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Abstract

In this thesis we study different non-cooperative two-person games. First,
we study a zero-sum game played by players I and II on a n×n random
matrix, where the entries are iid standard normally distributed random
variables. Given the realization of the matrix, player I chooses a row
i and player II a column j. The entry at position (i, j) represents the
winnings and losings of the players. Let p = [p1, ..., pn]

T denote the
optimal strategy of player I. We show that P

(
maxi∈[n] pi >

c√
n

)
→0 as

n→∞ for any c > 10
√
π
(
1 +
√
2 log 4

)√
log 4.

The second game studied here is a spatial game in which each player,
represented by a vertex in a given graph, plays the repeated prisoner’s
dilemma game against its neighbours. At time one, each player chooses a
strategy at random independently of each other. At time t = 2, 3, ..., each
player, looking at its neighbourhood (including the player itself), uses
the strategy of the player that scored highest in the previous round. We
study the game played on some deterministic graphs. For certain graphs
and choices of the parameters of the game, we find the probability that
a given player cooperates as time tends to infinity. We also analyse the
iterated prisoner’s dilemma played on the binomial random graph. In
particular, we study the asymptotic distribution of cooperation when the
number of players tends to infinity.

Finally, we analyse simultaneous zero-sum games played by player I and
II. More precisely, we study how player I should choose strategy among
the set of optimal strategies when taking into account the risk associated
to the game. One measure of risk used here is the variance of the total
winnings. In particular, we find the optimal strategy for player I which
minimizes the maximum variance. In the same way, we find the optimal
strategy for player I which maximizes the minimal variance.

Keywords: zero-sum game, optimal strategy, random matrix, iterated
prisoner’s dilemma, spatial game, cooperation, simultaneous games, min-
imal variance
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Introduction

Game theory is a branch of applied mathematics originally related to
economical and political problems. In its origins, John von Neumann and
Oskar Morgenstern intended to study human behaviour when making
strategic decisions. The assumption was that these decisions were based
on rationality. Nowadays game theory is also related to other areas such
as ecology and biology, in particular to evolution. In these areas, the
individual’s behaviour does not rely on rationality but on other aspects
such as fitness and natural selection.
This thesis, as its name suggests, deals with some problems related to
game theory. More precisely, it consists of the following papers:

I. Bergroth, E. The optimal strategy of a two-person zero-sum game.
Manuscript, (2011).

II. Bergroth, E. The iterated prisoner’s dilemma on graphs.
Manuscript, (2011).

III. Bergroth, E. and Jonasson, J. How to play simultaneous zero-sum
games.
Manuscript, (2013).

In game theory, the decisions makers are called players [2]. Typical
objects of study are so called two-person games. The players, player I
and player II, have a choice to make, and each player’s score depends
on its own choice and the choice of the other player [8]. If the players’
actions are independent, then the game is called non-cooperative. A
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formal description of a non-cooperative two-person game is given by
(SI , SII , AI , AII), where

1. SI is a nonempty set, the set of possible moves of player I;

2. SII is a nonempty set, the set of possible moves of player II;

3. AI and AII are the score functions (real valued functions) defined
on SI × SII .

This way to describe the game is known as the "strategic form" [2].
The interpretation is as following: at the same time and without having
information about the other player’s choice, player I chooses sI ∈ SI and
player II chooses sII ∈ SII , resulting in that player I wins AI(sI , sII)
and player II wins AII(sI , sII). When the total score to both players
adds to zero, i.e. AI(sI , sII) = −AII(sI , sII) for all sI ∈ SI , sII ∈ SII ,
the game is called a zero-sum game. Two-person zero-sum games are also
known as matrix games, since the scores can be represented by a matrix;
if SI = {sI,1, ..., sI,n} and SII = {sII,1, ..., sII,m}, then the matrix

X =

 x11 · · · x1m
...

...
xn1 · · · xnm


is the payoff matrix of the game, where

AI(sI,i, sII,j) = −AII(sI,i, sII,j) = xij .

The matrix is assumed to be known to both players. Player I chooses
a row, i (sI,i), and player II chooses a column, j (sI,i); then player II
pays xij to player I if xij > 0 or player I pays |xij | to player II if xij < 0.
We distinguish between pure strategies and mixed strategies. Pure strate-
gies for player I (II) are just deterministic choices of a move or element
of SI (SII). In a mixed strategy p = [p1, ..., pn]

