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High-SNR Asymptotics of Mutual Information for
Discrete Constellations with Applications to BICM

Alex Alvarado, Fredrik Brannstrom, Erik Agrell, and Tobias Koch

Abstract—The high-signal-to-noise ratio (SNR) asymptotic be- wherey £ pIEx[X?] is the signal-to-noise ratio (SNR) and
havior of the mutual information (MI) for discrete constellations p > 0 is an arbitrary scale factor. Although inputs distributed
over the scalar additive white Gaussian noise channel is studied. according to the Gaussian distribution attain the capacity, they

Exact asymptotic expressions for the MI for arbitrary one- ffer f ld backs which tth f bei
dimensional constellations and input distributions are presented sufier from several drawbacks which prevent them irom being

in the limit as the SNR tends to infinity. Asymptotics of the Used in practical systems. Among them, especially relevant

MMSE and symbol-error probability (SEP) are also developed. are the unbounded support and the infinite number of bits

It is shown that for any input distribution, the MI, MMSE and  needed to represent signal points. In practical systems, discrete
SEP have an asymptotic behavior proportional to the Gaussian distributions are typically preferred.

Q-function, whose argument depends only on the minimum . . .
Euclidean distance of the constellation and the SNR, and where The mutual information (MI) between the channel inpdt

the proportionality constants are functions of the number of and the channel outptt of (@), where the input distribution
pairs of constellation points at minimum Euclidean distance and is constrained to be a probability mass function (PMF) over a
their corresponding probabilities. Closed-form expressions for the discrete constellation, represents the maximum rate at which
coefficients of these Q-functions are presented. The developed;tyrmation can be reliably transmitted ovéd (1) using that
expressions are used to study the high-SNR behavior of the . . . ;
generalized mutual information (GMI) for bit-interleaved coded particular CO_nSte”at'on' Wh'le_ the low-SNR asymptotics of
modulation (BICM). In particular, the long-standing conjecture  the MI for discrete constellations are well understood (see
that Gray codes are the binary labelings that maximize the [1]-[4] and references therein), to the best of our knowledge,
B|Clv|||-GMI at zigh Sl?”ﬁ i? prOVﬁn- Itis also shown tha]'E IOF afgr)]/ only upper and lower bounds are known for the high-SNR
equally spaced constellation wnhose size IS a power or two, there H H
al(alvaygefists an anti-Gray code that gives the FI)owest BICM-GMI bghawor -], IF was ob;erygd irLI(6, p._1073]. that for
at high SNR. dllsc-reFe- con§tellat|ons, maximizing the |V|_|.IS equivalent to
minimizing either the symbol-error probability (SEP) or the
channel, bit-interleaved coded modulation, discrete constellations, minimum mean-square error (MM.SE)' Inl [8'. Appendlx El,
Gray code, minimum-mean square error, mutual information, two constellations with dlﬁerent.mmlmum Euclidean dlstgnces
high-SNR asymptotics. (MEDSs) are compared, and it is shown that, for sufficiently
large SNR, the constellation with larger MED gives a higher
MI. Upper and lower bounds on the Ml and MMSE for
multiple-antenna systems over fading channels can be found
In this paper we consider the real additive white Gaussiém [9]-[11]. Using the Mellin transform method, asymptotic
noise (AWGN) channel expansions for the MMSE and MI for scalar and vectorial
coherent fading channels were recently derivedin [12].
Y=VpX+2 1 In this paper, we study high-SNR asymptotics of the Ml
where X is the transmitted symbol and is a Gaussian for discrete constellations. In particular, we consider arbitrary
random variable, independent &f, with zero mean and unit constellations and input distributions (independenppfnd
variance. The capacity of the real AWGN channel[fh (1) #nd exact asymptotic expressions for the Ml in the limit as
given by [1] the SNR tends to infinity. Exact asymptotic expressions for
_ 1 the MMSE and SEP are also developed. We prove that for
Clp) = 5 log(1+7) 2) . o1e aisd Ceve
any constellation and input distribution, the MI, MMSE, and
SEP have an asymptotic behavior proportionaQt,/pd/2),
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|. INTRODUCTION



which can be viewed as a pragmatic approach for codB#F Py, we shall useconstellationto denote the suppoft’
modulation [15, Ch. 1]. The key element in BICM is the usef the PMF andnput distributionto denote the probabilities
of a (suboptimal) bit-wise detection rule, which was cast as= [py, ..., py] associated with the symbols. We assume that
a mismatched decoder in [16]. BICM is used in many of theeither the constellation nor the input distribution degenon
current wireless communications standards, e.g., HSPEEIE p.

802.11a/g/n, and the DVB standards (DVB-T2/S2/C2). The transmitted average symbol energy is finite and given
The BICM generalized mutual information (BICM-GMI) by

is an achievable rate for BICM_[16] and depends heavily on E, 2 Ex[X? = Z piz?. (3)

the binary labeling of the constellation. The optimality af i€Tx

Gray code (GC) in terms of maximizing the BICM-GMI WaS toliows that the SNRy in @) is 7 = pE.

conjectured in[[14, Sec. 1lI-C]; however, it was shown[in][17 An M-ary pulse-amplitude modulatiod{PAM) constella-

that for low and medium SNRs, there exist other labelings tht"flon having M equally spaced symbols (separated2ay) is

give a higher BICM-GMI (see alsd [18, Ch. 3]). For further a g . T
results on BICM at low SNR se& [19]=[22]. On the other han enoted by = {z; = —(M —2i+ DA:i=1,..., M}. A
. . uhiform distribution of X' is denoted byP%, i.e.,p;, = 1/M
numerical results presented in_[18, Ch. 3] ahd] [23] Sugges ) . S i .
that GCs are optimal at high SNR in terms of BICM-GMIL. Ze' A umform nput d|str;but|on W'th); = & is denoted by
However, to the best of our knowledge, the optimality of GCsX ’ where |n_ this case&_ - .SES/(.M - b
at high SNR has never been proven. The Gaussian Q-function is defined as
In this paper, we derive an asymptotic expression for the Q) 2 1 o —1g2 de )
BICM-GMI as a function of the constellation, input distribu = Vor ). ¢
tion, and binary labeling. Using this expression, we thesver
the optimality of GCs at high SNR. Using the MI-MMSE
relationship, an asymptotic expression for the derivab¥e Hp, 2 —Ex [log (Px(X))] (5)
the BICM-GMI is also developed. The obtained asymptoti
expressions for the BICM-GMI and its derivative, as well at<she MI betweenX andY” as
the one for the bit-error probability (BEP), are all shown to lpy (p) = Exy [log (fyx(Y[X)/fy(Y))] (6)
be proportional taQ (,/pd/2).
This paper is organized as follows. In SEg. Il, the notatighd the MMSE as
convention and system model are pr_esented. The asymptgtics Mp, (p) £ Exy[(X — XME(Y))?] 7
of the MI and MMSE are presented in SEc] Il and BICM is

studied in Sed_IV. The conclusions are drawn in §dc. V. WhereX"&(y) £ Ex[X|Y = y] is the conditional (posterior)
mean estimator.

the entropy of the random variablé as

[I. PRELIMINARIES We also define the SEP as
A. Notation Convention Spy(p) £ PY{XMAP(Y) £ X} (8)
Row vectors are denoted by boldface . Iette:r§ = whereX is the transmitted symbol and
[x1,22,...,2)] @and sets are denoted by calligraphic letters
C. An exception is the set of real numbers, which is denoted XMAP(y) £ argmax Py |y (z]y) 9)
TxeEX

by R. The binary set is defined @£ {0,1} and the bipolar

set asWW £ {—1,+1}. The negation of a bit is denoted is the decision made by a maximum a posteriori probability

by b. All the logarithms are natural logarithms and all théMAP) symbol demapper.

