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Abstract—Limb motions normally involve more than one degree 

of freedom combined in a coordinated manner. Although prosthetic 

hardware today could be combined for a highly motorized limb 

replacement, the control options available to amputees are so limited 

that this approach is rarely used. In this work, we introduce a 

classification strategy for the real-time simultaneous prediction of the 

individual movements present in natural motions. The real-time 

evaluation of this strategy based on a Multi-Layer Perceptron (MLP) 

with variable threshold outputs resulted in high motion completion 

rates. Moreover, the MLP alone showed higher offline accuracy than 

previously reported. This classifier was developed and evaluated in 

BioPatRec, an open source framework for advanced prosthetic 

control strategies based in pattern recognition algorithms. The source 

code and the data obtained in this study are freely available to be 

used for further algorithms development and benchmarking. 

 

Keywords—Artificial Neural Networks, Electromyography, 

Mixed-label, Mixed-class, Simultaneous Prosthetic Control.  

I. INTRODUCTION 

YOELECTRIC signals (MES) produced during muscle 

contraction contain valuable information about their 

resulting motions. In the case of amputees, the reaming 

muscles in the stump can still produce MES useful for the 

prediction of motion intent [1]. As an effort to advance limb 

prosthetics, several pattern recognition algorithms have been 

used to predict limb movements by decoding associated 

surface MES [1–7]. The majority of this work, however, has 

been focused on the prediction of individual movements. 

Unfortunately, since only one movement is predicated at the 

time, this scheme is restraint to the serial control of different 

degrees of freedom (DoF), which is cumbersome, slow, and 

unnatural. On this study, an artificial neural network (ANN) 

with variable thresholds outputs is proposed as a solution for 

the simultaneous prediction of the different motions involved 

in more natural and complex movements. 
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The presented pattern recognition task can be named in 

different ways: multi-class, multi-label, mixed-label, etc… 

Multi-label classification problems are normally formulated by 

having a feature set bellowing to each of the different labels 

[8], e.g. a scientific article is associated to different keywords 

(labels). Analogously, a movement involving different DoF 

would have the associated labels of each DoF. A difference in 

this case however, is that the feature vectors are also mixed, 

and therefore the terminology of mixed-label is here more 

appropriated. A mixed-label problem also implies that at least 

two classes are involved, and therefore its multi-class nature 

can be deduced. 

The feasibility of decoding simultaneous motions has been 

shown by Yatsenko et al. with offline accuracies up to 75% 

using a grid of 22 electrodes [9]. Their algorithm employed 

principal component analysis (PCA), whitening, and 

orthonormalization of the feature vectors assuming linear 

relationships in the combined MES. Based on the same 

principle, Jiang et al. proposed the biologically inspired 

Nonnegative Matrix Factorization (NMF) algorithm [10]. The 

NMF was tested for wrist movements satisfactorily predicting 

2 out of 3 DoF. Additionally, it was compared to a multi-layer 

perceptron (MLP), which showed slightly but consistently 

better performance. This was argued to be due to the MLP 

capabilities to handle non-linear relationships by Muceli et al., 

who also used MLP for the prediction of hand kinematics 

including “hand close” as an additional movement [11].  

In this study, the “hand open” and “hand close” movements 

are included together with 4 wrist motions for a total of 3 DoF. 

Additionally, the classification strategy presented in this work 

only use surface MES as oppose to the previous work where 

additional hardware such as motion capture systems [11], [12], 

and force transducers [10] are required. Systems using motion 

capture hardware are mainly designed for unilateral amputees, 

where the contralateral limb is still available. Conversely, the 

strategy here presented is suitable for both; unilateral and 

bilateral amputees. 

Previous classifiers for simultaneous movements have been 

evaluated using pre-recorded data only (offline). Contrary to 

common sense, it has been shown that offline accuracy does 

not necessarily reflects real-time performance [1], [6], [7], 

[13]. This work is the first to evaluate the real-time 

performance of a simultaneous limb motion classifier. 

This study was approved by the Swedish Regional Ethics 
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Committee in Gothenburg (626-10, T688-12). 

