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Abstract

Modern mid to high-end mobile phones and tablets all have GPU-
rendering capabilities that are more energy efficient and potentially
faster at rendering text than the CPU. On desktop computers, GPU
acceleration is common in PDF readers and browsers. This is due
the great rendering capabilities of the desktop GPU, already proven
in games and CAD. The rendering capabilities of device GPUs are far
less proven.

This thesis presents a survey containing a number of different de-
vices that were benchmarked iteratively. During each iteration, the
bitmap rendering algorithm was tweaked and tuned as new informa-
tion was discovered.

As shown in the results section of this thesis, modern devices using
the final iteration of the rendering algorithm are indeed ready for a
move to GPU rendering. It also shows that the future for this solution
is bright, as rendering performance on devices will improve according
to Moore’s law.
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1 Introduction

1
Introduction

The typical utilization of the graphics processing unit (GPU) has been lim-
ited to applications that contain computationally heavy features, e.g. a high
amount of matrix multiplications, shading, and collision detection. Con-
sumer devices, e.g. mobile phones, tablets, and TVs, have been showing a
clear trend in providing fairly advanced GPUs with support for 3D accelera-
tion. The hardware can also be used for accelerating 2D graphics, instead of
doing conventional software rendering on the central processing unit (CPU).
There are a number of different issues on devices that are challenging for a
developer compared to a typical modern desktop computer. Some of these
issues are zooming, differences in screen size, pixel densities, both GPU and
CPU processing capabilities, and both vertical and horizontal translation.
It is true that there is a high amount of similar challenges when it comes to
text rendering on a desktop system as well. However, the amount of process-
ing power on a modern desktop computer will have no problem rendering
a screen full of text by using the GPU, which means that the performance
related issues are negligible on that platform.

There are a number of software techniques that could be used to ac-
celerate 2D rendering on devices and this thesis presents a study that was
conducted to explore some of these techniques.

While software techniques are important factors in developing a fast
text renderer, it is equally important to consider the devices that are used
to run them. During development of software that aims to be compatible
with a high number of different devices, the developers need to consider the
fragmentation problem. The different qualities of the different devices can
result in cases where the application is simply is not presentable, which is
the fragmentation problem. For example, Apple’s iOS is used by quite few
devices compared to Android, which has a larger flora of devices [1], which
means that the problem is smaller for iOS developers. This survey has used
a small but representative collection of devices during the benchmark suites
in an effort to minimize the potential effects of the fragmentation problem.
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1.1 Purpose 1 Introduction

1.1 Purpose

The main goal of this thesis is to provide developers with a survey that can
provide assistance when deciding if and how GPU-accelerated text rendering
can be beneficial to the developers’ projects.

1.2 Limitations

The fragmentation of Android devices, that was mentioned in Section 1,
causes difficulty when producing a survey as it is impractical and very time
consuming to test every unique device. The amount of devices was therefore
limited, to allow the thesis to focus more on software techniques, rather than
having to test a higher amount of devices.

Curves can be used as an approach to implement text rendering and
GPU-accelerated techniques have been presented by Loop and Blinn [2],
discussed in 2.2.4. However, curve rendering is outside the scope of the
survey, as it requires a high amount of vertices, discussed in Section 2.2.1.
It also has a higher amount of computations that has to be done for each
glyph. During the initial literature study that preceded the implementation
phase, the number of vertices was suspected to be the likely bottleneck
when it came to GPU-based rendering on devices. It was this suspicion that
excluded curve rendering from this thesis as there were other issues that
were prioritized higher.

Nvidia has additionally released their new GPU-based path rendering
technique [3], which could have been included. However, there is currently
no support for Android or iOS and this made it impossible to investigate
this technique any further, in this thesis.

1.3 Method

The process of the work done in support of this thesis required the comple-
tion of a number of steps:

• Investigation of prior work in the field, e.g. glyph caches, texture at-
lases, and GPU-assisted curve rendering.

• Evaluation of the known techniques and a conclusion concerning what
techniques lend themselves to hardware acceleration.