Mis are therefore given in nats. Probability density fuois

(PDFs) and conditional PDFs are denoted Py(y) and

Jyvix (y|x), respectively. Analogously, PMFs are denoted b§. Discrete Constellations

§X(z> and Px |y (z]y). Expectations over a random variable The MED of the constellation is defined as
are denoted b¥E x [-].

d& min |z; — | (10)

T, €EXiFE]

B. Model
We consider the discrete-time, real-valued AWGN chann\é\(e define the counting function

in @), where the transmitted symbal$ are constrained to @O oa 1, fIeX iz —a=0

X € X £ {x1,9,...,2p} and |X| = M = 2™. The set of Ay (0) = 0. otherwise (11)
indices that enumerates all the constellation symbol8’irs ’

defined asZx = {1,...,M}. where§ € R. Sincez; € X, we haveA()(0) = 1 Vi €

We focus on one-dimensional constellations and assumg,. we further definedy as twice the number of pairs of
without loss of generality, that the symbols are differend a constellation points at MED, i.e.,

ordered, i.e.x; < 29 < --- < xp. Each of the symbols R 0
is transmitted with probability; £ Px(z;), 0 < p; < 1. Ax £33 AQ (wa). (12)
While the transmitted symbols are fully determined by the i€lx weW



By using the fact that for any real-valued constellatiorr¢he Theorem 1:For any Px

are at least one and at mast— 1 pairs of constellation points Hp, —lpy(p)
X X

at MED, we obtain the bound Jim Q) TBpy (19)
2< Ax <2(M - 1). (13) where Bp,, is given by [16).
The upper bound is achieved by &nPAM constellation, for Proof: The proof is given in AppendikJA. O

which Similar to Theoreni]1, we have the following asymptotic

Ag =2(M —1). (14) expression for the MMSE.
Theorem 2:For any Px

Analogous oA (§ , we defineB'” () as
g x (0) Py (0) My () S

. lim ————~=—2R8 20
(1) r ) \/PjDPi, if Eacj ceX: x; — T = 1) pl>no10 Q (\/ﬁd/Q) 4 Px ( )
Bp () =9 e . (15) !
, otherwise where Bp, is given by [I8).
Clearly Bg) (0) = pi, Vi € Ty Proof: The proof is given in AppendixIB. O
X L '
Finally, for a givenPx, we define the constant In analogy to Theorenis 1 ahd 2, an asymptotic expression
B, & B (wd 16 for the SEP can be obtained.
P Z Z Py (wd) (16) Theorem 3:For any Py
i€Lx weW
For a uniform input distribution,Px = Py and lim _Sex(p) Bp, (21)
MBE) (5) = AQ(8), so p=oe Q (/pd/2)
Ay where Bp,, is given by [16).
Bry = M (17) Proof: The proof is given in AppendikIC. O
Example 1:Consider an unequally spaced 4-ary constella- Theoremg 13 reveal that, at high SNR, the MI, MMSE,
tion with 1 = —4, o = —2, 3 = 2, andz, = 4, and the and SEP behave as
input distributionp; = /10 with ¢ = 1,2,3,4. The MED in NG
@Q) isd =2, E.in @) is B, = 10, Ay in @2) is Ax = 4 lpy (p) = Hpy — 7Bp,Q (—2 ) : (22)
(two pairs of constellation points at MED), arfglp, in (16) rd? J/pd
is Bpy = 2/p1p2 + 2\/p3pa = 0.98. This example will be Mp, (p) ~ TBPXQ (T) , (23)
continued in ExamplEl4. Jpd
Sex(o) ~ @ (V). (21

I1l. HIGH-SNR ASYMPTOTICS
TQe results in[(22)E(24) show that for any input distribatio

There exists a fundamental relationship between the MI aj . .
_the MI, MMSE, and SEP have the same high-SNR behavior,
the MMSE for AWGN channel< [24] (see als0 125, Ch. 2]). i.e., they are all proportional to a Gaussian Q-funcﬁwvhere

inX (p) = ll\/lpx( ). (18) the pr.oportionality constants depend on the input distidiou
dp 2 and, in the case of the MMSE, also on the MED of the
Exploiting this MI-MMSE relation, bounds on the MI can beconstellation. Hence, the one-dimensional constellathuat
used to derive bounds on the MMSE avide versa maximizes the Ml is the same one that minimizes both the
Upper and lower bounds on the MI and MMSE for discreteEP and the MMSE.
constellations at high SNR can be found, e.g., [ih [B]-[7], Remark 1:While the results presented in this section hold
[O]-[12]. While these bounds describe the correct asymptofor one-dimensional constellations, they directly getizeato
behavior, they are, in general, not tight in the sense that thhultidimensional constellations that are constructedreered
ratio between them does not tend to onepas co. In what direct productd21, eq. (1)] of one-dimensional constellations.
follows, we present exact asymptotic expressions for the Mbr example, the results directly generalize to rectamgula
and MMSE for any arbitraryPx. guadrature amplitude modulation constellations.

A. Asymptotics of the Ml, MMSE, and SEP

For any given input distributioPx, the MI tends toH p,, , .
asp tends to infinity. In the following we study how fast theB- Discussion and Examples
MI converges towards its maximurff p, by analyzing the
difference Hp, — Ip, (p)l Theorenil is the main result of For a uniform input distribution®x = Py), Theorem§li=43
this paper and characterizes the high-SNR behavidf gf — Particularize to the following result.

IPX (P)

1The quantityHp, — Ip, (p) is the conditional entropy oX givenY'. 2Disregarding the “offset’H p,. in 2Z2).



TABLE | 10t

SUMMARY OF ASYMPTOTICS OFMI, MMSE, AND SEP. H Y
______ N :
10°
Input Distribution Px P P =
'é 10 X
L FPx — |;x2(ﬂ) By W% QW(]\]@— 1) B
— 00 [2]
’ Q (\/ﬁ / ) 2 2 § 10’2 ,,,,,,,,,,,,,,,,,,,,,,
. Mpy (p) d wd® Ax 67 Es =
lim —————— —Bp, ——" @ @—— =
p—o0Q (\/pd/2) 4 4 M  M(M+1) EpE
. _Sex(p) Ax 2(M —1) =
lim ———2X2 Bpy — e |
p%OOQ (\/ﬁd/Q) M M ; 10’4 A R v AT T O
&0 = = = Asymptotic |: : i
= -—o— LB [g]
Sl —a— UB[B]  |......
Corollary 1: For any X with a uniform input distribution 10 -—v— LB [11]
-—A— UB
i MU0 A O B R e s
p—oo Q (\/ﬁd/Q) M’
p [dB]
. Mpy (p) md* Ay
lim ﬁ = M (26) Fig. 1. log M —Ipen (p) for 4PAM and 16PAM (solid lines) constellations
P=o0 Q (\/ﬁ / ) (normalized toE; = 1) and the asymptotic expression [0]28) (thick dashed
SP; (P) Ay lines). The lower and upper bounds [6, eq. (34)—(35)] &t (17)—(19)]
; 2t Iso shown.
plglgo Q (\/ﬁd/Q) % (27)  are also shown
where Ay is given in [12). 10' : : . . E
Proof: From TheoremE]13-3 anfl{17). O : s -3
The expression(27) corresponds to the well-known high 10 F::iioiiiiiese N M e
SNR approximation for the SEP_[26, eq. (2.3-29)]. Moreover : N : B
Corollary[d shows that for a uniform input distribution, tfk, 10 Loy T PO . S
the MMSE, and the SEP for discrete constellations in the-high =il

SNR regime are functions of the MED of the constellation ank102f 0 N A L
the number of pairs of constellation points at MED only. =, : : '
For MPAM and a uniform input distributionfx = Pg"), s 103

Corollary[d particularizes to (seE1{14))

-4

107}
[ pgy (p) ~log M — WQ (V/pd/2), 28) ool -:E:- eiy[[r;n totig
Mg (p) ~ %dem, e el | e
Spe(0) ~ 22D (y5a2). T
In Table[], the results obtained in Theorem$11-3, Cordfg- 2.  Mpg(p) for 4PAM and 16PAM (solid lines) constellations
lary @I, and [(ZB)-(30) are summarized. (normalized tof; = 1) and the asymptotic expression [{29) (thick dashed

° o lines). The lower and upper bounds [6, eq. (30)—(31 13)-(15
Example 2:In Fig. [, we show the conditional entropyare ;Lso shown. oP 16. ¢4 (S0A3] and € (13-19)

log M — lpen(p) for 4PAM and 16PAM with uniform input

distribution)ﬁ together with the asymptotic expression[inl(28).

We also show the lower and upper bounds derived[in [6pnstellation that first maximizes the MED and then miniraize
eq. (34)—(35)] and[[11, eq. (17)—(19)]. Observe tHail (28).x. For one-dimensional constellations with the safMethe
approximates pe: (p) accurately for a large range of SNR. InNMED is maximized by an\/PAM constellation & = £).