II. METHODS 

A. Signal Acquisition and Processing 

Eight pairs of disposable Ag/AgCl electrodes (Ø = 1 cm) in 

a bipolar configuration (2 cm inter-electrode distance) were 

placed equally distributed around the proximal third of the 

forearm; one distal and one proximal.  The first pair (channel 

1) was consistently placed along the extensor carpi ulnaris and 

the rest following the lateral direction around the forearm. The 

bioelectric amplifier was an in-house design (MyoAmpF2F4-

VGI8) with 66 dB gain, and embedded active filtering: 4th 

order high-pass filter at 20 Hz; 2nd order low-pass filter at 400 

Hz; and, Notch filter at 50 Hz. The signals were digitalized at 

2 kHz with 16-bits resolution. 

The subjects were guided by the software (BioPatRec [6]) to 

execute and hold the motion during 3s, and relax during 3s 

between each contraction. Three repetitions of each movement 

result in 9s of raw MES information. The movements were 

hand open and close, wrist flexion and extension, and 

pro/supination, as well as all their possible combinations 

resulting in 26 motions plus rest.  

Seven subjects participated in this study and 4 of them had 

previous experience with the task, however, the remaining 3 

performed the task for the first time. The recording sessions, 

together with the relevant subject’s information, are available 

in the BioPatRec’s bioelectric signals repository under the 

folder “6mov8ChFUS_MLP_Th” [6]. 

We have previously found that under the presented 

recording method, 70% of the contraction time (cTp) normally 

eliminates periods of absent MES while conserving the 

isometric part of the contraction. This resulted in 121 time 

windows of 200 ms per movement (50 ms time increment), see 

[6] for further explanation on the signal processing and feature 

extraction. 

Four time-domain signal features (mean absolute value, 

wave length, zero crossings, and slope sign changes) were 

extracted from each time window in order to from the feature 

vectors later used to feed the classifier. 

B. Classifier Topology and Training 

As opposed to previous work where independent MLPs 

were used per DoF  [11], [12], a simplified single MLP was 

employed in this study. The MLP had 32 input neurons (4 

features x 8 channels), 2 hidden layers of 32 neurons each, 7 

output neurons (six motions plus rest), and a sigmoid 

activation function. The training method was backpropagation 

with η ꞊ 0.1 learning rate and α ꞊ 0.1 momentum. The 

training was stochastic by randomly supplying 70% of the 

available training sets per learning iteration. A maximum of 

200 iterations was allowed for convergence. The total of 

feature vectors was divided in 40% training, 20% validation 

and 40% testing. The feature vectors on the testing set were 

not presented to the MLP during the training process, and were 

only used to compute the offline accuracy once the network 

was trained. One hundred trainings per subject were conducted 

to compute the average offline performance. Cross-validation 

was performed by randomizing the feature vectors belonging 

to the training, validation and testing sets before each 

network’s training.  

Additionally, we have previously found in similar 

experiments that using half of the randomized testing and 

validation sets produced similar accuracies while reducing 

training time and improving cross-validation [6]. Therefore 24 

and 12 feature vectors per movement were used for training 

and validation respectively, while 49 were used for testing.  

During preliminary research we found that a concurrent 

issue was the false positives of mixed movements while 

performing individual ones. For example, supination was 

easily predicted as intended motion during the execution of 

hand open or close.  

An analysis of the output firing strength suggested that 

misclassification could be considerable reduced by adjusting 

the activation threshold of the output neurons. The artificial 

neuron’s firing is governed by its activation function, which 

traditionally has a limited range, and although the firing 

strength can vary through the activation range, the prediction 

of a motion is made binary for simplicity. Especially if 

proportional control can later be implemented using the 

average signal strength [14]. A visual indicator was created to 

individually setup the activation thresholds for each output 

neuron during real-time classification. A similar visual strategy 

has been employed by Hargrove et al. to setup binary 

classification threshold to decode individual motions using 

linear discriminant analysis (LDA) [3]. This approach is 

reasonably useful in the clinical settings as it allows easy 

customization of parameters according to individual needs. 

False positives have been observed to be more detrimental 

to controllability than false negatives [3]. Therefore as an 

additional measure for the reduction of false positives during 

real-time prediction, the floor noisy during the relaxation 

period of the recording session was used as a minimum value 

to overcome before further proceeding with classification. The 

floor noise value corresponded to the average of the mean 

absolute value of all channels. If the strength of the signal was 

lower than the floor noise, the classifier predicted the “rest” 

class by default. 

