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Abstract. In this work, we theoretically analyze a circuit quantum
electrodynamics design where propagating quantum microwaves interact with a
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equation in the so-called transmon regime, including coherent drives. Inspired by
recent experiments, we then apply the master equation to describe the dynamics
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case, we also discuss how to measure photon antibunching in the reflected field
and how it is affected by finite temperature and finite detection bandwidth.
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1. Introduction

In recent years, the field of circuit quantum electrodynamics (circuit QED) [1, 2] has become
one of the most promising platforms in the study of light–matter interaction. One of the most
important breakthroughs in this field was the achievement of a strong coupling between light
and matter, or microwave photons and Josephson-based artificial atoms [3, 4]. Since then, many
experiments have been carried out within the framework of superconducting circuits [5–9],
revealing a wide variety of novel quantum phenomena. Most of these experiments share
a common feature, namely the interaction between artificial atoms and isolated modes of
the electromagnetic field in a cavity. Within circuit QED, there is now growing interest in
studying propagating fields interacting with artificial atoms, owing to, e.g., its potential interest
for condensed matter [10] and all-optical quantum information [11]. Theoretically, coherent
coupling between an atom or superconducting qubit and a one-dimensional continuum of modes
has been discussed for some time [12–17], and there exist now a growing number of experiments
investigating this system in a circuit QED setup [18–25].

In this paper, we report on an in-depth microscopic description of the coherent coupling
between a field propagating through an open transmission line (TL) and a superconducting
artificial atom based on the single Cooper-pair box (SCB) [26–32]. In more detail, we analyze
the so-called transmon regime [8, 33] and study the photon transport properties of this system
according to different approximations. On the one hand, in the two-level approximation and
under certain conditions, the qubit behaves like a saturable mirror [12, 13]. On the other hand,
by including a second excited state of the transmon, we can effectively make the medium
transparent for the incident photons using a coherent control field in resonance with this second
transition. Finally, we also discuss how the photon antibunching observed in the reflected field
is reduced by finite temperature and finite detection bandwidth. Our theoretical predictions are
in full agreement with recent experiments [22, 23, 25].
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Figure 1. Discretized circuit describing the interaction of an SCB with
microwaves photons propagating in a semi-infinite TL.

This paper is organized as follows. In section 2, we derive the master equation of an SCB
coupled to an open TL. In section 2.1, we start from a discretized lumped-element description
of the TL and in section 2.2 we proceed to the continuum description. In section 2.3, we discuss
the regime where the system can be described as an SCB weakly coupled to the voltage of the
TL, at the coupling point. We thus arrive at the Hamiltonian of a voltage-biased SCB, weakly
coupled to a bath of harmonic oscillators, i.e. the electromagnetic modes of the TL. Making
standard weak coupling approximations, we then derive a master equation in Lindblad form
in section 2.4 and attach a coherent drive in section 2.5. For simplicity, we go through these
derivations considering an SCB at the end of a semi-infinite TL, but in section 2.6 we discuss
how the master equation can be straightforwardly extended to an arbitrary number of semi-
inifinte TLs, all meeting at the SCB. In particular, this includes the important case of a single
infinite TL.

In section 3, we then apply the master equation to a few experimentally relevant
cases [22, 23]. Section 3.1 is devoted to the reflection and transmission of a single near resonant
coherent drive, while section 3.2 includes two coherent drives, where one is used to control the
transmission of the other. Finally in section 3.3, we investigate how the photon antibunching
observed in the reflected field is influenced by finite temperature and finite detection bandwidth.

2. The model

In this section, we present a general formalism of the light–matter scattering in a one-
dimensional continuum from a microscopic point of view. We start from a Hamiltonian
description, arriving at the well-known input–output relations for the microwave field. We
then follow the usual approach [34] to describe the joint state of the light–matter system by
introducing dissipation, resulting in the standard quantum optical master equation.

2.1. The discrete circuit model, Hamiltonian and equations of motion

Consider a semi-infinite TL with characteristic inductance L0 and capacitance C0 per unit
length. We discretize the TL [35] in units of the small length 1x , which we take to zero at the
end of the calculation. The TL nodes are numbered with negative integers, while the SCB island
node has index J and its Josephson junction has a capacitance CJ to ground and a Josephson
energy EJ. The SCB is coupled to the TL at the zeroth node, through the capacitance Cc, as
depicted in figure 1.

