
A DEPENDABILITY MEASURE FOR
DEGRADABLE COMPUTING SYSTEMS

Erland Jonsson

Department of Computer Engineering, Chalmers University of Technology, Sweden

Søren Asmussen

Institute of Electronic Systems, Aalborg University, Denmark

Abstract

This paper deals with the problem of finding a comprehensive dependability
measure or figure of merit for computing systems. Dependability is a term used
for a general description of a systems trustworthiness in non-quantitative terms. It
is commonly described by a number of aspects, like reliability, availability, safety
and security. Quantitative measures are conveniently used for e.g. reliability and
availability, but are rare for security.

However, it is felt that a more general measure of a system’s dependability would
be of great interest and could be used for system evaluations, design trade-offs etc.
In order to achieve this, we adopt a generalized view that facilitates a recompilation
of the dependability aspects into fewer and more general qualities. Key issues for
the generalization are the concepts of degradability and service. A degraded service
is the result of the discontinuation of one or several subservices, yielding a system
that operates on a reduced service level.

A vectorized measure based on Markov processes is suggested, and mathemat-
ical definitions are given. The measure describes the expected time a system will
be operating at a certain service level, and also the probability that this level be
reached. By means of applying the concept of reward rate to each service level, an
even more simplified figure of merit can be calculated.

Normally, when making reliability calculations, an assumption of exponential
failure rates for system components is made. Sometimes this assumption is not
realistic and we outline how phase-type distributions can be used to cope with this
situation.

Finally, two different schemes for the calculation of the measure is given. First,
a hierarchical procedure feasible for small systems and calculations by hand is pre-
sented. Second, a general procedure based on matrix calculus is given. This proce-
dure is suitable for complicated systems. It is also general in the sense that it may
be used for measures extended to repairable systems.

1



CONTENTS

1. INTRODUCTION

2. DIFFERENT ASPECTS OF DEPENDABILITY

2.1 Reliability

2.2 Performability

2.3 Safety

2.4 Security

3. CONSIDERATIONS ON DEPENDABILITY ASSESSMENT

3.1 Introduction

3.2 Faults

3.3 System performance and degradability

4. A DEPENDABILITY MEASURE FOR DEGRADABLE SYSTEMS

4.1 Service levels

4.2 Computational procedure

4.3 Definition of a dependability measure

4.4 Examples

4.5 Introducing rewards

4.6 Non–exponential degradation

5. CONCLUSION

6. REFERENCES

7. APPENDIX: COMPUTING THE DEPENDABILITY MEASURE

A A hierachical procedure

B A general matrix formalism

2



1 Introduction

The ever-increasing complexity and criticality of modern computer systems have led to
a growing awareness of the importance that the systems are trustworthy and that the
trustworthiness in some way can be demonstrated to the user. The term used for this
demonstrated trustworthiness is dependability defined as the amount of reliance that
can be placed on the service delivered by the system, a reliance that can also be justified
to the user [Car79], [Lap85], [Lap90]. This definition is not exact or mathematically well-
defined, but rather a heuristic approach intended to give a general feeling for the overall
dependability merit of the system.

No general ”dependability measure”, i.e. a number or a set of numbers, that would
reflect the overall degree of demonstrated trustworthiness has been defined. Instead, the
dependability concept has tended to mean different things in different types of systems.
The numbers used to quantify the merit of the system have reflected the various as-
pects of dependability, some of which are described in Chapter 2, rather than the overall
dependability. See [IEV] and [Hei91].

In many cases, however, it would be valuable for the system designer to be able
to make a mathematical calculation of a set of numbers that would describe several
dependability aspects of the system he is designing. This would help him to make the
correct trade-offs and comparisons between different design alternatives. In this paper a
vectorized performance measure based on continuous-time Markov processes is suggested.
The numbers in the vector describe the performance of the system when it is operating
on different service levels.

A non-degradable system exhibits two service levels as perceived by the user. It
delivers its service according to the specification, i.e. it is fully operational and working
in a non-failed fashion, or the delivered service deviates from that specified, in which
case a system failure has occured. In most practical systems, however, the overall service
delivered is in fact composed of a number of subservices representing different functions.
Each subservice may fail separately, leading to a step-wise reduction of the overall system
service. We are then dealing with a degradable system with three or more service levels.
It is thus possible to merge aspects such as reliability and performability into one single
quality, provided certain system limitations are accepted. If we introduce two or more
service levels for a failed system, the concept of safety can also be reflected.

Thus, the proposed measure describes the expected time a system will perform on
a certain service level, and also the probability that this level is reached. For simple
systems, the probability part of the measure is trivial and can be ignored. If we apply the
concept of reward rate to each service level an even more simplified figure of merit can be
calculated.

A fact that is not considered is that systems can very often be repaired and upgraded.
However, the measure can be applied to repairable systems for each specific operational
period.

Another feature of the proposed measure is that it is application oriented. The de-
scribed method provides a general tool or framework, and each user will have to decide
exactly how this tool is to be applied to his system. One of the reasons for this is that the
service that a system provides is not only a function of the performance of the system,
but also depends on how it is used. A degraded service delivered by a system may very
well be regarded as a full service in a certain application or by a certain user.

3



2 Different aspects of dependability

The dependability of non-repairable systems can be described by a number of aspects,
like reliability, performability, safety and security. There exists a generally accepted and
well-established definition of reliability. For some of the other aspects, there are a number
of different interpretations of the meaning of the terms and their interrelations exist. In
the discussion below the most common interpretation for each aspect is presented. The
intention of this paper is then to merge those aspects, possibly into a modified form, to
form a more general concept on which the proposed dependability measure can be based.

2.1 Reliability

Reliability is a mathematically well-defined time-dependent function R(t). This function
describes the probability that the item, whether a component, subsystem or system, will
remain operational until some time t. In other words, the reliability function gives, for a
non-repairable system, an idea of the expected lifetime, called the MTTF or Mean Time
To Failure. The mathematical relation between reliability and Mean Time To Failure is
MTTF=

∫∞
0 R(t) dt.

According to the recommendations in the International Electrotechnical Commission
[IEV], reliability is defined as:

• Reliability - the characteristic of an item expressed by the probability that it will
perform a required function under stated conditions for a stated period of time.

2.2 Performability

According to [Joh89], the term performability is used for systems that are able to continue
to deliver a service after the occurence of a failure. The service will then be delivered
at a reduced performance level, specified by a pre-defined subset of the full specification.
This property of a system is desirable, since it entails a possible gradual reduction of the
system function, at the occurence of some failures.

The performability P (t, L) can be defined as a function of time t and performance
level L, denoting the probability that the system is performing at or above the specified
performance level at time t [For84].

The ability of a system to make a graceful degradation is closely related to performa-
bility, meaning that the system can automatically reduce its performance level if a failure
occurs.