• Implementation of a benchmark tool that can assess the relevant ca-
pabilities of actual hardware, i.e. Mobile phones that run Android,
to determine feasibility and limits of various techniques. The bench-
marking tool has to support various data sets, including Unicode [4]
characters.

• Design and implement several rendering algorithms and testing them
using the benchmark tool.
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1.4 Programming Language and Tools 1 Introduction

1.4 Programming Language and Tools

Android mainly supports applications written in Java, but not exclusively.
Android’s Native development kit (NDK) [5] allows developers to implement
parts of an application using native-code languages, e.g. C and C++, and
the benchmark tool consisted mainly of C++ code. As performance was key
for the benchmark tool, C++ and use of the NDK was chosen over Java.
The choice of C++ allowed the development to be carried out on a personal
computer running a Linux distribution, where testing and debugging was
easier than on a devices. Since Android only supports the OpenGL ES
subset of the OpenGL application programming interface (API), OpenGL
ES 2.0 was used by the benchmark tool. In Section 2.2, the use of OpenGL
ES 2.0 over OpenGL ES 1.1 is motivated further.

FreeType [6] is an open source font engine that was used to produce
bitmap images of glyphs. The use of FreeType was made with purely prac-
tical motivations, since it supports Unicode, TrueType fonts, it has liberal
license options [7] and it has been used for several commercial and open
source products, e.g. Nintendo Wii’s Internet browser [8] and Blender [9].
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2 Previous Work

2
Previous Work

Removing bottlenecks in GPU-based rendering is not a new field. Thus,
there are a number of techniques that have been developed to counter the
issues that these bottlenecks can cause. In this section, a number of these
techniques will be presented together with a clarification concerning the
different advantages and drawbacks when using CPU-based or GPU-based
rendering.

From a text perspective, there are a number of things that are specific
to this area of real time rendering. A glyph is not only a character, but
also a combination of features, stated in Table 1. This means that the goal,
presented in Section 1.3, of supporting the whole Unicode character set is
much more complex when all features are taken into account.

2.1 CPU-Based Rendering

Any rendering that does not utilize the GPU has to perform the calcula-
tions on the CPU instead. One example where this approach is preferable is
when the developer of an application desires to be independent from what-
ever GPU, if any, is in the system. However, there are real-time rendering
situations where the CPU simply is not powerful enough, e.g. games in 3D,
simulation engines, and computer aided design (CAD). During the recent
years, screen resolution on devices have generally grown quite steadily and
CPU performance has not grown at a rate that can match the increased

Feature name Data type

Font Pointer to FreeType FT FACE object

RGB color values One char per color value

Font size Int

Italic Bool

Bold Bool

Underlined Bool

Table 1: This table of glyph features that were supported in the bench-
marking tool that was developed and used to test the different techniques
presented in Section 3.
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2.1.1 Font Rasterization for Mobile Devices 2 Previous Work

burden on CPU-based rendering that the higher screen resolutions amount
to.

Compared to desktop computers, devices have a much higher demand
on power efficiency. This is mainly due the limitations of battery capacities
[10]. The CPU is additionally much less energy efficient than the GPU
[11]. With these points in mind, it would be beneficial to move CPU-based
rendering on devices to the GPU. The move would be a advantage both
from an energy and user point of view, since it could decrease the frequency
of the need to recharge the device.

2.1.1 Font Rasterization for Mobile Devices

In the master thesis by Andersson [12], CPU-based curve rendering on de-
vices was examined. While it was shown that the plane sweep algorithm
implemented by Andersson was indeed faster than the FreeType equivalent,
it was also shown that the triangle based algorithm did not perform well
on the CPU. The triangle based algorithm was influenced by the paper by
Loop and Blinn [2], which is briefly discussed in Section 2.2.4. The thesis
reflects a focus on memory efficiency that was important at the time that it
was written, but is much less critical now. Andersson stated that the future
OpenGL ES standard could be used for future research to determine whether
or not the triangle based algorithm would be feasible on that platform.