To describe the circuit dynamics, we use the node fluxes 8α(t)=
∫ t dt ′Vα(t ′) as

coordinates [36]. They are the time integrals of the node voltages and although less intuitive than
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the voltages, this choice greatly simplifies the description of the Josephson junction. Starting
from a circuit Lagrangian, we can derive the discrete circuit Hamiltonian [37]

Hd =
(p0 + pJ)

2

2CJ
+

p2
0

2Cc
− EJ cos

(
2e

h̄
8J

)
+

1

1x

∑
n<0

p2
n

2C0
+

(8n+1−8n)
2

2L0
, (1)

where the charges pα are the conjugate momenta to the node fluxes 8α, fulfilling the canonical
commutation relations

[8α, pβ]= ih̄δα,β, [8α, 8β]= [pα, pβ]= 0,

where δα,β denotes Kronecker’s delta. From the Hamiltonian, we obtain Heisenberg’s equations
of motion for the TL operators (n < 0)

∂t8n =
pn

1xC0
, ∂t pn =

8n−1− 28n + 8n+1

1x L0
(2)

and for the SCB operators

∂t p0 =
8−1−80

1x L0
, (3)

∂t80 =
p0 + pJ

CJ
+

p0

Cc
=

C6

CcCJ
p0 +

pJ

CJ
, (4)

∂t pJ =−EJ
2e

h̄
sin

(
2e

h̄
8J

)
, (5)

∂t8J =
p0 + pJ

CJ
, (6)

where C6 = Cc + CJ.

2.2. Continuum limit

In the continuum limit 1x→ 0, the charge of each TL node will go to zero together with the
node capacitance. Thus, we define a charge density field p(xn, t)= pn(t)/1x and a flux field
8(xn, t)=8n(t), where we define the spatial coordinate xn = n1x for n < 0, along the TL.
The continuum equations of motion for the TL (x < 0) are

∂t p(x)=
∂2

x 8(x)

L0
, ∂t8(x)=

p(x)

C0
. (7)

These are the equations of motion for the massless Klein–Gordon field, having freely
propagating left- and right- moving solutions with velocity v = 1/

√
L0C0. Therefore, we can

write the general solution for x < 0 as a linear combination of right- and left- moving second-
quantized fields

8�(x, t)=

√
h̄ Z0

4π

∫
∞

0

dω
√

ω

(
a�ω e−i(ωt∓kωx) + h.c.

)
,

p�(x, t)=−i

√
h̄ Z0

4π

∫
∞

0
dω
√

ω
(
a�ω e−i(ωt∓kωx)

− h.c.
)
,

(8)

New Journal of Physics 15 (2013) 035009 (http://www.njp.org/)

http://www.njp.org/


5

where kω = ω/v and Z0 =
√

L0/C0 is the characteristic impedance of the TL. The
operators a�ω annihilate a left/right-moving photon with frequency ω, and obey the bosonic
canonical commutation relations, [a←ω , (a←ω′ )

†]= [a→ω , (a→ω′ )
†]= δ(ω−ω′) and [a←ω , (a→ω′ )

†]=
[a�ω , a�ω′ ]= 0. Finally, we note that in the continuum limit, (3) changes into

∂t p0 =−
∂x8(0−)

L0
. (9)

To describe the system dynamics, we first need to specify the incoming, right-moving
field

8in(t)=8→(0−, t).