Other authors have developed mathematical models for performability and suggested
various performance measures. See [Mey80], [For84], [Smi87], [Smi88] and [San89]. In
all those cases the performability concept has been used to model reduced performance
levels of one single service delivered by the computer system.

A different approach to the problem of modelling a gradual reduction of system per-
formance is taken by [Agg89]. He recognizes that the failure of a component in a non
fault-tolerant system will not always lead to a system failure. One reason for this is that
the notion of system failure is a matter of the expectations of the system user. The
same performance reduction of a system may be considered a failure by one user, while
another may consider it a non-failure. Furthermore, the judgement may depend on how

4



the system is actually used. In one situation a certain reduction of performance will be
perceived as a failure, whereas in other situations it may not.

The author quotes examples like the failure of one loudspeaker in a stereo receiver,
which for the classical music lover would certainly be seen as failure, but perhaps not for a
person using the equipment only for language courses. Failed headlights on an automobile
is not a system failure during day-time but most certainly during the night.

The method proposed to cope with this situation is to attach a measure to each
component in the system, a measure that would represent the probability that a compo-
nent failure would also lead to a system failure. This measure is called criticality. The
method leads to a probabilistic notion of system failure depending on the criticality of
the components in the system, but system failure is still a binary variable giving a simple
failure/success view of the system rather than a degraded approach.

2.3 Safety

When considering the safety of a system we have tacitly divided the possible failures of
the system into two groups: one group with catastrophic failures and one group with
other failures [Joh89, Lap90]. Catastrophic failures are failures that will lead to harm
that is orders of magnitude bigger than the cost of the system itself, or that will endanger
human lives. The other failures are sometimes called benign. With this definition, safety
is a time-dependent function S(t) giving the probability that the system, until some time
t, will either be operational or exhibit a benign failure.

2.4 Security

Security is probably the aspect that is least well integrated into the dependability concept.
One reason for this is that security is a concept that in itself is composed of several dif-
ferent aspects. According to [Pfl89], computer security consists of maintaining the three
characteristics secrecy, integrity and availability.
Secrecy, or data confidentiality, deals with the unauthorized disclosure of information.
Integrity means that information or other assets of the system must only be changed,
deleted, created a.s.o. by authorized parties. Availability means that system assets must
indeed be available to the proper system user. Sometimes an aspect called data preser-
vation is added. It deals with the protection against loss of information or information
media. Data preservation is related to availability.

Much of the work in the security area has been related to intentional and malicious
system interaction with the purpose of causing damage or gaining personal benefits at the
expense of normal system use. However it should be noted that security breaches could
just as well occur as a result of accidental handling or normal component failures.

The standpoint taken here is that the availability and data preservation characteristics
are applicable to the discussion pursued in this paper, since they deal with aspects that
are related to a disrupture of the service to the authorized user of the system, a disrupture
that is normally described as a failure or degradation.

5



3 Considerations on dependability assessment

3.1 Introduction

The methods used for the reliability assessment for computerized and other systems are
well-known and straightforward and have been used for many years. These methods
are based upon certain assumptions pertaining to the behaviour of the system in its
environment, the nature and behaviour of faults and failures, and also to the conception of
the service delivered by the system. In many cases these assumptions present unnecessary
restrictions on the reliability modelling. Also, the validity of some assumptions has been
weakening as systems have become more complicated and critical.

Some considerations that have to be made when attempting to generalize the relia-
bility concept are presented below. A generalized approach would include not only the
reliability aspect of dependability, but cover several other dependability aspects. This
paper suggests a measure for the aggregation of a number of dependability aspects. We
have chosen to use the term dependability measure for this, even if the measure does
not cover all dependability aspects, but only a subset, and in spite of the fact that the
[IEV] recommendations state that dependability is only used for general descriptions in
non-quantitative terms.

3.2 Faults

In our attempt towards generalization, the dependability (or rather undependability),
”input” to the system has to be considered. The input is manifested as those phenomena
that may reduce dependability, i.e. faults. A fault is the phenomenological cause of an
error. An error is defined as an undesirable system state. An error may or may not lead
to a system failure and thereby reduce the system’s dependability [Lap85]. All types of
faults that may occur to the system have to be identified, classified and evaluated.

Faults include not only component failures, but also environmental effects, deliberate
system interaction with the intention to create system failures, design faults, handling
faults and others. Several classifications of faults exist, see e.g. [Lap90] and [Joh89].
Some of these fault types represent pure safety and security aspects of dependability and
must therefore be incorporated.

Normally reliability calculations are based on the assumption that the statistical occur-
rence of faults can be represented by an exponential distribution. This is approximately
true for ”component-type” faults, but not for many other types like design faults. An
improved fault model would require knowledge of the real distribution for all types of
faults and a practical method to model the distributions.

3.3 System performance and degradability

An item of particular interest is the modelling of the service delivered by a system. In most
cases the service does not have a binary characteristic such as presence or absence, but
is rather something that can be reduced gradually or degraded. As mentioned in Section
2.2 performability is the concept used to describe systems of this kind. The system
has then a quality called degradability. The degradation will reduce system performance
to different performance levels. It should be noted, though, that performance can fall

6



into two categories. Most of the papers presented on this topic deal with performance
analysis of systems that deliver only one single service, like computation capacity. See
[For84], [Smi87], [Smi88] and [San89] among others. For those systems a reduction of
the performance level is equivalent to a continued delivery of the same service, but at a
reduced amount. This is a quantitative performance reduction.

However, most systems do not deliver one service only, but a number of different sub-
services. A disruption of one or several subservices will represent a system offering a
functionally degraded service. Thus the system has a quality called functional degrad-
ability and the service has undergone a functional performance reduction.

A performance reduction, be it quantitative or functional, is due to a failure of a
system component or subsystem. From the system’s point of view, a proper term for this
performance reduction is system degradation, since the failure of one component and
the corresponding discontinuation of a subservice or reduction of service will in general
only lead to a degraded system and not a failed system. A failure is then a special case
of degradation, leading to a failed system.

7



4 A dependability measure for degradable systems

4.1 Service levels

In the following a quantitative dependability measure is proposed, covering all or most
of the dependability aspects described in Chapter 2. The measure is based on a concept
called service level.

A service level is defined as a group of system states, each with a user-specified
degree of performance or functional accomplishment. The service levels are dependent on
the design and layout of the system as well as on the application of the system, i.e. how
the system is used. Therefore, the service levels are said to be application-related.

The highest service level is denoted service level 0 (SL0) or full service level.
This level must include the system state that describes the complete fulfillment of all the
requirements in the specification, the fully operational state.

In the simplest case there is only one more service level, the failed service level,
corresponding to the system failed state, when no service is delivered or the service
delivered is of no use to the user. In this case the system has only one operational state
with a specified degree of performance and the sole alternative is the failed state. The
expected time the system is in the operational state before making a transition into the
failed state is a measure of the reliability of the system.