2.2 GPU-Based Rendering

There are several potential motivations as to why a developer should choose
to use the GPU for a specific application, as GPUs have come a long way
from their gaming roots. Ever since 2006 when Nvidia’s CUDA [13] was
released, developers have had the option to utilize the GPU in a similar
fashion as the CPU, called general-purpose computing on graphics process-
ing units (GPGPU). However, due to the criteria that an application has
to be able to be vectorized, i.e. that the data can be processed with single
instruction, multiple data (SIMD) instructions, GPGPU is hardly a drop-in
replacement for the CPU. CUDA is Nvidia exclusive technology and while
it is free of charge to use, it requires the developers and users to run the
application on Nvidia hardware.

Since 2008 there has been an open standard called OpenCL [14] that
is both royalty-free and cross platform, which allows users to use products
from any GPU developer that supports OpenCL, e.g. ATI, ARM, and Intel
[15], and not exclusively Nvidia. Apart from GPGPU applications, the GPU
can also be used for other applications, e.g. video decoding.

According to Android’s developer website [16], support for GPU-based
rendering on devices that run Android is very good. In their statistics,
based on device visits to Google Play, 90.8% support OpenGL ES 2.0 and
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2.2.1 Text Objects 2 Previous Work

OpenGL 1.1, while 9.2% only support OpenGL ES 1.1. As of Android 4.0
[17], GPU-acceleration on all windows have been enabled by default, for
all applications that target Android 4.0 or above. This indicates that the
developers of Android see the benefits of GPU-based rendering on devices
that run their OS.

2.2.1 Text Objects

The most basic object in text rendering is a glyph object that has a bitmap
texture and a quad. This quad can be drawn with either six vertices or
in the case of a triangle strip, four vertices. One of the consequences of
the use of glyph objects is a high number of vertices, which in turn leads to
increased usage of the graphics bus. Another consequence is the high number
of draw calls when rendering a typical page of text. In addition, a texture
upload for each glyph, each frame, is also a taxing operation on the graphics
bus. However, the vertex count and amount of draw calls can be lowered
by selecting a more complex text object, e.g. words or paragraphs. Using
more complex text objects can also decrease the amount of texture uploads
if larger segments, than glyphs, of the word or paragraph can be submitted
at each upload. Creating these larger segments is more computationally
expensive and taxes the CPU more than using glyphs.

2.2.2 Texture Atlases

There are more common bottlenecks that can occur while a developer is
creating a real-time rendering application that contains many objects with
different characteristics, aside from the ones mentioned in Section 2.2.1.
One of these additional bottlenecks is a high amount of draw calls [18]. In
the case where each object requires a different texture than the previous
object, each object entails a state change which requires a draw call before
the new texture can be bound. The amount of draw calls can be decreased
by batching objects that share the same rendering state, allowing them to
be rendered by the same draw call. The success of the batching strategy
depends solely on the amount of objects that can be batched together.

Another approach to reduce draw calls is to store all textures in one
or several texture atlases, which allows more efficient batching as many
objects now potentially share the same rendering state. An inherent flaw
with texture atlases is a phenomenon called bleeding, which occurs during
bilinear sampling near the edges of subtextures in the atlas, as shown in
Figure 1. To solve the bleeding problem, a 1 texel border around each
texture can be added to ensure that no neighboring texture is sampled.

Pre-created Atlases In a text rendering situation where the whole
Unicode character set is supported, it is not feasible to create textures for
each and every character in the Unicode standard. Nor would it be possible
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2.2.2 Texture Atlases 2 Previous Work

Figure 1: Illustration of the texture bleeding phenomenon, which is the result
of bilinear sampling at the boarder between two neighboring subtextures in
a texture atlas. This sampling results in the edge of the glyph having been
affected by the neighboring subtextures.

to create enough texture atlases to contain them all since there are slightly
over 100,000 characters [19] to support. In addition, support for different
font features, e.g. sizes, colors, and italics, makes the pre-creation strategy
even less appealing. However, in a case where the number of glyphs that will
be used is well known and limited within acceptable bounds, pre-creation is
a viable option that should be considered due to its simplicity. As mentioned
in Section 2.2.1, all text objects can potentially be rendered in one draw call
if the texture atlas contains all of them.