Given this initial condition, we can then calculate the SCB dynamics, as well as the outgoing
field

8out(t)=8←(0−, t),

propagating to the left in the line. The flux at x = 0 is simply the sum of the incoming and
outgoing flux fields

80(t)=8(0−, t)=8in(t) + 8out(t) + Vdct, (10)

where for simplicity we also explicitly extracted the dc voltage bias Vdc, implying that 8in and
8out have no dc components. Now, solving for p0 from (4) gives

p0 =
CcCJ

C6

[
Vdc + ∂t(8

in + 8out)
]
−

Cc

C6

pJ (11)

and inserting this expression into (6), we arrive at

∂t8J =
pJ + Cc

[
Vdc + ∂t(8

in + 8out)
]

C6

. (12)

We then insert 80 from (10) in (13) and arrive at

∂t p0 =−
∂x8(0−)

L0
=

∂t(8
in
−8out)

Z0
, (13)

where we used the relation ∂x8�(0−)=∓v−1∂t8�(0−) to change the spatial derivative into a
time derivative. Inserting the expression for p0 from (11) into the left-hand side of this equation
and integrating once with respect to time leads to

8out
=8in + Z0

Cc

C6

pJ− τRC∂t(8
in + 8out), (14)

where the time τRC = CcCJ Z0/C6 is the characteristic RC time for discharging the SCB through
the TL. Equations (5), (12) and (14), in principle, give the full time evolution of the SCB
operators 8J and pJ as well as the out-field, in terms of the in-field. However, to solve these
nonlinear equations straightforwardly, we need to make some approximations.
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2.3. Voltage-biased single Cooper-pair box approximation

In the following, we will neglect the last term in (14). Since the time derivative enters the product
with τRC, this will be a good approximation as long as the relevant frequencies of the incoming
field 8in and of the SCB dynamics (pJ) are much lower than the inverse RC time. Under this
approximation, the final equations of motion are

∂t8J =

pJ + Cc

(
Vdc + 2∂t8

in + τRC
CJ

∂t pJ

)
C6

, (15)

∂t pJ =−EJ
2e

h̄
sin

(
2e

h̄
8J

)
, (16)

8out
=8in +

τRC

CJ
pJ. (17)

Here we also note that this approximation is valid in recent experiments [22, 23], where Z0 =

50 �, Cc ∼ 10 fF and CJ ∼ 25 fF, giving an inverse RC timescale of 1/(2πτRC)∼ 400 GHz,
which is around 50 times higher than the relevant frequency of 8in and pJ, set by the qubit
frequency ∼7.5 GHz.

The above set of equations (15)–(17) corresponds to the Hamiltonian

H = Hsys + Hint + Hbath, (18)

Hsys =
[pJ + CcVdc]

2

2C6

− EJ cos

(
2e

h̄
8J

)
, (19)

Hint =
Cc

C6

(pJ + CcVdc)∂t8(0−, t), (20)

Hbath =

[
Cc∂t8(0−, t)

]2

2C6

+
∫ 0

−∞

p(x, t)2

2C0
+

[∂x8(x, t)]2

2L0
dx . (21)

Thus, we have arrived at the Hamiltonian of a voltage-biased SCB, weakly coupled to the
TL voltage at x = 0, i.e. V0(t)= ∂t80(t). (Here, we note that for the uncoupled TL, without
SCB, 80(t)= 28in(t) due to the perfect reflection.) Truncating the Hilbert space of Hsys to
two levels, (18) is just the spin-boson Hamiltonian. From this point, we can proceed with
a Bloch–Redfield derivation of a master equation for the SCB only [38]. By comparing to
section 3.2 in [34], we also note that the equations of motion (15)–(16) can be interpreted as
quantum Langevin equations (QLE) of the form

Ẏ =
i

h̄
[Hsys, Y ] +

i

2h̄
[γ Ẋ − 2

√
γ v Ȧin, [X, Y ]]+, (22)

whereas (17) stands for the input–output relation

Aout(t)= Ain(t)−

√
γ

v
X (t) (23)

using the identifications Y =8J, X =−(pJ + CcVdc), Ain
=
√

C08
in and where

γ = Z0

(
Cc

C6

)2

(24)

is the damping constant that accounts for spontaneous emission.
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2.4. Master equation

From the QLE (22), we can derive a master equation for the reduced density matrix of the SCB
in the transmon regime. As the input field, we first consider a thermal background at temperature
T , giving rise to a photon occupation number of

nω =
1

exp (h̄ω/kBT )− 1
. (25)

We assume that the density matrix initially can be written as a direct product, as well as
Markovian properties and short correlation times for the TL variables. In the case when the
damping (24) is much smaller than the system eigenenergies, we arrive, after also employing
the rotating wave approximation, at the following quantum optical master equation,