T (q = [q1, ..., qn]
T ) for

player I (II), each element pi (qj) is a probability, so that when I (II)
makes its choice of move, it does so according to these probabilities:
move sI,i (sII,j) is chosen with probability pi (qj). Mixed strategies are
also known as randomized strategies. According to the well-known Min-
imax Theorem of von Neumann and Morgenstern there exists a number
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V , called the value of the game, and mixed strategies p = [p1, ..., pn]
T

and q = [q1, ..., qn]
T , called optimal strategies or minimax strategies, for

both players respectively. These strategies have the following properties:
when player I plays p then its expected winnings are at least V indepen-
dently of what player II plays, and if player II plays q then its expected
loses are at most V [5]. A central issue in game theory is the study of the
optimal strategies. In this sense, Jonasson in [5] analysed the optimal
strategies p = [p1, ..., pn]

T and q = [q1, ..., qn]
T of a two-person zero-sum

game played on a random n×n-matrix X = [Xij ]1≤i,j≤n, where the Xij ’s
are iid normally distributed random variables. More precisely, the au-
thor shows that if Z is the number of rows in the support of the optimal
strategy for player I given the realization of the matrix, then there exists
a < 1

2 such that

P

((
1

2
− a
)
n < Z <

(
1

2
+ a

)
n

)
→ 1,

as n → ∞. It is also shown that EZ =
(
1
2 + o(1)

)
n. In Paper I we

study the same game, establishing a result about the maximal probability
assigned to a row/column in the optimal strategy. More precisely, we find
that for any c > 10

√
π
(
1 +
√
2 log 4

)√
log 4,

P

(
max
i∈[n]

pi >
c√
n

)
→0,

as n→∞.

Paper II concerns a model introduced by Lindgren and Nordahl [6],
in which the well-known "prisoner’s dilemma" is studied in a spatial
setting. Merrill Flood and Melvin Dresher stated the prisoner’s dilemma
for the first time in 1950. However, the name "prisoner’s dilemma"
was given by Albert W. Tucker who formalized the game using a payoff
matrix to describe it [13]. The prisoner’s dilemma is the following: two
suspects are arrested by the police. The police offers the same deal to
each prisoner. If one testifies against the other (defects) and the other
remains silent (cooperates), the defector goes free and the cooperator gets
a 5-year sentence. If both prisoners cooperate, each of them receive a
1-year sentence. If each prisoner testifies against the other, each receives
a 3-years sentence. This means that there are only two actions for each
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prisoner, to defect (D) or to cooperate (C). What should the prisoners
do? Assuming that each prisoner wants only to minimize his own time
in prison, then the best action to take is to defect, whatever the other
prisoner does. On the other hand, it is clear that if the two prisoners
were to act for their common good, they should cooperate.

This need of choice between defection and cooperation is present in many
social and biological contexts. In fact, the prisoner’s dilemma is present
at all levels, as explained by Nowak in [9]: "Replicating molecules had
to cooperate to form the first cells. Single cells had to cooperate to form
the first multicellular organisms. The soma cells of the body cooperate
and help the cells of the germ line to reproduce. Animals cooperates
to form social structures... Humans cooperate on large scale, giving
raise to cities, states and countries. Cooperation allows specialization.
Nobody needs to know everything. But cooperation is always vulnerable
to exploitation by defectors."

Lindgren and Nordahl model the evolution of cooperation in a spatial
setting: each player, associated with a vertex in a given graph, plays
the prisoner’s dilemma game against its neighbours. In their work, the
authors made simulations in order to understand the behaviour of co-
operation as the game is played repeatedly. Similar work was done, for
example, in [1], [10], [11], [14], [9] and [3] (see [12] for more details).
In this paper, we establish some rigorous results concerning the iterated
prisoner’s dilemma. Here the game is played with the following rules: (i)
at time 0 each player chooses independently strategy C with probability
p, and strategy D with probability 1−p = q; (ii) at time t = 1, 2, ... each
player plays the game against its neighbours; (iii) at time t = 2, 3, ...
each player, looking at its own neighbourhood (the player itself and its
neighbours), uses the same strategy as the player with highest score at
time t− 1. For each player, the payoff matrix of a single game is

(C D

C 1 0
D b a

)
with 0 < a < 1 and 1 < b < 2. We are interested in the probability
that cooperation survives as the game is played repeatedly, in particular
that a given player i survives as a cooperator as t→∞. More formally,
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we study the limit πp(C) = limt→∞ P (s
i
t = C), where sit stands for the

strategy used by player i at time t. The structure of the population is de-
termined by different graphs, characterized by vertices and edges, which
represents players and interactions respectively. Paper II contains two
parts. In the first part we study the iterated prisoner’s dilemma played
on some deterministic graphs, in which there are infinitely many players
and the number of neighbours is equal for all players. Examples of such
graphs are trees, d-dimensional lattices, etc. In all cases πp(C) depends
on the parameters a and b. We study for each graph, as it is possible,
the evolution of cooperation for different values of a and b. The simplest
example analysed here is the one-dimensional lattice, where each player
plays against its two neighbours. We show in this case that

πp(C) =
{

0 if a+ b > 2,(
q + p2

)2
p3 (3− 2p) if a+ b ≤ 2.