Completely forgoing any preparation or data structures and simply cre-
ating a new texture for each glyph, each frame, is a näıve approach that was
discussed in Section 2.2.1. One approach that can be used to allow dynamic
support for any part of the Unicode character set is caching, which can be
implemented with texture atlases.

Caching with Atlases Caching is an old computer science topic [20]
and has been well established over the years. In a situation where there is
a limited space to store data in an efficient manner, a rule must be set in
place to manage the additions and removal of data in that limited space. The
Least Recently Used (LRU) algorithm is one of the most common caching
algorithms and it takes advantage of temporal locality, i.e. data used recently
will probably be used again in the near future. However, LRU is not optimal
when there is a number of unique elements that are used cyclically, e.g. once
per frame. In that case, the caching algorithm will replace elements that
have not been used for a long time, which are exactly the elements in the
cache that are most likely to be used in the near future. It would be much
better to remove elements that have been used recently, as they will be used
next time the cycle has completed one iteration. This caching algorithm
is called Most Recently Used (MRU) [21]. As written text, most often,
does not fulfill the uniqueness criteria of the cyclical example, the LRU is a
simple and fitting caching algorithm for text. Several more complex caching
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algorithms have been developed and Dumont et al. [22] has presented a
texture caching algorithm which takes camera perception into account to
decide which Mipmap [23] level should be used.

A texture cache is achieved by filling a texture atlas and by replacing
existing objects with new objects according to a caching algorithm, when
the texture is full [24]. Caching with atlases requires a more complex data
structure, generally requiring more CPU computations and higher memory
usage compared to the use of the näıve approach or the pre-created texture
atlas, discussed in the two previous sub sections. However, it is able to
support the use of Unicode and it has the potential to be able to render all
text objects in one draw call.

In a texture cache implementation, discussed in Section 2.2.2, the bleed-
ing phenomenon affects the visual appearance in a more drastic way than
merely having the edges of a texture slightly polluted by the neighboring
subtexture in the texture atlas. Each neighboring subtexture of a glyph’s
texture can be replaced in a texture cache, which results in a new bleeding
effect that pollutes the glyph’s texture. A new bleeding effect can potentially
be created each frame, resulting in a flicking effect.

2.2.3 Signed Distance Fields

Green, has presented a paper [25] on signed distance fields that can be used
to create glyphs. Compared to using bitmaps, Green’s solution has two im-
portant advantages: zooming can be performed without aliasing caused by
low resolution, the performance is equal or close to regular texture mapping,
and there is also lower memory consumption for the storage of the glyphs.
Green also introduces a number of effects that can be achieved with this ap-
proach through the use of programmable shading, e.g. outlining, soft edges,
and drop shadows.

This technique requires a conversion of bitmap textures into a signed
distance field representation in a preprocessing step. The preprocessing is
done in the following steps:

• Supply a high resolution binary texture where each texel is classified
as either in or out.

• For each output texel, determine if the texel is in or out and compute
the 2D distance to the nearest texel of the opposite state by searching
the local neighborhood.

According to Green, the execution time of the second step is negligible
due to the limited distance range which may be stored in an 8-bit alpha
channel. However, taking the limited computing powers of a general device
into account, the execution time for the whole algorithms might prove to
be significant. In the first step, the algorithm requires a binary texture
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that contains boundary information of the glyph. However, Green does not
specify how this texture is generated. As this thesis requires support for the
whole Unicode character set, it is imperative that this step can be performed
without any manual intervention and in a timely fashion.

2.2.4 Curves

In the paper [2] by Loop and Blinn a GPU-accelerated curve rendering
algorithm is presented. By using a pixel shader, a specific pixel is decided
to be inside or outside of a Bézier curve and is shaded accordingly. This
Bézier curve is described by a set of texture coordinates that are attached
to the vertices of quadratic and cubic curve control points. The paper has
a whole subsection dedicated to font rendering, which utilized Delaunay
triangulation to go from curves to triangles.