ρ̇(t)=−
i

h̄
[Hsys, ρ] +

2γ

h̄

∑
m

ωm[(nωm + 1)D(X−m)ρ + nωmD(X+
m)ρ] (26)

with the Lindblad operator defined by D(c)ρ = cρc†
−

1
2

(
c†cρ + ρc†c

)
. Also, X has been

decomposed into eigenoperators of Hsys,[
Hsys, X±m

]
=±h̄ωm X±m , ωm > 0, (27)

which is always possible as long as the eigenstates of Hsys form a complete set.
Projecting the master equation onto the SCB eigenstates |i〉, Hsys|i〉 = ωi |i〉 (i ∈

{0, 1, 2, . . .}), we arrive at the following equation for the diagonal elements,

ρ̇i i =

∑
j 6=i

0 j iρ j j −0i jρi i , (28)

where the relaxation (ωi j = ωi −ωJ > 0 ) rates are

0i j =
2γ

h̄
ωi j

(
1 + nωi j

)
| 〈i | X | j〉 |2 (29)

and the excitation (ωi j < 0) rates are

0i j =
2γ

h̄
|ωi j |nωi j | 〈i | X | j〉 |

2. (30)

Noting that X =−(pJ + CcVdc) is the charge operator, the matrix elements can be
calculated numerically from the SCB Hamiltonian in (19). Denoting the SCB charging energy
by EC = e2/2C6 , the transmon regime is found for EJ� EC [33]. Here, the SCB spectrum
approaches a linear oscillator with the junction plasma frequency ωp =

√
8EJ EC/h̄, and the

charge operator asymptotically couples only neighboring eigenstates [33]. We find the non-zero
relaxation rates

0( j+1) j = π( j + 1)κ2 EJ

h̄

Z0

RK
(1 + nωp) (31)

and excitation rates

0 j ( j+1) = π( j + 1)κ2 EJ

h̄

Z0

RK
nωp, (32)

New Journal of Physics 15 (2013) 035009 (http://www.njp.org/)

http://www.njp.org/


8

where RK = h/e2
≈ 25 k � denotes the quantum of resistance. The off-diagonal (i 6= j)

elements are subject to a pure exponential decay,

ρ̇i j =−γi jρi j (33)

with dephasing rates

γi j = 0i
φ + 0

j
φ +

1

2

∑
k 6=i

0ik +
∑
k 6= j

0 jk

 , (34)

equal to half the sum of all rates for transitions from states |i〉 and | j〉, as well as the pure
dephasing rates

0k
φ =

2γ

h̄

kBT

h̄
|〈k|X |k〉|2. (35)

The pure dephasing rates depend on the dc voltage, through the SCB spectrum, according to

|〈k|X |k〉| =
e

4EC

∣∣∣∣∂ωk(ng)

∂ng

∣∣∣∣ , (36)

where ng = CcVdc/2e is the dimensionless gate charge of the SCB. In the transmon regime the
spectrum is well approximated by

ωk(ng)= ωk(ng = 1/4)−
εk

2
cos (2πng), (37)

where

εk ' (−1)k EC
24k+5

k!

√
2

π

(
EJ

2EC

) k
2 + 3

4

e−
√

8EJ/EC, (38)

giving a maximum thermal pure dephasing rate (for ng =±1/4) of

max 0k
φ = κ2 Z0

RK

kBT

h̄

π 3

8

∣∣∣∣ εk

EC

∣∣∣∣2

. (39)

Here, we also note that in addition to small-amplitude thermal charge noise there can also
be a slow but large-amplitude charge drift. In some cases, the effect of this drift can be taken
into account by averaging over the range of transition frequencies involved. In the transmon
regime, for the transition from |k〉 to |k + 1〉 this is given by εk+1− εk ≈ εk+1.

