Sjömäns hälsorisker från dieselavgaser

Riskbedömning av dieselavgaser ombord på RoPax-fartygs lastdäck

Examensarbete vid sjökapteinsprogrammet

MAGNUS NORÉN
JONAS ÅBERG

Institutionen för sjöfart och marin teknik
CHALMERS TEKNISKA HÖGSKOLA
Göteborg, Sverige 2012
Examensarbete: SK-12/107
Sjömäns hälsorisker från dieselavgaser
Riskbedömning av dieselavgaser ombord på RoPax-fartygs lastdäck

MAGNUS NORÉN
JONAS ÅBERG

Institutionen för Sjöfart och marin teknik
CHALMERS TEKNISKA HÖGSKOLA
Göteborg, Sverige, 2012
Sjömäns hälsorisker från dieselavgaser
Riskbedömning av dieselavgaser ombord på RoPax-fartygs lastdäck

Seafarer’s health risks from diesel exhausts
Risk assessment of diesel exhaust on cargo deck on board RoPax vessels

MAGNUS NORÉN
JONAS ÅBERG

COPYRIGHT © MAGNUS NORÉN, JONAS ÅBERG, 2012

Examensarbete nr. SK-12/107
Institutionen för Sjöfart och marin teknik
Chalmers tekniska högskola
412 96 Göteborg
Sverige
Telefon + 46 (0)31-772 1000

Framsida:
Truck kör ut genom bogport på RoPax-fartyg
Bilden tagen av Magnus Norén och Jonas Åberg, 2012

Tryck: Chalmers tekniska högskola
Göteborg, Sverige 2012
Abstract
In June 2012 the International Agency for Research on Cancer established that diesel exhaust causes cancer. This important assessment was the beginning of this investigating study.

This work includes a risk assessment of exposure of diesel exhaust on cargo deck on board RoPax vessels which sails under Swedish flag. The purpose was to investigate the health risks that occur in the deck crewes daily work. This was achieved by use of review of literature and results of measurement with an indicator substance of nitrogen dioxide, which was supplemented by an interview.

The results emerged from the risk assessment were:
- The average exposure of diesel exhaust was estimated to be 0.2 ppm (parts per million) on the cargo deck of the selected vessels. This compares with an average threshold limit value, based on a shift of 10.6 hours, which is estimated to be 0.75 ppm in a "worst case" situation.
- The exposure varies which include a few high values that possibly can pose risks for development of acute effects.
- There is a limited knowledge of cancer risks associated with work on cargo deck.
- With use of a cancer study that takes place in mines, the selected cargo deck on RoPax vessels are estimated to have half the exposure of diesel exhaust in relative to measured levels of the exposure in the mines. Overall therefore considered deck personnel have a lower risk of lung cancer compared with those concerned miners.

In summary, the conclusion was determined that work on cargo deck on RoPax vessels cargo deck with exposure of diesel exhaust, causes low risk for development of acute symptoms and a possibly increased risk for developing lung cancer. Further research is needed for a more specific risk assessment.

Keywords:
Cancer risk, Diesel exhaust, Exposure, Human health, Risk assessment, RoPax
Sammanfattning

Det här arbetet omfattar en riskbedömning av dieselavgasexponering vid arbete på tre svenskflaggade RoPax-fartygs lastdäck. Syftet var att undersöka de hälsofarisker som förekommer i det vardagliga arbetet för däcksbesättningen ombord. Detta uppnådes med hjälp av litteraturstudier och mätningssubstans kvävedioxid, vilket kompletterades med en intervju.

Resultatet som framkom i riskbedömningen var:

- Den genomsnittliga dieselavgasexponeringen uppskattades till 0,2 ppm (parts per million) för de utvalda fartygens lastdäck. Detta kan jämföras med ett nivågränsvärde av 0,75 ppm (parts per million), omräknat till ett arbetspass på 10,6 timmar.
- Enligt exponeringsvariationer med fåtal höga värden konstaterades det att arbete på lastdäck möjligtvis kan medföra risker för utveckling av akuta effekter.
- Det förekommer en begränsad kunskap om cancerriskerna vid arbete på lastdäck.
- Med hjälp av en cancerstudie från gruvor, uppskattades de utvalda RoPax-fartygens lastdäck ha hälften så hög exponeringsnivå av dieselavgaser i förhållande till gruvorna. Sammantaget anses därför däcksbesättningen ha en lägre lungcancer-risk jämfört med de berörda gruvarbeitarna.

Slutsatsen fastställdes till att arbete på RoPax-fartygs lastdäck vid exponering av dieselavgaser medför låga risker för utveckling av akuta symtom och en möjlig ökad risk att utveckla lungcancer. Anledningen är att med befintlig litteratur och erhållna exponeringsmätningar kunde en mer specifik riskökning ej fastställas.

Nyckelord:

Cancerrisk, Dieselavgaser, Exponering, Personalhälsa, Riskbedömning, RoPax
Förord
Det har varit en lärorik och rolig tid att ta sig an ett spännande och intressant ämne. Vi vill tacka alla som har ställt upp för oss och även gett oss en möjlighet att reflektera över hur examensarbetet blev från tanke till färdig produkt.

Det som började som en tanke och nu blivit ett examensarbete, har skapat många nya erfarenheter hos oss. Då regelverk och riskbedömning har varit en del av arbetet har vi lärt oss mycket av detta som vi kan ha nytta av i framtiden. Som kommande sjöbefäl ska vi kunna genomföra och tillämpa en riskbedömning, då sjöbefäl är arbetsgivarens representant och har till uppgift att utföra riskbedömningar och beakta arbetsmiljön.

Sist men inte minst tack till rederiet, kapten och skyddsombud ombord på fartyg Cilla som ställde upp i intervjun. I övrigt vill vi tacka många andra som ställt upp och visat intresse och engagemang. Det har varit en drivkraft som hjälpt oss i både motvind som medvind!

Magnus Norén
Jonas Åberg
December 2012, Göteborg
Förkortningar

AFS Arbetsmiljöverkets författningssamling

CO Kolmonoxid

CO₂ Koldioxid

IARC The International Agency for Research on Cancer

MK Miljöklass

NOₓ Kväveoxider, samlingsord för kvävemonoxid och kvävedioxid

NO Kvävemonoxid

NO₂ Kvävedioxid

PAH Polyaromatiska kolväten, (Polycyclic Aromatic Hydrocarbons)

PPM Miljondel, (Parts per million)

REC Respirabelt elementärt kol, (Respirable Elemental Carbon)

RoPax Kombinerad RoRo- och passagerarfartyg

RoRo Roll-on, Roll-off

SOₓ Svaveloxider

WHO The World Health Organization
Innehållsförteckning

Innehåll

ABSTRACT ...I
SAMMANFATTNING..II
FÖRORD ...III
FÖRKORTNINGAR .. IV
INNEHÅLLSFÖRTECKNING ... V
FIGURFÖRTECKNING ...VII
TABELLFÖRTECKNING ...VII

1 INLEDNING ...1
 1.1 Syfte ...1
 1.2 Frågeställningar ..1
 1.2.1 Huvudfrågeställning ...1
 1.2.2 Delfrågeställningar ..1
 1.3 Avgränsningar ..2

2 METOD ...3
 2.1 Litteraturstudie ..3
 2.2 Mätning ...4
 2.2.1 Validitet ..4
 2.2.2 Urval ..4
 2.3 Intervju ...4

3 TEORI ...6
 3.1 Färjor ..6
 3.1.1 RoRo-fartyg ...6
 3.1.2 RoPax-fartyg ...7
 3.2 Riskbedömning ..7
 3.3 Dieselavgaser ...7
3.3.1 Diesel

3.3.2 Kväveoxider, NOₓ

3.3.3 Toxiska effekter

3.4 Hälsa

3.4.1 Exponering via luft

3.4.2 Respons av doser

3.4.3 Cancer

3.4.4 Indikator på cancer

3.5 Regelverk

3.6 Mätningar

4 RESULTAT – RISKBEDÖMNINGEN

4.1 Mätdata

4.2 Intervju

4.3 Riskbedömningen

4.4 Sammanfattning:
5 DISKUSSION ... 28
 5.1 Fartygsmätningar ... 28
 5.2 Mätningarnas tillförlitlighet .. 28
 5.3 Mätningars syfte ... 29
 5.4 Hygieniska gränsvärden och hälsa ... 30
6 SLUTSATS ... 32
7 FÖRSLAG TILL FRAMTIDA STUDIER .. 33
BILAGOR ...
 Bilaga 1: Mätning på fartyg Ada...
 Bilaga 2: Mätning för fartyg Beda ...
 Bilaga 3: Mätning för fartyg Cilla ...
 Bilaga 4: Mätdiagram på fartyg Beda...

Figurförteckning
Figur 1. Ett rymligt lastdäck (Norén, 2012) ... 6
Figur 2. Lastdäck med höj- och sänkbara ramper (Åberg, 2012) 6

Tabellförteckning
Tabell 1. Experiment på människor: Kontrollerad dieselavgasexponering med påvisande symtom (Arbete och hälsa, 2003) .. 11
Tabell 2. Mätning av NO$_2$ på lastdäck vid utlastning ombord på fartyg Ada (se bilaga 1) 16
Tabell 3. Mätning av NO$_2$ på lastdäck vid lastning/lossning ombord på fartyg Beda (se bilaga 2) 17
Tabell 4. Mätrésultat av högsta och lägsta NO$_2$ värden på lastdäck vid lastning/lossning ombord på fartyg Cilla (se bilaga 3) .. 18
Tabell 5. Tid besättningen vistas och exponeras på lastdäck varje arbetsdag 19
1 Inledning

Den 12 juni 2012 publicerade the International Agency for Research on Cancer (IARC) som är en del av the World Health Organization (WHO) en rapport om dieselavgaser. Dieselavgaser som tidigare klassificerades att sannolikt orsaka cancer (Grupp 2A) omklassificerades till att orsaka cancer (Grupp 1) (IARC, 2012).

Det bränsle som dominerar i lastbilsbranschen är diesel men under de senaste åren har tillsats av alternativa biobaserade drivmedel ökat i bränslet. På grund av att dieselmotorer dominerar lastbilsbranschen består den yrkesmässiga exponeringen på lastdäck för anställda ombord på RoPax-fartyg (kombinerad RoRo- och passagerarfartyg) till stor del av dieselavgaser. Lastdäcket är ett begränsat utrymme, vilket kan öka risken för dieselavgasexponering i arbetsmiljön. En riskbedömning genomförs i detta examensarbete för att undersöka om besättning under lastning/lossning är en potentiell riskgrupp med avseende på dieselavgasexponering.