While the method in this paper utilizes the GPU for rendering it does
require CPU preprocessing of the curve data. The authors note they expect
reduced performance when rendering dynamic geometry, due to the exten-
sive CPU involvement. However, Kokojima et al. [26] has improved the
method by using a stencil buffer and transparency multisampling and by
removing the Delaunay triangulation and subdivision of overlapping trian-
gles, which were the main preprocessing steps on the CPU. The improvement
yielded a ten time performance increase.
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3
Implementations

During the course of the study, a number of techniques were developed,
tested and enhanced, in an iterative fashion. The coming subsections will
each contain a motivation for the design choices that were made and a
description of the methods while their results from the benchmark tests are
presented in Section 4.

3.1 Base

In order to create a base line for unoptimized rendering performance but
otherwise functional text renderer and a foundation that could be easily
improved upon, an approach similar to what is described in Section 2.2.1
was developed. This näıve approach was simply called Base and consisted
of three main steps.

The first step of Base was to parse the data set, containing information
about the text that should be rendered, e.g. position, color, font, and the
string of text, and storing the information in memory. The data set used in
this thesis consisted of text where a group of few words were guaranteed to
have the same glyph features, but where these groups had no real coherence
amongst themselves. This leads to a situation where the Base approach
could have no demands on the ordering of the data, requiring it to be more
flexible.

In the second step, FreeType is initialized together with a number of
FreeType objects, called faces. These faces enable the creation of glyph
bitmaps and they were created by looping through each group, creating a
face if that group’s combination of glyph features had not yet have a face
that supported them. Lastly, the rendering step is entered and all groups
are rendered, except the groups that are culled away due to view frustum
culling. As mentioned in Section 2.2.1, the rendering step itself constitutes
of a texture upload and draw call per glyph.

The data included in each draw call is the position of the vertices, the
texture coordinates, and the red, green, blue (RGB) values of the text. Base,
compared to the other implementations that are presented in this thesis, has
one extra benefit: it can use triangle strips [27]. However, this implementa-
tion suffers from the small batch problem [28] which states the importance
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3.2 Glyph Cache 3 Implementations

of reducing the number of draw calls due to the overhead associated with
each draw call.

3.2 Glyph Cache

As the Base implementation was intentionally unoptimized, the next step
in the iterative design process was to lower the amount of draw calls to an
amount that was acceptable. The aim was inspired by Nvidia’s paper on
texture atlases [18] which explains the importance of batching draw calls in
order to increase frame rate. Building on Base, the Glyph cache implemen-
tation actually consisted of a number of caches, one for each FreeType face.
These caches consisted of information about all the glyphs that are currently
residing in the cache, e.g. texture coordinates on the atlas and screen space
coordinates, and a texture atlas where the glyphs’ bitmap was stored.

The rendering step has a few additional steps, compared to Base. One
of these steps is cache swapping, which occurs whenever a text group that is
to be rendered does not have the same face as the previous group, requiring
another texture to be bound. Before changing cache, a draw call is passed,
rendering all previously unrendered glyphs.

Before a glyph is rendered, it is checked against the current cache and
added to it, if it is not yet included. An addition of a glyph into a cache
includes a texture upload. The LRU algorithm is used when the cache is full
and glyphs have to be removed to make room for new additions, illustrated
in Algorithm 1. As shown in Figure 2, each glyph was given the same
amount of space on the texture, making bitmap substitutions easier as a new
bitmap would always be able to replace an old bitmap. This partitioning
of the texture space simplified the implementation of the caching algorithm
while consuming more texture space. However, this simplification scales
well with this implementation as the bitmaps that occupy more space on
the texture is usually fewer than the amount of bitmaps that occupy less
space. For example, there are fewer but larger glyphs in headlines while the
body matter of a text has a higher amount but smaller glyphs. Unlike Base
however, the glyphs are not rendered one by one but rather put in an array
which is flushed during a texture swap, lowering the amount of draw calls
dramatically.

Data: glyph G
if cache is full then

replace least recently used glyph with G
else

place glyph in Cache
end
Increment the cache’s age counter
return reference to G’s new position

Algorithm 1: The glyph insertion algorithm of Glyph cache
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Figure 2: Illustration of Glyph cache texture space partitioning

With the Glyph cache implementation, sorting is an option to minimize
the number of cache swaps, and therefore also the number of draw calls.
However, this requires a pre-processing step which, as stated in the previous
subsection, is outside of the scope of the design of these algorithms.