2.5. Coherent drive

In the next section, we will examine the scattering of coherent signals on the transmon in the
two-level and three-level approximations. To include a coherent drive in the description, we
take the input field 8in(t) to consist of a classical part 8in

cl(t) on top of the thermal background.
Deriving the master equation for this case, it turns out that (26) is modified by adding the
following time-dependent term to the system Hamiltonian,

Hd(t)=−2

√
γ

Z0
8̇in

cl(t)X. (40)

New Journal of Physics 15 (2013) 035009 (http://www.njp.org/)

http://www.njp.org/


9

(a)

(b)

Figure 2. (a) Discretized circuit describing the interaction of an SCB with
microwave photons propagating in an infinite TL. (b) Generalization of the
input–output formalism to an arbitrary number of ports connected by an artificial
atom.

2.6. Adding more transmission lines

In this section, we generalize the above master equation by adding more semi-infinite TLs to
the SCB. First, by adding one more semi-infinite line, we arrive at the important case of an SCB
capacitively coupled to an infinite TL. The discretized circuit is shown in figure 2(a), and the
corresponding Hamiltonian is obtained from (1) by adding the TL terms for x > 0

H ′d = Hd +
1

1x

∑
i>0

(
p2

i

2C0
+

(8i−1−8i)
2

2L0

)
. (41)

From a similar analysis as that above, we arrive at exactly the same master equation for the
transmon’s reduced density matrix, with the replacements

8in
=

1

2

(
8in

L + 8in
R

)
, τRC =

Z0

2

CcCJ

C6

, γ =
Z0

2

(
Cc

C6

)2

(42)

and the output fields are obtained from

8out
L/R =8in

R/L + (τRC/CJ)pJ. (43)

We note that the damping constant γ as well as the RC time τRC are both halved compared to the
semi-infinite case, since the impedance to ground is halved to Z0/2. The in-field is the sum of
the fields incoming from the left and right, but compared to the semi-infinite case the coupling
coefficient is halved, since there is (almost) no reflection at x = 0. Indeed, for a more general
scenario with N symmetrically coupled incident fields, as illustrated in figure 2(b), the mapping
would be

8in
=

1

N

N∑
n=1

8in
n , τRC =

Z0

N

CcCJ

C6

, γ =
Z0

N

(
Cc

C6

)2

(44)
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and using the relation 80 =8in
n + 8out

n (∀n), the output fields are given as

8out
n =80−8in

n =

(
2

N
− 1

)
8in

n +
τRC

CJ
pJ +

2

N

N∑
m 6=n

8in
m. (45)

3. Applications: scattering by the transmon

3.1. Two-level dynamics

In this section, we examine the scattering of coherent signals on the transmon in an open TL.
The input field is a constant coherent signal with a single frequency ωp, close to resonance with
the first transition frequency ω10 of the transmon. Thus, we can safely describe the transmon as
a two-level system. The master equation is given by (26) with a coherent drive and generalized
to the case of an infinite TL (see sections 2.5 and 2.6), in the special case of only one system
eigenfrequency ω10. Moreover, we include an additional term due to pure dephasing, so that
the total dephasing rates are given by (34). We represent our operators by the following Pauli
matrices (using the notation X i j ≡ 〈i |X | j〉):

Hsys =−h̄
ω10

2
σz, X± =±i|X10|σ

±. (46)

Below, we will determine reflection and transmission coefficients for coherent signals scattered
on the transmon. In the previous section, the incoming and outgoing fields were described in
terms of the flux, since that gives a simpler description of the transmon. However, the voltage
is a more intuitive quantity than the flux and is also usually what is measured in experiments.
Therefore, in this section, we will describe the inputs and outputs in terms of the voltage.

We consider an incoming coherent voltage field,

V in
L (t)=�p sin ωpt, (47)

impinging on the transmon from the left. For simplicity, we set the temperature to zero
(nω10 = 0). The reflected voltage field is the output to the left of the transmon. Using (42)
and (43), we have

V out
L (t)=−

√
γ Z0

2
〈Ẋ(t)〉, (48)

where the expectation value can be written as

〈Ẋ(t)〉 = iω10

(
〈X+(t)〉− 〈X−(t)〉

)
=−ω10|X10|〈σ

x
〉. (49)