1.1 Syfte

Avsikten är att genomföra en hälsobaserad riskbedömning av däckpersonalens exponering av dieselavgaser på RoPax-fartygs lastdäck.

1.2 Frågeställningar

1.2.1 Huvudfrågeställning

- Hur stora risker utgör dieselavgaser för däckpersonalens hälsa under det vardagliga arbetet på lastdäck vid på- och avlastning?

1.2.2 Delfrågeställningar

- Vilka hälsorisker förekommer vid exponering av dieselavgaser?
- Hur ser dieselavgasexonponeringen ut vid arbete på lastdäck?
- Hur står sig kvävedioxidhalten från mätningarna mot gällande regelverk?
1.3 Avgränsningar
Arbetet avgränsades till dieselavgaser på lastdäck ombord på RoPax-fartyg. Därför utvärderades halten kvävedioxid (NO$_2$) av dieselavgaser. NO$_2$ är en indikator för dieselavgasexponering (Arbete och hälsa, 2003). Riskbedömningen baserades på svensk lagstiftning och arbetet avgränsades därmed till svenskflaggade fartyg.
2 Metod
Detta arbete baseras på en riskbedömning av dieselavgaser. Riskbedömningen grundades på en litteraturstudie för att erhålla sekundärdata, vilket innebär en insamling av redan tillgänglig data. En semistrukturerad intervju genomfördes för att tillfoga primärdata i undersökningen, vilket är egeninsamlad data. En semistrukturerad intervju är en form av frågestund då exempelvis vissa frågor och struktur över mötet är planerade sedan innan, medan andra delar är mer öppna för utveckling och nya infallsvinklar.

För att kunna utnyttja den information som erhålls från litteraturstudien och mätningarna består en del i arbetet av hur mäning bör gå till. Det är en viktig del för att få förståelse för hur man får så pålitlig mätdata som möjligt, men även för att kunna diskutera felkällor som kan förekomma.

2.1 Litteraturstudie
Det genomfördes en kartläggande litteraturstudie för att få nödvändig information om ämnet. Litteratursökningen var indelad i två delar. En handlade om medicinska effekter av dieselavgaser medan den andra handlade om gällande regelverk. Denna information användes för att kunna analysera och förstå mätdata som tillämpades i arbetet och för att kunna genomföra en givande intervju. Det är viktigt att se kritiskt på informationen som erhålls vid litteratursökningen då detta senare ligger till grund för arbetets resultat (Höst et al., 2011).

Följande ord och databaser användes:

<table>
<thead>
<tr>
<th>Sökord</th>
<th>Databaser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>- Health*</td>
</tr>
<tr>
<td>Cancer*</td>
<td>- RoPax*</td>
</tr>
<tr>
<td>Diesel</td>
<td>- RoRo*</td>
</tr>
<tr>
<td>Exhaust</td>
<td>- Ship*</td>
</tr>
</tbody>
</table>

- PubMed
- Chans
- Web of Sciences

För att få reda på vilka myndigheter som har det övergripande ansvaret i Sverige genomfördes en övergripande sökning på webbsidan ”www.google.se”. Därefter kontaktades de berörda
myndigheter som i detta fall är Transportstyrelsen och Arbetsmiljöverket via mail och telefon för att få bekräftat vilka regelverk som är relevanta för detta arbete.

2.2 Mätning
På uppdrag av ett rederi har företagshälsovården Feelgood företagshälsa, genomfört tre mätningar som ligger till grund för riskbedömningen. Mätningarna användes i syfte att komplettera den insamla informationen från litteraturstudien för att kunna få en bild av personalens exponering av dieselavgaser vid arbete på däck på ett svenskflaggat fartyg.

Mätningsdokumenten finns i bilaga 1, 2 och 3.

2.2.1 Validitet
Författarna av detta arbete deltog inte vid mätningarna och därför granskades och diskuterades måtdata. Enligt boken *Att genomföra examensarbete* (Höst et al., 2011) finns det i alla mätningar fel som man vill reducera så mycket som möjligt för att uppnå ett så korrekt resultat som möjligt. Eftersom det är mer än en mätning som genomfördes minskar riskerna till den så kallade dag-till-dag variationen då antal lastfordon kan variera från dag till dag. Två av mätningar är genomförda under en längre tid för att minska risken för slumpmässiga fel.

2.2.2 Urval
Feelgood företagshälsa, som genomförde mätningarna bidrar med mätningsunderlag för detta arbete. Mätningarna begränsas därmed till tre mätningar på tre liknande RoPax-fartyg med både frakt och passagerartrafik.

Urvalet begränsades till de mätningar som erbjöds men även för att kunna granska all mätdata efter samma förutsättningar då de är genomförda för samma ändamål och av samma representant.

2.3 Intervju
Intervjun utfördes med kapten och skyddsombud på fartyg Cilla som är ett av de fartyg som deltog i de mätningar som användes i arbetet. Syftet med intervjun var att komplettera mätningarna genom att få insikt i hur det dagliga däcksarbetet ser ut och vilka rörelsemönster
däcksbesättningen vanligtvis använder. Denna information användes i sin tur i riskbedömningen.

Intervjun var en semistrukturerad intervju och utfördes för att få så omfattande kunskap som möjligt (Höst et al., 2011). Intervjun presenteras i 4.2.
3 Teori

3.1 Färjor

3.1.1 RoRo-fartyg

Det finns surrningsfästen på lastdäcken så att lasten, såsom trailers och fordon, kan spännas fast med hjälp av spännband eller kedjor (Nationalencyklopedin, 2012b). Detta genomförts för att inte riskera lastförskjutning under sjöresan. En lastförskjutning kan riskera att fartyget förlorar nödvändig stabilitet, som i sin tur kan leda till kantring.
3.1.2 RoPax-fartyg
Ordet RoPax är en förkortning av ”RoRo” och av det engelska ordet ”Passenger”. RoPax-fartyg är som det låter, en kombination av både RoRo- och passagerarfartyg.

Idag inriktar sig många passagerarrederier på att sälja sina transportjänster till en så bred grupp av passagerare (Pax) som möjligt. Detta har resulterat i att passagerarfärjorna ofta används både som en form av kryssning och klassisk färjetransport. På senare tid har behovet av att kunna befrakta mer last ökat vilket har bidragit till utveckling av större lastdäck (Lumsden, 2012).

Efter att de nya skattereglerna infördes, för taxfreeförsäljning på internationellt vatten inom EU, har inkomsten från passagerare sjunkit. Detta är också en bidragande faktor till att allt fler rederier har satsat på RoPax-fartyg.

3.2 Riskbedömning
För att förhindra uppkomst av ohälsa och olycksfall i arbete genomförs riskbedömningar. En riskbedömning är till för att bidra till och förbättra en god arbetsmiljö.

I en strävan mot en bättre arbetsmiljö med ett minska antal arbetsrelaterade sjukdomar och olyckor är riskbedömningar en effektiv förebyggande process (Arbetsmiljöverket, 2012).

3.3 Dieselavgaser
3.3.1 Diesel

Vid förbränning av diesel bildas dieselavgaser som består av en mängd kemiska föreningar i gas- och partikelform. Struktursammansättningen av gas och partiklar kan se olika ut och påverkas av faktorer såsom bränsletyp, motorns prestanda och temperatur. Dieselavgasen består exempelvis av aldehyder (CHO), kolmonoxid (CO), koldioxid (CO₂), svaveloxider (SOx), kväveoxider (NOx) och kolväten. Kolvätena innefattar både tyngre polyaromatiska kolväten (PAH) och mer lättflyftiga kolväten (Arbete och hälsa, 2003).

Flyktighet, vilket är ett mått på avdunstningsförmåga, och densitet är två avgörande faktorer hos dieselbränslen som bidrar till dess egenskaper. Det har genomförts ett flertal undersökningar för att till exempel kartlägga effekterna av dieselavgaser med innehåll av svavel, aromatiska och polyaromatiska kolväten. Ämnet svavel har en bidragande effekt till uppkomsten av partiklar vilket ligger till grund för att miljöklassen MK (miljöklass) 1-diesel, har ett lågt svavelinnehåll. Dieselbränsle som består av aromater har även en ökad mängd av

3.3.2 Kväveoxider, NOx
Vid dieselmotorers förbränning uppstår höga temperaturer vilket är en förutsättning för en reaktion ska ske mellan luftens syre och kväve. Kväveoxider bildas framförallt av reaktionen mellan syre och kväve. Det är kvävemonoxid (NO) som med syre genom en reaktion bildar kvävedioxid (NO2).

Ett samlingsnamn för kväveoxider som kvävemonoxid och kvävedioxid benämns som NOx och används som en indikator för dieselavgaser. Vanligtvis mäts NO2 istället för NOx vid dieselavgasmätningar (Arbete och hälsa, 2003).

3.3.3 Toxiska effekter

3.4 Hälsa

I dieselavgaser finns det polyaromatiska kolväten (PAH) som bland annat har visat sig vara cancerframkallande i djurexperiment. Inom en del yrken där arbetare andas in PAH som
exempelvis takläggare och asfalsarbetare, har det uppmärksammats ett ökande insjuknande i lungcancer (IARC, 2007).

Något som fortfarande är delvis obesvarat är vilken inverkan faktorerna tid och omfattning har på den ökade lungcancerrisken vid exponering av dieselavgaser, och i vilken mån risken utvecklas efter en avbruten eller reducerad exponering.

3.4.1 Exponering via luft
Luft består av olika ämnen som kan komma ner i människors lungor genom inandning som i form av exempelvis gaser och partiklar. Gaser med hälsopåverkan kan delas in i tre kategorier, vilka är giftiga, irriterande och syreunanträngande gaser.

Syreunanträngande gaser är till exempel kvävgas och andra ädelgaser. De träger undan syret i luften, vilket kan leda till livshotande tillstånd om syret trängs undan till en kritisk nivå.

Giftiga gaser som till exempel kolmonoxid och svavelväte, förhindrar förflyttningen av syre i kroppen. Kolmonoxid tar exempelvis syrets plats på hemoglobin i blodet vilket förhindrar att celler får det eftertraktade syret.
Damm som kan finnas i luften kan även bidra till en dålig hälsa. I vilket omfattning dammet gör skada är beroende av dammpartiklarnas storlek, struktur och giftighetsgrad. Om en partikel är liten är risken större att den tränger långt ner i lungorna (Krook, 2001).