Most systems, however, do not deliver one service only, but a number of different
subservices. In many cases the system is useful even if it does not deliver all subservices.
A system that can operate with a reduced number of subservices is called degradable.
This makes it convenient to define more than one operational service level. The highest
service level means full performance or delivery of all subservices. Lower service levels
mean reduced performance or delivery of a pre-defined subset of the subservices. Op-
erational service levels with reduced performance are called degraded service levels.
They provide a means of incorporating the performability aspect of dependability into
the concept.

The degraded service levels must be hierarchically ordered below the highest service
level. A disruption of one or several subservices leads to a performance reduction that
may cause a transition from a higher service level to a lower service level and thereby
represent a system offering a further degraded service.

The model does not incorporate transitions from lower levels to higher levels, some-
thing that could be used to model maintenance of the system. However, there is no reason
why this extension should not be possible to make, something that would pave the way
for inclusion of the availability aspect of dependability.

In safety-critical systems some failures are more disastrous than others, implying dan-
ger of life or considerable material losses. These failures are called catastrophic or malign,
as opposed to the ”normal” benign failures. It is convenient to introduce different failed
service levels for these two types of failures. This is another type of service level, describ-
ing the service, or rather lack of service, when the system is non-operational. The failed
service levels are hierarchically ordered below the operational service levels. The service
level related to a catastrophic failure is the lowest one and the service level related to a
benign failure is the next level up. Above these two is found the lowest operational service
level. In this way the safety aspect of dependability is modeled.

Since both failed service levels represent failed states in which the system has ceased to

8



function no transitions between them are possible. Only transitions from some operational
service level to either one of the failed service levels is possible.

It is possible to introduce more than two failed service levels, if the user finds that
this could be of benefit for the evaluation of the considered system.

4.2 Computational procedure

This section presents the overall procedure for the derivation of the dependability measure.
The first step includes a definition of the service levels that will properly reflect the

user’s view of the system operation in its environment. A specification review identifying
those functions or subservices that belong to each level is necessary. The need to include
more than one failed service level should be considered.

As a second step a construction of a dependability block diagram should be made for
each operational service level. This implies a decomposition of the system into blocks
that are adapted to reliability calculations. The block diagram ought to include hardware
as well as software. It should also take into account supporting and auxiliary systems to
the extent that they may affect the overall dependability. Conductors of different types,
like communication links and power supply lines, are to be regarded as separate blocks.

In the third step failure rates for all of the blocks in the dependability block diagram
should be calculated by compiling the influence of the various faults, and then integrating
them for each service level. In general the failure rates for each level are not constant but
functions of time, which introduces a further complication to the procedure. This problem
could be handled by means of applying the type of analysis described in Section 4.6.
However, if constant, or approximately constant failure rates can be used the subsequent
calculations would be considerably facilitated.

These failure rates will serve as input for the derivation of the dependability measure.
The exact definition of the measure will be made in the next section.

4.3 Definition of a dependability measure

This section provides a mathematical definition of the vectorized dependability measure.
It also presents the method and equations to be used for the calculations. The method is
based on a pre-defined set of service levels and a set of corresponding failure rates which
quantify the rate of transitions between levels.

We shall assume that the state of the system can be modelled as a continuous time
Markov process {Xt}t≥0 with a finite state space E, in which each service level, SLn, can
be identified with a subset of states in E. Thus, E is the disjoint union SL0+ · · ·+ SLℓ,
where ℓ is the number of service levels. Further, we imagine that service levels 0, . . . , k
(say) correspond to operational states O, i.e. the states in which the system functions, in
the sense that it is delivers a full or degraded service to the user. Service levels k+1, . . . , ℓ
correspond to the failed states F , i.e. states in which the system is not functioning,
meaning that it is not delivering any service of interest to the user. That is1,

E = O + F where

O = SL0 + · · ·+ SLk,

1here as usual ”+” means union of disjoint sets

9



F = SL(k + 1) + · · ·+ SLℓ.

In the simplest case, corresponding to the traditional operational-failed model, O
consists of just one single state o and F consists of just one single state f . In more
complex situations, the different states in O represent different full or degraded service
levels and F represents different types of failed states.

Transitions i → j have intensity λij (i, j ∈ E, i 6= j), and the initial probability
IP(X0 = i) is denoted by πi. In most situations, the system will always start in a fixed
state i0 so that

πj =

{

1 j = i0
0 j 6= i0

. (1)

We shall also assume that the system starts at the highest service level, so that i0 ∈
SL0. Transitions between operational states represent degradations, and transitions to
a failed state represent failures. No transition will ever take place from a failed state,
i.e. after entering a failed state, the system stops evolving. Therefore, failed states are
absorbing so that λfj = 0 for f ∈ F and all j ∈ E.

For mathematical convenience we shall use the notation that the intensity for leaving
state i is λi =

∑

j 6=i λij, and we write λii = −λi.

Example 1 In many situations, the system state is described by a finite number p of com-
ponents, each of which may be functioning or failed. Thus a typical state i ∈ E has the form
i = (bα), α = 1, . . . , p, where the bα are 0 or 1, bα = 1 indicating that component α is functioning
and bα = 0 that it has failed. Note however, that E may be a proper subset of all such 0–1
combinations; for example in a k out of n system, we may collaps all 0–1 combinations with
k + 1 or more zeros into the single state f = 00 · · · 0. The Markovian assumption amounts to
assuming that each component has an exponential lifetime, with intensity parameter να, say,
for the αth, or equivalently a constant failure rate να. (For relaxations of this assumption, see
Section 4.6). If the system starts with all components functioning, (1) holds with i0 = 11 · · · 1.
A transition from i to j is only possible if j is obtained from i by replacing one of the 1’s, say
at the αth place by 0, and the intensity is then να. Thus e.g. for a 2 out of 3 system or Triple
Modular Redundant (TMR) system,

λ111,011 = ν1, λ111,101 = ν2, λ111,110 = ν3,

λ011,000 = ν2 + ν3, λ101,000 = ν1 + ν3, λ110,000 = ν1 + ν2,

and all other λij are zero.
Instead of 0–1 combinations, a common notation is upper– and lower case Roman letters,

say A meaning that the first component is functioning and a that it has failed, and we write
then νA instead of ν1. Cf. e.g. Example 2 below. ✷

Assuming that O has n states and F m, we suggest the 2(n+m) vector

v = ((ui)i∈O, (pi)i∈O+F , (vi)i∈F ) , (2)

as measure of dependability of the system, where ui is the expected time in state i or
Mean Time To Degradation (= MTTD), pi the probability that the system ever enters i
and vi is the conditional expected time to absorption in i ∈ F , that is, the conditional
expected time the system is functioning before being absorbed in i (the MTTF given the