Inserting (49) into (48) yields

V out
L (t)=

1

2

√
h̄ω10010 Z0〈σ

x
〉 =

√
h̄ω10010 Z0Re [ρ01] , (50)

where ρ01 is a density matrix element in the transmon eigenbasis.
To solve the master equation, we perform a unitary transformation to a frame rotating

with the driving frequency ωp. In this frame, the equation becomes time independent after
employing the rotating-wave approximation. Solving the equation in the steady state (ρ̇ = 0)
and transforming back to the non-rotaing frame yields the following expression for the desired
density matrix element,

ρ01 =
1

2

√
h̄ω10010 Z0 (1 + iγ10) �p

h̄ω10 Z0γ
2
10 + h̄ω10 Z012 + γ10�2

p

eiωpt , (51)
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Figure 3. Reflectance R (red) and transmittance T (blue) for a two-level
transmon as a function of detuning, with the average number of incoming
photons per interaction time being Nin/(010/2π)= 0.01.

where 1≡ ωp−ω10 is the detuning. Now, plugging this expression into (50) results in

V out
L (t)=−

�p

2

sin ωpt − 1

γ10
cos ωpt

γ10

010
+ 12

010γ10
+ 2 Nin,

010

, (52)

where Nin =�2
p/(2Z0h̄ω10) is the average number of incoming photons per second. Thus, the

reflection coefficient for the negative frequency part of the field is given by

r =−r0

1− i 1

γ10

1 +
(

1

γ10

)2
+ 2 Nin

γ10

, (53)

with r0 ≡ 010/2γ10. For the transmitted field, (43) yields

V out
R (t)= V in

L (t)−

√
γ Z0

2
〈Ẋ(t)〉 (54)

which directly gives us the following expression for the transmission coefficient:

t = 1 + r =
1− r0 +

(
1

γ10

)2
+ 2 Nin

γ10
+ ir0

1

γ10

1 +
(

1

γ10

)2
+ 2 Nin

γ10

. (55)

In figure 3, we plot the reflectance R = |r |2 and transmittance T = |t |2 as a function of the
detuning, in the case of a weak input signal and no pure dephasing. For a resonant drive (1= 0),
we see that perfect reflection is approached, in agreement with [12, 13, 39].

3.2. Three-level dynamics

In section 3.1, we showed that a low-amplitude input signal is totally reflected when it
resonantly scatters off a transmon in the two-level approximation. In this section, we instead
study the scattering off of a transmon in the three-level approximation. By strongly driving the
second transition, the transmon becomes transparent to frequencies in resonance with the first

New Journal of Physics 15 (2013) 035009 (http://www.njp.org/)

http://www.njp.org/


12
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ω21

ω10

Γ21

Γ10

Ωc,ωc

Ωp,ωp

Figure 4. Internal levels of the transmon in the three-level approximation.
A strong control field drives the |1〉 → |2〉 transition, rendering a transparency
for the |0〉 → |1〉 transition.

transition. This effect is due to the Autler–Townes splitting and has been observed in recent
experiments [22].

We consider an incoming voltage field from the left, consisting of a probe field �p sin ωpt
close to resonance with the first transition (with detuning 1p = ωp−ω10) and a control field
�c sin ωct close to resonance with the second transition (with detuning 1c = ωc−ω21). Figure 4
shows the energy levels of the transmon in this approximation. In the transmon eigenbasis, the
relevant operators are (with the ground state energy ω0 = 0)

Hsys = h̄
2∑

i=1

ωi |i〉 〈i | , (56)

X = i
2∑

i=1

|X i(i−1)|(σ
+
i − σ−i ) (57)

with σ +
i = |i〉〈i − 1| and σ−i = (σ +

i )†. In the same way as in the two-level case ((49)–(50)), we
obtain the following expression for the reflected signal:

V out
L (t)=−

√
γ Z0

2
〈Ẋ(t)〉 =

1

2

2∑
i=1

√
h̄ωi(i−1)Z00i(i−1)〈σ

x
i 〉, (58)

with σ x
i = σ +

i + σ−i . Thus, the reflected field consists of one part with frequencies around the
probe frequency ωp and one part with frequencies around the control frequency ωc. Since we
are interested in the reflectance and transmittance properties of the probe, we concentrate on the
corresponding part of the reflected field