Fig.[d, analogous results for the MMSE are presented, wheréNVe conclude this section by noting that if Theordmhs 1 and
the bounds derived i [6, eq. (30)—(31)] and][11, eq. (13[2are combined, we obtain

(15)] are also included. Also here our asymptotic expressio Mpy (p) 2
([29) approximates the MMSE accurately for a large range of lim ———— = —. (31)
SNR. poo Hpy —lpc(p) 4

Remark 2:1t follows from Corollary[1 that the constellation Thus, for any Px, the limiting ratio between the MMSE
that maximizes the MI (or equivalently, the constellatibatt and the conditional entropy does not depend on the input
minimizes the MMSE and the SEP) at high SNR is thdistribution. Moreover, using Theorers 1 did 3, we obtain

. Hp, —lp
3Calculated numerically using Gauss—Hermite quadraturéth 800 lim Xix(p) =

(32)
quadrature point$ 23, Sec. Il]. P00 Spyx (P)
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Fig. 3. A BICM scheme: The BICM encoder is formed by a serialaaienation of a binary encoder (ENC), a bit-level intedgall), and a memoryless
mapper ¢). The BICM decoder is based on a demapper {) that computes logarithmic likelihood ratios, a de-irgexler {I—1), and a channel decoder
(DEC).
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Thus, for anyPx, the limiting ratio between the conditionalfor & = 1,...,m and b € B. According to
entropy and the SEP equats (34), each of the 2m conditional input distributions
[Px|q, (71]D), . .., Px|q, (za|b)] has M/2 non-zero proba-
bilities, which specify which of thel//2 symbols inX are
included in A}, 5.

For uniformly distributed bits, i.e Py, (b) = 1/2, it follows

In BICM [L3]-[15] (see Fig.[B), the encoder is realizedhat the symbol distribution is also uniform, i.e2x = Py
as a serial concatenation of a binary encoder, a bit-lev@ilq thus,

interleaver, and a memoryless mapper. At the receivers, sid ,

the demapper computes logarithmic likelihood ratios, Wwhic Py(q, (xi]b) = {Ma if x; € Xy _ (35)
are de-interleaved and then decoded. A key element for the ¥ 0, ifx; ¢ Xy
performance of BICM is? : B — A, which maps coded
bits to constellation symbols. In this section we study tighh
SNR behavior of BICM. Using the results in SEc] IlI, we will
find an asymptotic expression for the BICM-GMI and we will*~. ) ) k
study the relationship between the BICM-GMI and the BEIf".nlform case in[(35) is dgnoted Uka,b'

We will also prove that GCs are optimal in terms of BICM- In what follows, we will apply the results of SeC.1ill to

GMI for one-dimensional constellations with uniform inpuPICM' To this end, we will ofterj replacet’ and Py in
distributions. Sec[Ill by X, and Py, ,, respectively. Note, however, that

d as defined in[{10), still denotes the MED Euclidean distance
(ED) of the constellatiort’. We will not consider the MED for

IV. APPLICATION: BINARY LABELINGS FOR
BIT-INTERLEAVED CODED MODULATION

We shall useX;, ;, to denote a random variable with support
Xi» and pr_obabilitie§PX|Qk(x|b) for x € Xy, in (B4). The
Forrespondmg PMF is denoted B3, , and the PMF for the

A. BICM Model subconstellations. This implies that it is possible thapaos
A binary labeling for a constellation is defined by th&f constellation points ink}; , are at MED. Consequently, the

vectorl = [ly,ls,...,1n] wherel; € {0,1,...,M — 1} is boundsondy, , are

the integer representation of th‘fh Iengt.hm binary label 0< Ay, , <2(M/2-1) (36)

q; = [¢1,---,q.m] € B™ associated with the symbal;, ’

with ¢;, being the most significant bit. The labeling definewhich differ from the corresponding bounds diy in (13).
2m subconstellationst, , C X for k =1,...,m andb € B,
given by Xy, £ {x; € X : qip, = b} with | Xy | = M/2. We _ i
defineZy, , C {i, ...,M} as the}indice|s of |the sy/mbols inB- Binary Labelings for BICM
X that belong taYy, ;. The natural binary code (NBCJ21, Sec. II-B] is defined
Example 3:In Fig.[4, we show the&m = 6 subconstella- as the binary labeling wherel; =i—1,fori=1,2,..., M.
tions for an8PAM constellation labeled by the binary reflectedhe NBC is an important labeling for BICM because it is the
Gray code (BRGCJ} = [0,1,3,2,6,7,5,4] [27]-[29], as well unique optimal labeling for BICM in the low-SNR regime for
as the corresponding valuesof, , and Ay, ,. X = & [21, Theorem 14],[[22]. A labeling is said to be a
In BICM, the coded bit€Q = [Q1,Q2, . .., Q.,] atthe input GC if for all 4, j such thatlz; — ;| = d, the binary labelsy,
of the mapper (see Fifl] 3) are assumed to be independentadndq; are at Hamming distance one. One of the most popular
possibly nonuniformly distributed. Therefore, the veatbbit GCs Is the BRGCI[27]£[29], which we showed in Exaniple 3
probabilities[ P, (0), Py, (0), ..., Py, (0)] induces a symbol for M = 8.
input distribution Px via the labeling as[[21, eq. (31)[.[B0, To characterize binary labelings we define the constant

eq. (8)] m .
Cxi = ZZ Z Z Agi,g(w‘i)- (37)

Px (-Tz) =Pi = H PQk (Qi,k)- (33) k=1beB i€y, , weW
k=1

For a given subconstellatioty, ;, the two inner sums i (37)
consider all the constellation points in the subconsieltat
le((Ib))’ if 2 € X, X, at MED from z; € &,. Thus, the quantityCy
Px |0, (z]b) = { "9 _ (34) corresponds to twice the total numberdifferentbits between
0, if 2 ¢ X the labels of constellation symbol pairs at MED. Using this

Using [33), we obtain the conditional probabilities



Xio
1 T2 T3 T4
000 001011010110111 101100
AXLU =0, IXL,O = {17 27334}

Xao

Tr1 T9 T7 T8

000 001 011 010 110 111 101 100
AXz,o =4, IXz.o = {17 2a 77 8}

s o
Xy T4 Ty g
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Axyy =2, In,, ={1,4,5,8}

Xia
Ts Teg T7 I

000 001011010110111101100
Ax,, =6,Zx,, ={5,6,7,8}

X1
Tr3 T4 T Tg
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AX2.1 =6, IXZJ = {3547 576}

X3 1
T2 T3 Te T7
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Moreover, B(l (6) in @5) andD(l

b(é) in (@2) are related
via "

BE,(6) = Di, , (6) + D), _(9). (43)
In analogy to [(TI7), for a uniform input distributiom;(=
1/M)

Dpy1=—. (44)

M

C. Asymptotic Characterization of BICM

The BICM-GMI is an achievable rate for BICNI[16] and is
one of the key information-theoretic quantities used tdyaea
BICM systems. For any’x andl, the BICM-GMI is defined

afl [22, eq. (24)]
|1%i 1(p) 2 Z (lPx

— > Po.()ley,, p)) (45)

k=1 beB
Fig. 4.  Subconstellationst}, ; (black circles) for8PAM labeled by the . . L =
BRGCL = [0,1,3,2,6,7,5,4], where the values of; ;, for k = 1,2,3 are and twice its derivative Bs
shown in red, and Wherﬂx =Cx,; =14. The values otAX,C b andIX,C b 418! (p)
Px,l

are also shown. MI%L,l(p) = 273p (46)
- on i => <MPx () =>_ P (b)Mpxk,b@)) . @7)
interpretation, it follows thaf{37) can also be expressed a k=1 beB

m In these expressiontp,  (p) andMp,  (p) are defined, in

Cx1= Z (Ax — Axy o — Axyy) (38) analogy to [(B)-£(7), as o

k=1
whereAy — Ay, , — Ax, , corresponds to twice the number of lPx, (p) £ Exy [log (fyx(Y|X)/fr(Y))] (48)
pairs of constellation points at MED with different labgjiat gng
bit positionk. For example, for the constellation and labeling )
in Fig.lZ,CXJ =14 = Ay. MPX,“)( ) EXY[(X XPXkb(Y)) ]a (49)

While Ay in (I2) depends only on the geometry of the X}\;‘E (y) 2 Ex[X|Y = y] (50)

constellation,Cx ; in (37) depends on both the geometry of
the constellation and the labeling. By noting that any p&ir §here X' now f0”0W5 the distributionPy, , andY is the
constellation points at MED will differ in at least one bitew random variable resulting from transmitting € Ay, over

obtain that for anyt andl
Cxi> Ax. (39)

For example, forX =
expressed as

& and the NBC,Cy; can be

m
Cé ixpe = QZ(Qk -1)
k=1

=2(2M —m —2) (40)

which is obtained by noting that, for eaéh there are2* — 1
symbols satisfyingy; » # git1.x, fori=1,2,..., M — 1.
We also define the constant

Dp g 2 ZZ S Y DY (wd)  (a1)
k=1beBi€Ix, , wEW b
WhereDng \ (wd) with b € B is defined as
Pl ) 2 ) /PiDi; if dz; € Xy —a; =96 (42)
Pxip 0, otherwise

the AWGN channel[{1). With these definitions, a relation
corresponding to[(18) between the Ml and the MMSE holds
also forlp,, , (p) andMp,  (p), and so do theorems anal-
ogous to Theorents -2, which will be used in the proofs of
Theorem$ ¥5.