Partiklar kan delas in i tre grupper i storleksordning:

- Inhalerbar fraktion, kan andas in.
- Thorakal fraktion, passerar struphuvudet.
- Respirabel fraktion, når långt ner i luftvägarna.

Av dessa grupper är den respirabla fraktionen den mest riskfyllda då dessa partiklar kan hamna ända ner i lungbläsorna och på så vis spridas vidare i blodet. En del av dessa partiklar fastnar i lungbläsorna vilket bidrar till att svåra skador i lungorna uppstår (Krook, 2001). Majoriteten av de partiklar som finns i dieselavgaser är av den respirabla fraktionen (Arbete och hälsa, 2003).

3.4.1.1 Kortvarig exponering
Symtom som kan utvecklas under kortvarig och hög exponering av dieselavgaser är:

- Andningssvårigheter
- Huvudvärk
- Inflammation i nedre lungvägarna
- Irritation av näsa och ögon
- Trötthet
- Yrsel

Kortvarig exponering ger symtom direkt efter exponering. Exponeringen kan sträcka sig allt från minuter till dagar.

Referens: (Sydbom et al., 2001)

3.4.1.2 Långvarig exponering
Symtom som kan utvecklas under långvarig och hög exponering av dieselavgaser är:

- Hosta
- Hosta med slem
- Lungcancer
- Nedsatt lungkapacitet

Långvarig exponering innebär en återkommande exponering under en längre tid. Det kan innefatta allt från månader till decennier.

Referens: (Sydbom et al., 2001), (Attfield et al., 2012)
3.4.2 Respons av doser
Människor har i en del undersökningar blivit utsatta för olika doser av dieselavgaser för att kunna kartlägga olika symptom. Kopplingsar har bland annat setts mellan relativt låga doseringar under en kort tid av dieselavgaser (partikelhalt: 0,1 mg/m3, kvävedioxidhalt: 0,4 mg/m3) som påverkar luftvägarna. Under en kontrollerad exponering som varade i en timme (där kväveoxihalten var 2-3 mg/m3) utvecklade deltagarna inflammation i ögon och luftvägar. Deltagare som även var astmatiker utvecklade irritation i luftvägarna (bronkiell hyperaktivitet) under en exponering av en ungefärlig kvävedioxidhalt av 2 mg/m3 (se tabell 1) (Arbete och hälsa, 2003).

I tabellen nedan visas en sammanfattning av ett experiment på människor i form av en kontrollerad dieselavgasexponering och dess effekter på hälsan. I undersökningen förekom två grupper av människor: god hälsa, respektive med astmasjukdom. Kvävedioxidhalten i luften varierade från 0,36 mg/m3 till 3,4 mg/m3, vilket kan jämföras med årsmedelnivån under 2011 av NO$_2$ i Gårda och Haga i Göteborgs stad där kvävedioxidhalten ungefär var 0,047 mg/m3 i Gårda respektive 0,036 mg/m3 i Haga (Miljöförvaltningen, 2012). Båda grupperna reagerade med bland annat utveckling av inflammation i luftvägarna.

Tabell 1. Experiment på människor: Kontrollerad dieselavgasexponering med påvisande symtom (Arbete och hälsa, 2003)

<table>
<thead>
<tr>
<th>Utsatt grupp</th>
<th>Kvävedioxid (mg/m3)</th>
<th>Exponeringstid (h)</th>
<th>Konsekvens</th>
</tr>
</thead>
<tbody>
<tr>
<td>God hälsa</td>
<td>2,3 - 3,4</td>
<td>1</td>
<td>Irritation i näsa och ögon, samt tecken till inflammation i nedre luftvägarna</td>
</tr>
<tr>
<td>Astmatiker</td>
<td>0,36 - 2,2</td>
<td>1 - 2</td>
<td>Ökad inflammation i nedre luftvägarna (2h) med försämrad astmasjukdom (1h)</td>
</tr>
</tbody>
</table>

3.4.3 Cancer

3.4.3.1 Lungcancer
När en cancercumör befinner sig i en lunga kallas det för lungcancer. För att vara mer specifik bildas tumören av skadade celler i lungavknuden.

I Stockholms län har det genomförts en fall- och kontrollstudie av risken att utveckla cancer, vilken innefattade över 1 000 fall och kontroller av 2 300 personer. Ett resultat av studien visade sig vara ett betydelsefullt sammanhang mellan lungcancer och estimerad kumulativ dos av NO₂. Vid en ökning av 1 mg-år/m³ av den kumulativa dosen av NO₂ beräknades lungcancerrisken öka med 9 procent (Arbete och hälsa, 2003).

3.4.4 Indikator på cancer
De studier som har genomförts kring dieselexponering i dagensläget innehåller inte tillräckligt god data för att kunna fastställa cancerrisken. Det är oklart vilka beståndsdelar i dieselavgaser som är den mest pålitliga markören för att fastställa risken. Ämnen som är diskuterade är bland annat NO₂ och olika partiklar (Arbete och hälsa, 2003).

3.5 Regelverk

3.5.1 Transportstyrelsen

3.5.2 Arbetsmiljöverket

3.5.2.1 Hygieniska gränsvärden

Gränsvärdeshalten kan anges för gaser, ångor och partikelformiga luftföroringar i mg/m³ luft. Halten kan dessutom för gaser och ångor anges i ppm (parts per million) (Standardiseringskommissionen i Sverige, 1982).

Det finns tre olika gränsvärdesnivåer: (Krook, 2001)

- **Nivågränsvärde** är ett hygieniskt gränsvärde som är den högsta tillåtna genomsnittliga halten av exponering av en luftföroring under en arbetsdag på åtta timmar som får förekomma.

- **Takgränsvärde** är ett hygieniskt gränsvärde som är den högsta tillåtna genomsnittliga halten av exponering av en luftföroring under en period av 15 minuter som får förekomma.

- **Korttidsvärdet** är ett allmänt råd till de ämnena som inte har något takgränsvärde. Det är en riktlinje i skyddsarbetet för att det är viktigt att även begränsa de kortvariga höga exponeringarna.

Dieselavgaser hanteras i *Hygieniska gränsvärden* (AFS 2011:18) av ämnet ”Avgaser som kvävedioxid” och begränsas därmed till ett nivågränsvärde av 1 ppm (2 mg/m³). Det finns varken ett takgräns- eller korttidsvärde för avgaser. Värdena för avgaser är satta med avseendet för att representera den totala effekten av de ämnena som finns i dieselavgaser, därmed även de cancerframkallande effekterna.

För att bestämma det idag gällande hygiensiska gränsvärdet för avgaser med NO₂ som indikator, undersökes de akuta effekterna vid yrkesmässig exponering. Ett konstaterande i studien var bland annat att indikatorsubstansen inte uppfyllde alla krav fullständigt. Det primära var avsaknad av data på dos-effekt/dos-respons (Lundberg et al., 1986).

3.6 Mätningar

3.6.1 En mätning utförande

För att bestämma halten av en luftföroring som NO₂ görs en exponeringsmätning. Det innebör en kartläggning av hur hög halt av en luftföroring som en person exponeras för. För att kunna jämföra resultatet mot nivågränsvärdet måste mätningensutrustningen sitta i andningszon under åtta timmar.

som har en förväntad hög hälsorisk påverkan, och är därför en indikator för att mäta de farliga ämnena i dieselavgaser.

En exponeringsmätning kan utföras med personburen eller stationär mätutrustning. Antalet mätpunkter och placering av mätpunkterna är viktigt för att kunna få ett mätresultat av luftföroreningar som representerar hela mätområdet. Detta för att resultatet inte ska bli missvisande.

3.6.1.1 Tillvägagångssätt

Innan en mätning kan påbörjas ska personen som ska genomföra mätningen besöka mätningstområdet för att få en kännedom om platsen och dess omgivning. Berörda personer som kommer medverka och som kommer bli påverkade av mätningarna ska informeras angående mätningens syfte och genomförande. Beroende på hur analyskänsliga mätproverna är, som de inte är direktvisande instrument, bör det laboratoriet som ska analysera proverna kontaktas och informeras.

Innan mätningen ska starta ska provtagningsutrustningen anpassas och placeras ut. En del mätinstrument behöver varmköras innan nollställning och kalibreras för att de ska bli stabila. De personer som eventuellt blir berörda av mätinstrumenten, till exempel vid personburen mätutrustning, ska instrueras hur instrumenten fungerar och när de ska ha på sig utrustningen.

Under mätningen är viktigt att få en klar bild i hur omgivningens miljö som mäts ser ut. Ventilation och öppningar där luftdrag kan förekomma ska tas i beaktande.

Arbetarnas olika arbetssätt ska iakttas för att göra en bedömning av vilka arbetsmoment som kan ge högst exponering och om det finns skillnader i de olika arbetarnas arbetssätt.

Vid slutfasen av mätningar genomförandet ska mätutrustningen tas omhand samt alla exakta klockslag ska noteras.
När mätningen väl är genomförd och analysen är klar skall både mätningensprover och analys sammanfattas i en mätningssrapport. I den dokumentationen ska det klart och tydligt redovisas en utförlig sammanställning av hela mätningen (Krook, 2001).

3.6.1.2 Felkällor
Vid en bedömning av en genomförd mätning uppkommer det mer eller mindre olika felkällor eller olika typ av fel. Därför är det viktigt vid genomförandet av en mätning att vara medveten och ta hänsyn till dessa fel. Felen som kan uppstå kallas systematiska fel och slumpmässiga fel (Krook, 2001).

Systematiska fel uppkommer till exempel när ett direktvisande instrument används som kan ha kalibreringsfel, nollpunktsförskjutning, mätvärdesdrift och eller störning av likartade ämnen. Sådana fel är svåra att upptäcka och eliminerar därför att det krävs både kunskap om mätmetod och mätutrustningen. Det enklaste sättet att hålla nere de systematiska felnivåerna är genom både utbildning och övning. Storleken av systematiska fel kan delvis fastställas genom kalibrering av instrumenten och en del systematiska fel som inte kan förklaras kan uppskattas (Krook, 2001).

På grund av tillfälligheter uppkommer det vid alla mätningar fel vilket benämns slumpmässiga fel. Felen kan variera i storleksgrad och uppkommer vid provtagning och analys. De största felen brukar uppkomma vid provtagning av yrkeshygieniska mätningar. De slumpmässiga felen går att minska genom statistisk bearbetning (Krook, 2001).

3.6.1.3 Utrustning
4 Resultat – Riskbedömningen
För att kunna utföra en riskbedömning av dieselavgasexponering ombord på RoPax-fartygs lastdäck behövs både exponeringsdata och intervju som underlag.