V ref
p (t)=

1

2

√
h̄ω10 Z0010〈σ

x
1 〉 =

√
h̄ω10 Z0010Re(ρ10). (59)

The master equation is given by (26) for the case of two system eigenfrequencies, again with
a coherent drive and generalized to the case of an infinite TL (see sections 2.5 and 2.6). Also,
terms accounting for pure dephasing are added. To transform the master equation into a time-
independent picture, we use the following unitary transformation matrix,

U (t)=

1 0 0
0 e−iωpt 0
0 0 e−i(ωp+ωc)t

 (60)
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Figure 5. (a) Transmittance Tp of the probe as a function of detuning for three dif-
ferent control field strengths: N c

in/(010/(2π))=0.01 (red), N c
in/(010/(2π))=1

(blue) and N c
in/(010/(2π))= 8 (green). (b) Transmittance as a function of the

control field strength for a resonant probe field (1p = 0).

and employ the rotating-wave approximation. As before, we solve the master equation in the
steady state to determine ρ10, but we now consider two different cases.

Firstly, by setting �c = 0, we recover exactly the same expression for the reflected field as
in the two-level case. Thus, with the control field turned off, we see almost full reflection for
weak probe fields in resonance with the first transition frequency of the transmon.

Secondly, we consider the case of a strong control field (�c��p). Solving the master
equation and expanding ρ10 to first order in (�p/�c), we obtain the following expression:

ρ
(1)

10 =−

2ih̄ω21 Z0

√
010

h̄ω10 Z0

(
γ20− i

(
1c + 1p

))
�p

4h̄ω21 Z0

(
γ10− i1p

) (
γ20− i

(
1c + 1p

))
+ 021�2

c

e−iωpt . (61)

Inserting (61) into (59), we can determine the reflection coefficient. For a resonant control field
(1c = 0), the result is

r =−
2010

(
γ 2

20 + 12
p

) (
γ10− i1p

)
+ 010021

(
γ20 + i1p

)
N c

in

4
(
γ 2

10 + 12
p

) (
γ 2

20 + 12
p

)
+ 4021

(
γ10γ20−12

p

)
N c

in + 02
21 N c2

in

, (62)

where N c
in =�2

c/(2Z0h̄ω21) is the average number of incoming photons per second in the control
field. The transmission coefficient is again given by t = 1 + r . Figure 5 shows the transmittance
T = |t |2 for different probe detunings and control field strengths. In these plots, we have
neglected pure dephasing and used (29) to express 021 in terms of 010.

We can clearly see that, for strong control fields, the transmittance of a resonant probe
approaches unity. Thus, by turning on and off a strong resonant control field, we can switch
between the cases of full transmission and full reflection for the resonant probe.

3.3. Second-order correlations

In a recent experiment [23], the second-order statistics of the field scattered off a transmon was
measured. In this section, inspired by the experiment, we analyze the second-order correlation
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Figure 6. Schematic model of a transmon cascaded with a resonator. The
circulator prevents the field reflected from the resonator to reach the transmon.
Using input port 1 (2), the output is the filtered transmitted (reflected) signal.

functions in our system. The normalized second-order correlation function is in the steady state
given as [40]

g(2)(τ )=
〈V +(t)V +(t + τ)V−(t + τ)V−(t)〉

〈V +(t)V−(t)〉2
(63)

and is proportional to the conditional probability of detecting a photon at time t + τ , given that
one was detected at time t . Here, V±(t) are the positive and negative frequency parts of the
voltage field.

We calculate g(2)(τ ) for the transmitted and reflected fields from a transmon driven by
a resonant coherent signal. We treat the transmon as a two-level system and use the same
notation as in section 3.1. To be able to compare with the experiments in [23], we perform the
calculations for finite temperatures and a finite detection bandwidth on the output signal. For
zero temperature and infinite bandwidth, we recover the results of [41]: perfect antibunching in
the reflected field and bunching in the transmitted field.