Like the MI, the BICM-GMI also tends td{p, asp tends
to infinity. The following theorem shows how fagg! ;(p)
converges tad p, .

Theorem 4:For any Px andl

HPX - I%i,l (P)

li =nD . 51
oo Q(ypdf2) D)

where Dp, ; is given in [41).
Proof: The proof is given in AppendixD. 0

The following theorem characterizes the asymptotic behav-
ior of ML (p).

4Even though the BICM-GMI is fully determined by the bit prabiiiies
[P, (0), Pg,(0),...,Pqg,,(0)], we express it as a function of the input
distribution Px in

5Since the BICM-GMI is not an MI, its derivative is not an MMSET].
We thus avoid using the name MMSE, although we do use an MNK&E-I
notation M}%;J(p).



Theorem 5:For any Px andl

MBI 2
lim Px,l(p) ﬂ Pl (52) 1.2}
p—oo Q (\/_d/2) 4 ’

where Dp,, ; is given in [41). g ir

Proof: By using [4Y) and Theorefd 2 we obtain E
& 0.8}

MELa(p)  md? & g

lim ———— 1 BPX - PQk (b)BPXk £
pmoo Q (Vpd/2) 4 ; l; b < 06

which in view of LemmaB in AppendixID completes tha_:i?
proof. O 041
In analogy to IIB)-E(JQ), we define the BEFas o

By i Z Pr{QY*P(Y) #Qr}  (53)

where @, is the transmitted bit andQMAP( ) is a
hard-decision on the bit, i.e[QY*"(y),...,QYP(y)] =
O (XMAP(y))) with XMAP(y) given by @ﬂ The next theo-

10 15 20

-10
p [dB]
Fig. 5. IBL 1(p) for the three input distributions in Examplé 4 and the

constellation & = {£4, £2} (normalized toFEs = 1) (solid lines with

rem characterizes the asymptotic behavior of the BEPTh (53)rkers) and the asymptotic expression[inl (55) (thick dashes).

Theorem 6:For any Px andl

~ Dpya
m

lim _BPxt(p)
p—oo Q (y/pd/2)
where Dp, ; is given in [41).

Proof: The proof is given in AppendikIE. O
Similarly to (22)-{2%), we can use Theoref$4—6 to sh

that, at high SNR, the BICM-GMI, twice its derivative, ana

the BEP behave as

pd
IPx l( )Q’JHPX T‘-DPXJQ(\/Q_ )7

pd

MEL 1(p) ~ ijple(f ) (56)
d

Brcalp) ~ 224 (V1)) )

Thus, at high SNR, the BICM-GMI, twice its derivative, and

the BEP have the same asymptotic behd¥ior

Example4ConS|der the constellation in Exampl 1Fig. 6.

ie., X = {%4,42}, corresponding to the constituert
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p [dB]

Hp, — I}%X 1(p) for the three input distributions in Examdlé 4
and the constellationt = {£4, £2} (normalized toEs = 1) (solid lines
with markers) and the asymptotic expression [l (55) (thieshe:d lines),

ary constellation for the unequally spaced 16-ary quadeatue., Hp, — 124 1(p) = mDpy 1Q (/pd/2).
amplitude modulation (QAM) constellation specified in the
DVB standard [[34, Fig. 9b]. Furthermore, we consider the

labelinglcc = [0, 1,3, 2], which givesAy = Cy,; = 4, and
the three input distributions

p [1/4,1/4,1/4,1/4],
p —[1/8,3/8,3/8,1/8],
p" =[16/25,4/25,1/25,4/25]

6Note that [GB) is the BEP averaged over thebit positions, in contrast
to the BICM-GMI in [48), which is a sum ofn bit-wise Mis.

"The BEP in [(GB) is based on hard-decisions made bysifrabol-wise
MAP demapper. Alternatively, one could studyiwise MAP demapper for
which QAP () = argmax,¢ 3 Pg, |y (bly). This demapper is the optimal
in terms of BEP, which was recently studied n][32] (see aBA))| but its
analysis is much more involved.

8Disregarding the “offset’H p,. in (GH).

which are induced by the bit probabilities listed in the seto
column of Table[dl. Tabld]Il also list¥p,, Dpy 4, andd
(when the constellation is normalized iy = 1). The BICM-
GMI curves are shown in Fid.]5. Observe that the BICM-
GMI for high SNR converges towards its maximuifp,, (see
Table[dl). The corresponding curves féfp, — I3} ,(p) are
shown in Fig[®. These figures show how the coefficient, ;

in the asymptotic expression captures the high-SNR behavio
of the BICM-GMI for different input distributions.

For a uniform input distribution, Theorem4-6 particutari
to the following result.

Corollary 2: For any X andl and a uniform input distri-



TABLE Il
DIFFERENT PARAMETERS FOR THE CONSTELLATION AND INPUT
DISTRIBUTIONS IN EXAMPLE[].

P | Pai(0).Pay(0) | Hey | Droi | d

p 1/2,1/2 1.3863 | 1.0000 | 0.6325

p’ 1/2,1/4 1.2555 | 0.8660 | 0.7559

p" 4/5,4/5 1.0008 | 0.8000 | 0.5423
TABLE Il

SUMMARY OF ASYMPTOTICS OF THEBICM-GMI, TWICE ITS
DERIVATIVE, AND THE BEP.

Input Distribution Px Px
To _ B
lim PX—PXJ(p) 7Dpy 1 ﬂ-CXJ
p—oo  Q(y/pd/2) M
. MEL(p) wd’ md® Cxy
lim ———— —Upy1  —
p—oo Q (\/ﬁd/Q) 4 4 M
I Bpry.i(p) Dpy 1 Cx
im —X
p—00Q (/pd/2) m mM

bution
log M — 1BL,
- g Py a(p) _ ﬁCX.,L, (58)
p—oo Q(y/pd/2) M
MEBL - (p 2
lim L() = ﬂ%, (59)
B u
lm RtP) O (60)
=0 Q (ypd/2)  mM
whereCy ; is given in [3T).
Proof: From TheoremEl436 anfl{44). O

We further define

Ry & lim Kipy 1(p) (64)
3 M
= lim Kp1(p) (65)

where [€b) follows from L'Hopital’s rule. Theoren$ 1 ahH 4
yield

Dpy g
Rpyi = —2
PX7l BPX (66)
and due to[(@3)
Rpga > 1. (67)

In the rest of this section, we studyp, ; in (€6) for a
uniform input distributionPy . With a slight abuse of notation,
we will refer to Rpy1 asRuy .

Lemma 3:For any labeling and constellationt’, Ry ; is
given by

(68)

Proof: Follows by using[(44) and(17) ifn_(66). O
Based on Lemmid 3, an upper boundron; can be obtained
as follows.
Theorem 7:For any one-dimensional constellation and any
labelingl

Cx i <min(mAx,(m—1)Axr + M) (69)

and thus,
min (mAx, (m —1)Ax + M)
Ax
Proof: We note that for any labeling there are exactly
M /2 pairs of labels at Hamming distanee Because of this,
at mostM /2 pairs of constellation points at MED can each

differ in exactlym bits, which can be the case onlyify <
M. This case give€'y ; < mAx. If there are more than//2

Ry <

. (70)

The expression in[{60) corresponds to the well-knowpairs of constellation points at MED, i.e4dy > M, M/2
expression for the BEP[85, p. 130]. The results in Corolrypairs can differ inm bits and the remainingAx — M)/2

indicate that, for a uniform input distribution, a maxintiza

pairs can differ in at mostn — 1 bits, which givesCy; <

of the BICM-GMI is asymptotically equivalent to a minimiza-mM + (m —1)(Ax — M) = (m—1)Ax + M. The expression
tion of both its derivative and the BEP. The asymptotic rssulin (Z0) follows from [69) and[{G8). O

for BICM are summarized in Table]ll.