C. Real-Time Evaluation 

The “motion test” introduced by Kuiken et al. [4] was used 

as the real-time valuation evaluation tool. Its implementation 

in BioPatRec and further description can be found in [6] . It 

briefly consists on requesting the subject to execute the 

different motions in a randomized order while evaluating the 

following key performance indicators. 

• Selection time. This is the time between the first 

prediction different than rest, and the first correct 

prediction. It includes the time window length. 

• Completion time. Using the same trigger as the selection 

time, the completion time elapses on the 20
th

 correct 

prediction. 
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• Completion rate. This is the percentage of motions that 

achieved 20 correct predictions before timeout. 

• Real-time accuracy. This is reported as the percentage of 

correct predictions over the total number of predictions 

during the completion time.  

The motion test was conducted after modifying the output 

threshold for the movements that were easily misclassified 

when not intended. The subject was asked to execute each 

movement individually while the thresholds of misclassified 

movements were adjusted accordingly. Then, the subject was 

asked to perform the motions with modified threshold in order 

to verify that the adjustment will still allow that specific 

movement to be predicted when intended, see Fig. 1.  

The motion tests consisted in 2 trials of 3 repetitions of each 

movement. The time out for motion completion was 10 s. A 

prediction was made every 50 ms and the average processing 

time was 20 ms, therefore the fastest selection time can be 220 

ms and the fastest completion time 1.17 s considering 20 

correct predictions. 

 

 

Fig. 1 Graphical user interface used the set up the activation 

threshold for the output neurons. The height of the bar indicate the 

prediction strength and the color shows the neuron’s state: active 

(green) or not (blue). The default activation value is 0.5. The subject 

was performing Close Hand + Extend Hand + Pronation in this 

example 

D.  Classifier Implementation 

The classification strategy presented in this work was 

implemented in BioPatRec, an open source framework for the 

development of advanced prosthetic control strategies based in 

pattern recognition algorithms [6]. BioPatRec’s modular 

design allows a seamless implementation of algorithms on 

signal processing; feature selection and extraction; pattern 

recognition; and, real-time control. It includes all the necessary 

routines for the myoelectric control of virtual limbs, prosthetic 

devices, or game control; from data acquisition to real-time 

evaluations, including a virtual reality environment. 

Furthermore, it provides a repository of bioelectric signals for 

algorithm’s benchmarking on common data sets. 

III. RESULTS 

The results are presented in box plots where the central line 

represents the median value; the edges of the box are the 25th 

and 75th percentiles; the whiskers give the range of data values 

without outliers (~ ±2.7σ); and diamond markers represent the 

mean values.  

A. Offline Performance 

The average offline accuracy was 94.7% (±3%), 92.1% 

(±4%) and 92.6% (±3%) for 1 (individual), 2, and 3 mixed 

movements respectively. The average accuracy for all subjects 

and movements was 92.9 % (±3%). The rest motion was 

consider together with the individual motions. These results 

are illustrated in Fig. 2. 

 

 

Fig. 2 Offline accuracy grouped by the number of mixed movements 

 

B. Real-Time Performance 

The average selection time was 0.50s (±0.2s), 0.79s (±0.3s) 

and 0.89s (±0.3s) for 1 (individual), 2, and 3 mixed 

movements respectively. The average selection time for all 

subjects and movements was 0.76s (±0.3s). These results are 

illustrated in Fig. 3, where it can be seen the selection time 

increasing together with the number of mixed movement. This 

is mainly because the first prediction was normally missing 

one of the requested motions. 
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Fig. 3 Selection times grouped by the number of mixed movements 

 

The average completion time was 2.2s (±0.7s), 2.3s (±0.3s) 

and 2.5s (±0.6s) for 1 (individual), 2, and 3 mixed movements 

respectively. The average completion time for all subjects and 

movements was 2.3s (±0.5s). These results are illustrated in 

Fig. 4. 

 

 

Fig. 4 Completion times grouped by the number of mixed movements 

 

The average completion rate was 0.99 (±0.03), 0.98 (±0.03) 

and 0.96 (±0.04) for 1 (individual), 2, and 3 mixed movements 

respectively. The average completion rate for all subjects and 

movements was 0.97 (±0.02). These results are illustrated in 

Fig. 5. 

