to all cancer types. For our
simulation study, we randomly select 150 genes and apply our method to
generate three precision matrices Θk, k = 1, 2, 3. We use different values
for the tuning parameters to obtain different sparsity, fusing and modularity

patterns. We then compute the covariance matrices Σk =
(

Θk
)−1

, k =
1, 2, 3, in order to simulate samples from N(0,Σk), k = 1, 2, 3.

Simulation results

Figure 5.1 shows the precision matrices for non-modular data. Blue dots
represent the differential networks (they have different values across classes)
and red dots represent the common (fused) network links. The number of
non-zeros for the differential networks are 1548, 1732 and 1156 respectively.
The common network comprises 1046 non-zeros.

In Figure 5.2 we show the ROC curves, averaged over 50 simulation runs,
for the regular fused elastic net (no adaptivity) and Adaptivity I and II.

Figure 5.2(a) compares the regular fused elastic net to Adaptivity I for two
different values of the adaptivity parameter: γ = 1 and γ = 0.5. Figure
5.2(b) compares the regular fused elastic net with Adaptivity I, for γ = 1,
and Adaptivity II for γ = 0.1. We chose a smaller value for γ for Adaptivity
II since, in the absence of modularity, this adaptivity scheme can otherwise
be too aggressive and perform worse than the regular fused elastic net.

The ROC curves summarize the performance over a wide range of FPR
whereas, in practice, we are more interested in the methods’ performance for
small values of FPR. We therefore also present results where we control FPR
to approximately 0.1 and record the corresponding TPR for each method.

Figure 5.3 shows box plots of TPR, over 100 replications, when the FPR
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Figure 5.1: Precision matrices for a non-modular simulation. Differential
networks in blue and common network in red.

is fixed at approximately 0.1. In the absence of a modular structure, the
performance of the three methods is very similar, with the two adaptivity
schemes exhibiting a slight advantage over regular fused elastic net.

Figure 5.4 shows the precision matrices for networks with common and
unique modules. The number of non-zeros for the differential networks are
1549, 1741 and 1111 respectively. The common network has 857 non-zeros.

The ROC curves are shown in Figure 5.5. Here, Adaptivity I performs better,
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Figure 5.2: ROC curves for non-modular simulated data. (a) Comparison
of fused elastic net and Adaptivity I for two different rates of adaptivity.
(b) Comparison of regular fused elastic net and Adaptivity I and II. The
performance of both Adaptivity I and II is as good as that of the regular
fused elastic net.

even for a modest rate of adaptivity γ = 0.5, than the regular fused elastic
net. This is what we expected for a modular network with common links
across all classes. Adaptivity II performs similarly to the regular fused elastic
net.
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Figure 5.3: Box plots for TPR with FPR≈0.1. All methods perform simi-
larly.

The box plots, Figure 5.6, show results consistent with the ROC curves,
clearly indicating the advantage of Adaptivity I compared with regular fused
elastic net, and no loss of performance using Adaptivity II.

The last simulation is presented in Figure 5.7. Here the modularity structure
is more complicated, in the sense that there are modules that are common
across all three classes, or common for only two classes. Blue represents
unique modules, while the other colors represent common modules for the
corresponding classes. The differential networks have 1395, 687 and 574 non-
zeros respectively. The red common network has 744 non-zeros, the green
one 241, and the yellow common network has 828 non-zeros.

In this case, Adaptivity I performs as well as the regular fused elastic net,
for γ = 0.5. Adaptivity II, which is designed to handle this kind of data
structure, performs better than regular fused elastic net (see Figure 5.8).