D. Lower and Upper Bounds

For an MPAM constellation, using[{14), Lemnid 3 and
Theoren¥ specialize into

Cgl
Re;j = ——== 71
et 2(M —1)’ (71)
M —2
Re; <m— . 72
gL =" 2M — 2 (72)

To study the asymptotic behavior of the BICM-GMI for

different labelingd, we introduce the two functions
HPX - IIBDL.,L(p)

Ky alp) & G0 (61)
BI
KM, () 2 Mlj;:’((p’;) (62)

Furthermore, if theM PAM constellation is labeled with the
NBC, we obtain via[{40)

2M —m — 2
M-1
Example 5:In Fig. [@, we show the functionis('P;u,l(p)

and KY... ,(p) in 1) and [GR), respectively, for aPAM

RE,lNBc = (73)

Noting thatll‘é.;l(p) < Ipy(p) [14, eq. (16)],[21, Theorem 5], constellation with a uniform input distributionPy = Pg",

we have
(63)

Ax = 6) and the three labelings that give different BICM-
GMI: lGC = [0517352]1 lNBC = [05172;3]1 and lAGC =
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Fig. 7. FunctionsK'Peu 1(p) (dashed lines) ant(l"ﬁeu’l(p) (solid lines) for  Fig. 8. FunctionKl"ﬂeuyl(p) for the 458 labelings that give a different BICM-

4PAM (normalized to)%?; = 1) and all three noné(quivalent labelings. TheGMI for 8PAM (nor%alized toEs = 1). The values oR¢ ; in () for the
values ofR¢ ; in (Z)) are also shown. three nonequivalent GCs, the NBC, and the AGC are also shown.

. NBCT 0099900 _

[0,3,2,1]8 The values ofR¢,; in (ZT) are also shown. In ~a o9 %0
contrast to the BICM-GMI curves plotted, e.g., in[17, Fig. 3 1072} 00' 7000 Upper Bound
and [31, Fig. 1], the function&l... ,(p) andK%... ,(p) allow ) T N
us to study different labelings at high SNR. Observe that th o ©
GC (i.e.,lgc), givesRg ;. = 1, and thatl ,qc achieves the - 1041 ol 4 OO -
upper bound in[{72), i.eRe 1, = 5/3. I ‘ ‘ ‘ o

The function Kﬁeu,l(p) also allows us to study differentﬁgs GCs o
labelings at low SNR: Fid.]7 shows that the NBC is the binary
labeling for4PAM that gives the largest value fMIB{u(,l(p) as =101
p tends to zero, which agrees with [20], [21, Theorem[4].
Recall that the best labeling in terms I@iu(,l(p) at low SNR
is by (I8) the worst one in terms cbﬂl%iu(ﬁl(p) (i.e., the one
that maximizesl\/ll'éiupl(p)). Furthermore, a labeling that gives ? ; .
a highMZ} ,(p) at low SNR tends to yield a low/3} ;(p) 1 L5 2 25 8

at high Sl\)I(R, since r

10

——o

U.I'--“--‘--

w

> Fig. 9.  ApproximatedPr{Rg; = r} using 10° randomly generated
BI ,
/ Mp)u(,l(P)dP =2logM (74) labelings for16PAM (normalized toEs = 1). For GCsRg ;. = 1 and
0 for the NBCR¢ ;1 = 26/15. The upper bound if(T2) is also shown.

is constant for a given constellation.

Example 6:In Fig.[8, we show the functioi!\... ,(p) for
S8PAM (PX = P)c}u, Ay = 14) and all the 458 Ia)t()éllngs thatBEP) @’ Table I] the BRGCl = [Oa 173a276a775a4]'
give a different BICM-GMI [238]. In this figure, 12 possible! = [0,1,3,2,6,4,5,7], andl = [0,1,3,7,5,4,6,2].
values ofRg ; in (ZJ) are clearly visible, which coincide with Example 7:Motivated by [21, Fig. 6], we present in Figl 9
the results in[23, Fig. 3 Using [BD), the 12 values & ; in an approximation for the PMPr{Rx; = r} for 16PAM
Fig.[d also translate into 12 different asymptotic BEP cayveobtained by randomly generating)® labelings. This figure
which were recently reported in[83, Fig. 4]. The vaRig;,,, Shows that most of the possible labelings are not Gray. For
obtained using[{73) is also shown. A careful examinatiohl = 16, we obtainRe ;.. = 26/15, see [7B), which is
of Fig. @ reveals that there are three labelings minimizirgjghlighted in Fig[®. The upper bound in{72) is also shown.

Rei. These are the three nonequivalent GCs (in terms Ibf the next section, we will show how to construct a labeling
that achieves this upper bound.

9The anti-Gray code (AGC) will be formally introduced in SEEE]
10The relationship between the coefficient determining the low-SNR E_ Gray Codes and Anti-Gray Codes
behavior of a zero-mean constellation with a uniform inpistribution [21, ;
eq. (47)] isalog2 = lim,—0 KM ,(p) (see alsol[24, eq. (86)]). In view of the lower bound[{87), we say that, for a
il

UFyrther note thatim,—0 K¥. ,(p) reveals the 72 classes of labelingsconstellationX” and a uniform input distribution, a labeling
reported in[[21, Fig. 6 @)]. 1 is asymptotically optimalAO) in terms of BICM-GMI if
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it satisfiesRx; = 1. Intuitively, an AO labeling is a binary Step 1 Reverse th&//2 rows in W,,_;, and append them

labeling for which the BICM-GMI approachdgp, as fast as belowW,,_; to construct a new matri¥v’, with M
the MI does for the same constellatian rows andm — 1 columns.

By inspection of [[7B), we see that the NBC féafPAM Step 2 Append the length M  column  vector
is not an AO labeling form > 2. The following theorem [0,1,0,1,...,0,1]7 to the left of W/, to create

demonstrates that GCs are AO at high SNR. Thus, it proves W/ . with M rows andm columns.
a special case of the conjecture of the optimality of GCs 8tep 3 Negate all bits in the lower half ¥/, to obtainW,,.
high SNR in terms of BICM-GMI[[14, Sec. llI-C]. (It has The recursive construction described above is illustrited
previously been disproved for low to medium SNRs|[17].) Fig.[I0 form = 2 andm = 3. The following lemma shows
Theorem 8:For any constellationt’ and a uniform input that this construction indeed leads to a valid labeling.
distribution, a labeling is AO if and only if it is a GC. Lemma 4:All the rows in W,,, are unique, and thus, the
Proof: For any GC, all pairs of constellation points alAGC is a valid labeling.
MED are at Hamming distance one. Thus,1(39) holds with  Proof: Consider the above construction of an AGC.
equality, and by[(68)R.x; = 1. This completes the “if” part of Assume thatW,,_; is a valid labeling (all rows are unique)
the proof. The “only if” part follows because for any non-GCwhere every odd row differs im — 1 bits compared to the
there is at least one pair of constellation points at Hammimgw below. W fulfills both criteria, since it is a valid labeling
distance larger than one, thuSx; > Ay, and therefore, where the first row differs in bit compared to the second row.
Ry > 1. O Because of Step 1, every odd row in the upper halVéf,
Remark 3:The results about the optimality of GCs directlyis identical to an even row in the lower half &/, , which
extend to multidimensional constellations that are caieséd  directly implies that all rows ofW”/, in Step 2 are unique.
as direct products of one-dimensional constellationsyigesl Thus, W/, is a valid labeling. It also implies that every odd
that the labeling is generated via an ordered direct produotv of W’/ differs inm bits compared to the row below, since
of GCs. This construction of constellation and labelings wahe corresponding rows oV’ differ in m — 1 bits. Inverting
formally used, e.g., in([21, Theorem 15]. all the bits in the lower half ofW’/ is therefore equivalent
Remark 4:While the NBC is not AO for am/PAM con-  to swapping every odd row in the lower half %"/, with the
stellation, it may be AO for an unequally spaced constelfati row below. This operation maka&,,, a valid labeling withA/
For example, this is the case if the NBC is used with thenique rows, where every odd row differssim bits compared
constellation in Examplgl 1, in which case the NBC is a G@ the row below. O
according to the definition in Sectign 1V B. The next theorem proves that, at high SNR, the AGC is the
Theoreni 8 shows that GCs minimiRe; ;. In what follows, worst binary labeling for\/PAM constellations.
we show that, folM/PAM constellations, it is always possible Theorem 9:For X = &, the AGC achieves the upper bound
to construct a labeling that maximizBg ;, i.e., a labeling that in (72), i.e.,

achieves the upper bound in{72). . M=2
! ‘ Reirce =m ) (77)
We define the set of all possible values tlig¢ ; can take 2M -2
asCy, Where Proof: Let H,, = C¢1,.. denote twice the sum of the
1 Hamming distances between all adjacent rowswh,,, and
Cal < o {(m = 1) Ax +2,(m = 2)Ax + M +2}. let H!, and H!, denote the same quantity fa%/, and W/,