4.1 Mätdata – En grund för riskbedömningen
På uppdrag av ett rederi har Feelgood företagshälso utfört tre mätningar av kvävedioxid (NO₂) på lastdäck ombord på RoPax-fartygen Ada, Beda och Cilla. Fartygen Beda och Cilla har en lastnings- och lossningsoperation varje dag. Traditionella lastfordon såsom lastbilar och truckar utrustade med dieselmotorer användes under mätperioderna.

4.1.1 Mätning RoPax-fartyg Ada
Ombord på fartyg Ada utfördes mätning av NO₂ i samband med lossning av lasten. Lasten bestod av 38 långtradare och 6 bussar (Sandberg, 2003). I valet av mätutrustning användes ett direktvisande instrument av märket Dräger Pac III, med sensor för NO₂ med detektionsgräns på 0,1 ppm, för att få en direktvisande mätning av NO₂ i samband med lossning. Mätinstrumentet är en handburen utrustning som mätansvarig gick omkring med till olika platser under lossningen. Målet med mätningen var att kunna se när halten NO₂ var som högst, om halten varierade på olika platser och för att få reda på hur snabbt halten avtog på lastdäck (Sandberg, 2012b).

Enligt tabell 2 förekom höga halter av kvävedioxid akterut och midskepps vid klockslag 07:35 respektive klockslag 07:36. När fläktarna hade startat och luft utifrån kunde strömma in genom bogporten som öppnades vid kl. 07:37 minskade halten av dieselavgaser drastiskt.

Tabell 2. Mätning av NO₂ på lastdäck vid utlastning ombord på fartyg Ada (se bilaga 1)

<table>
<thead>
<tr>
<th>Klockslag</th>
<th>Halt NO₂ (ppm)</th>
<th>Plats</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:35</td>
<td>3</td>
<td>Akterut vid startpanel för fläktar. Mellan skott och lastbilstrailer</td>
</tr>
<tr>
<td>07:36</td>
<td>6</td>
<td>Midskepps</td>
</tr>
<tr>
<td>07:37</td>
<td>1</td>
<td>Vid upplyft barriär</td>
</tr>
<tr>
<td>07:38</td>
<td>0,3 - 0,4</td>
<td>Vid upplyft barriär då halva antalet fordon är utkörda</td>
</tr>
<tr>
<td>07:39</td>
<td>< 0,1</td>
<td>Vid upplyft barriär då luft från bogport strömmar in</td>
</tr>
<tr>
<td>07:40</td>
<td>0,5</td>
<td>Mellan barriär och lotsport</td>
</tr>
<tr>
<td>07:45</td>
<td>0,7 - 0,9</td>
<td>Vid lotsport</td>
</tr>
<tr>
<td>07:50</td>
<td>< 0,1</td>
<td></td>
</tr>
</tbody>
</table>
4.1.2 Mätning RoPax-fartyg Beda

Ombord på fartyg Beda genomfördes en mätning av NO\textsubscript{2} under en period på 3 dagar. Mätningarna utfördes i samband med lastning och lossning av lasten. Mätutrustningen som användes var två stycken direktvisande Dräger PAC7000 med detektionsgräns 0,1 ppm som var personburna under lastning och lossning (Sandberg, 2011). Detta för att logga halten NO\textsubscript{2} under en längre tid på platser där avgasmängden brukade vara hög, ett så kallat ”worst case-fall” som är det sämsta tänkbara scenariot (Sandberg, 2012b).

Sammanfattningsvis under de tre dagarna förekom det enligt tabell 3 förhöjda halter av dieselavgaser vid några tillfällen under kortare perioder. Av mätningsdokumentet (se bilaga 2) framgår rekommendationer om att personer, om möjlighet finns, bör använda andningsskydd då högre halten dieselavgaser kortvarigt förekommer i andningszon. Slutligen anses nivågränsvärden, genomsnittshalten för en åtta timmars arbetsdag, för NO\textsubscript{2} genom mätdata för fartyg Beda vanligtvis understiga en femtedel (0,2 ppm).

<table>
<thead>
<tr>
<th>Förklaring</th>
<th>Halt (ppm)</th>
<th>Period (minuter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Några tillfällen inträffade:</td>
<td>≥ 1</td>
<td>5</td>
</tr>
<tr>
<td>Vid ett tillfälle inträffade:</td>
<td>≥ 1</td>
<td>≥ 20</td>
</tr>
<tr>
<td>Oftast inträffade:</td>
<td>≤ 0,6</td>
<td>≤ 45</td>
</tr>
</tbody>
</table>

Tabell 3. Mätning av NO\textsubscript{2} på lastdäck vid lastning/lossning ombord på fartyg Beda (se bilaga 2)

4.1.3 Mätning RoPax-fartyg Cilla

Ombord på fartyg Cilla utfördes mätningar av NO\textsubscript{2} i samband med lastning och lossning av last under sju dygn. Utrustningen som användes var en stationär direktvisande mätutrustning av modell Dräger PAC7000 med en detektionsgräns på 0,1 ppm som var placerad på ett skott på lastdäck, 1,5 meter över durken (Sandberg, 2012a). Valet av utrustning användes för att logga halten NO\textsubscript{2} under en längre period på en plats där kväveoxidhalten är hög, ett så kallat ”worst case-fall” som är det sämsta tänkbara scenariot (Sandberg, 2012b).

I tabell 4 anges den högsta respektive lägsta halten NO\textsubscript{2} i ett tidsintervall. Övriga tider på dagarna som lastning eller lossning pågick som inte är noterad beror på att halten NO\textsubscript{2} inte överskred detektionsgränsen på 0,1 ppm. Under dagarna lördag den 21/4 samt tisdagen den 24/4 förekom halter av NO\textsubscript{2} upp till 1 ppm. Dock endast under kortare perioder och halterna avtogs relativ snabbt, vilket var ett tecken på att god luftväxling rådde enligt mätningen (se bilaga 3). Under tisdagen den 24/4 uppkom den högsta halten NO\textsubscript{2} som var 1,9 ppm. I tabellen där last presenteras visas att under dagarna söndagen den 22/4 och måndagen 23/4
förekom ingen last på lastdäcket. Andledningen till detta är att lasten ombord är industriberoende, på grund av lägre produktion under helger 1.

Tabell 4. Mätresultat av högsta och lägsta NO₂ värdet på lastdäck vid lastning/lossning ombord på fartyg Cilla (se bilaga 3)

<table>
<thead>
<tr>
<th>Dag, datum</th>
<th>Tid</th>
<th>Halt NO₂ (ppm)</th>
<th>Last på lastdäck 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tisdag, 17/4</td>
<td>09.05 - 09.20</td>
<td>0,3</td>
<td>28 trailer 1 + 7 chassi 2</td>
</tr>
<tr>
<td></td>
<td>12.40 - 13.50</td>
<td>0,3 - 0,8</td>
<td></td>
</tr>
<tr>
<td>Onsdag, 18/4</td>
<td>09.10 - 10.00</td>
<td>0,3 - 0,6</td>
<td>28 trailer + 6 chassi</td>
</tr>
<tr>
<td></td>
<td>12.55 - 13.40</td>
<td>0,4 - 0,4</td>
<td></td>
</tr>
<tr>
<td>Torsdag, 19/4</td>
<td>09.30 - 10.00</td>
<td>0,3 - 0,6</td>
<td>29 trailer +</td>
</tr>
<tr>
<td></td>
<td>12.45 - 14.45</td>
<td>0,3 - 0,9</td>
<td>1 roadtrain 3 + 6 chassi</td>
</tr>
<tr>
<td>Fredag, 20/4</td>
<td>09.00 - 09.40</td>
<td>0,3 - 0,6</td>
<td>26 trailer + 11 chassi</td>
</tr>
<tr>
<td></td>
<td>10.05 - 10.20</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.45</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>Lördag, 21/4</td>
<td>09.15 - 09.30</td>
<td>0,3 - 0,5</td>
<td>28 tr. + 1 maskin + 1 husbil</td>
</tr>
<tr>
<td></td>
<td>12.30 - 14.00</td>
<td>0,3 - 1,0</td>
<td></td>
</tr>
<tr>
<td>Söndag, 22/4</td>
<td>09.35 - 10.05</td>
<td>0,0 - 0,5?</td>
<td>Ingen last vid mätplats</td>
</tr>
<tr>
<td>Måndag, 23/4</td>
<td>09.35 - 10.05</td>
<td>0,0</td>
<td>Ingen last vid mätplats</td>
</tr>
<tr>
<td>Tisdag, 24/4</td>
<td>12.50 - 13.10</td>
<td>0,0 - 1,0</td>
<td>25 trailer + 7 chassi</td>
</tr>
<tr>
<td></td>
<td>13.10 - 13.45</td>
<td>1,0 - 1,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.45 - 14.30</td>
<td>0,0 - 1,0</td>
<td></td>
</tr>
</tbody>
</table>

1 Släpvagn till lastbil
2 Lastbil med fastmonterat lastrum
3 18 m lång lastbil

4.2 Intervju - en verklighetsbild av dieselavgasexponering
Intervjun ombord på fartyget Cilla gjordes med fartygets kapten och däckspersonalens skyddsombud som är smörjmatros. Den genomfördes som ett komplement till de tre ovan redovisade mätningarna för att kunna göra riskbedömningen.

1 Intervju: Ombord på fartyg Cilla 2012-11-16, kapten
4.2.1 Däckbesättningens vistelse på lastdäck

För att kunna bedöma däcksbesättningens exponering för dieselavgaser behövs information om hur länge besättningen vistas på däck varje dag. Dessutom behövs information om hur deras avlösningssystem ser ut, det vill säga hur länge de befinner sig ombord.

I tabell 5 redovisas den tid som däckspersonalen befinner sig på lastdäck\(^2\). Det maximala antalet timmar som kan förekomma under en dag för en besättningsmedlem varierar beroende på befattning och vaktgång. I tabellen nedan anges även ett ungefärligt uppskattat värde för normalt antal timmar varje dag som en besättningsmedlem blir exponerad för dieselavgaser. Ur tabellen kan slutsatsen dras att beroende på besättningsmännens befattning och vakt, exponeras de för dieselavgaser i varierande grad.