The results are even more apparent in Figure 5.9. The TPR box plots, with
FPR constraint at 0.1, clearly show the advantage of Adaptivity II in the
presence of a complex fuse pattern in data sets.
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Figure 5.4: Precision matrices for a modular simulation. Differential net-
works in blue and common network in red.
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Figure 5.5: ROC curves for modular simulated data. (a) Comparison of fused
elastic net and Adaptivity I for two different rates of adaptivity. (b) Com-
parison of regular fused elastic net and Adaptivity I and II. The performance
of Adaptivity I is better than that of the regular fused elastic net.
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Figure 5.6: Box plots for TPR with FPR≈0.1. Performance of Adaptivity I
is superior.
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Figure 5.7: Precision matrices for a modular simulation. Differential net-
works in blue and common network in other colors.
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Figure 5.8: ROC curves for non-modular simulated data. (a) Comparison
of fused elastic net and Adaptivity I for two different rates of adaptivity.
(b) Comparison of regular fused elastic net and Adaptivity I and II. The
performance of Adaptivity II is better than that of the regular fused elastic
net.
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Figure 5.9: Box plots for TPR with FPR≈0.1. Performance of Adaptivity
II is superior.
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5.2 Real data analysis

5.2.1 Data preparation

We downloaded data sets for breast cancer, glioblastoma (gbm) and ovar-
ian cancer from the TCGA (http://cancergenome.nih.gov) database.
The TCGA data are organized into technical platforms, and we chose the
platform for each data type and cancer to maximize the number of patients
in that data set. The chosen platforms for each cancer are shown in Table
5.3 and the number of patients available for each combination of data types
is shown in Table 5.4. All measurements were downloaded as TCGA level 3
data and were post-processed as described below. The processed data was
assembled in a mySQL database to enable fast creation of data matrices
during simulations.

mRNA. The level 3 mRNA data provided by TCGA is a list, for each
patient, of known protein-coding genes with their corresponding estimated
mRNA expression values. All values where logged for all Illumina RNA
Sequencing platforms. Additionally, all data was quantile normalized within
each cancer and platform.

CNA. The level 3 CNA (genetic copy number aberration) information pro-
vided in TCGA is, for each patient, the amplitude and genetic positions of
the beginning and end of DNA segments that have gained or lost copies.
Each gene available in NCBI human Build 36.1 was mapped to the segments
and assigned the amplitude of the corresponding segment. Where multiple
segments cover the gene, the average amplitude was used, weighted propor-
tionally to the length of the parts of the segments. Genes with a CNA value
but lacking a mRNA measurement were discarded from the analysis.

Data type Center Platform

mRNA Broad Institute Affymetrix HT Human Genome
U133 Array Plate Set

CNA Broad Institute Affymetrix Genome-Wide
Human SNP Array 6.0

Table 5.3: TCGA platforms chosen for each data type.

Breast Ggb Ovarian

Sample size 766 509 560

Table 5.4: Number of patients for each cancer type.
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5.2.2 Estimation

To reduce the execution time in the estimation of our networks, we adopted
the method of Danaher et al. (2011). They proceed by dividing the matrix
S into separable subproblems. The criteria for separability for the different
described models follows below:

Fused Elastic Net for 2 classes. Let C1 and C2 be two disjoint sets of
the variables such that C1

⋃

C2 = {1, 2, . . . , p}. For the set of variables in
C1 to be fully disconnected from the variables in C2, the following conditions
must be fulfilled:

|n2S
(1)
ij | ≤ λ1α+ λ2,

|n1S
(2)
ij | ≤ λ1α+ λ2,

|n1S
(1)
ij + n2S

(2)
ij | ≤ 2λ1α,

for all i ∈ C1 and j ∈ C2.

Fused Elastic Net for k > 2 classes. For the set of variables in C1 to
be fully disconnected from the variables in C2, the following conditions must
be fulfilled, assuming that the elements nkS

k
ij are sorted so that n1S

1
ij ≤

n2S
2
ij ≤ ... ≤ nKSK

ij :

|
∑t

k=1 nkS
(k)
ij | ≤ tλ1α+ λ2, 1 ≤ t ≤ K − 1,

|
∑t2

k=t1
nkS

(k)
ij | ≤ (t2 − t1 + 1)λ1α+ 2λ2, 1 ≤ t1 ≤ t2 ≤ K − 1,

|
∑K

k=t nkS
(k)
ij | ≤ (K − t+ 1)λ1α+ λ2, 2 ≤ t ≤ K,

|
∑K

k=1 nkS
(k)
ij | ≤ Kλ1α. for all i ∈ C1 and j ∈ C2.