(75) respectively. Steps 1 and 2 givé/, = 2H,,_, and H/! =
_ 1"
This inequality follows becaus&’y; is an even integer HTIYI+2(M_1)' It then follows thaﬁm _,/Hm_2,+2(m_1)’
bounded by[(39) and(69). since rowM /2 and rowM /2 + 1 in Wi d|ff(_ar in only one
The expressior[{15) is an upper bound on the number ta];_anc_l therefore the same rows W, d'ﬁerr'p hm B 1§'ts'd
classes of labelings with different high-SNR behavior imtg Th'ﬁ g|vesHm_ - 2Hm:1 + 2(% Tm = ?’&[ whic C_I(_)m '?]e
of BICM-GMI (or equivalently BEP). For the particular case!th 11 = 2 givesH,, = 2 (mM —m — M/2+1). Together

fFY— ; ; btai with (), this completes the proof. _ _ m
© €, by using [1%) in[(7b), we obtain The labelingls in Example[® and Fig]7 (i.e.W» in
ICe| < mM — M m+ 3. (76) Fig.[10) is the AGC forlPAM with R¢ ; = 5/3 given by [7T).

B 2 For 8PAM, the AGC islacc = [0,7,2,5,6,1,4,3] (W3 in

For4PAM we havelCe| < 3 and for8PAM we havelCe| < 12,  Fig.[10), whose corresponding functit@(r‘,b;(uJAGC (p) is shown
which coincides with th& and12 classes at high SNR shownin Fig.[8, withRg ; = 18/7.
in Fig.[d and Fig[B, respectively. Fo6PAM, the upper bound For M = 16, the labeling that maximizeB¢s; (Re; =
(76) indicates thalCe| < 39. However, Fig[[P shows only 37 106/30 =~ 3.53) is the AGCW, (as shown by Theoref 9),
classes. This raises the question of the tightness of thedbowvhich can be constructed as described before. It can beefurth
in (Z8) (or equivalently, the upper bound {0172)), which wehown that the labeling with the second largest; (Re; =
address in the following. 104/30 =~ 3.47) can be constructed by reversing the order of
The AGC of orderm > 2 is defined by thel\l x m binary the three first rows of the AGGV,. This demonstrates that
matrix W,,,, where theth row is the binary label for;, where for 16PAM all 39 classes are indeed possible. The last two
W, = [0,1]7, and where the following steps constrdaf,, classes are not shown in Fld. 9 because the total number of
from W,,,_1: labelings in this case i$6! ~ 2.1 - 10'3 (without discarding
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17 1
WY W,

—
W Wi W, W, W,
N Y SR Y
0 0 0 0 0 0 0 0 repeat 0 0
1 1|1
repeat repeatl — | I
O 011 0 L0 negate 01 1] reflect
1 0 1 110 1 0 1 110
,,,,,,,,,,, L - - ~ J - N
1 0 olo 1 t_append
0 negate !  reflect
1 0 O o1 1
0 1 1 110 O
~ )\

t append

Fig. 10. Proposed recursive construction of an AGCrfor= 2 andm = 3.

trivial operations), so randomly generatiig’ labelings only where

covers a small fraction of all possible labelings. A1l 1 .2
() £ = ——=e % (79)
V. CONCLUSIONS /21
In this paper, we studied discrete constellations with-argf follows that
trary input distributions over the scalar AWGN channel ie th I G(x)
) . : i . im =1. (80)
high-SNR regime and derived exact asymptotic expressions z—o0 Q(x)
for key quantities in information theory, estimation the@nd  tra M in (@) can be expressed as
communication theory: the Ml, MMSE, SEP, the BICM-GMI, -
its derivative, and BEP. Our results show that, as the SNR, () — Z pi/ 1 o~ 3 (y—vpwi)?
tends to infinity, all these quantities converge to theimagy T —oo V27
totes proportionally td (\/ﬁd/Q), whered is the MED of the o= y—ype)?
constellation. This demonstrates the asymptotic equicale -log . — dy (81)
between all these quantities as well as the importance of the Y ity pje”zWmvPrs)
Gaussian Q-function. oo o—t? 52
For a uniform input distribution, the proportionality con- =-> pi/ T log Y pje VT dt
stants for the Ml, SEP, and MMSE were found to be a function i€1x o seDY
of the MED of the constellation and the number of pairs of (82)

constellation points at MED only, and thus, the consteltati -
where to pass froni(81) t6 (B2) we used the substitugion
that maximizes the MI in the high-SNR regime is the same P ) ) Ul

=2t and
that minimizes both the SEP and the MMSE. G V2

We then applied our results to the problem of binary pgj) Sy —x:x e X} (83)
labelings for BICM. By characterizing the high-SNR behavio o
of the BICM-GMI, asymptotically optimal binary IabelingsUS'”g m).and the definition of entropy, the numerator of the
were found, and the long-standing conjecture that Gray sodgft-hand side (L.h.s.) of{19) can be expressed as
are optimal at high SNR was proved. We also proved that there Ho. —| _ v 84
always exists an anti-Gray code fafPAM constellations, Px = Ipx(p) Z pivilp) (84)

7 IX
which is the labeling that has the lowest BICM-GMI and the h -
highest BEP at high SNR. where
" 00 eitQ . - 7£
APPENDIXA Vi(p) & /700 N log Z R}Z{ (8) - e~V 2 qt (85)

PrROOF OFTHEOREM[I

We start by upper and lower bounding the Q-function via
[36, Prop. 19.4.2]

seDY

(1-%)cw<aw 6w, >0 @)
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and nonnegative. Further note th&t(d) = 0,

(4) 2 (2) 4
. B ) _ 2u X u
jo{(é)é< PX()> (86) Thﬁnolof (ryu)=e 1og(1+R (d)-e ),UGR. (97)
bi
o We will show that, for every > 0, u — f; (r,u) is uniformly
) T eXim—a =0 (87) bounded by some integrable functian— g, (u) that is inde-
0, otherwise ' pendent ofr (see Lemma&l5 ahead). To compute the first limit
on the r.h.s. of[{90), we can thus use Lebesgue’s Dominated
Combining [8D) and{84) yields Convergence Theorern [37, Theorem 1.34] to obtain
HPX IPX (p) g HPX B IPX (p) >
lim —————- = lim —————= 88 i =
poroo Q (vpd/2) prros G (\/pd/2) (88) rlinolon (r) = Tli{go Oof (r,u) du (%8)
: Vi(p) -
= p; lim —————_ (89) = / lim f7(r,u)du (99)
iEZIX p—=oo (& (\/ﬁd/Q) . T—00
As will become apparent later, the limit on the right-hardksi = / e?log (1 + Rgi (d) - e_4“) du (100)
(r.h.s.) of [89) exists and, hence, so does the limit on ths.l. g
of (88). m\/ R (d)
In what follows, we calculate the limit on the r.h.s. bf89). - 9 (101)
Using [79) and[(85), and substituting= d+/p/8, we obtain \yhere [T0D) is obtained froni {p7) an@(101) follows from
Ot (@) —4u ;
Vi(p) ] N the substitutionz? = Ry (d)e together with [[3B,
I G pd2) 2 (i F7()+ lim () (90)  eq, (4.205.3)]
where It thus remains to show that — f; (r,u) is uniformly

bounded by some integrable functigi (u) that is indepen-

F(r) A/O o —t? log Z R(z) e—4rt%—4r2% q¢  dentofr. We do this in the following lemma.
- seD) Lemma 5:For anyr > 0
(91) 0< fr(ru)<g;(u), uweR (102)
and where
F;F(T) é/ e’ 242 10g Z R 74rt§747~25f > dt. _( . e2u log %6—411&2/(12) , w<0 (103)
0 i g; \(u) = .
5D 2 log (1 + @e—4u) w0
(92)

and d is the maximum ED of the constellation, i.el, 2

We begin with the first limit on the r.h.s. df(90). Using the ., o cx |o — ;. Furthermore,

substitutiont = u/r — r, we express; (r) in (@) as

r? () du < oco. 104
F;i(T) :/ 2u— 2 10g Z R 74ud74r U(6) du [m 9; ( ) ( )
- seDy) Proof: We first note that, for every > 0, the function
93) u fi (r,u) is nonnegative. It thus remains to show the
where se(c)ond inequality in(102). To this end, we uzser2 <1and
R < 1/p; to upper-bound(95) as
74u374r U(9)
Note thatU(§) > 0,V§ € Dx. Defining £ (ryu) < h(r® —u)e*™log [ 1+ Z
u? 6eDy
[ (ru) 2 h(? —u) -0 (105)
. 2 74u‘52
dog [ 1+ 37 RY) (8) -em1ud—1rUO) | (95) log [14+ 3 ° (106)
seD; seD;
with D} & DS)\{O} andh(z) being Heaviside’s step functionwhere to pass from{105) td (106) we usedi"’U() <
(e, h(x) = 1if z > 0andh(z) = 0if z <0), Fi (r) in  e=4uUO) for y < r? (becausdj( ) > 0) and that the rh s. of
(@3) can be written as (108) is nonnegative for < r?
o F > h
_ / f(ru (96) oru > 0, we have