This is a special case of the n − 1-nary tree, in which each player plays
the game against its n neighbours, for which given the conditions a +
(n− 1)b ≤ n and (n− 1)a+ b > n− 1, we show that

πp(C) = pn+1xn(n−1)
(
1− pn−1x2−3n+n2

)n
−pxn

((
1− pnx(n−2)n

)n
− 1
)
,

where x = p+ q(1− pn−1).

In the second part of Paper II, we study the iterated prisoner’s dilemma
played on a random graph known as the binomial random graph or the
Erdös-Rényi random graph. In this graph, denoted by G(n, r), there are
n players which play against each other. This interaction is given by the
result of

(
n
2

)
independent coins flipping, each of them with probability

of success equal to r ∈ (0, 1) [4]. We are interested in the behaviour of
cooperation as n tends to infinity, with r as a function of n. Firstly, we
find that too much interaction rules out cooperation. More precisely, we
show that for all 0 < a < 1 and 1 < b < 2, the probability that coopera-
tion survives in some part of the graph tends to zero if r ≥ 1

nc , 0 ≤ c < 1.
Secondly, we analyse if limited interaction leaves room for cooperation
to survive. It is well known that there is positive probability that, as
n tends to infinity, there are isolated vertices if r = logn

cn and c > 1 [4].
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Of course, this is not of so much interest since we are mainly interested
in the probability that cooperation survives as a result of interaction
between the players. In order to ensure interaction, we study the game
played on the largest component with r big enough so that this compo-
nent is a.a.s. unique. More precisely, we show that if a + b ≤ 2, r = c

n
and c > 1, then

lim
n→∞

P (Bi) > 0,

where Bi is the event that an arbitrarily chosen player i survives as
cooperator, as t → ∞, in a component which has at least one more
player than any other component. Finally, we find that cooperation can
still survive in the largest component when r is of bigger order than c

n .
To be more precise, we show that if a + b ≤ 2, r = λ log(n)

n and λ ≤ 1
6

such that λlog n→∞ as n→∞, then

lim
n→∞

P

(
n⋃

i=1

Bi

)
= 1,

i.e. with this choice of a, b and r, the probability that cooperation
survives in the biggest community of players tends to one as the numbers
of players tends to infinity.

As mentioned previously, a central issue of game theory is the study of
two-person zero-sum games. A very simple example of such games is the
so called "envelope game": player I puts 20 dollars in one envelope and
40 dollars in a second envelope. Player II chooses one of the envelopes
and guesses how much money the envelope contains. If the guess is
correct, Player II gets the money contained in the envelope, otherwise
30 dollars are paid from player II to player I. The matrix of the game
is then

M =

(
−20 30
30 −40

)
In this case, the only optimal strategy for player I is [ 712 ,

5
12 ]

T and the
value of the game is r = 5

6 . Nevertheless, if the game is played simulta-
neously two times for example, there is more than one optimal strategy.
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One optimal strategy for player I could be to choose the first row in
both games with probability 7/12 or the second row in both games with
probability 5/12. Another optimal strategy is obtained by playing the
strategy [ 712 ,

5
12 ]

T independently in each game. In both cases, player
I’s expected winnings are 2r = 5

3 , no matter what the other players
do. The question now is how player I should make the choice of strategy
among the set of optimal strategies. In Paper III, we analyse the choice
of strategy for player I when a slightly more general zero-sum game is
played simultaneously several times (against several players or several
times against the same player). More precisely, each game is typically
played on a 2× 2 matrix:

M =

(
a b
d c

)
with the property that there is no saddle point, i.e. a ≥ b, b < c, c > d
and d < a or a < b, b > c, c < d and d > a [2].

Inspired by a theory of finance called Modern portfolio theory [7], we take
into account the risk associated to the game in order to make the choice
of strategy. In particular, we analyse how two different kind of players
should play: risk averse and risk seeking players. In our analysis, we use
two different measures of risk. First, risk is measured by the variance of
the total winnings. Assuming that player I is a risk averse player, we find
the optimal strategy which minimizes the smallest number v, such that
player I’s variance is at most v independently of what the other players
do. In the same way, we find the preferred strategy for player I in the
risk seeking case, that is the optimal strategy that maximizes the largest
number v such that player I’s variance is at least v independently of what
player II does. The second measure of risk used here is the probability
that the total winnings are less than a given constant c. In this sense,
player I would want to maximize the largest number s such that the
probability that player I’s total winnings are greater than or equal to c
is at least s independently of what the other players do. In this case,
we find the desired strategy when each game is played on the following
matrix

M =

(
1 0
0 b

)
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with the property that b is greater than or equal to the number of times
the game is played.
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