10



system eventually fails in state i). Introducing wi as the unconditional expected time to
absorption in i, we have in formal mathematical terms that

ui = IE
∫ ∞

0
I(Xt = i)dt, i ∈ O, (3)

vi =
wi

pi
, i ∈ F, (4)

wi = IE
∫ ∞

0
I(t < τi < ∞)dt, i ∈ F, (5)

pi = IP(τi < ∞), i ∈ E = O + F, (6)

where τi = inf{t ≥ 0 : Xt = i} (τi = ∞ if no t with Xt = i exists) is the hitting time of
i, i.e. the time of first entry, and where I is the indicator function (e.g., I(Xt = i) = 1 in
(3) if Xt = i and I(Xt = i) = 0 if Xt 6= i). For computational purposes, we note that

ui =
pi
λi

. (7)

Also, wi is usually easier to compute directly than vi, and thus in the following we often
give the formulas for the pi, wi only (the values of the ui, vi are then trivial to compute
from (7), (4)).

4.4 Examples

In this section, we present a few examples in order to illustrate the use of the depend-
ability measure (2). The systems used in the examples are extremely simple, so that the
computational procedure shall be as transparent as possible.

Example 2 Consider a washing machine with two functions: wash and spin-dry, A meaning
that the machine can wash and a that it cannot, and B meaning that the machine can spin-dry
and b that it cannot. Interpreting the failure of the washing function as more serious than that
of the spin-drying function, the service levels may be interpreted as

SL0 = AB (wash and spin− dry)

SL1 = Ab (wash only)

SL2 = aB + ab (no wash)

We can identify E by {SL0, SL1, SL2} = {AB,Ab, aB + ab} where O = {SL0, SL1}, F =
{SL2}. A state diagram for the system is given in Fig. 1.

SL0 ✲ SL1 ✲ SL2

✻

νB νA

νA

Figure 1

11



Noting that from SL0 we enter SL1 or SL2 with probabilities νB/(νA + νB), νA/(νA + νB),
respectively, we see that

pSL0 = 1, uSL0 =
1

νA + νB
,

pSL1 =
νB

νA + νB
, uSL1 = pSL1 ·

1

νA
,

pSL2 = 1, vSL2 = wSL2 = uSL0 + uSL1.

✷

Example 3 Consider a computerized car that has three computers: A, a background functions
computer, B, a general purpose computer (ignition etc.) and C, a computer for vehicle dynamics
(steering etc.). Interpreting the failure of C as catastrophic but that of A or B (or both) not,
the service levels may be interpreted as

SL0 = ABC (full service level)

SL1 = aBC (degraded service level)

SL2 = abC +AbC (failed service level)

SL3 = ∗ ∗ c (catastrophically failed service level)

We can identify E with {SL0, SL1, SL2, SL3} where O = {SL0, SL1}, F = {SL2, SL3}. A
state diagram for the system is given in Fig. 2.

SL0 ✲ SL1 ✲ SL2 SL3

✻ ✻

❄νA νB

νB

νC

νC

Figure 2

Noting that from SLO we enter SL1, SL2 or SL3 with probabilities

νA
νA + νB + νC

,
νB

νA + νB + νC
,

νC
νA + νB + νC

,

respectively, and that from SL1 we go to SL2 and SL3 with probabilities νB/(νB+νC), νC/(νB+
νC), respectively, we see that

uSL0 =
1

νA + νB + νC
,

pSL1 =
νA

νA + νB + νC
, uSL1 = pSL1 ·

1

νB + νC
,

pSL2 =
νA

νA + νB + νC
·

νB
νB + νC

+
νB

νA + νB + νC
=

νB
νB + νC

,

pSL3 =
νA

νA + νB + νC
·

νC
νB + νC

+
νC

νA + νB + νC
=

νC
νB + νC

,

wSL2 = uSL0
νA + νB

νA + νB + νC
+

νB
νB + νC

uSL1,

wSL3 = uSL0
νC

νA + νB + νC
+

νC
νB + νC

uSL1.

12



For example in the expressions for pSL2 and wSL2, the first term is the contribution from the
event that SL1 is entered after SL0 and the second term is the contribution from the event that
SL2 is entered directly after SL0. ✷

4.5 Introducing rewards

The above set–up is also convenient for computing performance measures defined in terms
of Markov reward processes, cf. [How71], [Sou89]. That is, we assume that a reward is
earned at rate ri whenever the system is in state i ∈ O. The total reward gained is then

R = IE
∫ ∞

0
rXt

dt =
∑

i∈O

riui,

as is seen by decomposing the integral into the contributions from the sojourns in the
individual states i ∈ O.

Example 4 Consider a computer system consisting of n identical processors, working in a
parallel configuration, so that performance reductions due to overhead can be ignored. Each
processor has a computation rate of β (measured in say million floating operations per second,
MFLOPS). Let Xt be the number of processors which are operational at time t. Then O =
{1, . . . , n}, F = {0}, and if we define ri = βi, then the reward R is the total number of floating
point operations performed during the total operational period, whether at full performance or
degraded level. ✷

We could also extend the concept of reward by introducing for i ∈ F a penalty or
cost ci (typically ≥ 0) imposed if the system ends up in some failed state i. Here, ci is a
non-recurring or time-independent quantity, since the entered state is absorbing and the
system will remain there for ever. The total reward gained is then

R =
∑

i∈O

riui −
∑

i∈F

cipi

Example 5 For the computer system in the preceding example a situation where n−1 comput-
ers have failed leaving only one computer operational may be considered as a severe degradation,
since an additional computer failure would leave no functioning computer, which is regarded as
a catastrophic system failure. Therefore, a special automatic shut-down of the system is acti-
vated as soon as only one computer is in function. An unforeseen system state with no working
computer is then avoided. However, there is a certain probability that the catastrophic state
is entered in the short period before the shutdown has taken place. Here O = {1, ..., n} and
F = {b,m}, b meaning that the system has been subject to a benign failure (the automatic
shut-down did work) and m that the system has been subject to a malign failure (the automatic
shut-down did not work or worked too slowly) and we could take cb = 0 and cm > 0.

The corresponding service levels would be:

SL0 = {n, ..., 2} (operational level)

SL1 = {1} (degraded level)

SL2 = {b} (failed level)

SL3 = {m} (catastrophically failed level)

✷

13



The reward figure thus calculated may serve as a single figure of merit for systems
with a well-defined design or as a means of comparison and trade-off between different
design alternatives.

4.6 Non–exponential degradation

From a practical point of view, the assumption of exponential lifetimes may often be
quite unrealistic. We shall here explain how phase–type assumptions, see [Neu81], allow
to dispense with this, and avoid as much as possible of the general machinery of the area
at the cost of restricting ourselves to some specific examples.