3.3 Global Cache

As described in Section 4, the draw call minimization of the Glyph cache
implementation was not sufficient and further steps had to be taken to min-
imize the amount of draw calls. The strategy in this implementation was
to push the previous texture atlas scheme to its extreme and implement a
cache that that contains all glyphs, regardless of their glyph features. The
Global cache strategy would, however, demand that previous texture space
partitioning scheme in Glyph cache, would no longer be feasible. The rea-
son for this is that typical text has few large glyphs and a high amount of
smaller glyphs and the resulting partitioning would have resulted in a high
amount of wasted texture space, as shown in Figure 3.

Building on the Glyph cache, this technique has a few key differences. As
mentioned before, there is only one cache and thus one texture, which sup-
ports the possibility to render all glyphs in one draw call. This results in no
cache swapping. However, the insertion of new glyphs and the replacement
of existing glyphs is also far more complex. Pseudo code that illustrates
the algorithm that completes these replacement actions are illustrated in
Algorithm 2.
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Figure 3: A comparison of the Glyph cache and Global cache texture par-
titioning schemes where one glyph is large and the rest are small. To the
left: Glyph cache’s solution where there is a high amount of wasted space.
To the right: Global cache’s solution where the texture space is used more
efficiently.

Data: glyph G
forall the rows in Cache do

if G’s height <row height then
if G fits on row then

add G to row
break

end

end

end
//G cannot fit on any row
if G can replace any glyph then

replace least recently used glyph that is smaller than G
else if A new row cannot fit in the cache then

remove the row of the least recently used element
while G does not fit in the area do

remove rows until G can fit in the new area
end
add new row and G to it

else
add new row and G to it

end
increment the cache’s age counter
return reference to G’s new position

Algorithm 2: The glyph insertion algorithm of Global cache
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3.3 Global Cache 3 Implementations

Like the Glyph cache technique, this technique also checks if a glyph that
is going to be rendered is in the cache and adds it if it is not. The drawback
with this solution is that the search is more expensive, compared to Glyph
cache as all glyphs are contained in the same glyph structure making the
search space larger. This drawback was mitigated by the addition of a search
tree data structure that lowered the time complexity of the previous linear
search O(n) to a logarithmic search O(log(n)).
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4
Results

As mentioned in Section 1.1, the benchmark testing was performed on a
number of devices, device specifications in Appendix A, that were chosen
to be representative for the flora of devices that use the Android OS. This
section will present the results of the benchmarks, for each different tech-
nique, where performance is measured in frames per second (FPS). However,
before presenting the actual results, each data set will be described and mo-
tivated. The results from the Base technique are omitted due to, orders of
magnitude, worse performance on all devices.

• Web Audio Specification [29]: This data set was chosen for its
glyphs with few size or font variations, making it ideal to improve by
caching.

• BBC homepage [30]: The BBC data contains a high number of size
and font variations, increasing draw calls.

• Chinese Wikipedia [31]: As Unicode support was important, a Chi-
nese data set was included. This data set has a lower amount of glyphs
than the two previous ones and a lower amount of size and font vari-
ations than the BBC data set.

• Japanese Wikipedia [32]: To include the Japanese writing system,
consisting of both Kanji and Kana characters, the Japanese Wikipedia
homepage was included.

• English Wikipedia [33]: This data set was the first data set that
was included during the development process and was also included in
the final version of the benchmark tool. This data set has the highest
amount of glyphs and draw call generating glyph variations of all the
data sets.