Selection of penalty parameters. The selection and validation of penalty
parameters λ1 and λ2 is a difficult problem. In our experience (Jornsten
et al., 2011; Abenius et al., 2012) BIC tends to underfit, by selecting very
sparse networks, while cross validation overfits, by selecting very dense net-
works. We believe that the selection should take into account how stable
the estimates are. As a function of the penalty parameters, both the like-
lihood function and the number of unique estimated parameters (sparsity
level) tend to stabilize for moderate values of λ1 and small values of λ2. An
interval where the likelihood and sparsity levels are stable corresponds to
values of the penalty parameters such that random links, or false positives,
have been eliminated whereas real links, or true positives, have not.

In the present study we select λ1 = 0.5 and λ2 = 0.01, which belong to
the stable region mentioned above. This way we obtain networks where
enough connections exist that can be cross checked with known pathways. A
complete analysis would require us to estimate and validate, experimentally
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or via large-scale simulations, the networks for different combinations the
penalty parameters. We leave this analysis for future work.

Prior distribution. For the integration of mRNA and CNA we require a
prior distribution on the allowed connections between nodes. Consider the
inverse covariance matrix for a specific cancer type. We can divide it in four
blocks, or just three if we take into account its symmetry, corresponding to
the mRNA-mRNA, the mRNA-CNA and the CNA-CNA connections. All
mRNA-mRNA connections are potentially possible, so there’s no need of spe-
cific penalization for that block other than λ1. CNA should be allowed links
only with its corresponding mRNA, so we enforce a diagonal structure for
the mRNA-CNA. This is achieved by increasing the sparsity penalty λ1 for
the off-diagonal elements of that block. Finally, connections between CNAs
far away from each other (in chromosomal location) shouldn’t exist. As the
genes are arranged by chromosomal location, we thus define a tridiagonal
prior for the CNA-CNA block.

Robust network estimation via bootstrap. We generate 200 bootstrap
samples choosing randomly 90% of the patients in each cancer from the
original sample. For each bootstrap sample we estimate the corresponding
network with the selected penalty parameters. Some links appear frequently
(true positives or real links), and some show up seldom (false positives).
This behaviour motivates us to use frequency statistics for final network
construction (e.g. (de Matos Simoes and Emmert-Streib, 2012)). We define
two thresholds T1 and T2 on the frequency statistics to control the sparsity
and the fusing of the links in the final estimate.

Consider first the sparsity problem. The idea is that, for a given threshold
T1, a link will be present in the final estimate if it is present in 100T1% of
the bootstrap estimates. Specifically, for a cancer class k = 1, 2, 3 let

nk
ij =

∑200
b=1 I(θkij,b 6= 0)

D
,

where θkij,b is the b-th bootstrap estimate for link (i, j) in class k. This nk
ij

is an estimate of the probability of presence of link (i, j) in cancer class k.
This link will be present in class k if and only if nk

ij ≥ T1.

Let us now consider the fusing of edges, where further complexity arises. We
proceed by estimating the edge difference probability for all cancer pairs.
We distinguish 4 different cases.

Case 1. For the set of links not present in any cancer class, that is, those
for which

∑

k I(nk
ij ≥ T1) = 0 no further work is needed.

Case 2. Consider the set of links that are present only in one class, that is,
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those for which
∑

k I(nk
ij ≥ T1) = 1. In this case no fusing is required and

the links stay present with the already estimated values.

Case 3. Here we consider the set of links for which
∑

k I(nk
ij ≥ T1) = 2, that

is, those that are present in two classes, say k and k′, and absent in the third
one. We need now to decide whether the link should stay fused in classes
k and k′(null hypothesis) or whether they should be differential (alternative
hypothesis). Let θkijb to be the b-th bootstrap estimate for link (i, j) in class
k. We compute

nkk′
ij =

∑200
b=1 I(θkij,b 6= θk

′

ij,b, θ
k
ij,b 6= 0, θk

′

ij,b 6= 0)
∑200

b=1 I(θkij,b 6= 0, θk
′

ij,b 6= 0)
.