The basic examples of phase–type distributions are the following two:

Example 6 The hyperexponential distribution Hp with p parallel channels is a mixture of p
exponential distributions with rates δ1, . . . , δp so that the density is

p
∑

i=1

πiδie
−δix, (8)

where π1 + · · ·+ πp=1.
In a reliability context, this could model the lifetime of an item which may be of one of p

types, the ith type with exponential lifetime with parameter δi. For example if p = 2, type 1
could represent ’normal’ items and type 2 items which are prone to early failure due to a defect.
Thus π2 = 1− π1 is the probability that an item is defective and one would have δ2 ≫ δ1. ✷

Example 7 The Erlang distribution Ep with p phases is a Gamma distribution with integer
parameter p and density

δp
xp−1

(p− 1)!
e−δx. (9)

This corresponds to a convolution of p exponential densities with the same rate δ. In a reliability
context, the Erlang distribution would be appropriate as a model for lifetimes of items which are
subject to aging, i.e. have a bell–shaped lifetime density. It can be formally represented using
the concept of cold stand–by units; e.g. if p = 2, we may think of the lifetime of the component
as the lifetime of a system with two units with the same exponential lifetime parameter δ, the
second unit being used as a cold stand–by for the first. ✷

Example 8 Consider a software package consisting of one interactive application program
module and one user interface program module. The purpose of the interface module is to
protect the application program by means of checking that all data and commands that are
entered by the user fulfill certain requirements stated by the application program, e.g. that no
illegal data or command is entered. An illegal entry may cause the application program to
crash. Assume that the software package has a lifetime distribution B which is exponential with
intensity δ1, say. However, due to a mistake in the program loading sequence, occuring say with
probability p, the interface module may be missing or defective so that all user input is simply
transferred into the application module. Thus, the software package contains a deficiency. See
[Jon91]. If we adopt a conservative approach, we assume that the first illegal data/command
input will then cause a program crash.

Suppose that the arrival intensity of illegal data/commands is δ2, which typically is much
larger than δ1. We may take O = {1, 2}, 2 representing an unprotected application program,

14



1, a protected one, and F consisting of a single state f . Thus the state diagram is as given on
Figure 3, with initial probabilities 1− p, p for states 1 and 2, respectively.

1

2

f

❄

✻

δ1

δ2

Figure 3

✷

Example 9 Consider again the software package of the preceding example, but assume now
that the ’typical’ lifetime distribution B is much better approximated by an Erlang(2) distribu-
tion, with intensity δ1, than by an exponential distribution. Then we could split state 1 into two
states, 0,1, representing the fictitious stages (which of the two exponential units are working) of
the lifetime. Thus the state diagram is as given in Figure 4, with initial probabilities 1− p, 0, p
for states 0,1, 2, respectively

0 1

2

f

❄

✻

δ1 δ1

δ2

Figure 4

Note that the lifetime of such a system will typically have a failure rate with the commonly
encountered ’bath–tub’ shape. ✷

In Examples 8, 9, it is the distribution of the lifetime of the system as a whole that is
of phase–type. However, it is equally interesting to use non–exponential models for the
lifetimes of individual components. Here are two simple examples:

Example 10 Assume that in Example 2 the washing function has a lifetime distribution of
the same form as in Example 9, whereas the spin–dry function has an exponential lifetime as
before. Write A1b for the state corresponding to the washer being in phase 1 of its life and the
spin–dry function having failed, and so on. Then the state diagram is as given in Figure 5, with
initial probabilities 1− p , p for states A0B and A2B and 0 for all other states.

15



A2B

A0B

A1B

A2b

A0b

A1b

a∗

✻

❄

✲

✲

✲

✻ ✻δ1 δ1

δ1

δ2

νB

νB

νB

δ2

δ1

Figure 5

Note that the columns of states correspond to service levels 0, 1, 2, respectively. One case where
this could be a reasonable model would be when there is a possibility of the washer having a
deficiency which causes early failure, corresponding to states A2B and A2b. State A0B is then
interpreted as the washer being ’normal’ and in its early stage of life (with the spin–dry function
being operative), state A1b as the washer being ’normal’ and in its late stage of life (with the
spin–dry function having failed) and so on. ✷

Example 11 Interchanging the form of the distributions of the lifetimes of the washer and
spin–dry function in Example 10, the state diagram becomes instead (using the obvious notation)

AB2

AB0

AB1

Ab a∗

✻

❄

✻

❄
✻

✲

δ1

δ1

νA

νA

νA

δ2

νA

Figure 6

✷

In the general formalism [Neu81], phase–type distributions are defined as absorption
times of Markov processes with a finite number of states (the ’phases’) and one absorbing
state ∆. The important points in using them as models for lifetimes are that

• this involves no essential loss of generality since any distribution can be approxi-
mated arbitrarily closely by a phase–type distribution. (For the practical imple-
mentation see [Asm91] and references there).

• phase–type assumptions allow us to stay within the universe of Markovian modelling
by introducing some additional states to the system.

16



It should be noted that it is not crucial that the phases have a direct physical interpre-
tation as in the preceding examples: phase–type models are most often used in a purely
descriptive manner. Thus in the older literature, the hyperexponential distribution is
often used as a first approximation to a distribution with a coefficient of variation (c.v.)
> 1 (in comparison, the c.v. of the exponential distribution is 1), and the Erlang(p)
distribution as a first approximation to a distribution with c.v. < 1.

Note that the lifetime of the system as such (defined as the time mini∈F τi to absorption
in some failed state) is of phase–type, as is immediately seen by collapsing F to a single
absorbing state. Thus, the point of Examples 8, 9 is not so much that we get a phase–type
lifetime but rather that we can arrive at a specified form of the lifetime distribution.

5 Conclusion

Even though dependability is a concept normally used in general and non-quantitive terms
to describe computing systems and other systems, we have taken a step towards a quanti-
tative understanding of it. This is done by merging aspects like reliability, performability,
safety and security or parts thereof into a more general quality and defining a measure
for it. Some extensions of the quality as a means of modelling dependability has been
discussed. A method to dispense with the exponential failure rate assumption for system
components using phase–type distributions has been outlined.

The considered system is perceived in terms of the service it delivers to the user and we
recognize the fact that this service is normally degradable, i.e. it can be delivered in various
amounts or at different levels. A mathematical definition for a vectorized measure based
on Markov processes is given. The measure reflects the time the system is operational on a
certain service level and the probability that it will reach this level, if ever. The measure is
only applied to non-repairable systems, i.e. no feed-back in the Markov process is defined.
However, there is no reason why this extension could not be introduced in the future,
something that would pave the way for inclusion of the availability aspect into the model.