<table>
<thead>
<tr>
<th>Befattning / Vakt</th>
<th>Maximalt antal timmars vistelse på lastdäck</th>
<th>Cirka normalt antal timmars exponering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matros / Nattvakt</td>
<td>2,5 h</td>
<td>-</td>
</tr>
<tr>
<td>Matros / Kvällsvakt</td>
<td>6 h</td>
<td>4 h</td>
</tr>
<tr>
<td>Matros / Dagvakt</td>
<td>9 h</td>
<td>5 h</td>
</tr>
<tr>
<td>Styrman / Kvällsvakt</td>
<td>3 h</td>
<td>3 h</td>
</tr>
<tr>
<td>Styrman / Nattvakt</td>
<td>5 h</td>
<td>4 h</td>
</tr>
</tbody>
</table>

Avlösningssystem, vilket innebär hur länge däckspersonalen är ombord och arbetar eller befinner sig i land och är lediga, skiljer sig mellan matroser och styrman. Matroser jobbar 1:1 system vilket innebär att de är i land lika länge som de är ombord. De arbetar totalt fem månader om året. Styrman jobbar 1:2 system vilket innebär att de är i land dubbelt så länge som de arbetar ombord. Totalt arbetar styrman fyra månader om året.

4.2.2 Exponering och symtom

Som ett stöd till riskbedömningen ställdes frågan om besättningen har några symtom och i vilken varaktighet de känner sig bli utsatta för dieselavgasexponering i sitt arbete. Detta för att kunna dra slutsatser med hjälp av litteraturstudien.

\(^2\) Intervju: Ombord på fartyg Cilla 2012-11-16, kapten och skyddsombud

\(^3\) Intervju: Ombord på fartyg Cilla 2012-11-16, kapten och skyddsombud

4.2.3 Representativ information för mätdata
Genom intervjun bekräftades att lastfordonen är utrustade med dieselmotorer$. I mätningsresultatet för fartyg Ada vid utlastningen fanns höga halter av NO$_2$ innan fläktsystem startades och bogporten öppnades. Enligt intervjun förekom det att det inte är någon ovanlig företeelse att lastbilschaufförer startar sina lastbilar innan det ges klartecken till detta vid utlastning$. Denna företeelse ses även som ett problem bland däcksbesättningen och har lösts internt på fartyg Cilla. Ungefär femton minuter innan däckspersonalen ska gå ner och arbeta på lastdäck sätts ventilationsfläktarna igång för att ventilaera ut de avgaser som eventuellt bildas om lastbilschaufförerna startar för tidigt. Fläktarna sätts då i ett särskilt läge där in- och utsugskapaciteten är lika för att motverka att ett eventuellt övertryck byggs upp under drift, vilket annars är ett vanligt fenomen under en normal drift av fläktarna med stängda ramper. Övrig tid är det öppet för genomflöde av luft utifrån både i för och aktern vid lastoperationer ombord på fartyg Cilla.

Lasten ombord på fartyg Cilla vid mätningens genomförande bedöms som representativ, då det enligt kapten och skyddsombud näst intill är fullt under 5 av dagarna$. Det är inte så mycket last under söndagar och måndagar på grund av att lasten är industrieröende. Produktionen är lägre under helger. En bekräftelse på detta kan ses i mätresultatet (se tabell 4) för fartyg Cilla då det inte finns någon last på däck 1 under söndagen den 22/4 och måndagen 23/4.

$ Intervju: Ombord på fartyg Cilla 2012-11-16, skyddsombud
$ Intervju: Ombord på fartyg Cilla 2012-11-16, kapten
$ Intervju: Ombord på fartyg Cilla 2012-11-16, skyddsombud
$ Intervju: Ombord på fartyg Cilla 2012-11-16, kapten och skyddsombud
4.3 Riskbedömningen
Riskbedömningen är ett resultat av sannolikhet och konsekvens som grundas på en exponeringsbedömning av dieselavgaser med NO\textsubscript{2} som indikator.

4.3.1 Exponeringsbedömning

4.3.2 Beskrivning av arbetsuppgifter
Den personal som arbetar på lastdäck ombord på RoPax-fartyg består av matroser och styrmän. Deras arbete går främst ut på att se till att lastnings- och lossningsoperationer fungerar och att lasten är korrekt placerad och fastsurrad under sjöresa.

Matrosers uppgifter under lasthantering: ⁸

- Ange körfält, placering och turordning för lastfordon
- Placerar och ta bort klotsar (kilar fast gods) och trailerbockar
- Surra fast last, lossa surrningar (exempelvis spännband)

Särskilt utbildade matroser:
- köra ramper, hängdäck och portar

Övrig tid har matroserna till uppgift att: ⁹

- Utföra förtöjningsarbete
- Underhålla och reparera
- Gå vaktgång, bryggvakt och brandvakt

⁸ Intervju: Ombord på fartyg Cilla 2012-11-16, kapten

⁹ Intervju: Ombord på fartyg Cilla 2012-11-16, kapten
Styrmäns uppgifter under lastning10:
- Ansvara för lastnings-/lossningsoperationer
- Planera placering av farligt gods och övrig last (med tanke på reaktionsrisk mellan laster samt stabilitet, trim och slagsida)
- Köra ballastoperation för optimalt djupgående och stabilitet
- Stå vid rampen och dirigera var lasten ska placeras
- Köra ramper, hängdäck och portar

Övrig tid har styrmännen till uppgift att:
- Gå bryggvakt: innefattar navigering, rutplanering, kommunikation mellan parter mm
- Särskilt utbildade styrmän:
 - Säkerhetsansvarig
 - Sjukvårdsansvarig

\textbf{4.3.3 Exponeringstid}

Enligt tabell 5 i föregående avsnitt (se 4.2.1) presenterades matrosers och styrmäns ungefärliga antal timmar för dieselavgasexponering på lastdäck under en normal arbetsdag. Den genomsnittliga tid som en besättningsman exponeras för dieselavgaser blir då fyra timmar varje dag.

Vanligtvis under pågående lastning befinner sig styrman vid fartygets lastramp för att dirigera åt vilket håll lastfordonen ska köra. Däremot befinner sig matroser inne på lastdäck för att visa körfält och placering för lastfordon. Dessutom har de till uppgift att placera klotsar och trailerbockar samt surra fast last såsom trailers och maskiner.

Under lossning av last befinner sig styrman i närheten av rampen som öppnas för att ange i vilken ordning lastfordon ska köra ut. Matros bistår styrman med att signalera för lastfordon när de får köra ut medan övriga matroser är inne på lastdäck för att ta bort eventuella surrningar och trailerbockar.

Någon exponering av dieselavgaser under arbete utöver vid lastning och lossning förekommer inte hos däcksbesättningen enligt skyddsombudet ombord11.

Däckpersonalen har arbetspass på 10,6 timmar men är vanligtvis nere på lastdäck mellan tre till fem timmar beroende på vakt och befattning. En genomsnittlig tid på lastdäck då de exponeras av dieselavgaser är ungefär fyra timmar per arbetspass, det vill säga knappt 38 procent.

10 Intervju: Ombord på fartyg Cilla 2012-11-16, kapten

11 Intervju: Ombord på fartyg Cilla 2012-11-16, skyddsombud
4.3.4 Genomsnittshalt

För att räkna om nivågränsvärdet till ett längre arbetspass kan schablonmetoden användas. Metoden innebär att gränsvärdet används och multiplicerar det med en specifik faktor. Då används faktorn ”8/X” (8 står för ”8 timmar”, som vanligtvis används), där X står för timmarna i det längre arbetspasset (Arbetsmiljöverket, 2011). I detta fall då arbetspasset innefattar 10,6 timmar ser det ut såhär:

\[
8/X \times \text{Nivågränsvärde (8 h)} = \text{Nivågränsvärde (X)}
\]

Om X= 10,6 h och nivågränsvärdet för NO₂ som avgaser är 1 ppm ger detta ett omräknat nivågränsvärde för 10,6h på 8/10,6 * 1 = 0,75 ppm

Detta medför att det aktuella nivågränsvärdet beräknas till 0,75 ppm. I sammanfatningen av mätningarna som utfördes på fartyg Beda (se bilaga 2) uppskattades den genomsnittliga halten NO₂ oftast understiga 0,2 ppm. Dessa mätningar utgick från sämsta tänkbara scenario, som innebär att den genomsnittliga exponeringen med sannolikhet är lägre. I jämförelse med nivågränsvärdet, i arbetsmiljöverkets författningssamling, omräknat till rådande arbetspass så är det genomsnittliga exponeringen som är framtagen genom mätningarna endast drygt en fjärdedel av regelverkets högsta tillåtna halt.

4.3.5 Analys av mätdata

Enligt mätningarna på fartyg Beda och Cilla varierar halten stort av dieselavgaser under arbete på lastdäck. Orsaken till variationerna beror troligtvis på arbetsuppgifter och rörelsemönster.
4.3.5.1 Fartyg Beda
I bilaga 4 presenteras två olika diagram från två olika personburna mätinstrument som användes under mätningen ombord på fartyg Beda. Det som kan utläsas av diagrammen är att det inte är en jämn nivå av dieselavgaser utan att halten varierar. Mätutrustningen ger utslag som skapar så kallade "toppar".

I resultatet från mätning 1, (diagram 1 bilaga 4), förekommer det höga toppar av dieselavgasexponering under lastoperationerna som under tre gånger överskred 1 ppm varav en över 2 ppm, dock under korta perioder under den första dagen.

Resultatet från mätning 2, (diagram 2 bilaga 4) visar under första dagen att dieselavgashalten kom upp till 1 ppm en gång och under dag 3 till 1,4 ppm en gång, dock även här under korta perioder.

Summering av mätdata från de två personburna mätinstrumenten 1 och 2 under de tre dagarna visar att halten oftast låg under 0,6 ppm.

4.3.5.2 Fartyg Cilla
Resultatet från mätningen ombord på fartyg Cilla, vilket loggade värde av högsta- och lägsta halt, indikerar att 1 ppm endast överskrids några gånger under sjudagarsperioden under korta perioder (se ovan tabell 4). För det mesta varierar halten NO₂ under lastningsmomenten mellan 0,3-0,6 ppm.

4.3.5.3 Fartyg Ada
I samband med en lossning ombord på fartyg Ada gjordes en direktvisande mätning under 15 minuter. Mätrésultatet visade att höga halter av NO₂, 3 ppm respektive 6 ppm förekom akterut och midskepps, se enligt tabell 2 vid klockslagen 07:35 respektive 07:36. Trots de höga halterna uppfylls gällande reglerverk då något takgränsvärde eller korttidsvärde inte finns angivet för NO₂ som avgaser. Från intervjun (se 4.2.3) framkommer det att det inte är någon ovanlig företeelse att lastbilschaufförer startar sina lastbilar innan det ges klartecken vid utlastning. Mot denna bakgrund antas orsaken till de höga halterna av NO₂ bero på lastbilschaufförer som startar sina lastbilar i förtid innan klartecken ges vid utlastningen. Det blir ännu tydligare genom att halten NO₂ sjunker drastiskt från 6 ppm till 1 ppm när bogporten öppnas och luft utifrån kan strömma in (se tabell 2).