This is an estimate of the probability that link (i, j) is differential in classes
k and k′ given it is present in both classes. If nkk′

ij ≥ T2, then link (i, j) is
differential in classes k and k′ in the final estimates, otherwise it is fused.

Case 4. For the set of links where
∑

k I(nk
ij ≥ T1) = 2, that is, the set

of links present across all three classes, we compute

nkk′k′′

ij =

∑200
b=1 I(θkij,b 6= θk

′

ij,b = θk
′′

ij,b, θ
k
ij,b 6= 0, θk

′

ij,b 6= 0, θk
′′

ij,b 6= 0)
∑200

b=1 I(θkij,b 6= 0, θk
′

ij,b 6= 0, θk
′′

ij,b 6= 0)
,

where, for instance, k = 1, k′ = 2 and k′′ = 3. This makes nij
kk′k′′ an esti-

mate of the probability that link (i, j) is fused in classes 1 and 2 (breast and
gbm respectively) and not fused, or differential, in class 3 (ovarian cancer).
We also need an estimate of the probability that the link is differential for
all classes, given by

nkk′k′′
ij =

∑200
b=1 I(θkij,b 6= θk

′

ij,b 6= θk
′′

ij,b, θ
k
ij,b 6= 0, θk

′

ij,b 6= 0, θk
′′

ij,b 6= 0)
∑200

b=1 I(θkij,b 6= 0, θk
′

ij,b 6= 0, θk
′′

ij,b 6= 0)
.

The final decision on the fusing structure is given by the maximum of
nkk′k′′
ij ≥ T2 for all triads k, k′, k′′. If, conversely, nij

kk′k′′ < T2 for all triads,
we conclude that the link is fused for all cancer classes.

Selection of thresholds T1 and T2. Rigorous selection of T1 and T2 is
another validation problem, but it is simpler compared to that of validation
for the penalty parameters λ1 and λ2.

Figure 5.10 shows the histogram for frequency of link presence for all cancer
types. The estimated probability of presence is 0 or 1 for many links, we
omit them to clearly see the shape of the histogram.
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Figure 5.10: Frequency of link presence across classes. The U shape suggests
links below 0.2 to be false positives and not reproducible while links above
0.8 are true positives.

All three histograms show a U shape with a decrease from probability 0 to 0.2.
This interval comprises links that appear across some bootstrap estimates
by chance and therefore they are not reproducible. Links above 0.8 appear
consistently in our bootstrap estimates, thus these belong to the set of true
positives. We conclude then that reasonable values for T1 are above at least
0.2.

Figure 5.11 shows the histograms for frequency of pairwise link fusing. To
see the shape of the histogram clearly we omit again links with estimated
probability of fusing equal to 0 or 1.

Figure 5.11: Frequency of pairwise fusing across classes. The U shape sug-
gests links below 0.2 to be false positives and not reproducible while links
above 0.8 are true positives.

Similarly as for link presence, the U shape of these histograms suggests
that differential edge values that appear in less that 20% of our bootstrap
estimates are random (false positives). Differential edge values above the 0.8
threshold appear consistently across bootstrap estimates, thus comprising
true positives. Based on these results, we decide to take T2 ≥ 0.2.
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5.2.3 Analysis

In collaboration with the Nelander laboratory, IGP and SciLife, Uppsala
University, we have developed an on-line visualization tool (administrator
Patrik Johansson) called Cancer Landscapes
(http://cancerlandscapes.org/demo/). A screenshot of the tool is
shown in Figure 5.12.

Figure 5.12: Cancer Landscapes. Initial configuration of web-tool for model
Breast-Ggb-Ovarian 500 genes.