Two different algoritms for the calculation of the measure are given in the appendix.
The first being appropiate for small systems and manual calculations. The second one,
which makes use of matrix calculus, gives a general approach and is feasible for big systems
and computerbased calculations.

17



References

[And82] T. Anderson & P.A. Lee (1982) Fault Tolerance terminology proposals. Proc. 12th
IEEE Int. Symp. on Fault Tolerant Computing FTCS-12, 29–33. Santa Monica,
California, June 1982.

[Agg89] K.K. Aggarwal (1989) A New Concept in Reliability Modelling. Proceedings of the

Annual RELIABILITY AND MAINTAINABILITY Symposium, 1989, 86-90.

[Asm91] S. Asmussen, O. Nerman (1991) Fitting phase–type distributions via the EM al-
gorithm. In preparation; preliminary version published in Symposium i Anvendt

Statistik, Copenhagen January 21–23, 1991 (K. Vest Nielsen ed.), 335–346. UNI–C,
Copenhagen.

[Avi78] A. Avizienis (1978) Fault tolerance, the survival attribute of digital systems. Pro-
ceedings of the IEEE 66, 1109-1125.

[Bob90] A. Bobbio & A. Cumani (1990) ML estimation of the parameters of a PH distribution
in canonical triangular form. Technical report, Instituto Elettrotecnico Nazionale
Galileo Ferraris, Torino.

[BSI] British Standard 5760, Reliability of Systems, Equipments and Components

[Car79] W.C. Carter (1979) Fault detection and recovery algorithms for fault-tolerant sys-
tems. Prod. EURO IFIP’79, London, Sept. 1979, 725-734.

[Chr84] F. Christian (1984) Correct and Robust Programs. IEEE transactions on Software

Engineering SE-10.

[Dob90] J.E. Dobson, J. McDermid & B. Randell (1990), On the trustworthiness of Com-
puting Systems. Technical Report Series 306, University of Newcastle upon Tyne,
Computing laboratory.

[For84] J.A.B. Fortes, C.S. Raghavendra (1984), Dynamically Reconfigurable Fault-tolerant
Array Processors, pp. 386-392. Proc. 12th IEEE Int. Symp. on Fault Tolerant Com-

puting FTCS-12, Santa Monica California, June 1984.

[Gra81] A. Graham (1981) Kronecker Products and Matrix Calculus with Applications. Ellis
Horwood, Chichester.

[Hei91] D.I Heimann, N.Mittal, K.S. Trivedi (1991), Dependability Modelling for Com-
puter Systems, Proceedings of the Annual RELIABILITY AND MAINTAINABIL-

ITY Symposium, 1991, 120-127.

[How71] R.A. Howard (1971) Dynamic Probabilistic Systems. New York Wiley 1971, ISBN
99-0002431-1.

[IEV] International Electrotechnical Vocabulary, Chapter 191. Reliability, Maintainability
and Quality of Service, (IEV191). CCIR/CCITT Joint Study Group on Vocabulary,
International Electrotechnical Commission, Geneva, 1987.

[Joh89] B.W. Johnson (1989) Design and Analysis of Fault-Tolerant Digital Systems.
Addison-Wesley, ISBN 0-201-07570-9.

18



[Jon91] E. Jonsson (1991) A System-based Model for Dependable Computers, Technical Re-
port No. 116. Department of Computer Engineering, Chalmers University of Tech-
nology, Göteborg, Sweden.

[Lap82] J.C. Laprie & A. Costes (1982) Dependability: a unifying concept for reliable com-
puting Proc. 12th IEEE Int. Symp. on Fault-tolerant Computing FTCS-12, 18-21.
Santa Monica, California, June 1982.

[Lap85] J.C. Laprie (1985) Dependable computing and fault tolerance: concepts and termi-
nologi. Proc. 15th IEEE Int. Symp. on Fault Tolerant Computing FTCS-15, 2-11.
Ann Arbor, Michigan, June 1985.

[Lap90] JC. Laprie (1990) Dependability: A unifying concept for reliable computing and
fault tolerance. Dependability of Resilient Computing Systems (T. Anderson ed.),
1-28. Blackwell Scientific Publications.

[Lee82] P.A. Lee, D.E. Morgan (eds.) (1989) Fundamental concepts of fault tolerant com-
puting. Proc. 12th IEEE Int. Symp. on Fault Tolerant Computing FTCS-12, 34-38.
Santa Monica, California, June 1982.

[Mel77] P.M. Melliar-Smith & B.Randell (1977) Software reliability: the role of programmed
exception handling. SIGPLAN Notices 12, 95-100.

[Mey80] J.F. Meyer (1980) On Evaluating the Performability of Degradable Computing Sys-
tems, IEEE Transaction on Computers C-29, 720-731.

[Neu81] M.F. Neuts (1981) Matrix–Geometric Solutions in Stochastic Models. Johns Hopkins
University Press, Baltimore.

[Orn86] S.M. Ornstein (1986) Safety issues for computer controlled systems Proc. 16th IEEE

Int. Symp. on Fault-Tolerant Computing FTCS-16.

[Pfl89] C.P. Pfleeger (1989) Security in Computing. Prentice-Hall International, ISBN 0-13-
799016-2.

[San89] W.H. Sanders, J.F. Meyers (1989) A unified approach for specifying measures of
performance, dependability, and performability. 1st IFIP Conferance on Dependable

Computers, Santa Barbara, August 1989.

[Smi87] R.M. Smith, K.S. Trivedi (1987) A performability analysis of two multi-processor
systems. Proc. 17th IEEE Int. Symp. on Fault Tolerant Computing FTCS-17, 224-
229. Pittsburg, Pennsylvania, July 1987.

[Smi88] R.M. Smith, K.S. Trivedi & A.W. Ramesh (1988) Performability analysis: measures,
an algoritm and a case Study. IEEE Transaction on Computers 37, 406-417.

[Sou89] E. de Souza e Silva, H.R. Gail (1989) Calculating Availability and Performability

Measures of Repairable Computer Systems Using Randomization. Journal of the
ACM, Jan. 1989, vol. 36, no. 1.

[Tri82] K.S. Trivedi (1982) Probability and Statistics with Reliability, Queuing and Computer

Science Applications. Prentice-Hall, Englewood Cliffs.

19



Appendix: Computing the performance measure

In this Appendix, we present some material that is more mathematically oriented. In
particular, we develop two different algorithms for computing the dependability measure
(2) and present a few somewhat more complicated examples.

The first algoritm is a hierarchical procedure, which in essence was used in the first few
examples, e.g. Examples 2 and 3, even though the formalism was not made evident there.
Thus, the hierarchical approach is suitable for calculations by hand for small systems.