[ (r,u) < e*log (1 + M- 1e_4“) (107)

[

Note that, for everyr > 0, the functionu — f; (r,u) is
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which is obtained by applying® > 42, € D; in (I08). For where
u < 0, (108) is upper-bounded by

5
p ot /d? - / Z(SeD“) 5RP (0) - V2pt N
fi (r (r,u log Z (108) \/_ Z5€D(i) jox (0) .ef\/ﬁt‘s*%
6€D; X
M Y (118)
< o2u log (_e—4ud /d ) (109) ” . -
Di and whereR}, (9) is given by [8Y). To pass froni(IlL6) to

where [I0B) is obtained by usinig< 1/p; and [I09) follows @I7) we used the substitution— ,/pz; = v/2t.
from 62 < d?,§ € D;. Using [11T), we obtain

To prove [10#), we write o
oo 0 0 lim Mexlp) Z p; lim M (119)

/ g7 (w)du = / g (u) du + / g @) QR G e G YR/

0

— 00 — 00

As will become apparent later, the limit on the r.h.s. of

where from [(10V) (I139) exists and, hence, so does the limit on the Lh.s.. To

o 1 M 42 compute the limit on the r.h.s. df (1119), we shall follow dimi
/ g; (u)du = B log ' + 2 (111) steps to those in Appendix]A. We will therefore omit some
- ’ intermediate steps.
and from [10) Using [1I8),[(7P) and the substitutien= d\/p/8, we have
(o] o] M o 1 ~
T(u)du < Zu) 1 —du) g ; -
p~>oo G (\/_d/Q) r—00 r—oo ¢
M—-1
_I (112) where
2 pi B
. . . F(r) =
which follows in analogy to[(ZQ0)E(101). This completes the! )
proof of ITemma[B. o o > o0 6R§§) (6)6—4rt%—4r22_§
Returning to the proof of Theorel 1, the second limit on / re’ —t € X - ~ dt,
the r.h.s. of [AD) can be computed along the same lines by —oo ZJED( ) R(Z (§)e trta—4r
substitutingt = u/r + r in (@2), which gives (121)
(i) ft () A
Ry, (—d Fr(r) =
lim F"(r) = rx () (113) 2
r—00 2 o Z - 5R(l) (5) —4rt——47.2 32
Combining [Z01L) and{113) with (®0) and{89) yields rert—t* | Z0€Px | ar
H | 0 Z5€D< ) R(z) (0)e —irti-irtm
lim 12x —Px(0) i (\/RY) RY (~d )
S R (2) EZZ: pim (\/ ) + \/ b (=) (122)

(114) We will now calculate the first limit in[(120). Using the
which in view of [86) and[(16) is equal toBp, . This proves substitutiont = u/r — r we expressty” (r) in {I21) as
TheorenlL. Fo(r) = /°° (. (123)

APPENDIXB
PROOF OFTHEOREMI[Z

~ UZ
For the AWGN channel in[{1), the conditional mean esti- f; (7, u) £ h(r* — u) - **~ 7

mator is given by ( (1) —4uS —4r2U(§ 2
Y sep; ORE) (9)e— iU )
d X (124)

—L(y— Jow;)2
Y jez, PiTje 2V 1+ R (§)e—tus—4r2U(5)
Z]EI pje 3(y—vpz;)? 0€D; "hx
, _ Recall thatUU () is given by [9%) andi(z) is the Heaviside’s
By using [II¥) in[[7), we obtain step function. Using the fact thdf(d) = 0 and U(6) >
M Z v / —Jpwi)? 0,Vé € Dy, we obtain
PX (2

. 2
€Ly R(Z) (d)e—4u
(e 2 2 lim f;(r,u) =d%e® | —2 | . (125)
.<Zjezxpj(xi_xj)e L) ) ay ) 1 R (et

. -e_%(y_\/ﬁmj)z .
Zfez" Pi As we shall prove in LemmBl 6 ahead,— f, (r,u) is
=Y piVilp) (117)  uniformly bounded by some integrable functien— g;(u)
i€lx that is independent of. It thus follows from Lebesgue’s

where

XME(y) = (115)
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Dominated Convergence Theorem that If w> 0, we have

. _ < - 5 72 \2u 1 -2
lim F. (r)= lim f (r,u)du 126 h °
Jim £ (r) /_OOHOOL (r;u) (126) fr(ru) < 7 <1+ (M—1)e—4u> (137)
1 7 —2
d2\/RY (d) oo 2 d?e?v ( 1 )
_ T iy < (138)
- 2 /0 Aot 20 i \(M = 1)t
- d*(M —1)?
d2m\/RY (d = 0 (139)
:%() (128) o
- d*(M —1)* o
where ) follows from [(I25) and the substitution — 7 ¢ (140)
Rg))((d)e”“ = z, and [I28) follows from [[38, '

where to pass from_(I86) t¢ _(1137) all the exponentials are
replaced by the one with the largest argument.
If v <0, (I38) can be upper-bounded as

eq. (3.241.5)].

The second limit in the r.h.s. of (IP0) can be computed

along the same lines by using the substituttea «/r 4+ r in < d ,,
(22). We obtain fi(ru) < ¢ (141)
- 72 2
i 27/RY (—d c CM—1)° oy
lim EF(r) = % (129) S— g (142)
rT—>00
Using [I28) and{129) if(120), and combining the result Witwhere [14n) fol]oyvs from discarding the sum of exponentials
(119), [86), and[(16) completes the proof. in (I38). Combining[[140) and(1#2) provés (131). [
. APPENDIXC
Lemma 6:For anyr > 0 PROOF OFTHEOREM
0<fi(ru)<g; (u), uweR (130)  uUsing Bayes’ rule, XMAP(y) in (@) can be expressed as
where XMAP(y) = argmax {fy|X(y|x)PX (.1:)} (143)
s B -
g; (u) = — 7 (131) =z, if yeYp), (144)
. . ' ) where Y, (p) is the decision region for the symbal;, with
andd is the maximum ED of the constellation. Furthermor ) — 1,.... M. For sufficiently largep, these decision regions
o d2(M —1)2 can be written as
/ g; (u)du= # < 00. (132) .
oo Pi Yi(p) £{y € R: Bi-1(p) <y < Bi(p)} (145)

where 3;(p) with [ = 0,..., M are theM + 1 thresholds

Proof: The first inequality in[(230) follows dlrectInyrom defining the) regions, i.e.,

(@23). To prove the second inequality [ {130), we ¢isez <

1, h(r? —u) < 1, andd < d to upper-bound{124) as —00, =0
_ log(p1/pPi+1) Vo(zip1+a) - B
> R(i) (5)6_4“%_4T2U(5) g Bilp) = V(@1 —a1) + 2 , =1 M1
f7(ru) < d?e? 0D P - +00, =M
Lt Y sep: Ry (d)etui—4r20(®) (146)

(133) where §3;(p) for I = 1,...,M — 1 in ({I48) is obtained by
. ~2  using [148) and by solving
=d%* |1 : :
¢ N S sep: B (8)e—tud-1r2U() pufyix (Bi(p)w) = P fy x (Bi(p)|wir1). (147)

(134) First we introduce a lemma with general asymptotic results
. 2 U on the thresholds given il (I46). This Lemma will be used in
Since Ry, (6) < 1/p; ande™™" < 1, we can further this proof as well as in the proof of Theordth 6 (&g 1V).