Cancer Landscapes has a variety of features. On the upper right corner we
can select which cancer classes to display and data types to display. We can
also choose among the union, intersection or unique networks. At the bottom
there is a slide bar to select the frequency statistic threshold parameters T1

and T2. As described above, T1 controls the sparsity level (the larger it is,
the sparser the network), and T2 controls the fusing level (the larger it is,
the more the present links will be fused across classes).

It is also possible to choose among different topologies for the networks. Since
the genes we are working with have been ordered by chromosomal location
and we have a banded prior for the CNA network, it is possible to organize
the CNA nodes in a ring surrounding the mRNA nodes. Figure 5.13 shows
the final estimated network in this fashion.

Whenever two genes are connected in a cancer class, a link of the corre-
sponding color is present. This way, connected genes can have 1, 2 or 3
links. Using display option "fused edges", fused links are plotted next to
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Figure 5.13: mRNA and CNA network for gbm, breast and ovarian cancer.
mRNA genes in blue, CNA genes in orange. Breast cancer links in green,
glioblastoma links in lilac and ovarian cancer genes in magenta.

each other, whereas differential edges are depicted with a space between
them.

A complete analysis will require careful exploration of the network for all
values of the threshold parameters T1 and T2. We are currently preparing
a manuscript on a more complete analysis of cancer networks (Kling et al.,
2013). In this thesis, we focus on the network for T1 = 0.6 and T2 = 0.6 and
make a short analysis to demonstrate the kind of findings that are possible
with Cancer Landscapes.

We begin by showing the fusing structure in Table 5.5.

The first row, Total, is the total number of links present in the corresponding
cancer class. The Unique row lists the number of all links that are differential
in each cancer. They comprise various subtypes of links:
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Breast Gbm Ovarian
Total 4828 3674 2896
Unique 3308 1804 1202
Fused 1166 1166 1166
Present in two classes

Breast -
Gbm 976 -
Ovarian 1122 1098 -
Present in two classes, not present in third class

Breast -
Gbm 326 -
Ovarian 532 102 -
Present in 3 classes

Breast -
Gbm 650 -
Ovarian 590 996 -
Fused in 2 classes

Breast -
Gbm 220 -
Ovarian 134 484 -
Fused in two classes, not present in third class

Breast -
Gbm 144 -
Ovarian 118 62 -
Fused in two classes, present in third class

Breast -
Gbm 76 -
Ovarian 16 422 -

Table 5.5: Fusing patterns for T1 = 0.6 and T2 = 0.6.

• Links that are present in one cancer class only.

• Links that are present in two cancer classes and are not fused.

• Links that are present in the all cancer classes and have different values
for the three of them.

The second part of the table, Present in two classes shows the number of
links that are present in each pair of cancers, independently of them being
fused or differential and independently of a link being present or not in the
third class. The situations in which the third class is present or not are
shown below.

Section Fused in two classes, presents the number of links that are fused for
the corresponding pair of cancers, independently of the link being present
or not in the third class. These two subcases are listed below. For example,
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breast and ovarian cancer have a total of 134 fused links. The majority of
them, 118, correspond to glioblastoma links being also present, while only
16 of them are present when there are no glioblastoma links.

Differential links can be deduced from this table. For instance, there’s a
total of 976 links present in both breast and glioblastoma. Of those, 220 are
fused, therefore 756 of them are differential, independently of the presence
or absence of a link in ovarian cancer.

We proceed now with a descriptive analysis of our network using some of the
capabilities of Cancer Landscapes.

Genes belonging to important know pathways can be highlighted. In Figure
5.14 we show the genes present in our network that are part of the Cell Cycle.

Figure 5.14: Genes belonging to Cell Cycle pathway concentrated in a mod-
ule.

Most of the genes are concentrated in a module. Figure 5.15 shows a zoom
to the module.
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Figure 5.15: A module of fused links across all cancer classes. Genes belong-
ing to the Cell Cycle pathway are highlighted.

Almost all of the links in the figure are fused across all classes. This is an
expected result since the cell cycle should be a common process to all cancers.
Results of this kind also validate our selection of penalty parameters.