4.3.6 Hälsorisker
4.3.6.1 Akuta effekter
Det har genomförts kontrollerade studier i exponeringskammare kring akuta effekter från dieselavgasexponering. En studie visas i tabell 1 som påvisar uppkomma syptom på människor från kontrollerad dieselavgasexponering. I studien användes NO₂ som indikatorsubstans för att avgöra dieselhalten i luften. Den lägsta halten deltagarna blev utsatta för var 0,36 mg/m³ under två timmar, vilket motsvarar ca 0,18 ppm. Detta medförde att astmatiker sannolikt utvecklar en försämrad astmasjukdom. Friska deltagare utvecklade bland
annat irritation i näsa och ögon samt tecken till inflammation i nedre lungvägarna vid en exponeringshalt av 2,3 mg/m³ under en timma, vilket kan jämföras med 1,2 ppm. Dessa två exempel innefattar en exponeringshalt som kan förekomma kortvarigt under en lastoperation på lastdäck enligt mätningarna på fartyg Ada, Beda och Cilla (se bilaga 1, 2 och 3).

Enligt mätningarna för fartyg Beda med medföljande diagram 1 och 2, (bilaga 4), utläses att en exponering av ≤ 0,6 ppm ofta förekom under en period av ≤ 45 minuter. Högre exponeringshalter som ≥ 1 ppm förekom under några tillfällen under en period av fem minuter. Vid ett tillfälle registrerades även en halt av ≥ 1 ppm under en period längre än 20 minuter.

Vid jämförelse mellan studien (tabell 1) och mätningresultaten för fartyg Beda (tabell 3) bör dock tilläggas att halter upp mot exempelvis 1 ppm inte förekom under en sammanslutning av respektive två timmar. Enligt intervjun (se 4.2) berättar skyddsombudet att däcksbesättningen inte har haft nämnda symtom som kan kopplas till dieselavgasexponering under arbete på lastdäck. Detta bekräftar att dieselavgasexponering av dessa undersökta halter under tider såsom en respektive två timmar är sannolikt ytterst sällsynta. Det kan dock ej uteslutas att risken med en längre period uppstå med undersökta halter.

4.3.6.2 Kroniska effekter

De kroniska effekter som kan utvecklas genom exponering av dieselavgaser är exempelvis hosta, nedsatt lungkapacitet och lungcancer. I enlighet med litteraturen är det framför allt lungcancer som är den främsta hälsopåverkan och omdubatterade sjukdomen, vilket även väger tyngst i denna riskbedömning.

Det har genomförts ett flertal studier på landbaserade yrken där det har klarlagts att en ökad risk föreligger för lungcancer vid exponering av dieselavgaser, med en riskökning på mellan 30 till 50 procent. Motsvarande studier har inte genomförts ombord på fartyg vilket försvårar bedömningsen in denna riskbedömning, vilket bidrar till en mer teoribaserad än en statistikbaserad bedömning.

Däckspersonalen, som vistas som mest 5 månader per år på lastdäck ombord på de utvalda RoPax-fartygen, jämförs enligt konstaterandet ovan ha en möjlig ökad risk av lungcancer av följande:

(Expoperingshalt) \(\text{mg/m}^3 \times \text{År} = \text{mg-år/m}^3 \)

\[
0,4 \times 0,47 = 0,19
\]

Expoperingshalt: 0,2 ppm = 0,4mg/m³

\[
\begin{align*}
\text{År: } & 0,47 \text{ år} \quad \text{12/5,66 (mån) = 0,47 år} \\
\text{Landbaserat arbete: } & 1800 \text{ h} = 12 \text{ mån} \quad (8\text{h/dag}) \\
\text{Däcksbesättning: } & 1800 \text{ h} = 5 \text{ mån 20 dagar (5,66 mån)} \quad (10,6\text{h/dag})
\end{align*}
\]

Förtydligande:

1 mg-år/m³ (referens av expoperingshalt) = Riskökning av 9 %

(del av expoperingshalt) / (referens av expoperingshalt) = (del av ”referens av expoperingshalt”)

\[
0,19/1 = 0,19 = 0,19
\]

(del av ”referens av expoperingshalt”) * (riskökning med ”referens expoperingshalt” av 9 %) = (möjlig tendens till ”riskökning i procent”)

\[
0,19 \times 9 = 1,7
\]

Svar: Möjlig tendens till riskökning av lungcancer är 1,7 %.

I samråd med en yrkeshygieniker har resultatet ur den ovan nämnda gruvstudien analyserats. I en delstudie till cancerstudien har det klartlats hur uppmätta halter av REC och NO₂ hänger ihop vid dieselavgaser i gruvorna. Det vill säga hur expoperingen kan översättas från partiklar till NO₂ med flera.
Medelhalten av NO₂ vid de stationära mätningarna nere i gruvorna var 0,5 ppm för de gruvor som behandlades i cancerstudien. Med andra ord är exponeringen i gruvorna uppskattningsvis mer än dubbelt så hög jämfört med mätningen på fartyg Beda. Det bör dock observeras att mätningarna i gruvorna är stationära och inte personburna. Resultatet i studien visar att det finns ett måttligt samband (korrelationskoefficient på 0,52) mellan halten partiklar och NO₂. Deras resultat visar även att NO₂ är ett bra surrogate för dieselavgaser i en gruvmiljö.

Sammanfattningsvis anses exponeringsnivån nere i gruvorna vara minst dubbelt så hög där överrisken för lungcancer upptäcks, jämfört med den högsta genomsnittliga nivån som uppskattas förekomma på RoPax-fartygens lastdäck (Vermeulen et al., 2010).

4.3.7 Sammanfattning:
Den genomsnittliga exponeringen är endast drygt en fjärdedel av arbetsmiljöverkets nivågränsvärde vilket är baserat på 10,6 timmar. Däckpersonalens exponering av dieselavgaser är återkommande och omfattas av knappt 38 procent av deras arbetspass, vilket medför en låg risk att utveckla kroniska effekter. Det förekommer även ett fåtal höga men kortvariga exponeringstoppar av dieselavgaser som bidrar till en låg risk att utveckla akuta effekter vid exponering på lastdäck.

I dagsläget är inga studier utförda för att utvärdera de förekommande cancerriskerna för arbete på RoPax-fartygs lastdäck. Med tillgänglig litteratur av liknande studier kan dock en ökad risk fastställas, men däremot ej någon specifik risk.

En mer specifik riskökning kan ej fastställas utifrån befintlig litteratur och erhållna exponeringsmätningar som underlag. Slutsatsen blir att arbete på RoPax-fartygs lastdäck vid exponering av dieselavgaser medför läga risker för akuta symtom och en möjlig risk att utveckla lungcancer.
5 Diskussion
Frågeställningen, hur stora risker däckpersonalen ombord på RoPax-fartyg utsätts för genom dieselavgasexponering, är en komplicerad fråga att besvara, vilket är något som har framkommit under arbetets gång. Som tidigare nämnts (se 4.3.1) har de gjorts ett antal studier och undersökningar för yrken med liknande arbetsmiljö, dock finns det inte mycket studerat om sjöfarten. Därför finns det idag en begränsad kunskap om denna yrkeskategori exponering. Samtidigt är det svårt att dra slutsatser om vilken eller vilka substanser i dieselavgaser som orsakar akuta och kroniska sjukdomar. Ett antal faktorer har en betydelse och behövs för en riskbedömning av dieselavgasexponering, vilket bidrar till att diskussionen kommer omfatta mätningar, regelverk och hälsa.

5.1 Fartygsmätningar
Från början var det tänkt att genomföra egna mätningar av kvävedioxid (NO₂) på RoPax-fartyg. På grund av att det skulle krävas en hel del pappersarbete innan mätningar skulle kunna påbörjas i kombination med brist på tid för att lyckas genomföra mätningar beslutades att inte göra några egna mätningar. Dessutom, enligt Hygieniska Gränsvärden, AFS 2011:18 4§, ska personen som genomför en mätning av luftföroreningar ha genomgått en utbildning som både ger teoretiska och praktiska kunskaper om hur en mätning bör genomföras.

Istället användes tre mätningar av NO₂ som utfördes av företagshälsovården på svenskflaggade RoPax-fartyg. Syftet med samtliga mätningar från Feelgood företagshälsovården var att kartlägga arbetsmiljön genom att bedöma risker och ventilationskapacitet. Detta genomfördes för att bemöta personalens funderingar och oro för påverkan på hälsan. Mätningarna på fartygen Beda och Cilla är genomförda vid de sämsta tänkbara scenarierna, det vill säga utförda mätningar som återspeglar den högsta exponeringen som däckpersonalen kan utsättas för.

5.2 Mätningarnas tillförlitlighet
Det finns en del faktorer som har en avgörande inverkan på mätresultatet, bland annat systematiska fel och slumpmässiga fel som berördes i ett tidigare avsnitt (se 3.6.1.2) om felkällor. Detektionsgränsen, den lägsta halten av ett ämne som mätinstrumentet kan detektera, är 0,1 ppm i mätningarna ombord på fartyg Ada, Beda och Cilla. I rapporten, Exponering för motoravgaser och förbränningsprodukter i arbetslivet av Marie Lewné med flera, redogörs dieselavgasexponering i andra yrkesgrupper. Vid några mätningar användes NO₂ som indikatorsubstans med ett detektionsgränsvärde på 0,005 ppm vilket är ett avsevärt lägre värde än 0,1 ppm (Marie Lewné et al., 2010). Detta belyser att det är möjligt att använda ett lägre detektionsgränsvärde än 0,1 ppm. Med ett för högt detektionsgränsvärde visas inte all exponering vilket innebär att den uppmätta genomsnittliga exponeringen i en direktvisande mätning riskerar att bli högre till skillnad om detektionsgränsvärdet hade varit lägre.
Ett förklarande exempel är följande:

<table>
<thead>
<tr>
<th>Exempel med fem stycken mätvärden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mätvärden: 0,2 0,05 0,4 0,001 0,002</td>
</tr>
</tbody>
</table>

Om detektionsgränsvärdet är 0,1 räknas enbart mätvärdena 0,2 och 0,4 in på grund av att de överstiger 0,1. Medelvärdet blir då $\frac{0,2+0,4}{2} = 0,3$ (0,2+0,4)/2 = 0,3

Om inget detektionsgränsvärdet skulle finnas skulle alla fem mätvärdena räknas med och medelvärdet blir då $0,13 = 0,13$ ((0,2+0,05+0,4+0,001+0,002)/5 = 0,13)

5.3 Mätningars syfte

Vid en mätning görs olika val beroende på syfte och frågeställningar. Syftet med Feelgood företagshälsas mätningar var att kartlägga arbetsmiljön med avseende på dieselavgasexponering och bedöma risker. Mätresultatet användes sedan för att jämföra med gällande hygieniska gränsvärden för att säkerhetsställa att halterna av NO$_2$ understiger gällande nivågränsvärde. NO$_2$ användes som en indikatorsubstans och är det enda ämne som för dieselavgaser kan jämföras med det hygieniska gränsvärdet.