4.1 Benchmarks

Each of the test data sets were created to replicate the text on a website.
The text was rendered by scaling it in a manner that ensures that the text
would fit the width of the screen. Due to the devices not being able to show
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4.1.1 Glyph Cache 4 Results

Input Draw calls Number of vertices

Web Audio Specification 7 5500

BBC homepage 36 7500

Chinese Wikipedia 28 4500

Japanese Wikipedia 24 3700

English Wikipedia 53 10200

Table 2: This table of Glyph cache results shows the amount of draw calls
and the average number of vertices per frame, rounded to the nearest hun-
dred, rendered in each.

all content at the same time, the benchmark consisted of the content being
translated upwards, initially, with the direction being reversed every time
there was no more content to show. This manner of testing was chosen to
test the highest load of typical user interaction, as a zoomed-in view would
cull away a higher amount of glyphs, as explained in Section 3.1. As all
devices that were included in this survey were found to support textures of
size 2048 by 2048 texels, this size was chosen for the benchmark to minimize
cache misses that might diminish performance. As the caches converged
quite quickly, i.e. the caches contained all glyphs of the test data, the frame
rate that is presented here was sampled over a 10 second period after cache
convergence.

During the development process of the benchmark tool and the tech-
niques, several benchmarks were performed to test and improve perfor-
mance, in accordance with iterative development. The results in the fol-
lowing subsections represent the final versions of the techniques, which are
described in Section 3.

4.1.1 Glyph Cache

The performance results, in Figure 4, of Glyph Cache confirms a number of
interesting things, one of these things was that the maximum frame rate of
each device is limited by the refresh rate of its screen, which is different for
each device. The Web Audio specification data set causes all devices to hit
their maximum frame rate, confirming that it was ideal for caching. Also,
the Galaxy Tab 10.1 hits its frame rate limit for all test data, which is due
to its powerful Tegra 2 chip. Comparing the benchmarks results with the
specifics in Table 2, there is a clear correlation between lower frame rate
and a high amount of draw calls, as the Web Audio input data performed
better, on all devices, than the Chinese and Japanese input data despite the
former having a higher number of vertices. This confirms that the reason
for the very poor performance of the Base technique was in part related to
the very high amount of draw calls.
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4.1.2 Global Cache 4 Results

Figure 4: Illustration of Glyph cache benchmark results where the perfor-
mance was measured in FPS, the results are grouped depending on the
device that was benchmarked, and each result is a bar in the graph.

4.1.2 Global Cache

The change in rendering and caching techniques and the addition of a search
tree, as mentioned in Section 3.3, resulted in a drastic performance improve-
ment. The number of draw calls were reduced to 1 each frame, as shown in
Table 3. In Figure 5 the benchmark results of the final version of the tech-
nique is illustrated. The benchmarks resulted in all, but the HTC Wildfire
S, hitting their refresh rate limit on every dataset. After minimizing the
number of draw calls, there is still a correlation between the frame rate and
the mean number of vertices in the results of the Wildfire S. While the re-
sults for the HTC Wildfire S is not perfect, the frame rate was increased by
almost twice as much, compared to the Glyph cache technique.
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4.1.2 Global Cache 4 Results

Figure 5: Illustration of Global cache benchmark results where the per-
formance was measured in FPS, the results are grouped depending on the
device that was benchmarked, and each result is a bar in the graph.

Input Draw calls Number of vertices

Web Audio Specification 1 5500

BBC homepage 1 7500

Chinese Wikipedia 1 4500

Japanese Wikipedia 1 3700

English Wikipedia 1 10200

Table 3: This table of Global cache results shows the amount of draw calls
and the average number of vertices, rounded of to the nearest hundred,
rendered in each.
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5 Discussion

5
Discussion

This thesis has shown that the device market is ready for a transition to
GPU-based rendering. Even the most low-end device that was benchmarked
almost hit the 50 FPS mark. This transition would, as discussed in Section
2.1, potentially lower the energy consumption of any application.

The early benchmarks of the Glyph cache technique showed that the
main bottleneck did not lie with the number of vertices but rather the
amount of draw calls. This was the main motivation as to why the Global
Cache technique was designed and implemented instead of working on try-
ing to minimize the number of vertices using methods that were described
in Section 2.2.1. This realization was surprising since the vertex count was
expected to be the main bottleneck that had to be resolved.

Due to memory limitations on low-end devices in this thesis, the size of
the test data was limited to allow the benchmark tool to be run at all. The
largest possible test data size was used on all devices during the test suite
to allow as similar test situations as possible on all devices.