The cumulative completion rate is shown in Fig. 6 where it 

can be seen that 80% of the motions were completed by the 

more experienced subjects before 2.32 seconds, as oppose to 

only 52% by the first timers. 

The average real-time accuracy was 65.2% (±13.6%), 

59.6% (±6.5%), and 54.4% (±9.4%) for 1 (individual), 2, and 

3 mixed movements respectively. The overall accuracy was 

59.3% (±8.1%). These results are illustrated in Fig. 7. 

 

 

Fig. 5 Completion rate grouped by the number of mixed movements 

 

  

Fig. 6 Illustration of the cumulative completed motions versus time. 

The subjects with more exposure to the task (S1-S4) show faster and 

higher completion rates in comparison to first timers (S5-S7) 

 

 

Fig. 7 Real-time accuracy grouped by the number of mixed 

movements 

C. Applications 

In order to demonstrate the applicability of the presented 

classification strategy, it was incorporated into BioPatRec to 

allow the simultaneous control of a multifunctional prosthetic 

device and a virtual hand (virtual and augmented reality), Fig 
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8. It was also employed to substitute keyboard strokes for 

game control, which is aimed to be used a neuromuscular 

rehabilitation tool. Videos of these demonstration are available 

online on BioPatRec’s project website [15]. 

 

 

 

Fig. 8 Demonstrations on the classifier used for the simultaneous 

control of a multi-functional prosthesis (top-left inset); a virtual hand 

in augmented reality (top-ring inset); and game control (bottom-right 

inset). The bottom-left inset shows a trans-radial amputee controlling 

a virtual hand to demonstrate the viability in subjects with missing 

limbs 

IV. DISCUSSION 

A concern worth of attention when planning to substitute 

individual by simultaneous control, is the loss of stability when 

aiming to move a single DoF. Our results show the highest 

real-time accuracy and completion rate, as well as the fastest 

selection and completion time, for single motions over the 

mixed ones, thus reassuring the approach of simultaneous 

classification without compromising individual control. 

Further research on control algorithms aiming to reduce 

spurious classifications and improve controllability is currently 

performed by our group as well as tests on amputee subjects.  

In this work, the electrodes were only placed around the 

forearm as oppose to previous implementations where 

additional electrodes were also paced in the biceps muscle 

[10]. The biceps provide independent information on the 

supination movement, thus potentially facilitating 

classification. Furthermore, less electrodes were used in 

comparison with previous work [9]. However, despite the 

simplifications made in this study, the MLP with variable 

threshold outputs achieved higher offline accuracies than 

previously reported. It is worthy of notice however, that no fair 

performance comparison can be made between related studies 

due to the several variables involved in the methodology. The 

differences range from the electrode type and positioning; 

through acquisition protocols; to subject’s anatomy, skills and 

experience. This stresses the importance of using common data 

sets and a common platform for the comparison of different 

algorithms. BioPatRec and the data generated in this study 

provide an openly available solution for this problem. 

The results presented in this work should only be used as an 

indication of the feasibility of such a system. The absolute 

values of speed and accuracy are dependent on the processing 

hardware and the employed real-time test respectively. The 

same algorithm running in different hardware will have 

different response time. The subject’s attention and motivation 

during the motion test might also alter the absolute results, as 

one can be easily distracted or misinterpret requested motions, 

thus resulting in delays and accuracy decay. Furthermore, 

additional subject training is known to improve their 

classification results [16]. We observed such impact in this 

study as illustrated in Fig. 6 where considerable difference can 

be observed between subjects with previous experienced in the 

task, and first timers. 

All the discussed variables so far suggest that the results 

presented in this work are likely to be lower than the actual 

potential of the classification strategy. For example, more 

practice, electrodes and their selective placement including 

additional muscles, are likely to improve these results. 

However, to truly evaluate the real performance of any 

prosthetic control strategy, further testing on clinical settings is 

necessary. 

V. CONCLUSION 

The decoding of mixed movements is a necessary step 

towards a more natural control of artificial limbs. In this work, 

we demonstrate the feasibility of simultaneous motion 

classification for the real-time control of artificial limbs. 

Furthermore, the proposed MLP implementation using 

variable threshold outputs can be potentially used in the 

clinical settings due to its operation simplicity and practicality. 
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