Så frågan är om dessa mätningar är rätt lämpade att användas för att besvara detta examensarbetes syfte? Vad som försöker förmedelas är inte att mätningarna för fartyg Ada, Beda och Cilla inte är korrekt utförda. Tvärtom, de är helt korrekt utförda men detta arbete har till viss del ett annat syfte, det vill säga att bedöma hur stora hälsorisker däckspersonalen utsätts för.

Den bäst lämpade mätningen för att besvara arbetets syfte skulle vara, för att kunna jämföra mätresultat mot andra studier, att ändra indikatorsubstansen för dieselavgasexponering till respirabla partiklar (Respirable Elemental Carbon REC). Å ena sidan finns inte respirabla partiklar med i hygieniska gränsvärden vilket gör att det inte går att jämföra med gällande regelverk. Å andra sidan kan hälsoperspektivet jämföras då respirabla partiklar är en vanligt förekommande indikator bland hälsostudier.

5.4 Hygieniska gränsvärden och hälsa

Detta arbete baseras på bland annat det hygieniska gränsvärdet för dieselavgaser som benämns ”avgaser som kvävedioxid” i AFS 2011:18. Dieselavgaser har endast ett gränsvärde som är nivågränsvärdet, det vill säga den högsta godtagbara genomsnittshalt en arbetare får exponeras för under en arbetsdag på åtta timmar (1 ppm), vilket innebär att både tak- och korttidsvärde utesluts. För att få en jämförelse och förståelse för vad storleken innebär av 1 ppm NO₂ presenteras årsmedelnivån 2011 av NO₂ i Gårda och Haga i Göteborgs stad. Halten NO₂ var ungefär 0,025 ppm (0,047 mg/m³) i Gårda respektive 0,02 ppm (0,036 mg/m³) i Haga (Miljöförvaltningen, 2012). Nivågränsvärdet för NO₂ sattes i bruk år 1990, vilket betyder att det infördes för drygt 22 år sedan (idag 2012).

Dessa observationer är alltså basen för undersökningen som är en del av beslutmaterialet som användes vid framställningen av nivågränsvärdet för ”avgaser som kvävedioxid” i början av 90-talet.

Nu är det fastställt att dieselavgaser har en cancerframkallande effekt med påvisad dos-respons, vilket har berörts tidigare (se 3.4). Detta medför att ny väsentlig information har framkommitt sedan nivågränsvärdet för avgaser bestämdes. Detta bidrar till att en utvärdering av nuvarande värde bör genomföras för att se över hur de nya upptäckterna påverkar hälsan. Detta för att eventuellt genomföra en framtagning av ett nytt nivågränsvärde för NO₂ utifrån dagens kunskap.

arbetsmarknadens parter och branschorganisationer. Så småningom får Arbetsmiljöverket in all nödvändig respons och kan slutligen lämna fram ett förslag till generaldirektören för ett slutligt beslut. Detta medför ett omständigt förlopp som är beroende av ett flertal instanser, vilket resulterar i en långdragen process.

Enligt Arbetsmiljöverket har de beställt vetenskapligt underlag angående en omvärdering av gränsvärdena för dieselavgaser och beräknas få tillbaka första utkastet i november i år (2012). De förmodar att nya gränsvärden för dieselavgaser tidigast kan träda i kraft under år 2015 (Iregren, 2012).

Resultatet av riskbedömningen sammanfattar bland annat cancerrisken vid arbete på RoPax-fartygs lastdäck. Sammanställningen baserades främst på en cancerstudie om arbetare i gruvor där det har klarlagts hur uppmätta halter av REC och NO$_2$ hänger ihop vid dieselavgaser i gruvorna. Detta har använts för att jämföra dieselavgasexponeringen i studien om gruvor med RoPax-fartygs lastdäck. Slutsatsen blev att exponeringen i gruvorna uppskattningsvis är mer än dubbelt så hög jämfört med mätningen på fartyg Beda.

Detta behöver inte betyda att cancerrisken vid arbete på lastdäck är låg enbart för att halten är lägre än på en annan delvis liknande arbetsplats.

En fråga som möjligtvis kan besvara detta är om exponeringen på lastdäck, i värsta fall 0,2 ppm NO$_2$ är tillräckligt hög för att ha en ökad cancerrisk gentemot en kontorsarbetare? En jämförelse med kontorsarbetare som är bosatta i centrala Göteborg kan göras. De exponeras i genomsnitt av dieselavgaser likvärdigt med årsmedelnivån 2011 av NO$_2$ i Gårda och Haga i Göteborgs stad. Halten NO$_2$ var ungefär 0,025 ppm (0,047 mg/m3) i Gårda respektive 0,02 ppm (0,036 mg/m3) i Haga (Miljöförvaltningen, 2012). Resultatet av jämförelsen tyder på att däckbesättning exponeras (0,2 ppm) ungefär 8 till 10 gånger högre än vad kontorsarbetare i centrala Göteborg exponeras för.

Även detta belyser att arbete på RoPax-fartygs lastdäck ger en ökad cancerrisk. En stor del av innehållet i diskussionen återspeglar inte detta specifikt utan binder ihop de faktorer som har en avgörande roll i riskbedömningen.

Genom analys av tillgängliga mätningar har slutsatser kunnat fastställas, men frågan kvarstår om resultatet blivit annorlunda om partiklar använts som indikator istället?
6 Slutsats
Arbete på RoPax-fartygs lastdäck vid exponering av dieselavgaser medför låga risker för akuta symtom och en möjlig ökad risk att utveckla lungcancer.

Detta är fastställt främst genom följande faktorer:

- Den genomsnittliga dieselavgasexponeringen uppskattades till 0,2 ppm för de utvalda fartygens lastdäck under ett så kallat "worst case"-läge. Detta kan jämföras med ett nivågränsvärde av 0,75 ppm, omräknat till 10,6 timmar.

Den genomsnittliga exponeringen är endast drygt en fjärdedel av arbetsmiljöverkets nivågränsvärde som är omräknad till 10,6 timmar. Däckspersonalens exponering av dieselavgaser är återkommande och omfattas av knappt 38 procent av arbetspasset. Detta bidrar till en låg risk att utveckla kroniska effekter på grund av dieselavgasexponering på lastdäck.

- I de tillhörande diagrammen till fartyg Beda konstateras att flertal höga toppvärdén kan förekomma under arbete på lastdäck vilket medför risker för utveckling av akuta effekter.

Det förekommer höga toppvärden upp mot ca 1-2 ppm vid ett flertal tillfällen. Dessa uppkom dock under mycket korta perioder vilket medför en låg risk att utveckla akuta effekter på grund av dieselavgasexponering på lastdäck.

- I dagsläget är det inga studier utförda för att utvärdera de förekommande cancerriskerna från dieselavgasexponering för arbete på RoPax-fartygs lastdäck.

- Med hjälp av cancerstudien från gruvor (se 4.3.6.2), uppskattades de utvalda RoPax-fartygens lastdäck ha hälften så hög exponeringsnivå av dieselavgaser i förhållande till gruvorna där överrisky för lungcancer upptäcktes.
Förslag till framtida studier

Under arbetets gång har det framkommit att det är svårt att dra några mer noggranna slutsatser om hälso risker på lastdäck. Något som kan komplettera detta arbete är att mäta partikelhalten i dieselavgaser som släpps ut på RoPax-fartygs lastdäck. Detta bör utföras för att kunna göra en mer noggrant jämförelse av ökad cancerrisk mot andra dieselavgasexponerade yrkesgrupper från tidigare studier, vilket vanligtvis använder partiklar som indikator.

En fortsatt undersökning av dieselavgasexponering med NO\textsubscript{2} som indikator kan även genomföras för att mäta under andra exponeringsförhållanden. Fartygen som berördes i detta arbete har långa lastnings- och resetider, samt en låg lastningsfrekvens. Därför kan det vara intressant att undersöka fartyg med kortare lastnings- och resetider, med en högre lastningsfrekvens.

Syftet och dess frågeställningar begränsar arbetet till dieselavgasexponering, vilket endast är en del av vad som förorenar luften på lastdäck. Ett förslag är att undersöka vilka andra effekter än dieselavgasexponering som påverkar hälsan på lastdäck. Ett exempel är damm, som tidigare nämnts är hälsofarligt (se 3.4.1). Skyddsombudet ombord på fartyg Cilla berörde även damm i intervjun (se 4.2.2).
Referenslista

34

SANDBERG, L. 2012-10-16 2012b. RE: Mätutrustning.

Mätning avgaser på bildäck vid utlastning

Tid: Onsdagen den 19 februari klockan 07.30

Sammanfattning: Mätresultatet visar att höga halter av dieselavgaser förekommer i tränga utrymmen akterut innan fläktar är startade och boggporten har öppnats. Det visar också att fläktarna evakuerar den avgashaltiga luften snabbt.

Mätutrustning: Dräger Pac III med sensor för NO₂ detektionsgräns 0,1 ppm.

Referensvärden: Gränsvärde för NO₂ enligt AFS2000:3 är 2 ppm om källan är avgaser är det 1 ppm. Avser medelvärde under 8 timmar. Korttidsgränsvärde, avser 15 min. är 5 ppm. Vid kraftiga inversionsförhållanden kan halterna i Göteborgsfluten komma upp i över 0,1 ppm.