The minimization of the number of draw calls was key in finding an
efficient technique that performs well on a majority of devices. However,
the HTC Wildfire S never hit its refresh rate limit for all input data. This
shows that GPU-based rendering may not be viable on all devices. Indeed,
low-end devices with small screens may be more suitable for CPU-based
rendering instead, as discussed in Section 2.1. As devices will continue to
evolve according to Moore’s law, the future outlook of GPU-based rendering
looks good as newer devices will have better GPU performance.

Prior to development of the Base technique, FreeType-gl [34] was investi-
gated and it had one important issue that conflicted with this thesis’ goals,
as presented in Section 1.3. This conflict [35] was found on the project’s
issue tracker and it concerned the support of Asian languages. While the
project may have been improved by now, it was clear that it did not suite
this thesis purposes at that moment.

When the positive results of the Global cache technique was confirmed,
additional work was done on the benchmark tool to add more functionality to
it. These functionalities consisted of adding color information to the glyphs
and adding images to the test data. These images were added to create an
even more realistic test suite for the render data from websites. Due to time
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5 Discussion

limitations, these additions were not subject to extensive benchmarking and
were therefore omitted from this thesis. However, it showed that it would
have been possible to include images into the Global cache and still render
the whole screen in one draw call, as long as the texture is large enough.
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6 Future Work

6
Future Work

One point that would have been interesting to investigate further is the
cache techniques. The implementations in connection to this thesis all used
a LRU scheme, as it was thought be fit well with the task. However, there
are a number of caching algorithms that might work ever better, e.g. MRU
or an algorithm that utilizes linguistic facts, to make the caching more effi-
cient. It would have also been interesting to investigate cache miss related
performance hits in a situation where a user moves from one website to an-
other. However, this was down prioritized and focus was put on developing
a fast rendering technique instead.

One of the first papers that was examined during the course of this thesis
was the paper on signed distance fields, briefly discussed in Section 2.2.3,
by Green. While it served as an inspiration, it was never implemented. The
reason for this was that neither minimizing the use of texture space nor im-
plementing zooming was prioritized. However, supplying a continuous high-
quality text zoom feature could be an important goal in any end-product
and it is here the paper by Green can serve a larger purpose than it did in
this thesis.

Global cache was optimized with a search tree to improve performance
but before this was implemented, a hash table was considered. As the search
tree performed really well, it was deemed unnecessary to focus on optimizing
the glyph search further, but it can be a future point of optimization if
searching evolves into a bottleneck again in the future.

The choice of font engine could be investigated further, but due to cache
convergence it had little impact on rendering performance. There was no
need to second guess this decision during development of the benchmark
tool as there were other issues that hindered performance.

An emerging market right now is TVs that run an operating system that
allow the user to connect to the Internet and receive content from media
servers, similarly to modern mobile phones and tablets. It would have been
interesting to see a text rendering survey on different TVs, as done in this
thesis.

I would like to end this thesis by repeating some words of Andersson, the
author of the master thesis discussed in Section 2.1.1. Now that it has been
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6 Future Work

confirmed that bitmap based font rendering on the GPUs of devices works
well and that it is a technique that will likely scale well with the future
device hardware developments, I leave the examination of GPU-based curve
rendering on devices for future research.

I would love to see the results.
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A Devices’ specs

A
Devices’ specs

The devices in Table 4 were included in the benchmark suites for this thesis.
The table also includes the hardware details, e.g. system on a chip (SoC)
model and screen resolution. These details were chosen because they were
relevant to the development and utilization of the benchmark tool.

Model Developer SoC model Screen
resolution

Kindle Fire Amazon.com Texas Instruments 1024x600
OMAP 4430

Galaxy Nexus Google Texas Instruments 1280x720
OMAP 4460

Wildfire S HTC Qualcomm 480x320
MSM7227

Nexus One Google Qualcomm 800x480
QSD8250

Desire S HTC Qualcomm 800x480
MSM8225

Galaxy Tab 10.1 Samsung Nvidia 1280x800
Tegra 250 T20

Table 4: The hardware specifications for the devices included in the bench-
mark suites of this thesis.
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