The second algoritm is based on a general matrix formalism that may well be used
for bigger systems, when using computer-aided tools. The matrix approach can be de-
scribed by a very compact mathematical form and it is applicable also in the absence of
a hierachical structure (i.e. feed–back is possible), see Example A2. Only when systems
become so large that the matrix inversion presents a problem, is the hierachical approach
again the most feasible. Such examples could occur, e.g. if one relaxes the assumption of
exponential lifetimes, cf. Section 4.6.

A: a hierachical procedure

Our use of the word ’hierachical’ is essentially a short–hand for no feed–back (the
state diagram contains no loops). Under this assumption, it is possible to group the
states i ∈ E into subclasses E0, E1, . . . , EL such that any state i ∈ Ek can only be entered
from some j ∈

∑k−1
ℓ=0 Eℓ, and this decomposition then serves to provide a recursive scheme

for computing the dependability measure. It should be noted that the decomposition
E =

∑L
ℓ=0 Eℓ is a purely technical tool: as will be seen from the examples below, it does

not necessarily have any intrinsic interest, and in particular it is not related in a natural
way to the different decompositions given by the service levels.

We define Ek as the set of states which can be reached in k or less transitions. That
is, i ∈ Ek if there exists i0, . . . , ik−1 ∈ E such that

i0 6= i1, i1 6= i2, . . . , ik−1 6= i, πi0λi0i1λi1i2 · · ·λik−1i > 0,

and k is the maximal number with this property. It is immediately clear that the Ek are
disjoint. Furthermore, λij = 0 whenever i ∈ Eℓ, j ∈ Ek and ℓ ≥ k (otherwise there is a
chain of length ℓ + 1 leading to j which contradicts k being maximal). The hierachical
assumption of no feed–back amounts to

E =
L
∑

ℓ=0

Eℓ (A.1)

for some L. This structure is found in all preceding examples and would appear to cover
a broad class of systems without repair or maintenance.

Example A.1 In the setting of Example 1, Ek will consist of those states i = (b1, . . . , bp) with
exactly k zeroes, i.e. exactly k failed components.

The following result shows that we can compute the ui, pi, wi recursively. To this end,
we let wi be defined also for operational states i ∈ O.

20



Theorem 1 In the presence of the hierachical structure (A.1),

pi = πi, wi =
1

λi

, i ∈ E0, (A.2)

wi =
k−1
∑

ℓ=0

∑

j∈Eℓ:λji>0

λji

λj

{

wj +
1

λi

}

, i ∈ Ek ∩O, (A.3)

wi =
k−1
∑

ℓ=0

∑

j∈Eℓ:λji>0

λji

λj

wj, i ∈ Ek ∩ F, (A.4)

pi =
k−1
∑

ℓ=0

∑

j∈Eℓ:λji>0

pj
λji

λj

, i ∈ Ek. (A.5)

Proof Formula (A.2) is trivial. For (A.3), note that a i ∈ Ek ∩ O is necessarily entered
from some state in Ek−1, say j. The probability of going to j from i is λji/λj; the system
has then already spent an average time wj up to and including the sojourn in j and will
spend an average time 1/λi in i. From this, (A.3) follows, and the remaining formulas are
similar but easier to work with. ✷

Example A.2 Assume that in Example 3 we duplicate the computer for vehicle dynamics;
states with two VD computers are denoted by ∗ ∗ C2, those with one by ∗ ∗ C and those with
none by ∗ ∗ c. Then

SL0 = ABC2 +ABC (full performance level)

SL1 = aBC2 + aBC (degraded performance level)

SL2 = abC2 + abC +AbC2 +AbC (failed)

SL3 = ∗ ∗ c (catastrophic failure)

Again, O = SL0 ∪ SL1, F = SL2 ∪ SL3, and we get

E0 = {ABC2} ,

E1 = {aBC2, AbC2, ABC} ,

E2 = {abC2, AbC,ABc, aBC} ,

E3 = {abC, aBc,Abc} ,

E4 = {abc}

The steps in the calculations of Theorem 1 are as follows. For i ∈ E0, there is only i = ABC2

to consider, and obviously pABC2
= 1. For i ∈ E1, we note that a transition from a state ∗ ∗C2

to ∗ ∗ C has intensity 2νC and get

paBC2
=

νA
νA + νB + 2νC

, pAbC2
=

νB
νA + νB + 2νC

, pABC =
2νC

νA + νB + 2νC
.

For i ∈ E2,

paBC = pABC
νA

νA + νB + νC
+ paBC2

2νC
νB + 2νC

,

pAbC = pABC
νB

νA + νB + νC
+ pAbC2

2νC
νA + 2νC

,

pABc = pABC
νC

νA + νB + νC
,

pabC2
= paBC2

νB
νB + 2νC

+ pAbC2

νA
νA + 2νC

,

21



and for i ∈ E3,

pabC = pabC2
+ pAbC

νA
νA + νC

+ paBC
νB

νB + νC
,

paBc = paBC
νC

νB + νC
,

pAbc = pAbC
νC

νA + νC
,

noting that ABc is absorbing so that, e.g., aBc cannot be entered from there. Similarly, since
aBc,Abc ∈ E3, it follows for E4 that pabc = pabC .

From these formulas we can calculate, e.g., the probability of a catastrophic failure as pABc+
pAbc + paBc + pabc. ✷

When working with phase–type assumptions on the lifetimes of the individual com-
ponents, a particular class of distributions that fit nicely into the hierachical set–up are
Coxian distributions, defined as lifetimes of systems with a state diagram as follows:

✲ α1

❄
r1
1− r1

✲ α2

❄
r2

1− r2
✲

❄

✲αp−1

❄
rp−1
1− rp−1

✲ αp ✲

This class of distributions is very popular in much of the reliability literature, see e.g.
[Bob90] and references there. Note that the Erlang distribution is a special case of a
Coxian distribution.

Example A.3 Assume in Example 2 that the lifetime of the washer and the spin-dryer are
both Coxian, with parameters α1, . . . , αp, r1, . . . , rp for the washer and β1, . . . , βq, s1, . . . , sq for
the spin-dryer. Then

SL0 = {ij : i = 1, . . . , p, j = 1, . . . , q} , SL1 = {i : j = 1, . . . , p} , SL2 = {f} ,

where for example state ij ∈ SL0 represents the washer being in stage (phase) i of its life and
the dryer in stage j. From ij ∈ SL0 we can go to (i + 1)j with intensity αi(1 − ri) (provided
i < p), to i(j + 1) with intensity βj(1− sj) (provided j < q), to i with intensity βq when j = q
and to f with intensity αp when i = p. It is immediate that the hierachical assumption (A.1) is
satisfied (whereas this is not the case for general phase–type distribution with possible feedback
between the phases), and if, e.g., p = 3, q = 2, we get L = 5,

E0 = {11} , E1 = {12, 21} , E2 = {22, 31, 1} , E3 = {32, 2} , E4 = {3} , E5 = {f} .