Mätresultat:

<table>
<thead>
<tr>
<th>Klockslag</th>
<th>Plats</th>
<th>Halt NO₂ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.35</td>
<td>Vid startpanel för fläktar akterut. Mellan skott och lastbilstrailer</td>
<td>3</td>
</tr>
<tr>
<td>07.36</td>
<td>Målskepps</td>
<td>6</td>
</tr>
<tr>
<td>07.37</td>
<td>Vid upplyft barriär</td>
<td>1</td>
</tr>
<tr>
<td>07.38</td>
<td>, halva antalet fordon utkörda</td>
<td>0,3 – 0,4</td>
</tr>
<tr>
<td>07.39</td>
<td>, luft från boggport strömmar in</td>
<td>< 0,1</td>
</tr>
<tr>
<td>07.40</td>
<td>Mellan barriär och lotsport</td>
<td>0,5</td>
</tr>
<tr>
<td>07.45</td>
<td>Vid lotsport</td>
<td>0,7 – 0,9</td>
</tr>
<tr>
<td>07.50</td>
<td></td>
<td>< 0,1</td>
</tr>
</tbody>
</table>

Lasten bestod bl.a. av 38 långträdare och 6 bussar

Hälsorisker: 0,5 – 2 timmars exponering i halter över 1 – 2 ppm ökar känsligheten och motståndet i luftvägarna. För astmatiker ökar denna känslighet vid betydligt lägre halter.

Åtgärdsförslag: Styrman startar fläktarna i samband med bogportsöppningen. Personal går ut på bildäck förut Lastbilchaufförer uppmanas att starta sina motorer så sent som möjligt. Om personal skall arbeta akterut (längre än 10 minuter) när lastbilarnas motorer är igång bör andningsmask med partikelfilter P3+ (ABEK) gasfiter användas.

Feelgood Hamn & Rederi

Lars Sandberg
Arbetsmiljöingenjör
Bilaga 2: Mätning för fartyg Beda

2011-12-07

Loggning av kvävedioxid m.a.p. avgaser vid lastning/lossning

Sammanfattning

 Förhöjda halter av avgaser förekommer flera gånger vid korta perioder under de tre dagarna. Enligt AFS 2005:17 ”Hygieniska gränsvärden och åtgärder mot lufthållning” är nivågränsvärdet 1 ppm för Kvävedioxid (NO2), om känn är avgaser. Med nivågränsvärde menas den tidsvågda medelhalten under hela arbetsdagen (8 h). Takgränsvärdet under 15 min är 5 ppm. Halterna av kvävedioxid (NO2) var oftast ≤ 0,6 ppm under perioder på ≤ 45 minuter. Några gånger var halten ≥ 1 ppm. Då under ca 5 minuter. En gång ≥ 20 minuter.

Utörande

2 st loggar typ PAC7000 av fabrikat Dräger var personbunda under 3 dagar (2 – 5/11) i samband med lastning och lossning.

Mätresultat

Se bilagor: Dräger GasVision report nr 4 (ARAC1955) och Nr 2 (ARZ12271)

OBS! Tidsskalen är tillförlitlig, dock ej m.a.p. klockslag

Kommentar

Mätresultatet visar att det kan förekomma perioder längre än 5 minuter med avgaser i andningszon vid arbete på lastdäcken. Om möjligt bör då andningsskydd användas för att helt utesluta hälsopåverkan.

Sammantaget bör med ledning av mätresultatet genomsnittshalten per typisk arbetsdag vanligtvis understiga en femtedel nivågränsvärdet. Det motsvarar ungefär vad som uppmätts i Göteborg innerstad i samband med inversion.

Tveka inte att återkomma om något verkar oklart!

Vänliga hälsningar
Feelgood företagshälsa
Lars Sandberg
Arbetsmiljöingenjör
Bilaga 3: Mätning för fartyg Cilla

Loggning av kvävedioxid m.a.p. avgaser vid lastning/lossning

Sammanfattning
Mätbara halter av avgaser förekommer flera gånger vid korta perioder under de åtta dagarna. Halterna når upp till 1 ppm endast under korta perioder. Halterna klingar av relativt snabbt, vilket tyder på att luftväxlingen är god.
Enligt AFS 2005:17 "Hygieniska gränsvärden och åtgärder mot luftföroreningar" är nivågränsvärdet 1 ppm för Kvävedioxid (NO2), om källan är avgaser. Med nivågränsvärde menas den tidsvåga medelhalten under hela arbetsdagen (8 h).
Takgränsvärdet, som avser medelhalten under 15 min, är 5 ppm.

Mätresultat

<table>
<thead>
<tr>
<th>Dag, datum</th>
<th>Klockslag</th>
<th>Halt (ppm)</th>
<th>Last, Däck 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tisdag, 17/4</td>
<td>09.05 – 09.20, 12.40 – 13.50</td>
<td>0.3, 0.3-0.8</td>
<td>28 trailer + 7 chassi</td>
</tr>
<tr>
<td>Onsdag, 18/4</td>
<td>09.10 – 10.00, 12.55 – 13.40</td>
<td>0,3-0.6, 0.3-0.4</td>
<td>28 trailer + 6 chassi</td>
</tr>
<tr>
<td>Torsdag, 19/4</td>
<td>09.15–10.00, 12.55 – 13.40</td>
<td>0,3–0.6, 0.3-0.4</td>
<td>26 trailer + 11 chassi</td>
</tr>
<tr>
<td>Torsdag, 19/4</td>
<td>09.30 – 10.00, 12.45 – 14.45</td>
<td>0,3-0.6, 0.3-0.9</td>
<td>29 trailer + 1 roadtrain</td>
</tr>
<tr>
<td>Fredag, 20/4</td>
<td>09.00-09.40, 10.05-10.20, 14.45</td>
<td>0,3-0.6, 0.3, 0.3</td>
<td>26 trailer + 11 chassi</td>
</tr>
<tr>
<td>Lördag, 21/4</td>
<td>09.15–09.30, 12.30–14.00</td>
<td>0,3-0.5, 0.3-1,0</td>
<td>28 tr. + 1 maskin+1 husbil</td>
</tr>
<tr>
<td>Söndag, 22/4</td>
<td>09.35 – 10.05</td>
<td>0,0 – 0,5 ?</td>
<td>Ingen last vid mätplats</td>
</tr>
<tr>
<td>Måndag, 23/4</td>
<td>0,0</td>
<td>Ingen last vid mätplats</td>
<td></td>
</tr>
<tr>
<td>Tisdag, 24/4</td>
<td>12.50-13.10-13.45-14.30</td>
<td>0,0-1,0-1,9-1,0-0,0</td>
<td>25 trailer + 7 chassi</td>
</tr>
</tbody>
</table>

Se även bilagor: Dräger GasVisio Report (ARZL2271) Nr 1, 2 och 3
Loggning av kvävedioxid m.a.p. avgaser vid lastning/lossning

Sammanfattning
Måbara halter av avgaser förekommer flera gånger vid korta perioder under de åtta dagarna. Halterna når upp till 1 ppm encast under korta perioder. Halterna klingar av relativt snabbt, vilket tyder på att luftväxlingen är god.
Enligt AFS 2005:17 "Hygieniska gränsvärden och åtgärder mot luftföroringningar" är nivågränsvärdenet 1 ppm för Kvävedioxid (NO2), om källan är avgaser. Med nivågränsvärde mätas den tidsvågda medelhalten under hela arbetsdagen (8 h). Takgränsvärden, som avser medelhalten under 15 min, är 5 ppm.

Mätestultat

<table>
<thead>
<tr>
<th>Dag, datum</th>
<th>Klackslag</th>
<th>Halt (ppm)</th>
<th>Last, Däck 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tisdag, 17/4</td>
<td>09.05 - 09.20, 12.40 – 13.30</td>
<td>0,3, 0,3-0,8</td>
<td>28 trailer + 7 chassi</td>
</tr>
<tr>
<td>Onsdag, 18/4</td>
<td>09.10 – 10.00, 12.55 – 13.40</td>
<td>0,3-0,6, 0,3-0,4</td>
<td>28 trailer + 6 chassi</td>
</tr>
<tr>
<td>Torsdag, 19/4</td>
<td>09.15–10.00, 12.55 – 13.40</td>
<td>0,3–0,6, 0,3-0,4</td>
<td>26 trailer + 11 chassi</td>
</tr>
<tr>
<td>Torsdag, 19/4</td>
<td>09.30 – 10.00, 12.45 - 14.45</td>
<td>0,3-0,6, 0,3-0,9</td>
<td>29 trailer + 1 roadtrain</td>
</tr>
<tr>
<td>Fredag, 20/4</td>
<td>09.00-09.40, 10.05-10.20, 14.45</td>
<td>0,3-0,6, 0,3, 0,3</td>
<td>26 trailer + 11 chassi</td>
</tr>
<tr>
<td>Lördag, 21/4</td>
<td>09.15-09.30, 12.30-14.00</td>
<td>0,3-0,5, 0,3-1,0</td>
<td>28 tr +1 maskin+1 husbil</td>
</tr>
<tr>
<td>Söndag, 22/4</td>
<td>09.35 – 10.05</td>
<td>0,0 – 0,5 ?</td>
<td>Ingen last vid måtplats</td>
</tr>
<tr>
<td>Måndag, 23/4</td>
<td></td>
<td>0,0</td>
<td>Ingen last vid måtplats</td>
</tr>
<tr>
<td>Tisdag, 24/4</td>
<td>12.50-13.10-13.45-14.30</td>
<td>0,0-1,0-1,9-1,0-0,0</td>
<td>25 trailer + 7 chassi</td>
</tr>
</tbody>
</table>

Se även bilagor: Dräger GasVisio Report (ARZL2271) Nr 1, 2 och 3
Diagram 1: Mätinstrument 1

Diagram 1 visar personburet mätinstrument nr 1 av halten NO₂ som varierar under lastning och lossning under tre dagar. Skalan på x-axeln är tjugofyra timmar för varje dag. Det är ingen jämn nivåhalt av NO₂ enligt diagramet, det blir så kallade toppar under korta perioder. Detta sker troligtvis genom att besättningsmannen som bar mätinstrumentet var på en plats under en kort stund där exponeringen troligtvis var hög vid just det tillfället. Möjligtvis att besättningsmannen befann sig i närheten av ett lastfordon för att ge instruktioner var lasten skulle placeras.
Diagram 2 visar personburet mätinstrument nr 2 av halten No2 som varierar under lastning och lossning under tre dagar. Skalan på x-axeln är tjugofyra timmar för varje dag. Det är ingen jämn nivåhalt av NO₂ enligt diagramet, det blir så kallade toppar under korta perioder. Detta sker troligtvis genom att besättningsmannen som bar mätinstrument nr 2 var på en plats under en kort stund där exponeringen troligtvis var hög vid just det tillfället. Möjligtvis att besättningsmannen befann sig i närheten av ett lastfordon för att ge instruktioner var lasten skulle placeras.