Another interesting pathway, the ECM-receptor interaction, is also well lo-
cated in a module of our network (see Figure 5.16). This pathway is related
to cellular activities such as proliferation and apoptosis. As seen in the fig-
ure, this module is predominantly associated with breast cancer and ovarian
cancer (fused).

So far we have used the term "module" to refer to sets of genes tightly
connected. However, it is also interesting to look a clusters of genes, as
defined in the traditional way. With Cancer Landscapes it is possible to
cluster genes, using the network structure and the jaccard index as a distance
metric. We cluster one cancer type at the time, and identify pathways located
in those modules. Figure 5.17 shows a module (green background shade) of
breast cancer that comprises genes known to be part of pathways of colorectal
cancer, basal cell carcinoma and endometrial cancer.
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Figure 5.16: A module with some fused and some differential links. Genes
belonging to the ECM-receptor interaction pathway are highlighted.

As a summary of the structural differences in the clusters, we can request
the alluvial diagram (Rosvall and Bergstrom, 2010). Figure 5.18 shows the
alluvial diagram for all clusters found in the three cancer networks. We have
highlighted a particular cluster that is common to all three cancers. Cancer
Landscapes computes the overlap of these clusters with known pathways and
gene functional categories.

Next to the alluvial diagram we show the pathways identified for a particular
cluster that appears in all cancers. The genes in this cluster are associated
with e.g. the FOXM1 transcription factor network, a known human proto-
oncogene.

Clusters reveal sets of genes well connected to each other. They can’t, how-
ever, detect directly genes that have a large number of connections. These
"hub" genes are important, since they are known to be possible disease
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Figure 5.17: A cluster of breast cancer genes (green background shade) that
contains cancer specific genes. The table shows the pathways associated to
those genes.

Figure 5.18: Alluvial diagram for all clusters found in the three cancer net-
works (a subset of which is shown in Figure 5.17). The table shows the
pathways associated to the genes in the highlighted cluster, which in this
case is common to all three cancers.

drivers. This motivates using node degree and some other network-theoretic
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measures of node centrality in our networks.

Cancer Landscapes has three network-theoretic measures implemented, namely,
node degree, PageRank and Centrality-Betweenness. We show first the node
degree for our network. For a given node, this measure is defined as the
number of nodes directly connected with it. Figure 5.19 shows our network
next to a table with the top 10 genes with highest degree and highlights
the top ranking node, CD53. This gene is associated with cell development,
activation, growth and motility.

Figure 5.19: Top 10 genes with highest degree. The top ranking node, CD53,
is highlighted in the network.

PageRank is another way of measuring the relative importance of a network
node and it can be considered as a generalization of node degree. Instead of
counting only the number of nodes directly connected (neighbors of degree
1) to the node in question, we also count the number of nodes connected to
those (higher order neighbors). This way, a node with neighbors that have a
high PageRank will also have high PageRank. Figure 5.20 shows the network
and a table with the top 10 genes with highest PageRank. The top ranking
node, CDC20 (highlighted in the network), is an important regulator in cell
division.

The last measure is Centrality-Betweenness. For a given node, this property
is computed by counting the number of times a node is part of the shortest
path connecting any other two nodes. The more shortest paths that travel
through a node, the higher its betweenness. Figure 5.21 shows our network
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Figure 5.20: Top 10 genes with highest PageRank. The top ranking node,
CDC20, is highlited in the network.

and a table with the top 10 genes with highest betweenness. It is expected
that such genes will be part of the path between two modules, as highlighted
in the figure. The Nelander lab has experimentally validated a subset of
genes with high PageRank and betweenness. Using siRNA (silencing RNA),
such genes were knocked down in glioma cell culture studies. It was found
(preliminary data not shown), that genes with high betweenness were asso-
ciated with a substantially reduced viability of the cultures. This suggests
that network modeling, and network summary features like node centrality,
can identify important transcripts that regulate key biological processes in
diseases such as cancer.
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Figure 5.21: Top 10 genes with highest betweenness. A high-ranking node,
CS1, is part of the path between two modules.
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Chapter 6

Conclusions and future work

A network model of a biological system aims to capture functional links
between some of its components. In the particular case of a cancer tumor,
it is for instance important to understand how the mutations in the genome
(like Copy number aberrations) are linked to downstream functional events in
cells (e.g. regulation of tumor invasion). Several ideas have been put forward
for network construction, such as correlations, sparse regression, and sparse
graphical models (glasso). In this thesis, we have focused on extensions of
sparse graphical models (sparse inverse correlation).