upper-bound[(134) as Lemma 7:For anyPx and: € Zy
-2
- 2 % i (4) e
fi (T, u) < d2e2 <1 -+ pi_w> (135) Q (lﬁl(ﬂ) _ \/ﬁl’lD RPX (d), if 1 71— 1
sep; © lim — RO (), it 1=
o o —2 p=oe Q(y/pd/2) Px )
e 1 0, if ¢ (i 1,4}
< 2 <1 + S oepe o ) (136) 148)

where to pass froni_(I185) t6 (1136) we used< 1. whereS;(p) is given by [146) and%g))( (0) by (87).
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Proof: We use [(146) to obtain for large enouglp. The proof of Theorerfil3 is completed by
using [86) in [(I5)7) together with_(16).

log(pi/pi+1)  V/Pei
— \/pr; = + ’ 149
Bilp) = Vo = <M 4 YO (149)
where for anyi, [
€1 £ w1 + @ — 2. (150) APPENDIXD
Using [149) and[{79), we form the ratio PROOF OFTHEOREMI]
G (181(p) — V/pil) _ pd(wi41 — 17)
G (\/ﬁd/2) ~121og(pi/pis1) + peii(Tier — 1) The following lemma will be used in this proof as well as
o \2 in the proof of Theoreral5.
(log ﬁ) €, log £ . p(e2, —d?)
exp | — 5 — — : . Lemma 8:
2p(w141 —w1)? 2(w141 — 21) 8 .
(151) > (BPX =Y Py, (b)BpXkyb> = Dpyy (158)
It follows from (I50) thatle; ;| > z41 — a; > d for all 4,1, =t o bel o
which implies that the limit where Dp, ; is given by [41),Bp, is given by [16),
1 G1Bie) - J/pil) (152) Brg, = 3. % B(z) (wd) (159)
p—r00 G (\/ﬁd/Q) i€Zx, , wEW

exists. We distinguish between three cases: and
() Ifi=landxy1 — o =d, thene; = x4 — 2 =d B(i) (0)

and the limit in [I5D) ise~'og (1/Pi41)/2 = /) /py. P _

(i) If i =1+1andz; i —2; = d, thene;; = ;—x141 = —d _ IV Px (@) Py (@), 0 Fay € Xy i wi — a5 =6
and the limit in [I5R) is\/pi/pi41- 0, otherwise

(iii) In all other casesle; ;| > d and the limit in [I5R) is zero. (160)

Combining the three cases and slightly changing notatiggh Px,,(z) given by [3%).

yields Proof: From [33),p; = P, (b)Px, , (zi) for anyb € B,
. G (181(p) — /i) k=1,..mandi € Iy, ,. Hence, using[{180) and (42)
e G (Vpd/2) gives

V Pt if =i andagp —a =d Dgik b(é) P, (b)Bp (z) (5) (161)
= 5t ffl=i-landzy, —z=d- (153)  Using [I59) and[{I81) together WItEd16),

0, otherwise m
Bp, — Y Pg,(b)B
Finally, applying [8Y) and{80) completes the proof. [ > Bex =2 Pou(b)Bry, ,

k=1 beB
Returning to the proof of Theore 3, using (144) dnd 145),

the SEP inIIB) is expressed as ZZ >y (Bl(ix (wd) D(z (wd)) (162)
Sex(p) = > piPr{Y ¢ Vi(p)|X = u1} (154) eI e
ielx = ZZ S Y DY (wd) (163)
— Z pz z \/_xz) =1beB zEIXk , WEW o
1€lx
A where [16B) is obtained usinf (43). The proof is completed
+Qvpri = fia(p))) (155) by comparing[(163) with[{41). O
which gives Using the expression for the BICM-GML{45), we have
. Spe(p) ( . Q(Bilp) — Vpwi) Hp. — B
lim —2 (1 .1(P)
A Qi ~ 2 P T ) o i
Q (\/pri — Bi1(p)) = (Hpyx = lpx(p))
+ Jim e ) (156) Pt
4 4 - P k b)(H X -1 b'e
= > pz-(\/R( d)+ /R (d > (157) ;;ﬁ o (O)(Hpx, , —lpx, , ()
1€Lx m
where to pass fron {156) t6 (1157) we used Lenitha 7 twice, —(m—1)Hp, + Z Z Po.(0)Hpy, . (164)

observing that the arguments of both Q-functions are pesiti k=1beB
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The last term on the r.h.s. df (1164) is zero because probabilities (PEP) as

S B
S5 Po, ), peit)
kzlbez :EZZ Z Di Z Pr{Yeyj(pﬂX:xi}
= =20 Y Pa(b)Px,, (@) log Px,, (x)  (165) kol0eB iy, I
k=1beBicTx, , (173)
1 m
== Z > pilog s—— 2 (166) = >3 > pi Y PEPi(p) (174)
k—1i€Tx Qk sz) k=1b0€Bi€lx; ,  j€Ix, &
—mHp, + > s ng Po, (ai1) (167) Where
€Ix k=1 PEP; ;(p) £ Q(Bj-1(p) — Vpri) — Q(Bi(p) — v/pi) -
" (175)
=mHpc+ Y pilog [ | Pou(aix) (168) _ | | | |
T o1 Since for anyi € Zy, , the innermost sum i _(1¥4) considers
= mHp, — Hp, (169) only j € Ix, ; (i.e., 5 # 1), we express it as
where to pass froni (165) t6_(166) we usgd](34), and to pas 1 &
from (I68) to [I6D) we used (B3). épx’ “m ZZ _ Z pi{ Z _ _PEPiJ(p)
k=1beB 161%,1; jeIXk,E’]<Z
We divide both sides of (164) bQ(,/pd/2) and take the
limit as p — oo. For the first two terms, we change the order + Z PEP; ;(p) |. (176)
of summation and limit and apply Theordrh 1 to each term. J€Tw - j>i
This gives e
BI For j < ¢ and sufficiently largep, the arguments of the Q-
lim Hpx — 173 4(p) functions in [175) are negative. Thus, we Be-z) = 1 —
p=oo Q(y/pd/2) Q(z) to expresPEP; ;(p) for j < i as
a3 (BPX S P (9B, ) @) PEPii(0) = Q(vAri — B5(0)) — Q(vAw: — B1(p)).
k=1 beB ’ (177)
which in view of LemmdB completes the proof. By using [17b) and[{177) il (1¥6), dividing both sides of
(IZ8) by Q (/pd/2), and taking the limit ap — oo, we
obtain
B 1 & -
lim Pxiv ==>> 3 wm> S (@)
r=oe Q(ypd/2)  m k=1beBi€Ty, , I=1
APPENDIX E where
PROOF OFTHEOREM[G g = Z i Q (vpzi — Bi(p)) (179)
JE€Tx, i< r=oe Q(y/pd/2)
S=— Y im 2 (Vpzi—Biale)) (40
The BEP in[[GB) is expressed as er P Q (v/pd/2) ’
kb’
Preds) Ss= 3 lim QBi-1(p) = v/pu) (181)
LSS S n Q) £ analX = ) serpa AWRIL)
k=1beB zGI,yk b Q ) B =
171) Si=— > lim (Bilp) = Vi) (182)

T Q(Vp0)2)

JELx _,5>1
h xl} where all the arguments of the Q-functions[in (1 70)=[182) ar
positive for large enough.

(172) Due to Lemmdl7, we conclude th&t; = 0 and thatSs
where [I71) follows from applying the law of total probatyili could be nonzero only due to the contribution of the term
and [I72) follows from considering all the decision regiong = i + 1. To computeS;, we useQ (,/pz; — Bj-1(p)) =
that include a constellation point labeled byat bit position Q (|8;-1(p) — /pz;|) and Lemmall7 to obtainS, = 0.

k, by using the fact thal; (p) are disjoint, andJ;cz,,Y; = Similarly, using Lemmdl]7, we we conclude that the only
R. Furthermore, we express (172) in terms of pairwise erropnzero contribution toS; can can come from the term

:%iz Z piPr{YE U Yi(p)| X

k=1beBi€Tx, , J€Tx, 5
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j = i — 1. Combining these results and using the countings] E. Zehavi, “8-PSK trellis codes for a Rayleigh charih¢EEE Trans.
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. Bp, l(P) tion,” IEEE Trans. Inf. Theoryvol. 44, no. 3, pp. 927-946, May 1998.
lim —————— [15] A. Guillen i Fabregas, A. Martinez, and G. Caire, “Biterleaved
p=oe Q (\/ﬁd/Q) coded modulation,”Foundations and Trends in Communications and

m Information Theoryvol. 5, no. 1-2, pp. 1-153, 2008.
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