✷

This example clearly illustrates that even though phase–type assumptions may blow up
the dimension substantially, the hierachical method for performing computations is not
all that sensitive to this problem (’the curse of dimensionality’).

22



B: a general matrix formalism

We now develop an alternative to the hierachical procedure, based upon matrix calculus.
Let Λ be the O×O matrix with ijth entry λij, i, j ∈ O. Note that Λ does not involve the

λji, i ∈ F ; these are represented instead in terms of the (column) vectors ℓ(i) = (λji)j∈O,
i ∈ F . We also let e(i) denote the ith (column) unit vector and q(i) the column vector
−Λ−1ℓ(i). Note that the initial vector π is written as a row vector. Thus e.g. in (B.1)
below, πΛ−1 is a row vector and πΛ−1e(i) a real number (as should be).

The following result shows that once the key step of computingΛ−1 has been overcome,
the performance measure can immediately be calculated:

Theorem 2

ui = −πΛ−1e(i), i ∈ O, (B.1)

pi = −πΛ−1ℓ(i), i ∈ F, (B.2)

wi = πΛ−2ℓ(i), i ∈ F. (B.3)

Proof The formula (B.1) follows by noting that the t–step transition matrix of the Markov

process is eΛt, hence the vector of state probabilities at time t is πeΛt and the probability

of being in i is πeΛte(i), so that by standard formulas for integrating matrix–exponentials
(e.g. [Gra81])

ui =
∫ ∞

0
πeΛte(i)dt = −πΛ−1e(i).

Similarly, since the contribution to pi from the Markov process is in state j in the time

interval [t, t+ dt] is πeΛte(j) · λjidt, we have

pi =
∑

j∈O

∫ ∞

0
πeΛte(j) · λjidt =

∫ ∞

0
πeΛtℓ(i) = −πΛ−1ℓ(i).

Finally, for (B.3) we first note that, by a similar argument as for (B.2), the probability
that the Markov process is finally absorbed in state i given that it starts in state j is

∫ ∞

0
e(j)

′

eΛtℓ(i) = −e(j)′Λ−1ℓ(i) = q
(i)
j .

Hence

wi =
∑

j∈O

IE
∫ ∞

0
I(Xt = j, t < τi < ∞)dt

=
∑

j∈O

∫ ∞

0
IP(Xt = j, t < τi < ∞)dt

=
∑

j∈O

∫ ∞

0
πeΛte(j) · q

(i)
j =

∫ ∞

0
πeΛtq(i)

= −πΛ−1q(i) = πΛ−1Λ−1ℓ(i) = πΛ−2ℓ(i).

✷

23



Example B.1 We shall reinspect the formulas of Example 3 in view of Theorem 2. Recalling
that O = {SL0, SL1}, we have

Λ =

(

−νA − νB − νC νA
0 −νB − νC

)

, ℓ(SL2) =

(

νB
νB

)

, ℓ(SL3) =

(

νC
νC

)

.

Thus

Λ−1 =





− 1
νA+νB+νC

− νA
(νA+νB+νC)(νB+νC)

0 − 1
νB+νC



 .

Since π = (1 0), πΛ−1 is simply the first row of Λ−1, which according to (B.1) is (−uSL0 −uSL1)
— in accordance with the formulas of Example 3. The remaining formulas are easily checked in
the same way, using

Λ−2 =





1
(νA+νB+νC)2

νA(νA+2νB+2νC)
(νA+νB+νC)2(νB+νC)2

0 1
(νB+νC)2



 .

E.g.

pSL2 =
(

− 1
νA+νB+νC

− νA
(νA+νB+νC)(νB+νC)

)

(

νB
νB

)

=
νB

νB + νC
.

✷

The point that hierachical structure is not needed for Theorem 2 is illustrated by the
following example:

Example B.2 Consider the washing machine in Example 2, and assume that the spin-drying
function is maintainable, with a maintenance time which we assume for simplicity to be expo-
nential, with rate say µB. This means that in the state diagram on Fig. 1, we have to add an
arrow from SL1 to SL0 with mark µB. Thus

Λ =

(

−νA − νB νB
µB −νA − µB

)

,

Λ−1 =





−νA−µB

ν2
A
+νAνB+νAµB

− νB
ν2
A
+νAνB+νAµB

− µB

ν2
A
+νAνB+νAµB

−νA−νB
ν2
A
+νAνB+νAµB



 ,

and from this the dependability measure (2) can be computed in a straightforward manner. ✷

It should be noted that the form of the formulas of Theorem 2 is close to formulas for
moments and other functionals of phase–type distributions, see [Neu81]. This is in fact
not surprising, since in our model with E = O ∪ F one may see O as corresponding to
the set of phases (transient states) and F to the absorbing state {∆}. Thus, if F has
m > 1 elements, we are in a set–up generalizing the phase–type setting to more than one
absorbing state.

The following examples show how to define the parameters Λ and ℓ(i) in some of our
earlier examples involving phase–type modelling:

24



Example B.3 For the software package in Example 8, we have in the case of a hyperexpo-
nential lifetime that

π = (1− p p), Λ =

(

−δ1 0
0 −δ2

)

, ℓ(f) =

(

δ1
δ2

)

.

✷

Example B.4 If instead the lifetime has the more complicated form in Example 9, we get

π = (1− p 0 p), Λ =







−δ1 δ1 0
0 −δ1 0
0 0 −δ2






, ℓ(f) =







0
δ1
δ2






.

Example B.5 As a more complicated example, consider again the washing machine of Exam-
ple 2 and assume that both the washing and the spin–dry functions have lifetime distributions of

the form in Examples 9, B3, with parameters pA, δ
(A)
1 , δ

(A)
2 for the washer and pB, δ

(B)
1 , δ

(B)
2 for

the dryer. Then SL0 splits into 9 states ij, i indicating the phase of the washer and j the phase
of the dryer, and SL1 into three states corresponding to the phase of the washer. Ordering the
states in SL0 lexicographically, (00, 01, 02, 10, · · ·), separating SL0 and SL1 by double lines and
letting · indicate a zero entry, the matrix Λ is then as given on p. 26. ✷

25



























































−δ
(A)
1 − δ

(B)
1 δ

(B)
1 · δ

(A)
1 · · · ·

· −δ
(A)
1 − δ

(B)
1 · · δ

(A)
1 · · ·

· · −δ
(A)
1 − δ

(B)
2 · · δ

(A)
1 · ·

· · · −δ
(A)
1 − δ

(B)
1 δ

(B)
1 · · ·

· · · · −δ
(A)
1 − δ

(B)
1 · · ·

· · · · · −δ
(A)
1 − δ

(B)
2 · ·

· · · · · · −δ
(A)
2 − δ

(B)
1 δ

(B)
1

· · · · · · · −δ
(A)
2 −

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

26