Recent work has extended glasso to comparative analysis (multiple cancers)
using the so-called fused penalty function (Danaher et al., 2011). We have
extended this framework to better account for the modularity frequently seen
in biological networks. That is, the network matrix is "blocky", consisting
of tightly connected groups of genes. These groups may then be connected
to other groups, but usually in a much more sparse fashion (few links). We
work under the hypothesis that genes within such gene modules should ex-
hibit similar differential patterns across cancers. We have developed two
adaptive penalty criteria that encourage gene modules to be (a) common
across all cancers, (b) differential across a subset of cancers, or (c) unique in
all cancers. The adaptive penalty criteria build on principles from adaptive
lasso (Zou, 2006). We have been able to show through extensive simula-
tion studies that our two adaptive penalty methods identify true differential
connectivity between data sets (cancer classes) compared with regular fused
lasso methods.

The problem of relative sample size of cancer classes has hitherto largely been
ignored in the comparative modeling literature. When sample sizes differ,
the effective penalty parameters will also differ (scales as λ1/nk), leading to
overly sparse networks for cancer classes with small sample sizes. A common
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way to fix this issue is to assume equal sample size for all cancer classes
(Danaher et al., 2011). We have found that this method overcorrects, leading
to networks that are non-sparse for cancer classes with small sample sizes.
The sensitivity to sample size is a concern as it limits the interpretability of
estimated models. We have examined sample size correction schemes using

effective sample sizes ne
k = n̄δn

(1−δ)
k , where n̄ = 1

K

∑k
k=1 nk and 0 ≤ δ ≤ 1

controls the amount of sample size correction. Our studies indicate that
small values of δ close to zero produce much more balanced networks across
cancers compared to the uncorrected or naive correction schemes.

Network estimation is quite unstable. To present a robust network estimate
we have used bootstrap to determine (i) the presence of a link in a cancer
class and (ii) the differential connectivity between cancers for a particular
link. Bootstrap has been used to determine link presence in several previous
publications (e.g. de Matos Simoes and Emmert-Streib (2012)). Here, we
have extended this paradigm to determine the fused/differential connectivity
across cancer classes.

We have visualized the final network using the web tool Cancer Landscapes.
The development of this tool is ongoing and we are working closely with the
Nelander lab (SciLife, IGP, Uppsala University), to improve the statistical
analysis methods, features and accessibility of the tool.

Comparative network modeling is a relatively new area of research and many
important problems remain to be solved. We are currently extending the
framework presented here to a large-scale comparative analysis of 8 different
cancer classes and 6 different data types: mRNA, CNA, microRNA, methy-
lation, mutation and survival (Kling et al., 2013). This extension requires
careful consideration of appropriate prior distribution assumptions as well
as robust estimation of within and between data type correlations.

Our future methodology work will center on the extension of our methods
to graph penalty models where we compare networks across both cancer
classes and survival levels (Section 4.4.1). We are also planning to investigate
alternative forms of adaptive penalties and sample size corrections schemes.
All methods require careful validation and selection of penalty parameters.
This is a very difficult problem where commonly used methods, like cross-
validation and BIC model selection, perform poorly. As part of the 8-cancer
network modeling project we will explore several different validation criteria,
e.g. network overlap with known pathways, network overlap across different
replicates or bootstrap data sets. The computational burden and the extreme
dimensionality of the network problem (19,000 nodes in the 8-cancer project)
makes this a challenging task indeed.
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