Including the effect of a finite detection bandwidth is straighforward by including a filter
in the calculations. The approach we have taken is to model the filter by a single-mode TL
resonator in resonance with the transmon, with the Hamiltonian

Hres = h̄ω10a†a (64)

and cascade it with the transmon. We start from the QLE (22) for the transmon, generalized
to the case of an infinite TL (see section 2.6), and a similar equation for the resonator. Our
coherent input signal is the voltage field V in

L (t)=�d sin ωdt , just like in section 3.1. We can
then use the formalism of cascaded quantum systems in [34] to arrive at a master equation for
the joint density matrix of the transmon and the resonator. In this formalism, the output from the
transmon (reflected or transmitted) is taken as input to the resonator, without any signals going
the opposite way (see figure 6). For the field reflected from the transmon, the resulting master
equation is

ρ̇ =
i

h̄
[ρ, Hsys + Hres] + 010D(σ−)ρ + 001D(σ +)ρ + γBW

[(nω10

2
+ 1

)
D(a)ρ +

nω10

2
D(a†)ρ

]
+

1

2
i
√

010(nω10 + 1)γBW

(
[a, ρσ +] + [a†, σ−ρ]

)
+

1

2
i
√

001nω10γBW

(
[σ +ρ, a] + [ρσ−, a†]

)
+ i

√
010 Nin

2(nω10 + 1)
[ρ, σ x ], (65)
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Figure 7. g(2)(τ ) for the fields reflected from and transmitted through a transmon
for different temperatures and detection bandwidths. Typical parameter values
from recent experiments are used (010/2π = 41 MHz, ω10/2π = 5.12 GHz).
(a) Reflected field: blue (T = 0, BW= 1 GHz), green (T = 0, BW= 55 MHz),
red (T = 50 mK, BW= 55 MHz), with P =−131 dBm. (b) Transmitted field:
blue (T = 0, BW= 1 GHz), green (T = 0, BW= 55 MHz), red (T = 80 mK,
BW= 55 MHz), with P =−127 dBm.

where we have denoted the filter bandwidth by γBW. For the field transmitted through the
transmon, (65) is modified by simply adding the following term to the right-hand side:√

γBW Nin

2
[ρ, a†

− a]. (66)

The output we are interested in is the voltage field leaking out at the right side of the resonator,
whose positive and negative frequency parts are proportional to a(t) and a†(t), respectively.
Thus, g(2)(τ ) can be calculated as

g(2)(τ )=
〈a†(t)a†(t + τ)a(t + τ)a(t)〉

〈a†(t)a(t)〉2
=

Tr
[
a†a P(τ )(aρsa†)

]
Tr

[
a†aρs

]2 , (67)

where ρs is the steady-state density matrix and P(τ ) the propagator super-operator, defined
by ρ(t + τ)= P(τ )ρ(t). Both ρs and P(τ ) are obtained by solving the master equations (65)
and (66). For the case without filter, g(2)(τ ) for the reflected field is given by (67) with a replaced
by σ−. Since (σ−)2

= 0, it directly follows that g(2)(0)= 0, i.e. perfect antibunching.
In figure 7(a), we plot g(2)(τ ) for the reflected field for different temperatures and

detection bandwidths. Typical parameter values from recent experiments [23] are used. For zero
temperature and large bandwidth we see perfect antibunching, as expected. For a decreased
bandwidth the full time dynamics of the antibunching cannot be resolved, which results in a
less pronounced antibunching dip. For finite temperatures, we see even less antibunching, due
to a nonzero probability of detecting bunched thermal photons. In figure 7(b), we plot g(2)(τ )

for the transmitted field for different temperatures and detection bandwidths. Here we see a
decrease of the superbunching for higher temperatures and smaller bandwidths. These results
explain the qualitative features of the experimental data in [23] well.
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4. Summary and conclusions

Summing up, we have performed a thorough analysis of the qubit–photon scattering in a one-
dimensional continuum from a microscopic point of view. In particular, we have derived a
master equation description using a superconducting transmon qubit as our scatterer. When we
consider the two lowest levels of the transmon, it behaves like a mirror for the incoming photons.
Then, going beyond to the two-level approximation, we can use a control field resonant with a
second transition of the transmon to suppress this reflection of photons at the probe frequency.
Finally, we discussed how the photon antibunching observed in the reflected field is reduced by
finite temperature and finite detection bandwidth.
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